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Abstract

Face and gait recognition problems are challenging due to largely varying appear-

ances, highly complex pattern distributions, and insufficient training samples. This dis-

sertation focuses on multilinear subspace learning for face and gait recognition, where

low-dimensional representations are learned directly from tensorial face or gait objects.

This research introduces a unifying multilinear subspace learning framework for sys-

tematic treatment of the multilinear subspace learning problem. Three multilinear pro-

jections are categorized according to the input-output space mapping as: vector-to-vector

projection, tensor-to-tensor projection, and tensor-to-vector projection. Techniques for

subspace learning from tensorial data are then proposed and analyzed. Multilinear prin-

cipal component analysis (MPCA) seeks a tensor-to-tensor projection that maximizes

the variation captured in the projected space, and it is further combined with linear dis-

criminant analysis and boosting for better recognition performance. Uncorrelated MPCA

(UMPCA) solves for a tensor-to-vector projection that maximizes the captured variation

in the projected space while enforcing the zero-correlation constraint. Uncorrelated mul-

tilinear discriminant analysis (UMLDA) aims to produce uncorrelated features through
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a tensor-to-vector projection that maximizes a ratio of the between-class scatter over the

within-class scatter defined in the projected space. Regularization and aggregation are

incorporated in the UMLDA solution for enhanced performance.

Experimental studies and comparative evaluations are presented and analyzed on the

PIE and FERET face databases, and the USF gait database. The results indicate that

the MPCA-based solution has achieved the best overall performance in various learning

scenarios, the UMLDA-based solution has produced the most stable and competitive

results with the same parameter setting, and the UMPCA algorithm is effective in unsu-

pervised learning in low-dimensional subspace. Besides advancing the state-of-the-art of

multilinear subspace learning for face and gait recognition, this dissertation also has po-

tential impact in both the development of new multilinear subspace learning algorithms

and other applications involving tensor objects.
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Chapter 1

Introduction

This dissertation studies multilinear subspace learning, the problem of learning low-

dimensional representations directly from tensorial data, for face and gait recognition

[43,87]. This chapter begins by introducing the field of biometrics, and in particular the

problems of face and gait recognition. Next, the key challenges in solving these problems

are outlined. It is then pointed out that for the popular subspace learning technique,

traditional linear algorithms have their fundamental limitations and have become inad-

equate in handling the intrinsically tensorial facial and gait data, thus motivating the

multilinear subspace learning approach. Finally, the contributions are listed and a road

map to the rest of the dissertation is given.

1.1 Introduction to Biometrics

Biometrics refers to the automatic recognition of individuals based on their physiological

and/or behavioral characteristics [43]. Physiological characteristics are related to the

shape of the body, such as fingerprints, faces, hand geometry, and iris. Behavioral char-

acteristics are related to the behavior of a person, such as signature, keystroke, voice, and

gait. Although biometrics emerged from its extensive use in law enforcement to identify

criminals, it is being increasingly used for human recognition in a large number of civilian

1
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applications. Biometric system offers greater security and convenience than traditional

methods of personal recognition, such as ID cards and passwords. It gives users greater

convenience (e.g., no need to remember passwords) while maintaining sufficiently high

accuracy and ensuring that the user is present at the point at time of recognition [42].

Figure 1.1: A general biometric system for human identification.

A biometric system is essentially a pattern recognition system that operates by ac-

quiring biometric data from an individual, extracting a feature set from the acquired

data, and comparing this feature set against the stored feature sets in the database [43].

Figure 1.1 shows a simple block diagram of a typical biometric system. The main op-

erations such a system can perform are enrollment and test. During the enrollment,

biometric information from an individual is stored. During the test, biometric informa-

tion is extracted and compared with the stored information. The sensor is the interface

between the real world and the system, and it acquires all the necessary data. The sec-

ond block performs all the necessary pre-processing, such as noise removal, enhancement,

segmentation, and normalization. In the third block, features are extracted. This step is

a critical step for successful recognition, and hence, it is the focus of this dissertation. In

an enrollment, the features are simply stored. In a test, the features extracted from the

input sample are passed to a classifier to classify against the stored features to determine
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the identity.

1.2 Face and Gait Recognition

Face and gait are two typical physiological and behavioral biometrics, respectively. Com-

pared with other biometric traits, face and gait have the unique property that they fa-

cilitate human recognition at a distance, which is extremely important in surveillance

applications. Moreover, their unintrusive nature leads to high collectability and accept-

ability, making them very promising technologies for wide deployments. The collectability

refers to the ease of acquisition for measurement. The acceptability indicates the extent

to which people are willing to accept the use of a particular biometric identifier in their

daily lives [43].

Face recognition has received significant attention during the past two decades, and

it has a large number of commercial security and forensic applications, including video

surveillance, access control, mugshot identification, entertainment industry, video com-

munications, and medical diagnosis [43,13].

Gait recognition is a relatively new area in biometrics. Gait, a person’s walking

style, is a complex spatio-temporal biometric [13, 98, 44]. It is considered to be the only

true remote biometric [42]. The interest in gait recognition is strongly motivated by the

need for an automated human identification system at a distance in visual surveillance

and monitoring applications in security-sensitive environments, e.g., banks, parking lots,

museums, malls, and transportation hubs such as airports and train stations [141]. Other

biometrics such as fingerprint, face or iris information are usually not available at high

enough resolution for recognition in these circumstances [13, 48]. Furthermore, night

vision capability (an important component in surveillance) is usually not possible with

other biometrics due to the limited biometric details in an IR image at large distance

[13, 48]. Therefore, gait recognition, the identification of individuals through the way
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they walk, has emerged as a promising solution with the advantages of unobtrusiveness,

hard-to-hide, and recognition at a distance [49,109,4].

Face recognition algorithms are broadly categorized into appearance-based [128, 3,

114, 89, 151, 91] and feature-based [108, 143, 17] algorithms and they take digitally cap-

tured facial image, mostly in gray-level, as input. Gait recognition algorithms are either

appearance-based [71,135,68,141,126,25,8,31] or model-based [140,149,18,136], and their

inputs are usually binary gait silhouette sequences since color or texture is not reliable

for recognition. In both face and gait recognition, the appearance-based algorithms are

arguably the most successful ones [10,160,67,119,99,94] and they have support from stud-

ies in visual neuroscience [119]. Therefore, this dissertation focuses on appearance-based

learning1, where the input images or image sequences are treated as holistic patterns.

1.3 Challenges in Appearance-Based Face and Gait

Recognition

Although extensive studies have been performed and encouraging progresses have been

made in appearance-based face and gait recognition, these two problems remain largely

unsolved. The study and development of a comprehensive learning framework for face

and gait signals has both theoretical and practical implications of broad significance. The

key technical challenges pertinent to this research are summarized in the following:

1. Large variability of the appearance: Face or gait patterns of the same person

generally exhibit significant variations in appearance [88]. The intra-subject varia-

tions for face patterns include pose (imaging angle), illumination, facial expression,

occlusion, makeup, glasses, facial hair, time (aging), and imaging parameters such

as aperture and exposure time. The intra-subject variations for gait patterns in-

1This research has also investigated a model-based approach for gait recognition, with a layered
deformable model proposed [78,82].
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clude pose (viewing angle), shoes, walking surface, carrying condition, clothing,

time, and also imaging device. Such intra-subject variations can be larger than the

variations due to the change of subject identities. This makes the extraction of

discriminative information from a face or gait object a demanding task.

2. High complexity of pattern distribution: It is commonly believed that face

or gait patterns of the same subject under the large number of variations lie in a

nonlinear manifold. The class conditional distribution of the face or gait patterns is

generally believed to be multi-modal and non-convex [88]. This severely challenges

the existing pattern recognition methodologies that often assume much simpler

distribution, and makes the face or gait recognition task extremely difficult.

3. Insufficiency of training samples: Face or gait patterns for recognition purposes

usually have high dimensionality. For example, the size of a facial image in typical

recognition applications ranges from 32 × 32 [37] to 150 × 130 pixels [93], which

correspond to dimensionality of 1,024 to 19,500 pixels. The size of a typical gait

sequence for recognition ranges from 32 × 22 × 10 to 128 × 88 × 20 pixels, which

correspond to dimensionality of 7,040 to 225,280 pixels. However, in practical face

and gait recognition applications, the number of samples (per subject) available

for training is often much smaller than the number of parameters to be estimated,

causing the so-called small sample size problem. The lack of adequate training

samples significantly degrades the performance of the feature extractors and the

classifiers, especially in supervised learning [88].

From the above discussions, the problems of face and gait recognition present re-

searchers with both challenges and opportunities. Hence, they are examined in this

dissertation with emphasis on the feature extraction module of Fig. 1.1.
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1.4 Motivation: the Approach of Multilinear Sub-

space Learning

This dissertation takes the approach of multilinear subspace learning in solving the face

and gait recognition problems. Before describing this approach, the concept of tensor

object is introduced and the natural representations of face and gait objects are studied

first.

1.4.1 The natural representations of face and gait objects

In this dissertation, tensorial data, or multi-dimensional objects/arrays, are formally

referred to as tensor objects. The elements of a tensor are to be addressed by N indices,

where N (the number of indices used in the description) defines the order of the tensor

object and each index defines one mode [57,60]. By this definition, vectors are first-order

tensors (with N = 1) and matrices are second-order tensors (with N = 2). Tensors

with N > 2 can be viewed as a generalization of vectors and matrices to higher order.

A tensor object is an element in a tensor space, the Kronecker product (also known as

direct product or tensor product) of N vector spaces [33, 57, 96]. In addition, it should

be noted that the term tensor has different meanings in mathematics and physics. The

usage in this dissertation refers to its meaning in mathematics, in particular multilinear

algebra [59, 60, 33, 57]. In physics, the same term usually means the so-called tensor

field [63], a generalization of the vector field. It is an association of a different tensor

with each point of a geometric space and it varies continuously with position.

By the definitions above, gray-level face images are naturally second-order tensors

with the column, and row modes [150], and binary gait silhouette sequences are third-

order tensors with the column, row, and time modes. For illustration, Fig. 1.2 shows

two examples in their natural representations with their modes labeled: a gray-level face

image in Fig. 1.2(a) and a binary gait silhouette sequence in Fig. 1.2(b).
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(a) (b)

Figure 1.2: The natural representations of two biometric objects: (a) a second-order face
tensor, and (b) a third-order gait (silhouette) tensor.

Besides gray-level images and binary/gray-level video sequences, there are other real-

world tensor objects as well. Color images are third-order tensors with the column, row,

and color modes [51]. Three-dimensional gray-level objects [19], such as 3-D gray-level

faces [7, 66], are naturally third-order tensors with the column, row, and depth modes.

Color video sequences are fourth-order tensors with the column, row, time, and color

modes.

1.4.2 Multilinear subspace learning

As mentioned in Sec. 1.3, a face or gait object is commonly specified in a high-dimensional

space. Recognition methods operating directly on this space suffer from the so-called

curse of dimensionality [115]: handling high-dimensional samples is computationally ex-

pensive and many classifiers perform poorly in high-dimensional spaces given a small

number of training samples. However, face or gait objects do not lie randomly in the

high-dimensional space, rather, they are highly constrained and confined to a subspace,

a manifold of intrinsically low dimension [115, 159]. Subspace learning (also known as

dimensionality reduction) is thus an attempt to transform a high-dimensional data set
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into a low-dimensional equivalent representation while retaining most of the information

regarding the underlying structure or the actual physical phenomenon [62]. It is the

arguably most successful approach in appearance-based learning.

Traditional subspace learning algorithms, such as the classical principal component

analysis (PCA) [47] and linear discriminant analysis (LDA) [21], are linear algorithms

that operate on one-dimensional objects, i.e., first-order tensors (vectors). PCA reduces

the dimensionality of the data by retaining most of the variation in the input data

through a linear projection that produces uncorrelated features [47]. LDA maximizes

a ratio of the between-class scatter to the within-class scatter in order to best separate

classes. To apply these linear algorithms to higher-order (greater than one) tensor objects,

such as images and videos, these tensor objects have to be reshaped (vectorized) into

vectors first. However, such reshaping, i.e., vectorization, usually results in very high

dimensional vectors that lead to high or even impractical computational and memory

demands, in particular for massive data sets such as video sequences. It also requires

the estimation of a large number of parameters, which is often a problem, especially in

the small sample size scenario, where the number of training samples available is limited.

Furthermore, the vectorization breaks the natural structure and correlation in the original

data, reduces redundancies and/or higher order dependencies present in the original data

set, and loses potentially more compact or useful representations that can be obtained

in the original tensorial forms. Thus, multilinear subspace learning, subspace learning

algorithms operating directly on the tensor objects rather than their vectorized versions,

are desirable and they offer great potential in processing tensor objects.

In the past a few years, a number of multilinear subspace learning algorithms have

been proposed [147,156,116,153,37,155,150,124,142,123,37,20,151,144,41]. Despite the

encouraging progress made, multilinear subspace learning is still a field in its infancy. It

remains to be a very difficult problem to successfully extend the rich ideas developed in

the linear subspace learning to multilinear subspace learning.
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Firstly, subspace learning relies on projection from one (high-dimensional) space to

another (low-dimensional) space. Compared to the well-understood linear projection,

multilinear projection is a relatively new concept in subspace learning. Although mul-

tilinear projection has been used in existing multilinear subspace learning algorithms,

there is no work giving a formal, systematic treatment on this topic, which hinders the

development of multilinear subspace learning.

Secondly, linear subspace learning algorithms such as PCA and LDA are not iterative.

However, in multilinear subspace learning, there are usually N sets of parameters to be

estimated, with one set in each mode. The estimation of parameters in one mode usually

depends on the parameters in all the other modes. Hence, an iterative procedure has to

be adopted to solve for all parameters. In turn, the issues of initialization, projection

order, termination, and convergence, which do not exist in linear subspace learning, have

to be addressed in multilinear subspace learning.

Thirdly, the classical PCA and LDA algorithms both derive uncorrelated features, i.e.,

features with zero correlation. Uncorrelated features contain minimum redundancy and

ensure linear independence of features. They can greatly simplify the subsequent classi-

fication task and they are highly desirable in many applications [158]. However, there is

no existing multilinear subspace learning algorithm producing uncorrelated features due

to the difficulty in constraint enforcement in a multilinear setting.

Lastly, although the small sample size problem is reduced in multilinear subspace

learning as the number of parameters to be estimated is much smaller in multilinear

subspace learning than in linear subspace learning, this number in supervised multilinear

subspace learning still far exceeds the number of samples available for their accurate

estimation in most practical situations. Thus, the small sample size problem needs to be

tackled as well in supervised multilinear subspace learning.
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1.5 Contributions

In light of the proceeding discussion, this dissertation aims to advance the state-of-

the-art in the area of multilinear subspace learning for face and gait recognition. The

central thesis of this dissertation is that, face and gait recognition algorithms, both

supervised and unsupervised in nature, can be developed within a unifying multilinear

subspace learning framework through the appropriate incorporation of iterative solutions

and acceptable learning constraint.

Figure 1.3 depicts in the form of a “tree” the major contributions made in this re-

search. These novel contributions, shown as “shaded boxes” in Figure 1.3, are explained

below in a top-to-down and left-to-right order:

Figure 1.3: The contributions (shaded boxes) of this dissertation in multilinear subspace
learning for face and gait recognition.

1. A systematic treatment on multilinear projection: The dissertation system-

atically treats the notion of multilinear projection [86], upon which all the developed

multilinear subspace learning algorithms are based. The three different multilinear

projections discussed in this work are categorized according to the input-output
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space mapping. Namely, the vector-to-vector projection, the tensor-to-tensor pro-

jection, and the tensor-to-vector projection are introduced, analyzed, and com-

mented upon. This unified representation allows for the systematic treatment and

comparative evaluation of the various existing multilinear subspace learning al-

gorithms. Moreover, it facilitates the development of novel multilinear subspace

learning algorithms.

2. Multilinear principal component analysis (MPCA): The dissertation intro-

duces the MPCA algorithm [83], an unsupervised multilinear subspace learning

algorithm developed using the tensor-to-tensor projection. The MPCA algorithm

extends the idea of variance maximization in PCA to tensorial input data. MPCA

seeks a tensor-to-tensor projection that maximizes the total tensor scatter in the

projected space. This is the first unsupervised multilinear subspace learning algo-

rithm with the objective of variance maximization that can be applied to general

tensorial data. This research addresses issues related to the algorithm initializa-

tion phase, projection order determination, termination criterion, and convergence

properties. It also proposes solutions for the problem of subspace dimensionality

determination, which is important in algorithms based on the tensor-to-tensor pro-

jection. Furthermore, enhanced variants of MPCA are developed by discriminative

feature selection and by its combination with LDA and boosting [83, 80, 77]. To

the best of the author’s knowledge, the proposed MPCA+LDA+boosting approach

is the first known work that combines ensemble-based learning with a multilinear

subspace solution.

3. Uncorrelated multilinear principal component analysis (UMPCA): The

dissertation introduces, researches, and evaluates the so-called UMPCA algorithm

[85], an unsupervised multilinear subspace learning algorithm using the tensor-

to-vector projection. In UMPCA, a zero-correlation constraint on the produced
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features is enforced in addition to seeking a tensor-to-vector projection that maxi-

mizes the total scalar-based scatter in the projected space. UMPCA is motivated

by the fact that in addition to variance maximization, PCA derives uncorrelated

features. Thus, UMPCA extends PCA through the tensor-to-vector projection and

it is the first known unsupervised multilinear subspace learning algorithm that

produces uncorrelated features.

4. Uncorrelated multilinear discriminant analysis (UMLDA): The disserta-

tion introduces the so-called UMLDA algorithm [84], a supervised multilinear sub-

space learning algorithm using the tensor-to-vector projection. As in PCA, the

classical LDA algorithm also derives uncorrelated features. UMLDA maximizes

the class separability in the projected space, as measured by the traditional scat-

ter ratio, while enforcing the zero-correlation constraint among extracted features.

Therefore, UMLDA extends the classical LDA through the tensor-to-vector projec-

tion and it is the first known supervised multilinear subspace learning algorithm

that produces uncorrelated features. Moreover, as mentioned in Sec. 1.3, super-

vised learning algorithms are more susceptible to the small sample size problem

in practice. Hence, the recognition performance of UMLDA is further enhanced

through regularization and aggregation.

1.6 Organization

The rest of the dissertation is organized as follows.

Chapter 2 introduces the fundamentals of multilinear subspace learning. Basic mul-

tilinear algebra is reviewed first. Three basic types of multilinear projections are then

discussed: the vector-to-vector projection (linear projection), the tensor-to-tensor projec-

tion, and the tensor-to-vector projection. Furthermore, their connections and differences

are analyzed. Next, the problem of multilinear subspace learning is defined along with the
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tensor-based and scalar-based measures for the total scatter, the between-class scatter,

and the within-class scatter. In brief, this chapter offers a systematic treatment of the

fundamental concepts needed in the development of new multilinear subspace learning

algorithms in this dissertation.

Chapter 3 provides an overview of the performance evaluation mechanism and the

data sets used in experimental evaluation. It also offers a comprehensive review of the

existing state-of-the-art multilinear subspace learning algorithms. The commonly used

terminology is introduced and the performance evaluation schemes, which will be used

throughout this dissertation, are presented in detail. This chapter describes the face

and gait databases used in the experiments and outlines the respective preprocessing

steps. Next, existing multilinear subspace learning algorithms are reviewed in detail,

highlighting their limitations and pitfalls.

Chapter 4 introduces the MPCA algorithm and its extensions. The problem to

be solved is defined and an iterative solution is derived to maximize the captured vari-

ance through the tensor-to-tensor projection. Connections with the existing solutions

are discussed. Issues pertinent to the initialization, projection order, termination, and

convergence of the algorithm are examined in detail. Methods for subspace dimension-

ality determination are proposed. To improve recognition performance, a discriminative

MPCA feature selection procedure is suggested, and the MPCA+LDA algorithm is also

proposed. The chapter further introduces the combination of MPCA and the LDA-style

booster in [93] for better generalization performance. Three synthetic data sets with dif-

ferent eigenvalue distributions are generated, on which the MPCA properties regarding

the initialization, projection order, convergence, and subspace dimensionality determina-

tion are studied in detail.

Chapter 5 presents the UMPCA algorithm. UMPCA aims to extract uncorrelated

features through the tensor-to-vector projection while maximizing the variance in the

projected space. The solution follows the successive variance maximization approach
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in a classical derivation of PCA. The tensor-to-vector projection is viewed as a num-

ber of elementary projections and these elementary projections are solved one by one,

sequentially, with each step being iterative as in MPCA. The limitation of UMPCA in

the number of features that can be extracted is theoretically analyzed. The connections

of UMPCA with other algorithms are pointed out and design issues similar to those in

MPCA are discussed. Since UMPCA is also unsupervised, its properties regarding ini-

tialization, projection order, and convergence are studied on the three synthetic data sets

constructed in Chapter 4.

Chapter 6 proposes the UMLDA algorithm, which is supervised. UMLDA aims to

extract uncorrelated features through the tensor-to-vector projection while maximizing

the scatter ratio in the projected space. Furthermore, because the small sample size

problem is more severe for supervised learning algorithms, regularization are adopted

to enhance its performance in practical situations. The solution for UMLDA is derived

in a similar fashion as that for UMPCA. UMLDA is also limited in the number of ex-

tracted features and an aggregation scheme is proposed to overcome this limitation. Since

UMLDA is a supervised algorithm, its properties regarding initialization, regularization,

projection order, convergence, and aggregation are studied on a face database so that

labeled data is available for supervised learning and the performance under different

sample sizes can be examined.

Chapter 7 evaluates the face and gait recognition performance of the proposed algo-

rithms by comparing them against existing state-of-the-art subspace learning algorithms.

Six sets of experiments are introduced. The first and second sets of face recognition ex-

periments evaluate the algorithms under varying number of training samples per class

and varying number of classes, respectively. The third set of face recognition experi-

ments conducts specific studies of the unsupervised learning algorithms and in particular

examines the advantage of UMPCA in low-dimensional subspace. The first set of gait

recognition experiments evaluates the proposed and existing subspace learning algorithms
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under various capturing conditions. The second set of gait recognition experiments com-

pares the MPCA-based algorithms against the state-of-the-art gait recognition algorithms

with more sophisticated preprocessing and matching algorithms. The third set of gait

recognition experiments carries out the first known boosting studies on gait recognition.

The experimental results are discussed and important observations are made.

Chapter 8 concludes this dissertation by summarizing the key contributions and

suggesting directions for future research.

The technical contents of Chapters 2, 4, 6, and 7 have partly appeared in the following

IEEE copyrighted materials, with the permission to reprint granted by IEEE:

1. Haiping Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “MPCA: Multilinear

principal component analysis of tensor objects”, IEEE Transactions on Neural Net-

works, Vol. 19, No. 1, Page: 18-39, January 2008.

2. Haiping Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Uncorrelated multi-

linear discriminant analysis with regularization and aggregation for tensor object

recognition”, revision submitted to IEEE Transactions on Neural Networks, 2008

(accepted pending minor revision).

3. Haiping Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “A taxonomy of emerg-

ing multilinear discriminant analysis solutions for biometric signal recognition”,

to appear in Biometrics: Theory, Methods, and Applications, N. Boulgouris, K.N.

Plataniotis, and E. Micheli-Tzanakou, Eds., IEEE/Wiley Press (submitted in 2007,

currently under review).

4. Haiping Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Boosting LDA with

regularization on MPCA features for gait recognition”, in Proceedings of the Bio-

metrics Symposium 2007 (BSYM 2007), Baltimore, US, September 2007.



Chapter 2

Fundamentals of Multilinear

Subspace Learning

This chapter formulates the general problem of multilinear subspace learning. It begins

by introducing the notations and reviewing basic multilinear algebra. A commonly used

tensor distance measure is then shown to be equivalent to the Euclidean distance for

corresponding vectors. Next, three basic types of multilinear projections, including linear

projection, are formulated and their underlying connections with each other are analyzed.

After a brief review of two classical linear subspace learning methods, the problem of

multilinear subspace learning is defined, together with several tensor-based and scalar-

based scatter measures. Finally, the typical approach in solving multilinear problems is

discussed. With a systematic approach, this chapter serves as the foundations for the

rest of this dissertation, and it helps the readers to understand multilinear concepts with

ease and clarity for usage and even further development of multilinear subspace learning

algorithms.

16
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2.1 Multilinear Basics

This section reviews the notations and some basic multilinear operations [60, 59, 2] that

are necessary in defining the multilinear subspace learning problem. To pursue further

in multilinear algebra, [33, 57, 59, 60, 61, 53, 2] are excellent references. In addition, the

equivalent vector interpretation of a commonly used tensor distance measure is derived

in this section.

2.1.1 Notations

The notations in this dissertation follow the conventions in the multilinear algebra, pat-

tern recognition, and adaptive learning literature [60, 59, 2]. Vectors are denoted by

lowercase boldface letters, e.g., x; matrices by uppercase boldface, e.g., U; and tensors

by calligraphic letters, e.g., A. Their elements are denoted with indices in parentheses.

Indices are denoted by lowercase letters and span the range from 1 to the uppercase letter

of the index, e.g., n = 1, 2, ..., N . To address part of a vector/matrix/tensor, “:” denotes

the full range of the corresponding index and n1 : n2 denotes indices ranging from n1

to n2. Throughout this dissertation, the discussion is restricted to real-valued vectors,

matrices, and tensors since the targeted applications involve real-valued data only, such

as gray-level face images and binary gait silhouette sequences.

2.1.2 Basic multilinear algebra

As in [60,59,2], an Nth-order tensor is denoted as: A ∈ RI1×I2×...×IN . It is addressed by

N indices in, n = 1, ..., N , and each in addresses the n-mode of A. The n-mode product

of a tensor A by a matrix U ∈ RJn×In , denoted by A×n U, is a tensor with entries:

(A×n U)(i1, ..., in−1, jn, in+1, ..., iN) =
∑
in

A(i1, ..., iN) ·U(jn, in). (2.1)
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The scalar product of two tensors A,B ∈ RI1×I2×...×IN is defined as:

< A,B >=
∑
i1

∑
i2

...
∑
iN

A(i1, i2, ..., iN) · B(i1, i2, ..., iN) (2.2)

and the Frobenius norm of A is defined as

‖ A ‖F=
√
< A,A >. (2.3)

The inth “n-mode slice” of A is an (N −1)th-order tensor obtained by fixing the n-mode

index of A to be in: A(:, ..., :, in, :, ..., :). The “n-mode vectors” of A are defined as the

In-dimensional vectors obtained from A by varying the index in while keeping all the

other indices fixed. A rank-1 tensor A equals to the outer product of N vectors:

A = u(1) ◦ u(2) ◦ ... ◦ u(N), (2.4)

which means that

A(i1, i2, ..., iN) = u(1)(i1) · u(2)(i2) · ... · u(N)(iN) (2.5)

for all values of indices. Unfolding A along the n-mode is denoted as

A(n) ∈ RIn×(I1×...×In−1×In+1×...×IN ), (2.6)

and the column vectors of A(n) are the n-mode vectors of A.

Following standard multilinear algebra, any tensor A can be expressed as the product:

A = S ×1 U(1) ×2 U(2) × ...×N U(N), (2.7)
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where

S = A×1 U(1)T ×2 U(2)T ...×N U(N)T , (2.8)

and U(n) =
(
u

(n)
1 u

(n)
2 ...u

(n)
In

)
is an orthogonal In×In matrix. Since U(n) has orthonormal

columns, ‖ A ‖2F=‖ S ‖2F [60]. A matrix representation of this decomposition can be

obtained by unfolding A and S as

A(n) = U(n) · S(n) ·
(
U(n+1) ⊗U(n+2) ⊗ ...⊗U(N) ⊗U(1) ⊗U(2) ⊗ ...⊗U(n−1)

)T
, (2.9)

where
⊗

denotes the Kronecker product. The decomposition can also be written as:

A =

I1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

S(i1, i2, ..., iN)u
(1)
i1
◦ u

(2)
i2
◦ ... ◦ u

(N)
iN
, (2.10)

i.e., any tensor A can be written as a linear combination of I1 × I2 × ... × IN rank-1

tensors.

(a) (b) (c) (d)

Figure 2.1: Illustration of the n-mode vectors: (a) a tensor A ∈ R8×6×4, (b) the 1-mode
vectors, (c) the 2-mode vectors, and (d) the 3-mode vectors.

Figures 2.1(b), 2.1(c), and 2.1(d) give visual illustrations of the 1-mode, 2-mode and

3-mode vectors of the third-order tensor A in Fig. 2.1(a), respectively. Figure 2.2(a)

shows the 1-mode unfolding of the tensor A in Fig. 2.1(a). Fig. 2.2(b) demonstrates

how the 1-mode multiplication A ×1 B is obtained. The product A ×1 B is computed

as the inner product between the 1-mode vector of A and the rows of B. In the 1-mode
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(a)

(b)

Figure 2.2: Visual illustration of (a) the n-mode (1-mode) unfolding and (b) the n-mode

(1-mode) multiplication.

multiplication, each 1-mode vector of A (∈ R8) is projected by B ∈ R3×8 to obtain a

vector (∈ R3), as the differently shaded vectors indicate in Fig. 2.2(b).

2.1.3 Tensor distance measure

To measure the distance between tensors A and B, the Frobenius norm is used in [150]:

dist(A,B) =‖ A − B ‖F . (2.11)

Although this is a tensor-based measure, it can be proven to be equivalent to a distance

measure of corresponding vector representations. Let vec(A) be the vector representation

(vectorization) of A, a property regarding the inner product between two tensors is
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derived as follows:

Proposition 2.1. < A,B >=< vec(X ), vec(U) >= [vec(U)]T vec(X ).

Proof. From (2.2),

< A,B > =
∑
i1

∑
i2

...
∑
iN

A(i1, i2, ..., iN) · B(i1, i2, ..., iN)

=

∏N
n=1 In∑
i=1

vec(A)(i) · vec(B)(i)

= < vec(A), vec(B) >

= [vec(B)]T vec(A).

Then, it is straightforward to show that

Proposition 2.2. dist(A,B) =‖ vec(A)− vec(B) ‖2.

Proof. From Proposition 2.1,

dist(A,B) = ‖ A − B ‖F

=
√
< (A− B), (A− B) >

=
√
< vec(A)− vec(B), vec(A)− vec(B) >

= ‖ vec(A)− vec(B) ‖2 .

Proposition 2.2 indicates that the Frobenius norm of the difference between two ten-

sors equals to the Euclidean distance between their vectorized representations. Another

explanation is that the Frobenius norm is a point-based measurement as well [75] and it

does not take the structure of a tensor into account.
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2.2 Multilinear Projections

A multilinear subspace is defined through a multilinear projection that maps the input

data from one space to another (lower-dimensional) space [37]. Therefore, what is a mul-

tilinear projection needs to be understood before proceeding to the multilinear subspace

learning solutions.

This section first proposes a categorization of the three basic multilinear projections in

terms of the input and output of the projection: the traditional vector-to-vector projec-

tion, the tensor-to-tensor projection, and the tensor-to-vector projection. Furthermore,

the relationships between these projections are investigated.

2.2.1 Vector-to-vector projection

Linear projection is a standard transform used widely in various applications [21,96]. A

linear projection takes a vector x ∈ RI and projects it to y ∈ RP using a projection

matrix U ∈ RI×P :

y = UTx = x×1 UT . (2.12)

In typical pattern recognition applications, P << I. Therefore, linear projection is a

vector-to-vector projection and it requires the vectorization of an input before projection.

Figure 2.3(a) illustrates the vector-to-vector projection of a tensor object A.

2.2.2 Tensor-to-tensor projection

Besides the traditional vector-to-vector projection, a tensor can also be projected to

another tensor (of the same order), named as the tensor-to-tensor projection in this

chapter. An Nth-order tensor X resides in the tensor space RI1
⊗

RI2 ...
⊗

RIN [59, 37].

Thus, the tensor space can be viewed as the Kronecker product of N vector (linear) spaces

RI1 , RI2 , ..., RIN . For the projection of a tensor X in a tensor space RI1
⊗

RI2 ...
⊗

RIN to

another tensor Y in a lower-dimensional tensor space RP1
⊗

RP2 ...
⊗

RPN , where Pn ≤ In
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(a)

(b)

(c)

Figure 2.3: Illustration of (a) vector-to-vector projection, (b) tensor-to-tensor projection,

(c) tensor-to-vector projection, where EMP stands for elementary multilinear projection.

for all n, N projection matrices {U(n) ∈ RIn×Pn , n = 1, ..., N} are used so that [60]

Y = X ×1 U(1)T ×2 U(2)T ...×N U(N)T . (2.13)

Figure 2.3(b) demonstrates the tensor-to-tensor projection of a tensor object A to a

smaller tensor of size P1×P2×P3. How this multilinear projection is carried out can be

understood better by referring to the illustration on the n-mode multiplication in Fig.

2.2(b).
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2.2.3 Tensor-to-vector projection

Next, a third multilinear projection is introduced, which is from a tensor space to a vector

space, and it is called the tensor-to-vector projection1. The tensor-to-vector projection

projects a tensor to a vector and it can be viewed as multiple projections from a tensor

to a scalar, as illustrated in Fig. 2.3(c), where the tensor-to-vector projection of a tensor

A ∈ R8×6×4 to a P × 1 vector consists of P projections from A to a scalar. Thus, the

projection from a tensor to a scalar is considered first.

A tensor X ∈ RI1×I2×...×IN can be projected to a point y through N unit projection

vectors {u(1)T ,u(2)T , ...,u(N)T } as:

y = X ×1 u(1)T ×2 u(2)T ...×N u(N)T , ‖ u(n) ‖= 1 for n = 1, ..., N, (2.14)

where ‖ · ‖ is the Euclidean norm for vectors. It can be written in the scalar product

(2.2) as:

y =< X ,u(1) ◦ u(2) ◦ ... ◦ u(N) > . (2.15)

Denote U = u(1) ◦ u(2) ◦ ... ◦ u(N), then y =< X ,U >. This multilinear projection

{u(1)T ,u(2)T , ...,u(N)T } is named as an elementary multilinear projection, the projection

of a tensor on a single line (resulting a scalar), and it consists of one projection vector

in each mode. Figure 2.4 illustrates an elementary multilinear projection of a tensor

A ∈ R8×6×4.

Thus, the tensor-to-vector projection of a tensor object X to a vector y ∈ RP in a

P -dimensional vector space consists of P elementary multilinear projections

{u(1)T

p ,u(2)T

p , ...,u(N)T

p }, p = 1, ..., P, (2.16)

which can be written concisely as {u(n)T

p , n = 1, ..., N}Pp=1. The tensor-to-vector projec-

1The tensor-to-vector projection is referred to as the rank-one projections in some works [142,123,41].
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Figure 2.4: Illustration of an elementary multilinear projection.

tion from X to y is then written as

y = X ×Nn=1 {u(n)T

p , n = 1, ..., N}Pp=1, (2.17)

where the pth component of y is obtained from the pth elementary multilinear projection

as:

y(p) = X ×1 u(1)T

p ×2 u(2)T

p ...×N u(N)T

p . (2.18)

Figure 2.3(c) shows the tensor-to-vector projection of a tensor object A to a vector of

size P × 1.

2.2.4 Relationships between the three types of multilinear pro-

jections

With the introduction of the three basic multilinear projections, it is worthwhile to in-

vestigate their relationships. It is easy to verify that the vector-to-vector projection is
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the special case of the tensor-to-tensor projection and the tensor-to-vector projection

with N = 1. The elementary multilinear projection is the degenerated version of the

tensor-to-tensor projection with Pn = 1 for all n. On the other hand, each projected ele-

ment in the tensor-to-tensor projection can be viewed as the projection of an elementary

multilinear projection formed by taking one column from each of the projection matri-

ces. Thus, the projected tensor in the tensor-to-tensor projection is obtained through∏N
n=1 Pn interdependent elementary multilinear projections in effect, while in the tensor-

to-vector projection, the P elementary multilinear projections obtained sequentially are

not interdependent generally.

Furthermore, recall that the projection using an elementary multilinear projection

{u(1)T ,u(2)T , ...,u(N)T } can be written as

y =< X ,U >=< vec(X ), vec(U) >= [vec(U)]T vec(X ), (2.19)

by Proposition 2.1. Thus, an elementary multilinear projection is equivalent to a linear

projection of vec(X ), the vectorized representation of X , on a vector vec(U). Since

U = u(1) ◦ u(2) ◦ ... ◦ u(N), (2.19) indicates that the elementary multilinear projection is

in effect a linear projection with constraint on the projection vector such that it is the

vectorized representation of a rank-one tensor.

Compared with a projection vector of size I×1 in the vector-to-vector projection spec-

ified by I parameters (I =
∏N

n=1 In for an Nth-order tensor), an elementary multilinear

projection in the tensor-to-vector projection can be specified by
∑N

n=1 In parameters.

Hence, to project a tensor of size
∏N

n=1 In to a vector of size P × 1, the tensor-to-vector

projection needs to estimate only P ·
∑N

n=1 In parameters, while the vector-to-vector pro-

jection needs to estimate P ·
∏N

n=1 In parameters. The implication in pattern recognition

problem is that the tensor-to-vector projection has fewer parameters to estimate while

being more constrained on the solutions, and the vector-to-vector projection has less
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constraint on the solutions sought while having more parameters to estimate.

2.3 Linear Subspace Learning

Linear subspace learning algorithms [21, 115] solve for a linear projection with some

optimality criteria, given a set of training samples. The problem can be formulated

mathematically as follows.

Linear Subspace Learning: A set of M vectorial samples {x1, x2, ..., xM} is

available for training, where each sample xm is an I × 1 vector in a vector space RI .

The linear subspace learning objective is to find a linear transformation (projection)

U ∈ RI×P such that the projected samples (the extracted features) {ym = UTxm}

satisfy an optimality criterion, where ym ∈ RP×1 and P < I. In classification, these

features are fed into a classifier, e.g., the nearest neighbor classifier, and the similarity is

usually calculated based on some distance measure.

Among various linear subspace learning algorithms, PCA [47] and LDA [21] are the

two most important and widely used algorithms in a broad range of applications [128,3].

PCA is an unsupervised method that does not require the training samples to be labeled,

while LDA is a supervised method that makes use of class specific information. The

algorithms developed in this dissertation (and many other subspace learning algorithms)

are based on these two highly influential techniques, so they are reviewed below.

2.3.1 Principal component analysis

PCA is one of the most influential linear subspace learning methods. The well-known

eigenface method [128] for face recognition, built on PCA, started the era of the appearance-

based approach to face recognition, and more generally to visual object recognition. The

central idea behind PCA is to reduce the dimensionality of a data set consisting of a

larger number of interrelated variables, while retaining as much as possible the variation
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present in the original data set [47]. This is achieved by transforming to a new set of

variables, the so-called principal components, which are uncorrelated, and ordered so

that the first few retain most of the original data variation. Thus, PCA aims to derive

the most descriptive features.

In practice, the variation to be maximized is measured by the total scatter through

the total scatter matrix ST defined as follows,

ST =
M∑
m=1

(xm − x̄)(xm − x̄)T , (2.20)

where x̄ = 1
M

∑M
m=1 xm is the mean of all the training samples. The PCA projection

matrix UPCA is then composed of the eigenvectors corresponding to the largest P (P < I)

eigenvalues of ST . The projection of a test sample x in the PCA space is obtained as:

y = UT
PCA(x− x̄). (2.21)

2.3.2 Linear discriminant analysis

LDA is a classical supervised linear subspace learning method that has been very success-

ful and applied widely in various applications [21]. It aims to derive the most discrimi-

native features and produces a class-specific feature space based on the maximization of

the so-called Fisher’s discriminant criterion [21, 3], defined as the ratio of between-class

scatter to within-class scatter:

ULDA = arg max
U

|UTSBU|
|UTSWU|

, (2.22)

where SB and SW are the between-class and within-class scatter matrices, respectively,

and they are defined as

SB =
C∑
c=1

Mc(x̄c − x̄)(x̄c − x̄)T , (2.23)
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and

SW =
M∑
m=1

(xm − x̄cm)(xm − x̄cm)T . (2.24)

In the definitions above, C is the number of classes, c is the class index, and cm is the

class label for the mth training sample. Mc is the number of training samples in class c,

and the mean for class c is

x̄c =
1

Mc

∑
m,cm=c

xm. (2.25)

The maximization of (2.22) leads to the following generalized eigenvalue problem:

SBup = λpSWup. (2.26)

Thus, ULDA consists of the generalized eigenvectors corresponding to the largest P gen-

eralized eigenvalues of (2.26). When SW is not singular, ULDA can be obtained as the

eigenvectors corresponding to the largest P eigenvalues of S−1
W SB. The projection of a

test sample x in the LDA space is then obtained as:

y = UT
LDAx. (2.27)

In practice, LDA often has problem due to insufficient number of training samples,

which results in singular SW . PCA is routinely employed before LDA to reduce the

dimensionality before LDA to avoid this difficulty, leading to the PCA+LDA approach

originally proposed in [3] for face recognition (the Fisherface method).

2.4 Multilinear Subspace Learning

This section defines the problem of multilinear subspace learning, as well as the scatter

measures for tensors and scalars. In addition, the typical approach to solving such

problems, together with related issues, is outlined.
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2.4.1 Problem definition

Multilinear subspace learning is the multilinear extension of linear subspace learning. It

solves for a multilinear projection with some optimality criteria, given a set of training

samples. This problem can be formulated mathematically as follows, similar to the

formulation in Sec. 2.3 for the linear subspace learning.

Multilinear Subspace Learning: A set of M Nth-order tensorial samples {X1,

X2, ..., XM} is available for training, where each sample Xm is an I1× I2× ...× IN tensor

in a tensor space RI1×I2×...×IN . The multilinear subspace learning objective is to find a

multilinear transformation (projection) such that the projected samples (the extracted

features) satisfy an optimality criterion, where the dimensionality of the projected space

is much lower than the original tensor space. In classification, these features are fed into

a classifier, e.g., the nearest neighbor classifier, and the similarity is calculated according

to some distance measure.

At this point, the illustration in Fig. 1.3 (page 10) can be better appreciated. The

projection to be solved can be any of the three types of basic multilinear projections

discussed in Sec. 2.2. Thus, the well-studied linear subspace learning can be viewed

as a special (degenerated) case of multilinear subspace learning where the projection

to be solved is the vector-to-vector projection. The problem of multilinear subspace

learning based on the tensor-to-tensor and tensor-to-vector projections is the focus of

this dissertation. The formulation here is important for the purposes of evaluating,

comparing, and further developing multilinear subspace learning solutions.

2.4.2 Tensor scatter

In analogy to the definition of scatters (2.20), (2.23), and (2.24) for vectorial features

in linear subspace learning, tensor-based scatters in multilinear subspace learning are

defined here.
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Definition 2.1. Let {Am,m = 1, ...,M} be a set of M tensor samples in RI1
⊗

RI2 ...
⊗

RIN .

The total scatter of these tensors is defined as:

ΨA =
M∑
m=1

‖ Am − Ā ‖2F , (2.28)

where Ā is the mean tensor calculated as

Ā =
1

M

M∑
m=1

Am. (2.29)

The n-mode total scatter matrix of these samples is then defined as:

S
(n)
TA

=
M∑
m=1

(
Am(n) − Ā(n)

) (
Am(n) − Ā(n)

)T
, (2.30)

where Am(n) is the n-mode unfolded matrix of Am.

Definition 2.2. Let {Am,m = 1, ...,M} be a set of M tensor samples in RI1
⊗

RI2 ...
⊗

RIN .

The between-class scatter of these tensors is defined as:

ΨBA =
C∑
c=1

Mc ‖ Āc − Ā ‖2F , (2.31)

and the within-class scatter of these tensors is defined as:

ΨWA =
M∑
m=1

‖ Am − Ācm ‖2F , (2.32)

where C is the number of classes, Mc is the number of samples for class c, cm is the class

label for the mth sample Am, Ā is the mean tensor, and the class mean tensor is

Āc =
1

Mc

∑
m,cm=c

Am. (2.33)

Next, the n-mode scatter matrices are defined accordingly.



Chapter 2. Fundamentals of Multilinear Subspace Learning 32

Definition 2.3. The n-mode between-class scatter matrix of these samples is defined as:

S
(n)
BA

=
C∑
c=1

Mc ·
(
Āc(n) − Ā(n)

) (
Āc(n) − Ā(n)

)T
, (2.34)

and the n-mode within-class scatter matrix of these samples is defined as:

S
(n)
WA

=
M∑
m=1

(
Am(n) − Ācm(n)

) (
Am(n) − Ācm(n)

)T
, (2.35)

where Āc(n) is the n-mode unfolded matrix of Āc.

From the definitions above, the following properties are derived:

Property 2.1. Since trace(AAT ) =‖ A ‖2F and ‖ A ‖2F=‖ A(n) ‖2F , trace
(
S

(n)
BA

)
=∑C

c=1Mc ‖ Āc(n)−Ā(n) ‖2F= ΨBA and trace
(
S

(n)
WA

)
=
∑M

m=1 ‖ Am(n)−Ācm(n) ‖2F= ΨWA,

for all n.

2.4.3 Scalar scatter

While the tensor scatters defined in the previous section are useful for developing mul-

tilinear subspace learning algorithms based on the tensor-to-tensor projections, they are

not applicable for those based on the tensor-to-vector projections. Therefore, scalar-

based scatters in multilinear subspace learning are defined, which can be viewed as the

degenerated versions of the vector-based or tensor-based scatters.

Definition 2.4. Let {am,m = 1, ...,M} be a set of M scalar samples. The total scatter

of these scalars is defined as:

Sa
T =

M∑
m=1

(am − ā)2, (2.36)

where ā is the mean scalar calculated as ā = 1
M

∑M
m=1 am.

Definition 2.5. Let {am,m = 1, ...,M} be a set of M scalar samples. The between-class
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scatter of these scalars is defined as:

Sa
B =

C∑
c=1

Mc(āc − ā)2, (2.37)

and the within-class scatter of these scalars is defined as:

Sa
W =

M∑
m=1

(am − ācm)2, (2.38)

where āc = 1
Mc

∑
m,cm=c am.

2.4.4 Typical approach

While a linear (vector-to-vector) projection in linear subspace learning often has closed-

form solutions, this is not true for the tensor-to-tensor and tensor-to-vector projections

in multilinear subspace learning. Instead, these two tensor-based projections have N

sets of parameters to be solved, one in each mode, and the solution to one set often de-

pends on the other sets (except when N = 1, the linear case), making their simultaneous

estimation extremely difficult, if not impossible. Therefore, a suboptimal, iterative pro-

cedure originated from the alternating least square (ALS) algorithm [12,35,56] is usually

employed to solve the tensor-based projections by alternating between solving one set of

parameters (in one mode) at a time. Consequently, the issues due to the iterative nature

of the solution, such as the initialization, the order of solving the projections, the ter-

mination, and convergence, need to be addressed. In addition, for multilinear subspace

learning through the tensor-to-tensor projection, a mechanism is often needed to deter-

mine the desired subspace dimensionality {P1, P2, ..., PN}. This is because it is usually

costly to exhaustively test the large number of possible combinations of the N values,

P1, P2, ..., PN , for a specific amount of dimensionality reduction. In contrast, only one

value P needs to be tested for multilinear subspace learning through the tensor-to-vector
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projection.

A brief review of the ALS algorithm is given here. The ALS algorithm was first

developed in 1970 [35,12] to solve a similar problem in the three-way factor analysis [23]

where parameters in three modes need to be estimated. The principle behind the ALS is

to reduce the (least square) optimization problem into smaller conditional subproblems

that can be solved through simple established methods employed in the linear case. Thus,

the parameters for each mode are estimated in turn separately and are conditional on

the parameter values for the other modes. At each step, by fixing the parameters in all

the modes but one mode, a new objective function depending only on the mode left free

to vary is optimized and this conditional subproblem is linear and much simpler. The

parameter estimations for each mode are obtained in this way sequentially and iteratively

until convergence. A typical procedure for multilinear subspace learning is shown in Fig.

2.5.

Input: A set of tensor samples {Xm ∈ RI1×I2×...×IN ,m = 1, ...,M}, and the desired tensor

subspace dimensionality.

Output: The multilinear projection that maximizes an optimality criterion in the projected

space.

Algorithm:

Step 1 (Initialization): Initialize the multilinear projection.

Step 2 (Local optimization):

• For k = 1 : K

– For n = 1 : N

∗ Solve for the n-mode multilinear projection

– If k = K or the algorithm converges, break and output the current multi-

linear projection.

Figure 2.5: The pseudo-code of a typical multilinear subspace learning algorithm.
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Table 2.1: Linear versus multilinear subspace learning.

Linear subspace learning Multilinear subspace learning

Reshape into vectors Work directly on natural tensorial representation

Break natural structure Preserve natural structure

Estimate a large number of parameters Estimate fewer parameters

More severe small sample size problem Less small sample size problem

Hardly applicable to massive data Able to handle massive data

Closed-form solution Suboptimal, iterative solution

Finally, Table 2.1 summarizes the key differences between multilinear subspace learn-

ing and linear subspace learning. In the table, massive data refers to the data with its

dimensionality beyond the processing power of common computational hardwares when

linear subspace learning algorithms are used, such as face images with very high resolution

or standard gait silhouette sequences.

2.5 Summary

This chapter has introduced a general formulation of the multilinear subspace learning

problem. The fundamentals are covered, including basic multilinear operations and a

tensor-based distance measure. Three basic types of multilinear projections are then

introduced: the vector-to-vector projection, the tensor-to-tensor projection, and the

tensor-to-vector projection. Moreover, the connections between these three projections

are revealed. After a brief review of the classical linear subspace learning algorithms,

the definition of the multilinear subspace learning problem is presented. This definition

provides a framework that not only helps to explain many key aspects of multilinear sub-

space learning, but also facilitates the developments of new multilinear subspace learning

algorithms. Lastly, several scatter measures are defined for tensors and scalars, and the

typical approach to solve multilinear subspace learning problem is described.

The next chapter will review the background materials including recognition per-
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formance evaluation, face and gait databases, and prior work on multilinear subspace

learning. In particular, the multilinear subspace learning literature will be viewed in the

framework developed in this chapter. In subsequent chapters, solutions are proposed in

this research to show how different criteria and constraints can be incorporated to build

effective algorithms for tensorial face and gait recognition.



Chapter 3

Review on Prior Work, Performance

Evaluation & Data

In the advancement of face and gait recognition technologies, the availability of evaluation

methodology, and large, representative, and public databases plays an important role

besides the development of recognition algorithms. This chapter starts by discussing

issues related to recognition performance evaluation. Next, this chapter reviews the

databases to be used in this research to evaluate the developed learning algorithms,

including two widely used face databases and one popular gait database. Finally, prior

work on multilinear subspace learning are studied.

3.1 Recognition Performance Evaluation

In typical pattern recognition problems of face and gait recognition, there are usually

two types of data sets: the gallery and the probe [102,109]. The gallery set contains the

set of data samples with known identities and it is used for training. The probe set is

the testing set where data samples of unknown identity are to be identified and classified

via matching with corresponding entries in the gallery set.

There are three main recognition tasks in face and gait recognition applications: veri-

37
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fication, identification, and watch list [44]. Verification involves a one-to-one match that

compares a query sample against the sample(s) of the claimed identity in the database.

The claim is either accepted or rejected. The verification performance is usually measured

by the receiver operating characteristic (ROC), which plots the false accept rates (FAR)

versus the false rejection rates (FRR). Identification involves one-to-many matches that

compare a query sample of an unknown person against the samples of all the persons in

the database to output the identity or the possible identity list of the input query sample.

In this scenario, it is often assumed that the unknown (query) person belongs to the per-

sons who are in the database. The identification performance is usually measured by the

cumulative match characteristic (CMC) [102,109], which plots the identification rate Rρ

against the rank ρ. The watch list scenario involves one-to-few matches that compare

a query sample against a list of suspects. In this task, the size of database is usually

very small compared to the possible queries, and the identity of the probe may not be

in the database. Therefore, the recognition system should first detect whether the query

is on the list or not and if yes, correctly identify it. Correspondingly, the performance

of watch list tasks is usually measured by the detection rate, the identification rate, and

the false alarm rate.

This research focuses on the identification task and throughout this dissertation,

the term recognition refers to the application scenario of identification. Based on the

definitions above, the general face or gait recognition problem is stated as follows:

The face or gait recognition problem: Given a gallery database, consisting of

face or gait samples from a set of known subjects, the objective of the face or gait

recognition system is to determine the identity of the probe samples or sample sequences

(with unknown identities). In short, the task of face or gait recognition is to determine

the gallery subject to which a probe sample or sequence corresponds. The performance

of both face recognition and gait recognition will be measured by the identification rate.

In the following, the computation of the identification rate is described in detail first,
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adapted from [102]. Then, the calculation of similarity scores for both individual samples

and sequences, where each sequence consists of several samples, is presented.

Computation of identification rate: Let P = {P1, ...,PJ} be a probe set and J

be the number of samples or sequences in P. The gallery set G = {G1, ...,GM} has M

samples or sequences. The probe set P is scored against the gallery set G by computing

the similarity scores S(Pj,Gm) for Pj ∈ P and Gm ∈ G. For each probe sample or

sequence Pj ∈ P, S(Pj,Gm) is sorted for all gallery samples or sequences Gm ∈ G, where

a higher similarity score implies a closer match. The function id(j) gives the index of

the gallery sample or sequence of the person in the probe sample or sequence Pj, i.e.,

Pj is a sample or sequence of the person in Gid(j). A probe Pj is correctly identified if

S(Pj,Gid(j)) is the highest scores for Gm ∈ G. A probe Pj is in the top ρ if S(Pj,Gid(j)) is

one of the ρ highest score S(Pj,Gm) for the gallery G. Let Ωρ denote the number of probe

samples or sequences in the top ρ, then the rank ρ identification rate Rρ = Ωρ/J , the

fraction of probes in the top ρ. The rank 1 identification rate is also commonly referred

to as the Correct Recognition Rate (CRR).

Similarity between two feature vectors: The similarity score S(Pj,Gm) between

a probe sample Pj ∈ P and a gallery sample Gm ∈ G is calculated through measuring

the distance between the respective feature vectors pj and gm. In this dissertation,

seven distance measures are adapted from [95] and studied: the L1 distance (L1), the

L2 distance (L2), the angle between feature vectors (Angle), the modified Mahalanobis

distance (MMD), the modified L1 distance (ML1), the modified L2 distance (ML2), and

the modified angle distance (MAD), as listed in Table 3.1, where w is a weight vector

and H is the vector length. The first four distance measures are commonly used for

measuring vector distances and the last three measures can be viewed as the weighted

versions of the first three measures. The similarity score between pj and gm is obtained

as

S(Pj,Gm) = S(pj,gm) = −d(pj,gm), (3.1)
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using one of the distance measures in Table 3.1. This results in the nearest neighbor

classifier in effect. Such a simple classifier is preferred in this dissertation since the focus

is on studying the performance mainly contributed by the feature extraction algorithm

developed here rather than the classifier. The classification accuracy of the algorithms

studied in this dissertation is expected to improve if a more sophisticated classifier such

as the support vector machine (SVM) is used instead of the nearest neighbor classifier.

Table 3.1: Seven distance measures for similarity calculation between feature vectors.

Distance L1 L2 Angle MMD

d(a,b)
H∑
h=1

|a(h)− b(h)|

√√√√ H∑
h=1

[a(h)− b(h)]2
−
∑H
h=1 a(h)·b(h)√∑H

h=1 a(h)2
∑H
h=1 b(h)2

−
H∑
h=1

a(h) · b(h)

w(h)

Distance ML1 ML2 MAD

d(a,b)
H∑
h=1

|a(h)− b(h)|
w(h)

√∑H
h=1[a(h)−b(h)]2

w(h)

−
∑H
h=1 a(h)·b(h)

w(h)
√∑H

h=1 a(h)2
∑H
h=1 b(h)2

Similarity between two sequences of feature vectors: In gait recognition, a

probe gait sequence is often matched against the gallery sequences. A probe sequence

Pj ∈ P has Nj samples with corresponding feature vectors: {pnj , nj = 1, ..., Nj}. A

gallery sequence Gm ∈ G has Nm samples with corresponding feature vectors {gnm , nm =

1, ..., Nm}. To obtain the similarity score S(Pj,Gm) between Pj and Gm, the approach in

[6] is adopted, which proposed that the distance calculation process should be symmetric

with respect to probe and gallery sequences. If the probe and gallery sequences were

interchanged, the computed distance would be identical. The details are described as

follows: each probe sample feature pnj is matched against the gallery sequence Gm to

obtain

S(pnj ,Gm) = −min
nm

d(pnj ,gnm) (3.2)

and each gallery sample feature gnm is matched against the probe sequence Pj to obtain

S(gnm ,Pj) = −min
nj

d(gnm ,pnj). (3.3)



Chapter 3. Review on Prior Work, Performance Evaluation & Data 41

The similarity score between the probe sequence Pj and the gallery sequence Gm is the

sum of the mean matching score of Pj against Gm and that of Gm against Pj:

S(Pj,Gm) =
1

Nj

Nj∑
nj=1

S(pnj ,Gm) +
1

Nm

Nm∑
nm=1

S(gnm ,Pj). (3.4)

3.2 The Face Databases

The two widely used public face databases chosen are the Pose, Illumination, and Expres-

sion (PIE) database from the Carnegie Mellon University (CMU) [118], and the Facial

Recognition Technology (FERET) database [102].

3.2.1 The PIE database

Visually perceived human faces are significantly affected by three factors: the pose,

which is the angle they are viewed from, the illumination/lighting condition, and the

facial expression such as happy, sad, and anger. The collection of the PIE database is

motivated by a need for a database with a fairly large number of subjects imaged a large

number of times to cover these three significant factors, i.e., from a variety of different

poses, under a wide range of illumination variation, and with several expressions [118].

This database was collected between October 2000 and December 2000 using the

CMU 3D Room and it contains 41,368 face images from 68 individuals, with a total

size of about 40GB data. The captured images have a size of 640 × 486. Face images

with 13 different poses are captured using 13 synchronized cameras. For the illumination

variation, the 3D Room is augmented with a flash system having 21 flashes. Images are

captured with and without background lighting, resulting in 21 × 2 + 1 = 43 different

illumination conditions. In addition, the subjects were asked to pose with four different

expressions.

The PIE database can be used for a variety of purposes, including evaluating the
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robustness of face recognition systems against the three variations and three-dimensional

modeling. In particular, this database has a very large number (around 600 on average)

of facial images available for each subject, allowing us to study the effects of the number

of training samples (per subject) on the recognition performance. In practice, a subset is

usually selected with a specific range of pose, illumination, and expression for experiments

so that data sets with various degrees of difficulty can be obtained. A wider range of the

three variations leads to a more difficult recognition task.

3.2.2 The FERET database

The FERET database is a widely used database for face recognition performance evalua-

tion. It was constructed through the FERET program, which aims to develop automatic

face recognition systems to assist security, intelligence, and law enforcement personnel

in the performance of their duties [102]. The face images in this database cover a wide

range of variations in pose (viewpoint), illumination, facial expression, acquisition time,

ethnicity, and age.

The FERET database was collected in 15 sessions between August 1993 and July

1996, and it contains a total of 14,126 images from 1,199 individuals with views ranging

from frontal to left and right profiles. The face images were collected under relatively

unconstrained conditions. The same physical setup and location was used in each session

to maintain a degree of consistency throughout the database. However, since the equip-

ment was reassembled for each session, images collected on different dates have some

minor variation. Sometimes, a second set of images of an individual was captured on

a later date, resulting in variations in scale, pose, expression, and illumination of the

face. Furthermore, for some people, over two years elapsed between their first and last

capturing in order to study changes in a subject’s facial appearance over a year.

In this dissertation, the latest color FERET database is used. The images have size

of 786 × 512 and they are encoded with 24 bits. The total data size is around 8GB.
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This database has a large number of subjects and it becomes the de facto standard for

evaluating face recognition technologies [69], especially in the small sample size scenario,

where a smaller number of training samples per subject and a larger number of total

subjects lead to a more difficult recognition task [93].

3.2.3 Preprocessing of face images for recognition

In this research, only gray-level facial images are considered without taking color infor-

mation into account. Moreover, since the focus of this dissertation is on the recognition of

faces rather than their detection, all face images from the PIE and FERET databases are

manually aligned with manually annotated coordinate information of eyes, cropped, and

normalized. There are 20,941 and 5,177 images with the eye coordinate information in

the PIE and FERET databases, respectively. These two subsets are first extracted to be

the largest evaluation sets for the two databases. The common practice is then followed,

where portions of the databases are used for specific studies. The detailed preprocessing

procedures are described below and illustrated in Fig. 3.1.

Figure 3.1: Illustration of face image preprocessing.

First, all color images are transformed to gray-level images by taking the luminance

component in the Y CbCr color space. Then, all face images are rotated and scaled so

that the centers of the eyes are placed on specific pixels. Next, the image is cropped and

normalized to a standard size, followed by histogram equalization, and image intensity

values are normalized to have zero mean and unit standard deviation. Finally, each image

is represented with 256 gray levels (eight bits) per pixel, and naturally as a second-order
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tensor (Fig. 1.2(a), page 7). Figure 3.2 shows 160 near-frontal face images for one subject

in the PIE database, and Fig. 3.3 shows some sample face images from two subjects in

the FERET database.

Figure 3.2: Sample face images of one subject from the CMU PIE database.

Figure 3.3: Examples of face images from two subjects in the FERET database.

3.3 The Gait Database

In this dissertation, the HumanID Gait Challenge data sets version 1.7 (V.1.7) from

the University of South Florida (USF) [109] is used for evaluating the performance on

gait recognition. This database captures the variations of a number of covariates for a

large group of people. It has emerged as a standard testbed for new gait recognition

algorithms [13]. Other databases are limited in size, variations, capturing conditions, or



Chapter 3. Review on Prior Work, Performance Evaluation & Data 45

of high resolutions [109,98]. This section describes this USF database and then introduces

how to obtain gait samples from a gait silhouette sequence.

3.3.1 The USF Gait Challenge database

As an emerging technology in its infancy, gait recognition has many open questions to an-

swer. It is important to investigate the conditions under which this problem is “solvable”,

and to find out what factors affect gait recognition and to what extent. The HumanID

Gait Challenge Problem is thus introduced by the USF in order to assess the potential

of gait recognition by providing a means for measuring progress and characterizing the

properties [109].

This challenge problem consists of a baseline algorithm, a large data set, and a set of 12

experiments. The baseline algorithm extracts silhouettes through background subtraction

and performs recognition via temporal correlation of silhouettes. The data was collected

outdoors since gait, as a biometric, is most appropriate in outdoor at-a-distance settings

where other biometrics are difficult to capture [109]. Figure 3.4 shows two sample frames

from this database. The 12 experiments, in increasing difficulty, examine the effects of

five covariates on recognition performance: change in viewing angle, change in shoe type,

change in walking surface, carrying or not carrying a briefcase, and temporal (time)

differences [109], where the time covariate implicitly includes other changes naturally

occur between video acquisition sessions such as change of shoes and cloths, change in

the outdoor lighting conditions, and inherent variation in gait over time. These covariates

either affect gait or affect the extraction of gait features from images. They are selected,

based on logistical issues and collection feasibility, from a list of factors compiled through

the discussions with researchers at CMU, Maryland, MIT, Southampton, and Georgia

Tech about potentially important covariates for gait analysis. It is shown in [109] that

the shoe type has the least impact on the performance, next is the viewpoint, the third

is briefcase, then surface type (flat concrete surface and typical grass lawn surface),
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Figure 3.4: Sample frames from the Gait Challenge data sets.

and time (six months) difference has the greatest impact. The latter two are the most

“difficult” covariates to deal with. In particular, it was found that the surface covariate

impacts the gait period more than other covariates. Since its release, this database has

made significant contributions to the advancement of the gait recognition technology.

This dissertation evaluates gait recognition performance on the USF gait database

V.1.7, which was collected in May 2001 and widely used in the gait recognition community

[82, 72, 73, 65]. This database consists of 452 sequences from 74 subjects walking in

elliptical paths in front of the camera. The raw video frames are of size 720 × 480 in

24-bit RGB and a subject’s size in the back portion of the ellipse is on average 100 pixels

in height. The total data is around 300GB. For each subject, there are three covariates:

viewpoint (left or right), shoe type (two different types, A or B), and surface type (grass

or concrete). The gallery set contains 71 sequences (subjects) and seven experiments

(probe sets) are designed for human identification as shown in Table 3.2. The capturing

condition for each probe set is summarized in the parentheses after the probe name in

the Table, where C, G, A, B, L, and R stand for concrete surface, grass surface, shoe

type A, shoe type B, left view, and right view, respectively. For instance, the capturing

condition of the gallery set is GAR (Grass surface, shoe type A and Right view). Each

set has only one sequence for a subject. Subjects are unique in the gallery and each

probe set. There are no common sequences between the gallery set and any of the probe
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sets. In addition, all the probe sets are distinct.

Table 3.2: The characteristics of the gait data from the USF Gait Challenge data sets
version 1.7.

Gait data set Number of sequences (samples) Difference from the gallery

Gallery (GAR) 71 (731) -

Probe A(GAL) 71 (727) View

Probe B(GBR) 41 (423) Shoe

Probe C(GBL) 41 (420) Shoe, view

Probe D(CAR) 70 (682) Surface

Probe E(CBR) 44 (435) Surface, shoe

Probe F(CAL) 70 (685) Surface, view

Probe G(CBL) 44 (424) Surface, shoe, view

Figure 3.5 illustrates the process of silhouette extraction through background subtrac-

tion, where a background model is estimated from the input raw gait sequences and then

it is subtracted to get the silhouettes. The extracted silhouettes are then cropped and

resized to a standard size. The silhouettes data extracted through the baseline algorithm

is provided by the USF and it is widely used in the gait recognition literature [82,5,6,4].

Thus, this silhouettes data is used for the gait recognition experiments in this disser-

tation. Although an automatic silhouette extraction algorithm [76] is developed in this

research, it is not included here since the focus of this dissertation is on recognition rather

than silhouette extraction.

Figure 3.5: Illustration of the silhouette extraction process.



Chapter 3. Review on Prior Work, Performance Evaluation & Data 48

3.3.2 Normalization of tensorial gait samples

While in many recognition problems, an input sample is unambiguously defined, such

as iris, face or fingerprint images, there is no obvious definition of a gait sample. This

dissertation proposes to treat each half gait cycle as a data sample. Thus, a gait sample

is a third-order tensor, and the spatial column space, row space, and the time space

account for its three modes, as shown in Fig. 1.2(b) (page 7).

To obtain half cycles, a gait silhouette sequence is partitioned in a way similar to

that used in [109]. The number of foreground pixels is counted in the bottom half

of each silhouette since legs are the major visible moving body parts from a distance.

This number will reach a maximum when the two legs are farthest apart and drop to

a minimum when the legs overlap. The sequence of these numbers is smoothed with a

running average filter and the minimums in this number sequence partition the sequence

into several half gait cycles. Following the proposal above, there are 731 gait samples in

the gallery set and each subject has an average of roughly ten samples available. The

number of samples for each set is indicated in the parentheses following the number of

sequences in Table 3.2. The proposed simple partition method may be improved further

by taking the periodic nature of the gait cycles into account, such as the more robust

cycle partitioning algorithm in [49], while this is not investigated in this dissertation.

Each frame of the gait silhouette sequences from the USF data sets is of standard

size 128× 88, but the number of frames in each gait sample obtained through half cycle

partition has some variation. Before feeding the gait samples to a subspace learning

algorithm, the tensorial inputs need to be normalized to the same dimension in each

mode. Since the row and column dimensions are normalized by default, only the time

mode, i.e., the number of frames in each gait sample, is subject to normalization. The

normalized time mode dimension is chosen to be 20, roughly the average number of

frames in each gait sample. Thus, each gait sample has a canonical representation of

I1 × I2 × I3 = 128 × 88 × 20. In the following, a simple procedure for this time-mode
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normalization is described.

Consider one gait sample of size I1×I2×D3. While there are sophisticated algorithms

available, such as mapping a gait cycle to a unit circle using nonlinear interpolation [64],

conventional interpolation algorithms, such as linear interpolation, can be applied to

the time-mode normalization as well. Hence, in this research, each 3-mode (time-mode)

vector is interpolated linearly from the original size D3 × 1 to the normal size I3 × 1,

followed by binarization to get binary silhouettes. Figure 3.6 shows three gait samples

obtained this way from the USF gait database V.1.7 by concatenating the frames on a

row.

Figure 3.6: Three gait samples from the USF gait database V.1.7, shown by concatenating
frames in rows.

3.4 Review on Multilinear Subspace Learning Algo-

rithms

As mentioned in Sec. 1.4.2 (page 7), the application of linear subspace learning algorithms

such as PCA or LDA to the recognition of face or gait objects requires their reshaping

into vectors in a very-high-dimensional space. This results in the estimation of a large

number of parameters, and also high computational and memory demands. For example,

vectorizing a gait sample of size 128×88×20 results in a 225, 280×1 vector, the singular

value decomposition (SVD) or eigen-decomposition processing of which may be beyond

the processing capabilities of many computing devices. Beyond implementation issues,
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reshaping breaks the natural structure and correlation, and removes redundancies and

dependencies in their natural tensorial forms, from which more compact or useful rep-

resentations may be obtained [156, 155]. Based on this motivation, multilinear subspace

learning algorithms [156,146,150,124] operating directly on the tensorial representations

rather than their vectorial versions are emerging, partly due to the recent developments

in [59, 60, 2]. This section reviews these new developments. Due to the fundamentality

and importance of PCA and LDA, the focus is on the multilinear extensions of these

two classical linear algorithms. Figures 3.7(a) and 3.7(b) provide an overview of these

existing unsupervised and supervised multilinear subspace learning algorithms under the

multilinear subspace learning framework introduced in Chapter 2, respectively, and they

are discussed in the following.

3.4.1 Unsupervised multilinear subspace learning through tensor-

to-tensor projection

The development of unsupervised multilinear subspace learning started with the treat-

ment of images directly as matrices rather than vectors.

A two-dimensional PCA (2DPCA) algorithm is proposed in [153]. This algorithm

solves for a linear transformation U ∈ RI2×P2 (P2 < I2) that projects an image Xm ∈

RI1×I2 to

Ym = XmU = Xm ×2 UT ∈ RI1×P2 (3.5)

while maximizing the variance measure

M∑
m=1

‖ Ym − Ȳ ‖2F=
M∑
m=1

trace
(
UT (Xm − X̄)T (Xm − X̄)U

)
, (3.6)

where X̄ = 1
M

∑M
m=1 Xm and Ȳ = 1

M

∑M
m=1 Ym. This algorithm works directly on image

matrices (second-order tensors) but there is only one linear transformation of the 2-mode.
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(a)

(b)

Figure 3.7: Overview of existing (a) unsupervised multilinear subspace learning algo-
rithms, and (b) supervised multilinear subspace learning algorithms. The shaded empty
boxes indicate the approaches that have not been studied.

Thus, the image data is projected in the 2-mode (the row mode) only while the projection

in the 1-mode (the column mode) is ignored (or effectively an identity transformation),

resulting in poor dimensionality reduction.

A more general algorithm named the generalized low rank approximation of matrices
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(GLRAM) was introduced in [155], which takes into account the spatial correlation of

the image pixels within a localized neighborhood and applies two linear transforms to

both the left and right sides of input image matrices. This algorithm solves for two linear

transformations U(1) ∈ RI1×P1 (P1 < I1) and U(2) ∈ RI2×P2 (P2 < I2) that project an

image Xm ∈ RI1×I2 to

Ym = U(1)TXmU(2) = Xm ×1 U(1)T ×2 U(2)T ∈ RP1×P2 (3.7)

while minimizing the least-square (reconstruction) error measure

M∑
m=1

‖ Xm −U(1)YmU(2)T ‖2F=
M∑
m=1

‖ Xm −Ym ×1 U(1) ×2 U(2) ‖2F . (3.8)

Thus, projections in both modes are involved and better dimensionality reduction results

than [153] are obtained according to [155].

Although GLRAM exploits both modes for subspace learning, it is formulated for ma-

trices (second-order tensors) only. Recently, the so-called concurrent subspaces analysis

(CSA) is formulated in [146] for general tensor objects, which can be considered as a fur-

ther generalization of GLRAM for higher-order tensors. The solution is built in a manner

similar to the best Rank-(R1, R2, ..., RN) approximation in [60]. This algorithm solves

for more general multilinear transformations {U(n) ∈ RIn×Pn , Pn ≤ In, n = 1, ..., N} that

project a tensor Xm ∈ RI1×...×IN to

Ym = Xm ×1 U(1)T ×2 ...×N U(N)T ∈ RP1×...×PN (3.9)

while minimizing the following reconstruction error metric

M∑
m=1

‖ Xm − Ym ×1 U(1) ×2 ...×N U(N) ‖2F . (3.10)
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Unfortunately, CSA appears to be sensitive to parameter settings, as shown in [146].

Furthermore, there is no systematic way to determine the tensor subspace dimensionality.

As the number of possible subspace dimensions for most tensor objects is extremely high

(e.g., there are 225, 280 possible subspace dimensions for the gait recognition problem

discussed in Section 3.3), exhaustive testing for determination of subspace dimension is

not feasible. Consequently, the algorithmic solution of [146] can not be used to effectively

determine subspace dimensionality in a comprehensive and systematic manner.

Whereas GLRAM and CSA advanced the unsupervised multilinear subspace learning,

they are both formulated with the objective of optimal reconstruction or approximation

of tensors. Therefore, they ignored an important centering step in unsupervised subspace

learning algorithms developed for recognition, such as the classical PCA, where the data

is centered first before obtaining the subspace projection. It should be pointed out

that for the reconstruction or approximation problem, centering is not essential, as the

(sample) mean is the main focus of attention. However, in recognition applications where

the solutions involve eigenproblems, non-centering (in other words, an average different

from zero) can potentially affect the eigen-decomposition in each mode and lead to a

solution that captures the variation with respect to the origin rather than capturing the

true variation of the data (with respect to the data center). This will be illustrated in

Chapter 7.

In contrast, the generalized PCA (GPCA) proposed in [156] is an extension of PCA

that works on matrices. GPCA is exactly the same as GLRAM except that the pro-

jection takes the centered data X̃m = Xm − X̄ rather than the original coordinate Xm

as input. Nonetheless, this work is formulated only for matrices, and important issues

such as initialization and subspace dimensionality determination are not studied either.

Moreover, the effect of centering on recognition problem is not investigated.
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3.4.2 Unsupervised multilinear subspace learning through tensor-

to-vector projection

There is only one existing algorithm of unsupervised multilinear subspace learning through

tensor-to-vector projection. It is the tensor rank-one decomposition (TROD) algorithm

introduced in 2001, formulated only for image matrices [116]. This algorithm looks

for a second-order tensor-to-vector projection {u(1)T

p ,u
(2)T

p }Pp=1 that project an image

Xm ∈ RI1×I2 to

ym = Xm ×2
n=1 {u(n)T

p , n = 1, 2}Pp=1,∈ RP×1 (3.11)

while minimizing the following least-square (reconstruction) error measure

M∑
m=1

∣∣∣∣∣
∣∣∣∣∣Xm −

P∑
p=1

ym(p) · u(1)
p u(2)T

p

∣∣∣∣∣
∣∣∣∣∣
2

F

(3.12)

to obtain {u(1)T

p ,u
(2)T

p }. Thus, there are P steps, with each solving one elementary

projection. The solution of TROD relies on a heuristic procedure of successive residue

calculation, i.e., after obtaining the pth elementary multilinear projection {u(1)T

p ,u
(2)T

p },

the input image is replaced by its residue as

Xm = Xm − ym(p) · u(1)
p u(2)T

p . (3.13)

Though this algorithm is the first and only existing work in this category, it has many

limitations mentioned in Sec. 3.4.1 too. It is formulated only for matrices and the input

data is not centered either.

In addition, none of these existing unsupervised multilinear subspace learning al-

gorithms takes into account the correlations among features and shares an important

property with PCA, i.e., zero-correlation among extracted features. It is well-known

that PCA derives uncorrelated features, which contain minimum redundancy and ensure
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linear independence among features. Uncorrelated features can also greatly simplify the

subsequent classification task and they are highly desirable in recognition applications.

Instead, most of existing unsupervised multilinear subspace learning algorithms produce

orthogonal bases in each mode. Although uncorrelated features imply orthogonal pro-

jection bases in PCA, this is not necessarily true for its multilinear extension.

3.4.3 Supervised multilinear subspace learning through tensor-

to-tensor projection

Besides the unsupervised multilinear subspace learning algorithms reviewed above, there

are also supervised multilinear subspace learning algorithms proposed in the literature,

where the class labels are used in the learning process.

Like GLRAM and GPCA, the two-dimensional LDA (2DLDA) introduced in 2004

[157] solves for two linear transformations U(1) ∈ RI1×P1 (P1 < I1) and U(2) ∈ RI2×P2

(P2 < I2) that project an image Xm ∈ RI1×I2 to Ym as in (3.16), but with a different

objective criterion. For M image samples {Am}, the between-class and within-class

scatter measures are defined as

ΨBA
=

C∑
c=1

Nc ‖ Āc − Ā ‖2F= trace

(
C∑
c=1

Nc ·
(
Āc − Ā

) (
Āc − Ā

)T)
(3.14)

and

ΨWA
=

M∑
m=1

‖ Am − Ācm ‖2F= trace

(
M∑
m=1

(
Am − Ācm

) (
Am − Ācm

)T)
, (3.15)

respectively. In these definitions, the mean image is Ā = 1
M

∑
m Am and the class mean

image is Āc = 1
Nc

∑
m,cm=c Am. The image-based discrimination criterion is then defined

as the scatter ratio ΨBY
/ΨWY

.

Later, a more general extension, the discriminant analysis with tensor representa-
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tion (DATER)1 was proposed to perform discriminant analysis on more general tensorial

inputs [150]. Like CSA, the DATER algorithm solves for more general multilinear trans-

formations {U(n) ∈ RIn×Pn , Pn ≤ In, n = 1, ..., N} that project a tensor Xm ∈ RI1×...×IN

to Ym as in (3.9). The tensor-based discrimination objective criterion is formulated based

on Definition 2.2 (page 31) and the tensor-based scatter ratio ΨBY/ΨWY is maximized.

However, this algorithm does not converge and it appears to be sensitive to parameter

settings, as shown in [145] and also Fig. 3.8 where the evolution of the objective criterion

is plotted against the iteration number for a training on gait samples. Furthermore, the

work in [145] provides no systematic way to determine the tensor subspace dimensional-

ity either. As mentioned in the discussion of CSA in Sec. 3.4.1, the exhaustive testing

method in [145] is not practical in determining the subspace dimensionality.

Figure 3.8: The evolution of the objective criterion over iterations when the DATER
algorithm in [152] is applied on tensorial gait samples.

In [124], the general tensor discriminant analysis (GTDA) algorithm is proposed.

The GTDA algorithm also solves for multilinear transformations {U(n) ∈ RIn×Pn , Pn ≤

In, n = 1, ..., N} that project a tensor Xm ∈ RI1×...×IN to Ym as in CSA and DATER. The

1Here, the name used when the algorithm was first proposed is adopted as it is more commonly
referred to in the literature.
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difference with DATER is that it maximizes a tensor-based scatter difference criterion

(ΨBY − ζΨWY ), where ζ is a tuning parameter [70]. Although this algorithm is shown to

have good convergence property [124], the criterion used is dependent on the coordinate

system, as pointed out in [30], and the heuristic determination of the tuning parameter

ζ in [124] is not guaranteed to be optimal. Hence, in [124], this algorithm is only used

as a preprocessing tool.

3.4.4 Supervised multilinear subspace learning through tensor-

to-vector projection

As in the unsupervised case, there is only one existing algorithm of supervised multilinear

subspace learning through the tensor-to-vector projection. It is the tensor rank-one

discriminant analysis (TR1DA) algorithm proposed in [142,123], derived from the TROD

algorithm [116]. The TR1DA algorithm is formulated for general tensor objects and it

looks for a tensor-to-vector projection {u(n)T

p , n = 1, ..., N}Pp=1 that project a tensor

Xm ∈ RI1×...×IN to

ym = Xm ×Nn=1 {u(n)T

p , n = 1, ..., N}Pp=1,∈ RP×1 (3.16)

while maximizing the scalar scatter difference criterion (Sy
Bp
−ζ ·Sy

Wp
) to obtain {u(n)T

p , n =

1, ..., N}. As in TROD, there are P steps as well. This criterion is formulated based on

Definition 2.5 (page 32) and as in GTDA, ζ is a tuning parameter. Therefore, the

criterion is also dependent on the coordinate system and there is no way to determine

the optimal ζ either. Furthermore, this algorithm also relies on the repeatedly-calculated

residues in (3.13), originally proposed in [53] for tensor approximation. The adoption of

this heuristic procedure here lacks theoretical explanation for a discriminative criterion.

Moreover, in these existing supervised multilinear subspace learning algorithms, the

attention focused mainly on the objective criterion in terms of (either the ratio of or the
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difference between) the between-class scatter and the within-class scatter since it is well-

known that the classical LDA aims to maximize the Fisher’s discrimination criterion.

However, they did not take the correlations among features into account, as in the exist-

ing unsupervised multilinear subspace learning algorithms. In other words, an important

property of the classical LDA is ignored in these developments: the classical LDA derives

uncorrelated features, as proved in [46,158], where the uncorrelated LDA (ULDA) intro-

duced in [45] is shown to be equivalent to the classical LDA. As mentioned in Sec. 3.4.2,

uncorrelated features contain minimum redundancy and ensure independence of features

so they are highly desirable in many applications [158].

Further, as mentioned in Sec. 1.4.2 (page 7), although the small sample size problem

is reduced in multilinear subspace learning, the number of parameters to be estimated in

supervised multilinear subspace learning still far exceeds the number of samples available

for their accurate estimation in most practical situations. Nevertheless, there is no at-

tempt in existing supervised multilinear subspace learning algorithms to tackle the small

sample size problem in the multilinear case.

3.4.5 Related prior multilinear algorithms

Multilinear algebra, the extension of linear algebra, has been well studied in mathematics

around the middle of the 20th century [33, 57]. It builds on the concept of tensors and

develops the theory of tensor spaces.

A popular early application of multilinear algebra is the so-called multi-way analysis,

developed in psychometrics and chemometrics for factor analysis of multi-way data sets2

[127, 12, 23, 35, 56, 55], starting from the 60s and 70s. There are two main types of

decomposition methods developed in this field: the Tucker decomposition [127, 2, 59],

and the canonical decomposition (CANDECOMP) [12,2,59], which is also known as the

2Multi-way (multivariate) data sets are higher-order tensors characterized by several sets of categorical
variables that are measured in a crossed fashion [23,55].
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parallel factors (PARAFAC) decomposition [35,2, 59].

In the 90s, the developments in the field of higher-order statistics of multivariate

stochastic variables have attracted interests in higher-order tensors from the signal pro-

cessing community [16, 15, 58]. The Tucker decomposition was reintroduced and further

developed in [59] as the higher-order singular value decomposition (HOSVD) solution,

an extension of the SVD to higher-order tensors. Its computation leads to the calcula-

tion of N different matrix SVDs of unfolded matrices. The ALS algorithm for the best

Rank-(R1, R2, ..., RN) approximation of higher-order tensors was studied in [60], where

tensor data was projected into a lower dimensional tensor space iteratively. The appli-

cation of the HOSVD truncation and the best Rank-(R1, R2, ..., RN) approximation to

dimensionality reduction in independent component analysis (ICA) was discussed in [61].

The development in [59,60] has led to the development of new multilinear algorithms

and the exploration of new application areas. Multilinear analysis of biometric data is

pioneered by the TensorFace method [131, 132, 134, 133], which employs the multilinear

algorithms proposed in [59, 60] to analyze the factors involved in the formation of fa-

cial images. Similar analysis has also been done for motion signatures [130] and gait

sequences [64]. However, in these multiple factor analysis work, input data such as im-

ages or video sequences are still represented as vectors and these vectors are arranged

into a tensor according to the multiple factors involved in their formation for subsequent

analysis. Such tensor formation needs a large number of training samples captured under

various conditions, which is often impractical and may have the missing-data problem.

Furthermore, the tensor data size is usually huge, leading to high memory and compu-

tational demands.

Finally, besides the multilinear extensions of the linear subspace learning algorithms,

the multilinear extensions of linear graph-embedding algorithms were also introduced

in [37, 20, 151, 144, 41], in a similar fashion as the existing multilinear subspace learning

algorithms reviewed in this chapter.
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3.5 Summary

This chapter has provided the background materials for this dissertation. First, the is-

sues regarding recognition performance evaluation are discussed. Then, this chapter has

described the three databases to be used in the performance evaluation of the multilinear

subspace learning algorithms. Finally, existing literatures related to multilinear subspace

learning are reviewed and discussed within the multilinear subspace learning framework

presented in Chapter 2. While the development of multilinear subspace learning is en-

couraging, this field is still in its infancy and needs more research work. In particular, the

limitations of the existing multilinear subspace learning methodologies have been pointed

out, and by referring to Figs. 3.7(a) and 3.7(b), there are unexplored directions in both

unsupervised and supervised multilinear subspace learning. The following is a summary

of the conclusions drawn from this review:

1. In the approach of the tensor-to-tensor projection, there is no existing unsuper-

vised multilinear subspace learning algorithm for general tensors derived from the

perspective of variance maximization, i.e, taking the centering of data into consid-

erations. Although GPCA [156] centers the data, the algorithm is formulated on

second-order tensors only and the effect of centering is not studied. Thus, there

is a need to develop a more general unsupervised multilinear subspace learning for

general tensors based on the tensor-to-tensor projection, as indicated by the shaded

empty box in Fig. 3.7(a) under the tensor-to-tensor projection. Furthermore, sys-

tematic determination of the subspace dimensionality is an open problem to be

addressed, and other design issues of paramount importance in practical applica-

tions such as the initialization, termination, and convergence of the algorithm are

not systematically investigated in the literature.

2. In unsupervised multilinear subspace learning through the tensor-to-vector projec-

tion, there is no existing work taking the approach of variation maximization, a
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standard approach of PCA, as indicated by the shaded empty box in Fig. 3.7(a)

under the tensor-to-vector projection.

3. It is well-known that PCA derives uncorrelated features. However, none of the

existing unsupervised multilinear subspace learning algorithms has this property.

Instead, most of them produce orthogonal bases in each mode, which does not lead

to uncorrelated features in the multilinear case, unlike in the linear case.

4. In supervised multilinear subspace learning through the tensor-to-vector projection,

there is no existing work attempting to maximize the scatter ratio, a classical

measure in LDA, as indicated by the only shaded empty box in Fig. 3.7(b).

5. Similar to PCA, LDA also derives uncorrelated features but existing supervised

multilinear subspace learning algorithms are not aware of this property while con-

centrating only on constructing discrimination criteria.

6. Existing supervised multilinear subspace learning algorithms have not made any

attempt in addressing the small sample size problem in the multilinear setting.

In order to overcome the above listed limitations and advance the current state of mul-

tilinear subspace learning, a systematic treatment on this topic has been given in Chapter

2. Next, several algorithms in this field will be proposed in the following chapters to ad-

dress the review conclusions above. Detailed analysis, derivations, and comparisons will

be presented. The recognition performance of the proposed algorithms will be evaluated

on the face and gait databases described in this chapter. The first work to be introduced

in the next chapter is the MPCA solution, which attempts to address the first conclusion

above drawn from the literature review.



Chapter 4

Multilinear Principal Component

Analysis

4.1 Introduction

This chapter introduces MPCA, the first unsupervised multilinear subspace learning

algorithm for general tensors targeting at variance maximization as in the classical PCA

rather than reconstruction error minimization. MPCA aims to solve for a tensor-to-tensor

projection that allows projected tensors to capture most of the variation present in the

original tensors. It can be considered as the higher-order extension of GPCA [156], which

is formulated only for second-order tensors. Thus, this chapter addresses the shaded

empty box in Fig. 3.7(a) (page 51) under the tensor-to-tensor projection.

The solution for MPCA is iterative in nature. It proceeds by decomposing the original

problem to a series of multiple projection subproblems. Consequently, design issues of

paramount importance in practical applications, such as initialization, projection order,

termination, and convergence of the algorithm, are discussed. Methods for systematic

determination of the subspace dimensionality are proposed and analyzed. The rela-

tionships between MPCA and existing PCA-based solutions are revealed. In addition,

62
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the eigentensors and n-mode eigenvalues are defined as counterparts of the eigenvectors

and eigenvalues in the classical PCA. The geometric interpretation of these concepts is

provided, enabling a deeper understanding of the MPCA algorithm and facilitating its

application.

Furthermore, a discriminative tensor feature selection mechanism is introduced to-

gether with a novel weighting method for better recognition. The combination of MPCA

and LDA is discussed as well. Moreover, the integration of MPCA with the ensemble-

based discriminant learning [93] is investigated for better generalization performance.

In this approach, a subset of the features extracted by MPCA is fed into a LDA-style

booster, which gives another way of learner weakness control in addition to computational

efficiency. The LDA learner in [93] is modified by adopting a simpler weighted pairwise

between-class scatter matrix and introducing a regularization term in the within-class

scatter matrix so that the complex and nonlinear distribution of patterns is taken into

account.

The rest of this chapter is organized as follows. In Section 4.2, the problem of MPCA

is formulated and an iterative solution is derived. The connections to the existing PCA-

based solutions are then pointed out. Section 4.3 gives detailed discussions on the design

issues including the initialization procedures, the projection order, the termination crite-

ria, the convergence, and the determination of the subspace dimensionality. In addition,

the computational aspects of the proposed method are also discussed in Section 4.3. The

selection of discriminative MPCA features and the combination with LDA are presented

in Section 4.4. The combination of MPCA with the boosting technology is introduced

in Section 4.5. Section 4.6 constructs three synthetic data sets for experimental study of

the MPCA properties. Finally, Section 4.7 summarizes this chapter.
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4.2 The MPCA Algorithm

This section defines the MPCA problem first. The solution to this problem is then derived

and connections with other PCA-based algorithms are discussed.

4.2.1 The MPCA problem

From Definition 2.1 (page 30), the MPCA problem is defined as follows.

A set of M tensor objects {X1, X2, ..., XM} is available for training. Each tensor

object Xm ∈ RI1×I2×...×IN assumes values in a tensor space RI1
⊗

RI2 ...
⊗

RIN , where In

is the n-mode dimension of the tensor. The MPCA objective is to define a multilinear

tensor-to-tensor projection {Ũ(n) ∈ RIn×Pn , n = 1, ..., N} that maps the original tensor

space RI1
⊗

RI2 ...
⊗

RIN into a tensor subspace RP1
⊗

RP2 ...
⊗

RPN (with Pn ≤ In, for

n = 1, ..., N):

Ym = Xm ×1 Ũ(1)T ×2 Ũ(2)T ...×N Ũ(N)T ,m = 1, ...,M, (4.1)

such that {Ym ∈ RP1
⊗

RP2 ...
⊗

RPN ,m = 1, ...,M} captures most of the variation

observed in the original tensor objects, assuming that these variation are measured by

the total scatter defined for tensors in Definition 2.1 (page 30).

In other words, the MPCA objective is the determination of the N projection matrices

{Ũ(n) ∈ RIn×Pn , n = 1, 2, ..., N} that maximize the total tensor scatter ΨY :

{Ũ(n), n = 1, 2, ..., N} = arg max
Ũ(1),Ũ(2),...,Ũ(N)

ΨY , (4.2)

where ΨY =
∑M

m=1 ‖ Ym − Ȳ ‖2F . Here, the dimensionality Pn for each mode is assumed

to be known or pre-determined first. Discussions on the adaptive determination of Pn,

when it is not known in advance, will be presented in Section 4.3.6.
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4.2.2 The derivation of the MPCA solution

Unfortunately, as in other multilinear subspace learning algorithms, the N projection

matrices need the determination of N sets of parameters, and these N sets of parameters

are inter-dependant (except for N = 1 or Pn = In for all n). This results in a highly

nonlinear problem with no known optimal solution that allows for the simultaneous

optimization of the N projection matrices.

Thus, the alternating projection method in the ALS algorithm [12,35,56] is followed.

Since the projection to an Nth-order tensor subspace consists of N projections to N

vector subspaces, N optimization subproblems can be solved by finding the Ũ(n) that

maximizes the scatter in the n-mode vector subspace, conditioned on the projection

matrices in the other modes. The solution for such a subproblem is given in the following

theorem.

Theorem 4.1. Let {Ũ(n), n = 1, ..., N} be the solution to Equation (4.2). Then, given all

the other projection matrices {Ũ(1), ..., Ũ(n−1), Ũ(n+1),..., Ũ(N)}, the projection matrix

Ũ(n) consists of the Pn eigenvectors corresponding to the largest Pn eigenvalues of the

matrix

Φ(n) =
M∑
m=1

(
Xm(n) − X̄(n)

)
· ŨΦ(n) · ŨT

Φ(n) ·
(
Xm(n) − X̄(n)

)T
, (4.3)

where

ŨΦ(n) =
(
Ũ(n+1) ⊗ Ũ(n+2) ⊗ ...⊗ Ũ(N) ⊗ Ũ(1) ⊗ Ũ(2) ⊗ ...Ũ(n−1)

)
. (4.4)

Proof. The proof of Theorem 1 is given in Appendix A.1.

As seen from the above, the product ŨΦ(n) · ŨT
Φ(n) depends on {Ũ(1), ..., Ũ(n−1),

Ũ(n+1),..., Ũ(N)}, indicating that the optimization of Ũ(n) depends on the projections in

other modes. Therefore, there is no closed-form solution to this maximization problem.

Instead, from Theorem 4.1, an iterative procedure can be utilized to solve (4.2), along

the lines of the pseudo-code summarized in Fig. 4.1. In the preprocessing step, the
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Input: A set of tensor samples {Xm ∈ RI1×I2×...×IN ,m = 1, ...,M}, and the desired tensor

subspace dimensionality {Pn, n = 1, 2, ..., N}.

Output: The N projection matrices {Ũ(n) ∈ RIn×Pn , n = 1, 2, ..., N} that maximize the total

scatter in the projected space.

Algorithm:

Step 1 (Preprocessing): Center the input samples as {X̃m = Xm − X̄ ,m = 1, ...,M},

where X̄ = 1
M

∑M
m=1Xm is the sample mean.

Step 2 (Initialization): Calculate the eigen-decomposition of Φ(n)∗ =
∑M

m=1 X̃m(n) ·

X̃T
m(n) and set Ũ(n) to be consisting of the eigenvectors corresponding to the most

significant Pn eigenvalues, for n = 1, ..., N .

Step 3 (Local optimization):

• Calculate {Ỹm = X̃m ×1 Ũ(1)T ×2 Ũ(2)T ...×N Ũ(N)T ,m = 1, ...,M}.

• Calculate ΨY0 =
∑M

m=1 ‖ Ỹm ‖2F (the mean ¯̃Y is all zero since X̃m is centered).

• For k = 1 : K

– For n = 1 : N

∗ Set the matrix Ũ(n) to be consisting of the Pn eigenvectors of the matrix

Φ(n), as defined in (4.3), corresponding to the largest Pn eigenvalues.

– Calculate {Ỹm,m = 1, ...,M} and ΨYk .

– If (ΨYk − ΨYk−1
)/ΨYk−1

< η, break and output {Ũ(n) ∈ RIn×Pn , n =

1, 2, ..., N}.

Figure 4.1: The pseudo-code implementation of the proposed MPCA algorithm.

input tensors are centered first: {X̃m = Xm− X̄ ,m = 1, ...,M}. The projection matrices

are then initialized through the full projection truncation to be discussed in detail in

Sec. 4.3.2. Next, in the local optimization step, the projection matrices are updated

one by one (the “n loop”) with all the others fixed. The local optimization procedure is
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repeated (the “k loop”) until the result converges or a maximum number K of iterations

is reached. Each iteration consists of the N conditional subproblems.

4.2.3 Connections with existing solutions

From Sections 2.3.1 (page 27), 3.4.1 (page 50), and 2.2.4 (page 25), it can be seen that

the MPCA introduced here generalizes PCA, 2DPCA, and GPCA.

When N = 1, PCA is simply MPCA with N = 1, where the input samples are vectors

{xm ∈ RI1} with only one mode. Consequently, only one projection matrix U is needed

in order to obtain the projected sample

ym = xm ×1 U = UTxm. (4.5)

In this case, there is only one scatter matrix

Φ(n) = Φ(1) =
M∑
m=1

(xm − x̄) · (xm − x̄)T , (4.6)

which is the total scatter matrix in PCA. The optimal U is determined from the eigen-

vectors of Φ(1). Thus, MPCA subsumes PCA.

When N = 2, the input samples are matrices {Xm ∈ RI1×I2}. From the review in Sec.

3.4.1 (page 50), the 2DPCA algorithm [153] is MPCA with N = 2 and a fixed U(1) = I,

where I is an identity matrix of size I1 × I1. In this case, the projection becomes

Ym = Xm ×1 I×2 UT = ITXmU = XmU ∈ RI1×P2 (4.7)

and only the 2-mode projection matrix needs to be solved. Similarly from the review in

Sec. 3.4.1 (page 50), the GPCA algorithm [156] is MPCA with N = 2 and two projections

matrices need to be solved.
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4.3 Design and Computational Issues in MPCA

In this section, several issues pertinent to the implementation of MPCA are discussed.

First, in-depth understanding of MPCA is provided. The properties of full projection

are analyzed, and the geometric interpretation of the n-mode eigenvalues is introduced

together with the concept of eigentensor. Next, the initialization method, the projec-

tion order determination, and the construction of termination criteria are described.

Convergence issues are also discussed. Lastly, methods for subspace dimensionality de-

termination are proposed, followed by the computational issues.

4.3.1 Full projection

With respect to this analysis, the term full projection refers to the multilinear projection

for MPCA with Pn = In for n = 1, ..., N . In this case, ŨΦ(n) · ŨT
Φ(n) is an identity matrix,

as it can be seen from the following lemma:

Lemma 4.1. When Pn = In for n = 1, ..., N , ŨΦ(n) · ŨT
Φ(n) is an identity matrix.

Proof. The proof is given in Appendix A.2.

As a result, Φ(n) reduces to

Φ(n)∗ =
M∑
m=1

(
Xm(n) − X̄(n)

)
·
(
Xm(n) − X̄(n)

)T
. (4.8)

In this case, Φ(n)∗ is determined by the input tensor samples only and it is independent

of other projection matrices. The optimal Ũ(n) = U(n)∗ is then obtained as the matrix

comprised of the eigenvectors of Φ(n)∗ directly without iteration, and the total scatter

ΨX in the original data is fully captured. However, there is no dimensionality reduc-

tion through this full projection. From the properties of eigen-decomposition, it can be

concluded that if all eigenvalues (per mode) are distinct, the full projection matrices
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(corresponding eigenvectors) are also distinct and that the full projection is unique (up

to sign) [40].

To interpret the geometric meanings of the n-mode eigenvalues, the total scatter

tensor Y∗var ∈ RI1×I2×...×IN of the full projection is introduced as an extension of the total

scatter matrix [3]. Each entry of the tensor Y∗var is defined as below:

Y∗var(i1, i2, ..., iN) =
M∑
m=1

[
(Y∗m − Ȳ∗)(i1, i2, ..., iN)

]2
, (4.9)

where Y∗m = Xm×1U
(1)∗T ...×NU(N)∗T and Ȳ∗ = 1

M

∑M
m=1 Y∗m. Using the above definition,

it can be shown that for the so-called full projection (Pn = In for all n), the inth n-mode

eigenvalue λ
(n)∗
in

is the sum of all the entries of the inth n-mode slice of Y∗var.

λ
(n)∗
in

=

I1∑
i1=1

...

In−1∑
in−1=1

In+1∑
in+1=1

...

IN∑
iN=1

Y∗var(i1, ..., in−1, in, in+1, ..., iN). (4.10)

In this dissertation, the eigenvalues are all arranged in a descending order. Figure 4.2

shows visually what the n-mode eigenvalues represent. In this figure, a number of third-

order tensors, e.g. short sequences (3 frames) of images with size 5×4, are projected to a

tensor space of size 5×4×3 (full projection) so that a total scatter tensor Y∗var ∈ R5×4×3

is obtained.

(a) (b) (c) (d)

Figure 4.2: Visual illustration of: (a) the total scatter tensor, (b) the 1-mode eigenvalues,
(c) 2-mode eigenvalues, and (d) the 3-mode eigenvalues in MPCA.
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Using Equation (2.10) (page 19), each tensor Xm can be written as a linear combina-

tion of P1 × P2 × ...× PN rank-1 tensors

Ũp1p2...pN = ũ(1)
p1
◦ ũ(2)

p2
◦ ... ◦ ũ(N)

pN
. (4.11)

These rank-1 tensors will be called, hereafter, eigentensors. Thus, the projected tensor

Y∗m can be viewed as the projection onto these eigentensors, with each entry of Y∗m corre-

sponding to one eigentensor. These definitions and illustrations help the understanding

of MPCA in the following discussions.

4.3.2 Initialization by full projection truncation

Full projection truncation is used to initialize the iterative solution for MPCA, where the

first Pn columns of the full projection matrix U(n)∗ is kept to give an initial projection

matrix Ũ(n). The corresponding total scatter is denoted as ΨY0 . This initialization is

equivalent to the HOSVD-based solution in [79]. Although this full projection truncation

initialization is not the optimal solution to (4.2), it is bounded and is considered a good

starting point for the iterative procedure, as will be discussed below.

Remark 4.1. There are other choices of initialization such as the truncated identity

matrices [156, 150, 37] (named as pseudo identity matrices) and random matrices. Sim-

ulation studies (reported in Section 4.6) indicate that although in practical applications,

the initialization step may not have a significant impact in terms of performance, it can

affect the speed of convergence of the iterative solution. Since full projection truncation

results in much faster convergence, it is used for MPCA initialization.

In studying the optimality of the initialization procedure with respect to (4.2), assume,

without loss of generality, that the 1-mode eigenvectors are truncated, in other words,

only the first P1 < I1 1-mode eigenvectors are kept. In this case, the following theorem

applies.
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Theorem 4.2. Let U(n)∗ and λ
(n)∗
in

, in = 1, ..., In, be the matrix of the eigenvectors of

Φ(n)∗ and the eigenvalues of Φ(n)∗, respectively, and Ỹm = X̃m×1U(1)∗T ...×NU(N)∗T ,m =

1, ...,M . Keep only the first P1 < I1 eigenvectors with
∑I1

i1=P1+1 λ
(1)∗
i1

> 0 to get X̌m =

Y̌m×1 Ǔ(1)×2 U(2)∗...×N U(N)∗, where Y̌m = Ỹm(1 : P1, :, ..., :) and Ǔ(1) = U(1)∗(:, 1 : P1).

Let Φ̌(n) correspond to X̌m, and the matrix of its eigenvectors and its eigenvalues be Û(n)

and λ̂
(n)
in

, respectively. Then,

λ̂
(1)
i1

=

 λ
(1)∗
i1

, i1 = 1, ..., P1

0, i1 = P1 + 1, ..., I1.

For n > 1 (other modes), λ̂
(n)
in
≤ λ

(n)∗
in

. Furthermore, for each mode, at least for one

value of in, λ̂
(n)
in

< λ
(n)∗
in

.

Proof. The proof is given in Appendix A.3.

It can be seen from Theorem 4.2 that if a non-zero eigenvalue is truncated in one

mode, the eigenvalues in all the other modes tend to decrease in magnitude and the

corresponding eigenvectors change accordingly. Thus, the eigen-decomposition needs to

be recomputed in all the other modes, i.e., the projection matrices in all the other modes

need to be updated. Since from Theorem 4.1, the computations of all the projection

matrices are inter-dependent, the update of a projection matrix Ũ(n∗) updates the ma-

trices {ŨΦ(n) , n 6= n∗} as well. Consequently, the projection matrices in all the other

modes {Ũ(n), n 6= n∗} are no longer consisting of the eigenvectors of the corresponding

(updated) Φ(n) and they need to be updated. The update continues until the termination

criterion, discussed in Sec. 4.3.4, is satisfied.

Figure 4.2 provides a visual illustration of Theorem 4.2. Removal of a basis vector

in one mode results in eliminating a slice of Y∗var. In Fig. 4.2, if the last non-zero (fifth)

1-mode eigenvalue is discarded (shaded in Fig. 4.2(b)), the corresponding (fifth) 1-mode

slice of Y∗var is removed (shaded in Fig. 4.2(a)), resulting in a truncated total scatter



Chapter 4. Multilinear Principal Component Analysis 72

tensor Ỹ∗var ∈ R4×4×3. Discarding this slice will affect all eigenvalues in the remaining

modes, whose corresponding slices have a non-empty overlap with the discarded 1-mode

slice. In Figs. 4.2(c) and 4.2(d), the shaded part indicates the removed 1-mode slice

corresponding to the discarded eigenvalue.

Having proven the non-optimality of full projection truncation with respect to the

objective function (4.2), the bounds for full projection truncation are then derived in the

following theorem.

Theorem 4.3. Let λ
(n)∗
in

denote the inth n-mode eigenvalue for the n-mode full projection

matrix. The upper and lower bounds for (ΨX −ΨY0), the loss of variation due to the full

projection truncation (measured by the total scatter), are derived as follows:

ΨL = max
n

In∑
in=Pn+1

λ
(n)∗
in
≤ (ΨX −ΨY0) ≤

N∑
n=1

In∑
in=Pn+1

λ
(n)∗
in

= ΨU . (4.12)

Proof. The proof is given in Appendix A.4.

From (4.12), it can be seen that the tightness of the bounds is determined by the

eigenvalues in each mode. The bounds can be observed in Fig. 4.2. For instance,

truncation of the last eigenvector in each of the three modes results in another truncated

total scatter tensor Ŷ∗var ∈ R4×3×2. Thus, the difference between ΨX and ΨY0 (the sum

of all entries in Y∗var and Ŷ∗var, respectively) is upper-bounded by the total of the sums

of all the entries in each truncated slice and lower-bounded by the maximum sum of all

the entries in each truncated slice. For full projection truncation, the gap between the

actual loss of variation and the upper bound is due to the multiple counts of the overlaps

between the discarded slice in one mode and the discarded slices in the other modes of

Y∗var.

The tightness of the bounds ΨU and ΨL depends on the order N , the eigenvalue

characteristics (distribution) such as the number of zero-valued eigenvalues, and the

degree of truncation Pn. For example, for N = 1, the case of PCA, ΨL = ΨU and the
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full projection truncation is the optimal solution so no iterations are necessary. A larger

N results in more terms in the upper bound and tends to lead to looser bound, and vice

versa. In addition, if all the truncated eigenvectors correspond to zero-valued eigenvalues,

ΨY0 = ΨX since ΨL = ΨU = 0, and the full projection truncation results in the optimal

solution.

4.3.3 Projection order

The MPCA algorithm computes the N projection matrices in a certain order and this

order may affect the obtained solution. Thus, the effects of the projection order have

been studied empirically in this work and simulation results presented in Section 4.6

indicate that altering the ordering of the projection matrix computation does not result

in significant performance differences in practical situations. Therefore, a sequential order

from 1 to N is taken in implementation.

4.3.4 Termination

The termination criterion can be determined using the objective function ΨY . In par-

ticular, the iterative procedure terminates if (ΨYk − ΨYk−1
)/ΨYk−1

< η, where ΨYk and

ΨYk−1
are the resulted total scatter from the kth and (k − 1)th iterations, respectively,

and η is a user-defined small number threshold (e.g., η = 10−6). In other words, the

iterations stop if there is little improvement in the resulted total scatter. In practice, for

computational consideration, another easy way to terminate the iteration is to set the

maximum number of iterations allowed to K.

4.3.5 Convergence of the MPCA algorithm

The derivation of Theorem 4.1 (Appendix A.1) implies that per iteration, the total scatter

ΨY is a non-decreasing function (it either remains the same or increases) since each update



Chapter 4. Multilinear Principal Component Analysis 74

of the projection matrix Ũ(n∗) in a given mode n∗ maximizes ΨY . On the other hand,

ΨY is upper-bounded by ΨX (the variation in the original samples) since the projection

matrices {Ũ(n)} consist of orthonormal columns. Therefore, MPCA is expected to have

good convergence property. Empirical results presented in Section 4.6 indicate that the

proposed MPCA algorithm converges very fast (within 5 iterations) for typical tensor

objects. Furthermore, when per mode eigenvalues are all distinct (with multiplicity 1),

which is the case for the simulated data as well as the face and gait data, the projection

matrices {Ũ(n)}, which maximize ΨY , are expected to converge as well. It should be

noted that the claimed convergence regarding the projection matrices {Ũ(n)} is under

the condition that the sign for the first component of each n-mode eigenvector is fixed

since the eigenvector is unique up to sign. Simulation studies show that the projection

matrices {Ũ(n)} do converge within a small number of iterations.

4.3.6 Determination of subspace dimensionality

When the targeted dimensionality {Pn, n = 1, ..., N} is not specified in advance, its value

has to be determined before solving the MPCA projection. Consequently, the objective

function (4.2) needs to be revised to include a constraint on the desired dimensionality

reduction. The revised objective function is as follows:

{Ũ(n), Pn, n = 1, ..., N} = arg max
Ũ(1),...,Ũ(N),P1,...,PN

ΨY , subject to

∏N
n=1 Pn∏N
n=1 In

< ∆,(4.13)

where the ratio between the targeted (reduced) dimensionality and the original tensor

space dimensionality is utilized to measure the amount of dimensionality reduction, and

∆ is a threshold parameter to be specified by the user or determined based on empirical

studies.

The first proposed subspace dimensionality determination solution is called sequential

mode truncation. Starting with Pn = In for all n at τ = 0, at each subsequent step
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τ = τ + 1, the sequential mode truncation truncates, in a selected mode n, the Pnth n-

mode eigenvector of the reconstructed input tensors. The truncation could be interpreted

as the elimination of the corresponding Pnth n-mode slice of the total scatter tensor. For

the mode selection, the scatter loss rate ϑ
(n)
τ due to the truncation of its Pnth eigenvector

is calculated for each mode. ϑ
(n)
τ is defined as follows:

ϑ(n)
τ =

ΨY(τ)
−ΨY(τ−1)[

Pn ·
∏N

j=1,j 6=n Pj

]
−
[
(Pn − 1) ·

∏N
j=1,j 6=n Pj

] =
λ̃

(n)
Pn

ΠN
j=1,j 6=nPj

, (4.14)

where ΨY(τ)
is the scatter obtained at step τ , ΠN

j=1,j 6=nPj is the amount of dimensionality

reduction achieved, and λ̃
(n)
Pn

, the corresponding Pnth n-mode eigenvalue, is the loss of

variation due to truncating the Pnth n-mode eigenvector. The mode with the smallest

ϑ
(n)
τ is selected for the step-τ truncation. For the selected mode n, Pn is decreased by

1: Pn = Pn − 1 and
∏N
n=1 Pn∏N
n=1 In

< ∆ is tested. The truncation stops when
∏N
n=1 Pn∏N
n=1 In

< ∆

is satisfied. Otherwise, the input tensors are reconstructed according to (2.7) (page 18)

using the current truncated projection matrices and they are used to recompute the n-

mode eigenvalues and eigenvectors corresponding to full projection. Since eigenvalues in

other modes are affected by the eigenvector truncation in a given mode (see Theorem

4.2), it is expected that the sequential mode truncation, which takes into account this

effect, constitutes a reasonable good choice for determining Pn in the sense of (4.13).

Beside the method of sequential mode truncation, the Q-based method, a suboptimal,

simplified dimensionality determination procedure that requires no recomputation, is also

proposed for use in practice. Define the ratio

Q(n) =

∑Pn
in=1 λ

(n)∗
in∑In

in=1 λ
(n)∗
in

(4.15)

to be the remained portion of the total scatter in the n-mode after the truncation of

the n-mode eigenvectors beyond the Pnth, where λ
(n)∗
in

is the inth full-projection n-mode
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eigenvalue. In the proposed Q-based method, the first Pn eigenvectors are kept in the

n-mode (for each n) so that: Q(1) = Q(2) = ... = Q(N) = Q (the equality can hold

approximately since it is unlikely to find Pn that gives the exact equality in practice).

It should be noted that
∑In

in=1 λ
(n)∗
in

= ΨX for all n since from Theorem 4.1, the total

scatter for the full projection was given as:

Ψ∗Y = ΨX =
M∑
m=1

‖ Ym(n) − Ȳ(n) ‖2F=
In∑
in=1

λ
(n)∗
in

, n = 1, ..., N. (4.16)

This method can be viewed as an extension of the dimensionality selection strategy in

the traditional PCA to the multilinear case. The reason behind this choice is that loss

of variation is (approximately) proportional to the sum of the corresponding eigenvalues

of the discarded eigenvectors. By discarding the least significant eigenvectors in each

mode, the variation loss can be contained and a tighter lower bound for ΨY0 is obtained.

The empirical study to be reported in the experimental section indicates that the Q-

based method provides results similar to those obtained by sequential mode truncation

(as measured in terms of the total scatter captured). Thus, it can be safely used instead

of the more computationally expensive sequential mode truncation.

4.3.7 Computational issues

Apart from the actual performance of MPCA, its computational complexity, memory

requirements, and storage needs are relative measures of its practicality and usefulness

as they determine the required computing power and processing (execution) time. Here,

MPCA-related computational issues are examined in a fashion similar to that introduced

in [156].

Since the MPCA solution is iterative, the computational complexity analysis is per-

formed for one iteration. For simplicity, it is assumed that I1 = I2 = ... = IN =(∏N
n=1 In

) 1
n

= I. From a computational complexity point of view, the most demanding
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steps are the formation of the matrices Φ(n), the eigen-decomposition of Φ(n), and the

computation of the multilinear projection Ỹm. It should be noted that the use of multi-

linear multiplication and unfolding in order to compute Φ(n) is more efficient comparing

to the use of Kronecker products. The computations needed to determine Φ(n), the Pn

eigenvectors of Φ(n), and Ỹm are in order of O(MN · I(N+1)) (upper bounded), O(I3),

and O(N · I(N+1)), respectively. The total complexity is

O((N + 1) ·M ·N · I(N+1) +N · I3). (4.17)

If the algorithm is terminated by setting K rather than checking the convergence, the

computation of Ỹm is not needed and the total complexity becomes

O(N2 ·M · I(N+1) +N · I3). (4.18)

In MPCA, X̄ and Φ(n) can be computed incrementally by reading Xm or X̃m sequen-

tially without loss of information. Hence, memory requirements for the MPCA algorithm

can be as low as O(
∏N

n=1 In) as MPCA computes the solution without requiring all data

samples in the memory. This is a major advantage that MPCA enjoys over the HOSVD-

based solutions [64,79], which requires the formation of an (N + 1)th-order tensor when

the input tensor samples are of Nth-order. This is of considerable importance in ap-

plications with large data sets as the size of the input database may lead to significant

increase in complexity and memory storage requirement. On the other hand, as an iter-

ative solution, MPCA has a higher I/O cost than a non-iterative solution. Nevertheless,

since solving for the projection matrices using MPCA is only in the training phase of the

targeted recognition tasks, it can be done offline and the additional I/O (and computa-

tional) cost due to iterations are not considered a disadvantage of the proposed MPCA

solution.

MPCA compresses each tensor sample of size
∏N

n=1 In to
∏N

n=1 Pn, and it needs N
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matrices Ũ(n) ∈ RIn×Pn for compression and decompression. Thus, it requires

(
M ·

N∏
n=1

Pn +
N∑
n=1

(In × Pn)

)
(4.19)

scalars in the reduced space by MPCA and the compression ratio is defined as:

CR =
M ·

∏N
n=1 In

M ·
∏N

n=1 Pn +
∑N

n=1(In × Pn)
. (4.20)

In studying the subspace dimensionality determination performance in the experiments

(Sec. 4.6), algorithms are compared under the same CR.

4.4 Discriminative MPCA Feature Selection and

MPCA+LDA

The projection matrices {Ũ(n), n = 1, ..., N} obtained by MPCA can be used to extract

features from a set of training tensor samples {Xm,m = 1, ...,M}. In testing, a nor-

malized tensor sample X is centered by subtracting the mean obtained from the gallery

tensors and then projected to the MPCA feature Y :

Y = (X − X̄ )×1 Ũ(1)T ×2 Ũ(2)T ...×N Ũ(N)T . (4.21)

From the gallery set, a set of eigentensors is obtained with reduced dimensionality

(Pn ≤ In) determined by a user-specified Q, and each entry of a projected tensor feature

can be viewed as a (scalar) feature corresponding to a particular eigentensor. Some of

the small variation and noise are removed in the projection. However, for recognition, it

should be noted that MPCA is an unsupervised technique without taking class labels into

account. As a result, the variation captured in the projected tensor subspace includes

both the within-class variation and the between-class variation. In the task of classi-
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fication, a larger between-class variation relative to the within-class variation indicates

good class separability, while a smaller between-class variation relative to the within-class

variation indicates poor class separability. Hence, a feature selection strategy is proposed

to select eigentensors according to their class discrimination power [152, 3, 139], defined

to be the ratio of the between-class scatter over the within-class scatter:

Definition 4.1. The class discriminability Θp1p2...pN for an eigentensor Ũp1p2...pN is de-

fined as

Θp1p2...pN =

∑C
c=1Mc ·

[
Ȳc(p1, p2, ..., pN)− Ȳ(p1, p2, ..., pN)

]2∑M
m=1

[
Ym(p1, p2, ..., pN)− Ȳcm(p1, p2, ..., pN)

]2 , (4.22)

where C is the number of classes, M is the number of samples in the gallery set, Mc is

the number of samples for class c and cm is the class label for the mth gallery sample

Xm. Ym is the feature tensor of Xm in the projected tensor subspace. The mean feature

tensor Ȳ = 1
M

∑
m Ym and the class mean feature tensor Ȳc = 1

Mc

∑
m,cm=c Ym.

For the eigentensor selection, the entries in the projected tensor Ym are rearranged into

a feature vector ym, ordered according to Θp1p2...pN in descending order, and only the first

Hy most discriminative components of ym are kept for classification, with Hy determined

empirically or user-specified. By this selection, a more discriminating subspace is resulted

compared to the MPCA projected tensor subspace that includes both features with good

separability and features with poor separability. Next, a weight tensorW is formed with

entries defined as W(p1, p2, ..., pN) =

√
ΠN
n=1λ

(n)
pn , where λ

(n)
pn denotes the pnth n-mode

eigenvalue corresponding to the projection matrix Ũ(n). W is rearranged into a vector

w in the same order as ym, with only the first Hy components kept and w can be used

as weights in measuring distances (Table 3.1, page 40).

The feature vector ym can be used directly for recognition, or LDA can also be applied

to obtain an MPCA+LDA approach for recognition, similar to the popular approach

of PCA+LDA [3]. Let SBy and SWy be the between-class scatter matrix and within-

class scatter matrix based on {ym}, respectively. Then, from Section 2.3.2 (page 28),
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the corresponding LDA projection ULDA consists of the first Hz (≤ C − 1) generalized

eigenvectors of the following generalized eigenvalue problem: SByuhz = λhzSWyuhz , where

hz = 1, ..., Hz and λhz is the hzth largest generalized eigenvalue. Thus, the MPCA+LDA

feature vector zm is obtained as: zm = UT
LDAym.

As discussed in Section 1.3 (page 4), in practical face or gait recognition problems,

many factors, such as pose, illumination, expression, viewing angles, walking surfaces,

and shoes, may affect a person’s face or gait. Thus, the face or gait patterns in practice are

expected to be highly nonlinear and complex. Moreover, the face or gait data available for

training and testing may be captured under different conditions and good generalization

is very difficult. The MPCA and MPCA+LDA algorithms proposed so far have not taken

into consideration of these complex and nonlinear pattern distributions, and in the next

section, the combination of MPCA with ensemble-based learning is proposed to further

improve the generalization performance on recognition problems.

4.5 Boosting LDA on the MPCA Features

(B-LDA-MPCA)

There are many methods proposed in the literature to handle complex and nonlinear pat-

terns. The ensemble-based machine learning method called boosting is a very promising

one offering good generalization capability through combining a set of weak learners re-

peatedly trained on weighted training samples [26, 111]. A short review of the popular

Adaptive Boosting (AdaBoost) algorithm is provided in Appendix B. Boosting requires

an appropriate weak learner to work, which has restricted its applicability [111, 120]. A

recent work in [93] has broken this limitation by proposing a boosting algorithm that

works with LDA-style learners. A cross-validation mechanism is employed to weaken the

LDA learner and the pairwise class discriminant distribution is introduced for interaction

between the booster and the learner.
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This section investigates the combination of MPCA with the LDA-based boosting

work in [93]. In this novel processing scheme, MPCA is first used to generate eigentensors

in a lower-dimensional tensor space and then only a number of discriminative eigentensors

are selected as the input to the LDA-based booster. This eigentensor number provides

one more way (besides the cross-validation mechanism in [93]) to control the weakness

of the LDA learner, and the MPCA feature extractor before the booster greatly reduces

the processing cost (in both training and testing) so that very-high dimensional tensorial

data can be handled efficiently. Furthermore, a novel regularization control mechanism

is added to the LDA learners to reduce overfitting on the gallery set and improve the

generalization as the within-class scatter of testing patterns is often expected to be larger

than that of the training patterns.

Figure 4.3: Illustration of recognition through boosting LDA with regularization on
MPCA features.

The block diagram of the proposed combination of MPCA and boosting is shown in

Figure 4.3. Input tensorial samples are projected on a number of discriminative eigen-

tensors to obtain feature vectors, as described in Section 4.4, and these vectors are fed

into the LDA-based booster for learning and classification. It should be noted that the

booster proposed here has an important difference with that in [93]. The LDA-style
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base learners in the proposed booster take {ym ∈ RHy ,m = 1, ...,M}, the feature vec-

tors extracted by MPCA, rather than the vectorized original data { xm ∈ RI1×I2× ...×IN ,

m = 1, ...,M} as in [93]. There are two benefits from the proposed scheme:

1. The feature vector dimension Hy, the number of discriminative eigentensors se-

lected, offers one more degree (besides ξ, the number of samples per class used for

the LDA learners) to control the weakness of the LDA learners. Similar to the

PCA+LDA, where the performance is often affected by the number of principal

components selected for LDA, Hy affects the performance of LDA on the MPCA

features as well. Therefore, by choosing a Hy that is not optimal for a single LDA

learner, the obtained LDA learner is weakened. Of course, the LDA learner cannot

be made “too weak” either. Otherwise, the boosting scheme will not work.

2. Using feature vectors of dimension Hy instead of the original data as the booster

input is computationally advantageous. Since boosting is an iterative algorithm

with T rounds, the computational cost is about T times of that of a single learner

with the same input, both in training and testing. By making the booster to work

on lower dimensional features extracted by MPCA, the booster becomes much more

efficient since it only needs to deal with low-dimensional vectors. Consequently, the

computational cost is reduced significantly.

The AdaBoost algorithm is developed for binary classification problems and several

methods have been proposed to extend the AdaBoost to the multiclass case [27, 113,

1, 110]. The multi-class AdaBoost approach followed here is the AdaBoost.M2 algo-

rithm [26]. The pseudo-code implementation of the proposed MPCA+boosting scheme

is summarized in Fig. 4.4.

The AdaBoost.M2 aims to extend the communication between the boosting algo-

rithm and the weak learner by allowing the weak learner to generate more expressive

hypotheses (a set of “plausible” labels rather than a single label) indicating a “degree of
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Input: The gallery feature vectors {ym,m = 1, ...,M} with class labels c ∈ RM , the LDA

learner described in Sec. 4.5, the number of samples per class for LDA training ξ, the

maximum number of iterations T .

Algorithm:

Initialize D1(m, c) = 1
M(C−1) , Â1(ca, cb) = 1

C2 , D1(m, cm) = 0, Â1(ca, ca) = 0, and the

first ξ samples from each class is selected to form the initial training set {ys, s = 1, ..., S}1.

Do for t = 1 : T :

1. Get ÛLDAt from SBt and SWt constructed from {ys, s = 1, ..., S}t and project {ym}

to {ẑm}.

2. Get hypothesis {ht(ym, c) ∈ [0, 1]} by applying the nearest mean classifier on {ẑm}.

3. Calculate ε̂t, the pseudo-loss of ht, from (4.23).

4. Set βt = ε̂t/(1− ε̂t).

5. Update Dt:

Dt+1(m, c) = Dt(m, c)β
1
2
(1+ht(ym,cm)−ht(ym,c))

t ,

and normalize it:

Dt+1(m, c) =
Dt+1(m, c)∑

m

∑
c Dt+1(m, c)

.

6. Update dt+1(m), Ât+1, and {ys}t+1 accordingly.

Output: The final hypothesis:

hfin(y) = arg max
c

T∑
t=1

(
log

1
βt

)
ht(y, c)

Figure 4.4: The pseudo-code implementation of the LDA-based booster on MPCA fea-

tures.
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plausibility”, i.e., a hypothesis h takes a sample y and a class label c as the inputs and

produces a “plausibility” score h(y, c) ∈ [0, 1] as the output. To achieve its objective, the

AdaBoost.M2 introduces a sophisticated error measure pseudo-loss ε̂t with respect to the

mislabel distribution Dt(m, c) in [26]. A mislabel is a pair (m, c), where m is the index

of a training sample and c is an incorrect label associated with the sample ym. Let B be

the set of all mislabels: B = {(m, c) : m = 1, ...,M, c 6= cm}. The mislabel distribution is

initialized as D1(m, c) = 1
M ·(C−1)

for (m, c) ∈ B. Accordingly, the weak learner produces

a hypothesis ht : RI×C → [0, 1], where h(y, c) measures the degree to which it is believed

that c is the correct label for y. The pseudo-loss ε̂t of the hypothesis ht with respect to

Dt(m, c) is defined to measure the goodness of ht and it is given by [26]:

ε̂t =
1

2

∑
(m,c)∈B

Dt(m, c) (1− ht(ym, cm) + ht(ym, c)) . (4.23)

The introduction of the mislabel distribution enhances the communication between the

learner and the booster, so that the AdaBoost.M2 can focus the weak learner not only

on hard-to-classify samples, but also on the incorrect labels that are the hardest to

discriminate [26].

Another distribution dt(m), named as the pseudo sample distribution in [93], is de-

rived from Dt(m, c) as dt(m) =
∑

c6=cm Dt(m, c). For the communication between the

booster and the learner, the modified “pairwise class discriminant distribution” (PCDD)

Ât ∈ RC×C introduced in [93] is employed as

Ât(ca, cb) =
1

2

 ∑
cm=ca,cmt=cb

dt(m) +
∑

cm=cb,cmt=ca

dt(m)

 , (4.24)

where cmt = arg maxc ht(ym, c) and the diagonal of Ât is set to zeros. This version

of PCDD results in more independence and diversity between learners, which tends to

achieve a low generalization error.
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In building the LDA learner, the approach in [93] is adopted with several modifi-

cations. Firstly, only ξ samples per class are used as the input to the LDA learner in

order to get weaker but more diverse LDA learners. The first ξ samples are taken for

the first boosting step and the hardest ξ (with the largest d(m)) samples are selected for

subsequent steps. Let {ys, s = 1, ..., S}t denote the selected samples in round t, where

S = ξ × C. Next, for the between-class scatter matrix ŜB, the pairwise between-class

scatter in [74] is used instead of that used in [93] for its simplicity and easy computation:

ŜB =
C−1∑
ca=1

C∑
cb=ca+1

Ât(ca, cb)(ȳca − ȳcb)(ȳca − ȳcb)
T , (4.25)

where ȳc = 1
ξ

∑cs=c
s ys. Finally, for the within-class scatter matrix, a regularized version

of that in [93] is used:

ŜW =
∑
s

d(s)(ys − ȳcs)(ys − ȳcs)
T + κ · IHy , (4.26)

where κ is a regularization parameter to increase the estimated within-class scatter and

IHy is an identity matrix of size Hy × Hy. The regularization term is added because

in challenging face or gait recognition problems, the actual within-class scatter of test-

ing (probe) samples is expected to be greater than the within-class scatter that can be

estimated from the gallery set. With these definitions, the corresponding LDA projec-

tion ÛLDA consists of the first Hẑ (≤ C − 1) generalized eigenvectors of the following

generalized eigenvalue problem: ŜBûhẑ = λhẑŜW ûhẑ , where hẑ = 1, ..., Hẑ and λhẑ is

the hẑth largest generalized eigenvalue. Thus, the LDA feature vector ẑm is obtained as

ẑm = ÛT
LDAym for the input to a classifier. To produce the hypothesis, the nearest mean

classifier (NMC), which assigns label c to the test sample y if ȳc is the class mean nearest

to y, is used and the calculated distances between a sample and the C class means are

matched to the interval [0, 1] as required by the AdaBoost.M2 algorithm.
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4.6 Experimental Study

This section investigates the various properties of the MPCA algorithm. Detailed face

and gait recognition results as well as comparisons with competing algorithms will be

presented in Chapter 7 together with the other proposed algorithms. The MPCA prop-

erties studied are: a) the effects of the initial conditions, b) the effects of the ordering of

the projection matrix computation, c) the convergence of the projection matrices, d) the

evolution of the total scatter ΨY over iterations, e) the number of iterations needed for

convergence, and f) the performance of the tensor subspace dimensionality determination

proposal. As many of these properties may be affected by the nature of the tensorial

data, three synthetic data sets with different eigenvalue distributions are constructed

for this study. Because the study results on the face or gait data are similar to one of

the synthetic data sets, this section reports only the experiments performed on the syn-

thetic data sets for illustration. In the following, the synthetic data generation method

is described first. Then, the study on various MPCA properties is presented.

4.6.1 Synthetic data generation

The core of the MPCA algorithm is the eigen-decomposition in each mode so the dis-

tribution of the eigenvalues is expected to affect the performance of the algorithm. To

study the MPCA properties on data of different characteristics, three synthetic data sets

with eigenvalues in each mode spanning different magnitude ranges are generated. In

particular, M third order tensor samples Am ∈ RI1×I2×I3 are generated per set according

to

Am = Bm ×1 C(1) ×2 C(2) ×3 C(3) +Dm, (4.27)

using a core tensor Bm ∈ RI1×I2×I3 , n-mode projection matrix C(n) ∈ RIn×In (n = 1, 2, 3)

and a “noise” tensor Dm ∈ RI1×I2×I3 . All entries in Bm are drawn from a zero-mean

unit-variance Gaussian distribution and are multiplied by
(
I1·I2·I3
i1·i2·i3

)f
. In this data gen-
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eration procedure, f controls the eigenvalue distributions, so that data sets are created

having eigenvalues’ magnitudes in different ranges. Smaller f results in a narrower range

of eigenvalue spread. The matrices C(n) (n = 1, 2, 3) are orthogonal matrices obtained

by applying SVD on random matrices with entries drawn from zero-mean, unit-variance

Gaussian distribution. All entries of Dm are drawn from a zero-mean Gaussian distribu-

tion with variance 0.01. Three synthetic data sets, db1, db2, and db3, of size 30×20×10

with M = 100 and f = 1/2, 1/4, and 1/16, respectively, are created. Figure 4.5(a) depicts

the spread of eigenvalue magnitudes and Fig. 4.5(b) depicts their eigenvalue cumulative

distribution.

4.6.2 MPCA properties

First, the effects of the initial conditions are tested using the synthetic data sets. Both

random matrices and pseudo identity matrices (truncated identity matrices) have been

tested. Typical examples are shown in Fig. 4.6. From the simulation studies, it can be

observed that despite the different initializations, the MPCA algorithm, when applied on

sets db1 and db2, converges to the same point within three iterations. On set db3, the

algorithm with different initializations converges to the same point within ten iterations

for Q ≥ 0.35. For small value of Q (< 0.35) on set db3, the algorithm using random

matrices as initialization could converge to a point that is different from (lower than)

the point to which the algorithm using the other two initialization methods converges,

as shown in Fig. 4.6(c). This indicates that initialization methods could affect the

final results on data sets with similar characteristics as db3 when a small Q is used.

In summary, initialization has little effect on the final results for synthetic data sets

db1 and db2 with all values of Q, and for synthetic data set db3 with Q ≥ 0.35. In

pattern recognition applications, it is often desired to keep most of the variation/energy

in the original data and hence the proposed algorithm using different initializations is

expected to converge well since Q > 0.35 is easily satisfied in practice. Since the MPCA
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(a) (b)

Figure 4.5: Plots of (a) the eigenvalue magnitudes, and (b) their cumulative distributions
for the synthetic data sets: db1, db2 and db3.

algorithm using the proposed initialization, full projection truncation, converges faster

than the algorithm using the other initialization methods, the full projection truncation

is expected to be closer to the local maximum point and it is used for MPCA initialization
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in this work.

(a) (b)

(c) (d)

Figure 4.6: Convergence plots for MPCA with different initializations on (a) db1 with
Q = 0.75, (b) db2 with Q = 0.75, (c) db3 with Q = 0.15, and (d) db3 with Q = 0.75.

Second, the effects of the projection order are studied. A typical example for Q = 0.8

is depicted in Fig. 4.7(a), which plots the ratio ΨYk/ΨY0 against the iteration number

for up to 15 iterations with all six possible ordering. The simulation results indicate that

there is no significant difference in the captured total scatter for db1 and db2, while there

is some small difference for db3. For db3, the difference in total scatter captured using

different orderings is negligible (< 0.01%) for Q > 0.5 and it increases as Q decreases,

e.g., the difference is about 1% when Q = 0.2. This observation is consistent with the

poorer convergence property of db3, especially for a small Q, in other experiments such
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as the initialization study above and the convergence study in the following.

(a) (b)

Figure 4.7: Illustration of (a) the effects of projection order with Q = 0.8, and (b) the
convergence of projection matrices with Q = 0.6, in MPCA for the synthetic data sets:
db1, db2 and db3.

To illustrate the convergence of the projection matrices, Fig. 4.7(b) shows some
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typical results for Q = 0.6, where the evolution of successive projection matrix differences

for the three modes are plotted against the number of iterations. From the figure, the

projection matrices converge within five iterations for db1 and db2, while for db3, they

converge within 15 iterations.

To study the evolution of the total scatter ΨY over iterations, the ratio of the value of

ΨYk over the initial value ΨY0 is plotted against the number of iterations, as a function

of dimensionality reduction determined by Q. For illustration purpose, results obtained

for up to 15 iterations with Q = 0.2 and Q = 0.8 are shown in Figs. 4.8(a) and 4.8(b),

respectively. As it can be seen from the figure, the first iteration results in the great-

est increase in ΨY while subsequent iterations result in smaller and smaller increments,

especially for data sets db1 and db2. To study the empirical convergence performance,

the number of iterations for convergence using a termination value of η = 10−6 is plot-

ted in Fig. 4.8(c) as a function of the parameter Q. These figures demonstrate that in

MPCA, the number of iterations needed to converge decreases as the range spanned by

the eigenvalues for the data samples or the value of Q increases.

The dependency on Q can be explained from two aspects. Q is closely related to the

number of eigenvectors truncated. First, from Theorem 4.3, the bounds on ΨY0 tend to

become looser when the number of eigenvectors truncated increases (Q decreases), and

vice versa. Looser (tighter) bounds tend to result in a poorer (better) initialization and

it takes more (less) iterations to reach a local optimum. Second, by Theorem 4.2, more

truncation (smaller value of Q) tends to decrease the eigenvalues in the other modes more

so that more iterations are needed to converge, and vice versa. The dependency on the

range of eigenvalue spread is less obvious. Narrower range in a mode means the variation

along each eigenvector in this mode is similar and each of the truncated eigenvectors

tends to encode similar amount of variation as each remaining one, which tends to make

the convergence harder. On the other hand, broader range of the eigenvalue spread

in a mode means that the energy is more concentrated in this mode and in this case,
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(a) (b)

(c) (d)

Figure 4.8: Illustration of various properties of MPCA on the synthetic data sets: (a)
evolution of ΨY for Q = 0.2, (b) evolution of ΨY for Q = 0.8, (c) number of itera-
tions to converge, and (d) SMT versus Q-based selection of Pn (SMT: sequential mode
truncation).

convergence is expected to be easier.

In practical recognition tasks, Q is commonly set to a large value in order to capture

most of the variation. Furthermore, the eigenvalues of practical data samples usually

spread a wide range in each mode due to redundancy/correlation. For example, Figure

4.9 shows a plot of the eigenvalues in three modes and their cumulative distributions

obtained from the gallery set of the USF gait database V.1.7, where the eigenvalues have

a wide range in each mode. In particular, the 2-mode eigenvalues drop sharply after the
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20th eigenvalue, indicating high redundancy in the 2-mode (row mode), and the 1-mode

(column mode) eigenvalues decrease gradually except at the last point, which may be

due to the centering. Therefore, in practice, the number of iterations K can be set to

a small value such as one with little sacrifice in the variation captured while enjoying

significant gain in empirical efficiency.

Figure 4.9: The eigenvalue magnitudes and their cumulative distributions for the gallery

set of the USF gait database V.1.7.

Lastly, to investigate the Q-based method and the sequential mode truncation method

for subspace dimensionality determination, Pn is determined for each mode n using these

two methods with various degrees of truncation across all the modes. The resulted

total scatters are compared under the same compression ratio CR (the same reduced

dimensionality), as shown in Fig. 4.8(d). The figure indicates that these two methods

have very similar results for all the three data sets. Hence, in practice, the more efficient

Q-based method is used to determine the tensor subspace dimensionality. In addition, it

is also verified through experiments that truncation in all modes is advantageous against

truncation in only one or two modes.
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4.7 Summary

This chapter has proposed the MPCA algorithm as a multilinear extension of PCA for

general tensor objects. MPCA determines a tensor-to-tensor projection onto a tensor

subspace of lower dimensionality that captures most of the signal variation present in

the original tensorial representation. An iterative solution has been formulated and is-

sues including initialization, projection order, convergence, and subspace dimensionality

determination have been discussed in detail. Then, by viewing the MPCA projection

as a number of eigentensors, a scheme of discriminative eigentensor selection has been

proposed for better recognition. The MPCA+LDA approach has also been introduced.

Furthermore, the combination of MPCA with the ensemble-based learning technology

named boosting has been investigated. The proposed MPCA+boosting method not only

results in more efficient processing, but also offers one more weakness control mechanism,

which is important in the LDA-based booster. In the experimental section, synthetic

data sets have been constructed and various MPCA properties have been studied. The

experimental study helps better understanding of MPCA and offers practical recommen-

dations for its algorithm settings, such as initialization, projection order, termination,

and subspace dimensionality determination.

Nonetheless, in the development of MPCA, the correlation among features is not

considered and the MPCA features obtained may not have zero correlations as in the

classical PCA. The next chapter continues to explore the unsupervised multilinear sub-

space learning by examining uncorrelated feature extraction within the PCA paradigm,

but in a multilinear setting.



Chapter 5

Uncorrelated Multilinear Principal

Component Analysis

5.1 Introduction

As pointed out in Section 3.4.2 (page 54), none of the existing unsupervised multilinear

subspace learning algorithms takes an important property of the classical PCA into ac-

count, i.e., PCA derives uncorrelated features, which contain minimum redundancy and

ensure linear independence among features. Instead, most of them produce orthogonal

bases in each mode, and the correlations among features obtained are not guaranteed to

be zero in a multilinear setting, unlike in PCA. For the approach of unsupervised multi-

linear subspace learning through the tensor-to-tensor projection, it is extremely difficult,

if not impossible, to enforce the zero-correlation constraint. As analyzed in Section 2.2.4

(page 25), the tensor-to-tensor projection effectively consists of a number of interdepen-

dent elementary multilinear projections and the respective features obtained are likely

to be correlated rather than uncorrelated.

On the other hand, it is noted in the discussions in Section 3.5 (page 60) that in

unsupervised multilinear subspace learning through the tensor-to-vector projection, the

95
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approach of variation maximization has not been studied. The only method in this

category tries to minimize the reconstruction error through a heuristic approach.

Motivated by the above discussions, this chapter investigates the development of the

uncorrelated multilinear PCA (UMPCA), an unsupervised multilinear subspace learning

algorithm that produces uncorrelated features through the tensor-to-vector projection.

Accordingly, this chapter addresses the shaded empty box in Fig. 3.7(a) (page 51) under

the tensor-to-vector projection. The derivation of the UMPCA algorithm follows the

classical PCA derivation of successive variance maximization [47]. A number of elemen-

tary multilinear projections are solved one by one to maximize the captured variance

with the zero-correlation constraint enforced. As in MPCA, the solution is iterative in

nature and it solves the multilinear problem through a series of linear problems. Issues

related to initialization, projection order, termination, and convergence are studied and

its relationships with existing solutions are discussed. In addition, a theoretical justifica-

tion is given on a limitation of UMPCA in the number of uncorrelated features that can

be extracted, and ways to work around this limitation are suggested.

The rest of this chapter is organized as follows. In Section 5.2, the problem of UMPCA

is first formulated. The solution is then derived as a sequential iterative process. Next,

in this section, relationships with existing algorithms and its limitation are analyzed.

Issues on initialization, projection order, termination, and convergence are also discussed,

followed by the computational aspects. Section 5.3 presents the experimental study of

the UMPCA properties on the synthetic data sets used in Section 4.6 (page 86). Finally,

this chapter is summarized in Section 5.4.

5.2 The UMPCA Algorithm

This section first formulates the UMPCA objective function and then adopts the classical

successive variance maximization approach in the derivation of PCA together with the
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alternating projection method as in MPCA to solve the problem. Thereafter, connections

with existing methods, and the design and computational issues are discussed.

In the presentation of UMPCA, for the convenience of discussion, the training samples

are assumed to be zero-mean. When the training sample mean is not zero, it can be

subtracted to make the training samples to be zero-mean. In this case, the constraint

of uncorrelated features is the same as orthogonal features, as shown in the following

proposition.

Proposition 5.1. Let x and y be vector observations of the variables x and y. Then, x

and y are orthogonal iff xTy = 0, and x and y are uncorrelated iff (x− x̄)T (y− ȳ) = 0,

where x̄ and ȳ are the means of x and y, respectively [103]. Thus, two zero-mean (x̄ =

ȳ = 0) vectors are uncorrelated when they are orthogonal [54].

5.2.1 The UMPCA problem

Following the standard derivation of PCA given in [47], the variance of the principal

components is considered one by one. In the setting of the tensor-to-vector projection,

the pth principal components are {ymp ,m = 1, ...,M}, where M is the number of training

samples and ymp is the projection of the mth sample Xm by the pth elementary multilinear

projection {u(n)T

p , n = 1, ..., N}: ymp = Xm ×Nn=1 {u
(n)T

p , n = 1, ..., N}. Accordingly, from

Definition 2.4 (page 32), the variance is measure by their total scatter Sy
Tp

:

Sy
Tp

=
M∑
m=1

(ymp − ȳp)2, (5.1)

where ȳp = 1
M

∑
m ymp . In addition, let gp denote the pth coordinate vector, with its mth

component gp(m) = ymp .

A formal definition of the UMPCA problem is then given in the following:

A set of M tensor object samples {X1, X2, ..., XM} (with zero-mean) is available

for training. Each tensor object Xm ∈ RI1×I2...×IN assumes values in the tensor space
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RI1
⊗

RI2 ...
⊗

RIN . The objective of UMPCA is to find a tensor-to-vector projection,

which consists of P elementary multilinear projections, {u(n)
p ∈ RIn×1, n = 1, ..., N}Pp=1

that maps the original tensor space RI1
⊗

RI2 ...
⊗

RIN into a vector subspace RP (with

P <
∏N

n=1 In):

ym = Xm ×Nn=1 {u(n)T

p , n = 1, ..., N}Pp=1,m = 1, ...,M, (5.2)

such that the variance of the projected samples, measured by Sy
Tp

, is maximized in each

elementary multilinear projection direction, subject to the constraint that the P coordi-

nate vectors {gp ∈ RM , p = 1, ..., P} are uncorrelated.

In other words, the UMPCA objective is to determine a set of P elementary multi-

linear projections {u(n)T

p , n = 1, ..., N}Pp=1 that maximize the variance while producing

features with zero-correlation. Thus, the objective function for the pth elementary mul-

tilinear projection is

{u(n)T

p , n = 1, ..., N} = arg max
M∑
m=1

(ymp − yp)2, (5.3)

subject to u(n)T

p u(n)
p = 1 and

gTp gq

‖ gp ‖ ‖ gq ‖
= δpq, p, q = 1, ..., P,

where δpq is the Kronecker delta defined as

δpq =

 1 if p = q

0 Otherwise.
(5.4)

Remark 5.1. It should be noted that despite working directly on tensorial data, the

UMPCA algorithm is a feature extraction algorithm that produces feature vectors like

traditional linear algorithms, due to the nature of the tensor-to-vector projection. For

a test sample X , the feature vector y is obtained through the tensor-to-vector projection
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obtained by UMPCA as:

y = X ×Nn=1 {u(n)T

p , n = 1, ..., N}Pp=1. (5.5)

5.2.2 The derivation of UMPCA

To solve this UMPCA problem (5.3), the successive variance maximization approach

in the derivation of PCA in [47] is followed. The P elementary multilinear projections

{u(n)T

p , n = 1, ..., N}Pp=1 are determined sequentially (one by one) in P steps, with the pth

step obtaining the pth elementary multilinear projection. This stepwise process proceeds

as:

Step 1: Determine the first elementary multilinear projection {u(n)T

1 , n = 1, ..., N} by

maximizing Sy
T1

without any constraint.

Step 2: Determine the second elementary multilinear projection {u(n)T

2 , n = 1, ..., N}

by maximizing Sy
T2

subject to the constraint that gT2 g1 = 0.

Step 3: Determine the third elementary multilinear projection {u(n)T

3 , n = 1, ..., N} by

maximizing Sy
T3

subject to the constraint that gT3 g1 = 0 and gT3 g2 = 0.

Step p (p = 4, ..., P ): Determine the pth elementary multilinear projection {u(n)T

p , n =

1, ..., N} by maximizing Sy
Tp

subject to the constraint that gTp gq = 0 for q = 1, ..., p−

1.

In the following, the algorithm to compute these elementary multilinear projections is

presented in detail, as summarized in the pseudo-code in Fig. 5.1. In the figure, the

stepwise process described above corresponds to the loop indexed by p.

In order to solve for the pth elementary multilinear projection {u(n)T

p , n = 1, ..., N},

there are N sets of parameters corresponding to the N projection vectors to be deter-

mined, u
(1)
p ,u

(2)
p , ...u

(N)
p , one in each mode. It will be desirable to determine these N sets
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Input: A set of tensor samples {Xm ∈ RI1×I2×...×IN ,m = 1, ...,M}, the desired feature

vector length P , the maximum number of iterations K, and a small number η for testing

convergence.

Output: The P elementary multilinear projections {u(n)T

p , n = 1, ..., N}Pp=1 that captures

the most variance in the projected space.

Algorithm:

For p = 1 : P (step p: determine the pth elementary multilinear projections)

If p > 1, calculate the coordinate vector gp−1: gp−1(m) = Xm ×1 u(1)T

p−1 ×2 u(2)T

p−1 ... ×N

u(N)T

p−1 .

• For n = 1, ..., N , initialize u(n)
p(0) ∈ RIn .

• For k = 1 : K

– For n = 1 : N

∗ Calculate ỹ(n)
mp = Xm×1 u(1)T

p(k) ...×n−1 u(n−1)T

p(k) ×n+1 u(n+1)T

p(k−1)
...×N u(N)T

p(k−1)
,

for m = 1, ...,M.

∗ Calculate Υ(n)
p and S̃(n)

Tp
. Set u(n)

p(k) to be the (unit) eigenvector of

Υ(n)
p S̃(n)

Tp
associated with the largest eigenvalue.

– If k = K or (Sy
Tpk
− Sy

Tp(k−1)
)/Sy

Tp(k−1)
< η, set u(n)

p = u(n)
pk for all n, break.

• Output {u(n)
p }. Go the step p+ 1 if p < P . Stop if p = P .

Figure 5.1: The pseudo-code implementation of the UMPCA algorithm for feature ex-

traction from tensor objects.

of parameters (N projection vectors) in all modes simultaneously so that Sy
Tp

is (globally)

maximized, subject to the zero-correlation constraint. Unfortunately, as in MPCA, this

is a rather complicated nonlinear problem without an existing optimal solution, except

when N = 1, which is the classical PCA where only one projection vector is to be solved.

Therefore, the alternating projection method in the ALS algorithm [12, 35, 56] is used
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again to solve this multilinear problem, where a multilinear optimization problem is re-

duced into smaller conditional subproblems that can be solved through simple established

methods employed in the linear case.

For each elementary multilinear projection to be determined, the parameters of the

projection vector u
(n∗)
p for each mode n∗ are estimated one by one separately, conditioned

on {u(n)
p , n 6= n∗}, the parameter values of the projection vectors for the other modes.

Thus, by fixing {u(n)
p , n 6= n∗}, a new objective function depending only on u

(n∗)
p is

formulated. This conditional subproblem is linear and much simpler. The parameter

estimations for each mode are obtained in this way sequentially and iteratively until a

stopping criterion is met. It corresponds to the loop indexed by k in Fig. 5.1, and in each

iteration k, the loop indexed by n in Fig. 5.1 consists of the N conditional subproblems.

To solve for u
(n∗)
p in the n∗-mode, assuming that {u(n)

p , n 6= n∗} is given, the tensor

samples are projected in these (N − 1) modes {n 6= n∗} first to obtain the vectors

ỹ(n∗)
mp = Xm ×1 u(1)T

p ...×n∗−1 u(n∗−1)T

p ×n∗+1 u(n∗+1)T

p ...×N u(N)T

p , (5.6)

where ỹ
(n∗)
mp ∈ RIn∗ . This conditional subproblem then becomes to determine u

(n∗)
p that

projects the vector samples {ỹ(n∗)
mp ,m = 1, ...,M} onto a line so that the variance is

maximized, subject to the zero-correlation constraint, which is a PCA problem with the

input samples {ỹ(n∗)
mp ,m = 1, ...,M}. The corresponding total scatter matrix S̃

(n∗)
Tp

is then

defined as

S̃
(n∗)
Tp

=
M∑
m=1

(ỹ(n∗)
mp − ¯̃y(n∗)

p )(ỹ(n∗)
mp − ¯̃y(n∗)

p )T , (5.7)

where ¯̃y
(n∗)
p = 1

M

∑
m ỹ

(n∗)
mp . With (5.7), the P elementary multilinear projections can be

solved sequentially. For p = 1, the u
(n∗)
1 that maximizes the total scatter u

(n∗)T

1 S̃
(n∗)
T1

u
(n∗)
1

in the projected space is obtained as the unit eigenvector of S̃
(n∗)
T1

associated with the

largest eigenvalue. Next, the pth (p > 1) elementary multilinear projection is determined.
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Given the first (p−1) elementary multilinear projections, the pth elementary multilinear

projection aims to maximize the total scatter Sy
Tp

, subject to the constraint that features

projected by the pth elementary multilinear projection are uncorrelated with those pro-

jected by the first (p − 1) elementary multilinear projections. Let Ỹ
(n∗)
p ∈ RIn∗×M be a

matrix with ỹ
(n∗)
mp as its mth column, i.e.,

Ỹ(n∗)
p =

[
ỹ

(n∗)
1p , ỹ

(n∗)
2p , ..., ỹ

(n∗)
Mp

]
, (5.8)

then the pth coordinate vector is gp = Ỹ
(n∗)T
p u

(n∗)
p . The constraint that gp is uncorrelated

with {gq, q = 1, ..., p− 1} can be written as

gTp gq = u(n∗)T

p Ỹ(n∗)
p gq = 0, q = 1, ..., p− 1. (5.9)

Thus, u
(n∗)
p (p > 1) can be determined by solving the following constrained optimization

problem:

u(n∗)
p = arg max u(n∗)T

p S̃
(n∗)
Tp

u(n∗)
p , (5.10)

subject to u(n∗)T

p u(n∗)
p = 1 and u(n∗)T

p Ỹ(n∗)
p gq = 0, q = 1, ..., p− 1, (5.11)

The solution is given by the following theorem:

Theorem 5.1. The solution to the problem (5.10) is the (unit-length) eigenvector cor-

responding to the largest eigenvalue of the following eigenvalue problem:

Υ(n∗)
p S̃

(n∗)
Tp

u = λu, (5.12)

where

Υ(n∗)
p = IIn∗ − Ỹ(n∗)

p Gp−1Γ
−1
p GT

p−1Ỹ
(n∗)T

p , (5.13)
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Γp = GT
p−1Ỹ

(n∗)T

p Ỹ(n∗)
p Gp−1, (5.14)

Gp−1 = [g1 g2 ...gp−1] ∈ RM×(p−1), (5.15)

and IIn∗ is an identity matrix of size In∗ × In∗.

Proof. The proof of Theorem 5.1 is given in Appendix A.5.

By setting Υ
(n∗)
1 = IIn∗ and from Theorem 5.1, a unified solution for UMPCA is

obtained: for p = 1, ..., P , u
(n∗)
p is obtained as the unit eigenvector of Υ(n∗)

p S̃
(n∗)
Tp

associated

with the largest eigenvalue.

It should be noted that this algorithm has a limitation in the number of uncorrelated

features that can be extracted, given by the following corollary.

Corollary 5.1. The number of uncorrelated features that can be extracted by UMPCA,

P , is upper-bounded by min{minn In,M}, i.e., P ≤ min{minn In,M}, provided that the

elements of Ỹ
(n)
p are not all zero.

Proof. The proof of Corollary 5.1 is given in Appendix A.6.

The conclusion in Corollary 5.1 is expected because the elementary multilinear pro-

jections to be solved in UMPCA correspond to highly constrained situations in the linear

case where the features extracted are constrained by both their correlation property and

the simplicity of the projection. This implies that UMPCA may be more suitable for

high resolution tensor objects where the dimensionality in each mode is high enough to

enable the extraction of sufficient number of (uncorrelated) features. UMPCA is also

useful for applications that need only a small number of features, such as clustering of

a small number of classes. On the other hand, the UMPCA features may be combined

with other features such as those extracted by PCA, TROD, and MPCA when there are

more features needed. In this case, either the zero-correlation constraint (for MPCA and

TROD) or the constraint on the simplicity of the projection (for PCA) has to be relaxed.
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5.2.3 Connections to existing solutions

The UMPCA algorithm follows the approach of successive variance maximization in the

classical derivation of PCA [47]. Hence, when N = 1, the samples are vectors {xm ∈ RI1}

with only one mode and UMPCA reduces to PCA. This can also be seen from Section

2.2.4 (page 25). Accordingly, in each step p, there is only one projection vector up to

be solved to maximize the captured variance, subject to the zero-correlation constraint.

Also, Corollary 5.1 indicates the maximum number of extracted features does not exceed

min{I1,M}, which can be verified in PCA as the bound for the rank of the data matrix.

From Section 3.4.2 (page 54), TROD [116] shares similarity with UMPCA in that it

also seeks for a tensor-to-vector projection to optimize an objective function. However,

TROD minimizes the reconstruction error instead, and it takes a heuristic greedy ap-

proach through residue calculation while UMPCA takes a systematic, more principled

formulation by taking consideration of the correlations among features.

5.2.4 Initialization, projection order, termination, and conver-

gence

In this subsection, design issues of UMPCA, including the initialization method, the

projection order, the termination conditions, and the convergence issue, are discussed.

As the determination of each elementary multilinear projection {u(n)
p , n = 1, ..., N}

is an iterative procedure due to the multilinear nature of UMPCA, initial estimations

for the projection vectors {u(n)
p } are necessary. However, there is no guidance from

either the algorithm or the data on the best initialization that could result in the most

variance captured. Thus, the determination of the optimal initialization in UMPCA is

still an open problem, as in most iterative algorithms including other multilinear learning

algorithms [150, 124, 142, 123]. In this dissertation, an empirically study is presented

on two simple and commonly used initialization methods [86]: uniform initialization
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and random initialization [142, 123], which do not depend on the data. In the uniform

initialization, all n-mode projection vectors are initialized to have unit length and the

same value along the In dimensions in n-mode, equivalent to the all ones vector 1 with

proper normalization. In random initialization, each element of the n-mode projection

vectors is drawn randomly from a zero-mean uniform distribution between [−0.5, 0.5]

and the initialized projection vectors are normalized to have unit length. The empirical

studies in Section 5.3 indicate that the results of UMPCA are affected by initialization,

and the uniform initialization gives more stable results.

The mode ordering (the inner-most “for loop” in Fig. 5.1, indexed by n) in computing

the projection vectors affects the solution as well. Similar to initialization, there is no

way to determine the optimal projection order and it is considered to be an open problem

too. Empirical studies on the effects of the projection order indicate that with all the

other algorithm settings fixed, altering the projection order does result in differences in

the variance captured, but there is no guidance from either the data or the algorithm on

what projection order is the best in the iteration. Therefore, there is no preference on

a particular projection order. In practice, the projection vectors are solved sequentially

(from 1-mode to N -mode), as in MPCA.

As seen from Fig. 5.1, the iterative procedure terminates if (Sy
Tpk
−Sy

Tp(k−1)
)/Sy

Tp(k−1)
<

η, where Sy
Tpk

is the total scatter captured by the pth elementary multilinear projection

obtained in the kth iteration of UMPCA and η is a small number threshold. Alternatively,

the convergence of the projection vectors can also be examined: dist
(
u

(n)
p(k) ,u

(n)
p(k−1)

)
< ε,

where ε is a user-defined small number threshold (e.g., ε = 10−3). This distance is defined

as

dist
(
u(n)
p(k)
,u(n)

p(k−1)

)
= min

(
‖ u(n)

p(k)
+ u(n)

p(k−1)
‖, ‖ u(n)

p(k)
− u(n)

p(k−1)
‖
)

(5.16)

since eigenvectors are unique up to sign. As to be shown in Section 5.3, the variance

captured by a particular elementary multilinear projection usually increases rapidly for

the first a few iterations and slowly afterwards. Therefore, the iteration can be termi-
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nated by simply setting a maximum number of iterations K in practice for convenience,

especially when the computational cost is a concern.

Regarding convergence, the derivation of Theorem 5.1 (Appendix A.5) implies that

per iteration, the scatter Sy
Tp

is a non-decreasing function (it either remains the same or

increases) since each update of the projection vector u
(n∗)
p in a given mode n∗ maximizes

Sy
Tp

. On the other hand, Sy
Tp

is upper-bounded by the variation in the original samples.

Therefore, UMPCA is expected to convergence over iterations. Empirical results pre-

sented in Section 5.3 indicate that the proposed UMPCA algorithm converges within 10

iterations for typical tensor objects. Furthermore, when the largest eigenvalues in each

mode are with multiplicity 1, which is the case for the simulated data and the face and

gait data, the projection vectors {u(n)
p }, which maximize the objective function Sy

Tp
, are

expected to converge as well, where the convergence is up to sign. Simulation studies

show that the projection vectors {u(n)
p } do converge over a number of iterations.

5.2.5 Computational aspects of UMPCA

Finally, the computation aspects of UMPCA is considered here. Specifically, the com-

putational complexity and memory requirements are analyzed, in a similar way as in

Section 4.3.7 (page 76) for MPCA. In the analysis, it is assumed again that I1 = I2 =

... = IN =
(∏N

n=1 In

) 1
n

= I for simplicity.

The most computational demanding steps in UMPCA are the calculations of the

projection ỹ
(n)
mp , the computation of S̃

(n)
Tp

and Υ(n)
p , and the calculation of the leading

eigenvector of Υ(n)
p S̃

(n)
Tp

. The complexity of calculating ỹ
(n)
mp for m = 1, ...,M and S̃

(n)
Tp

are

in order of O(M ·
∑N

n=2 I
n) and O(M · I2), respectively. The computation of Υ(n)

p is in

order of

O
(
I ·M · (p− 1) + (p− 1) · I · (p− 1) + (p− 1)3 + I · (p− 1)2 + I · (p− 1) · I

)
= O

(
(p− 1) ·

[
I ·M + 2 · I · (p− 1) + (p− 1)2 + I2

])
. (5.17)
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Lastly, the computation of Υ(n)
p S̃

(n)
Tp

and its eigen-decomposition1 are both of order O(I3).

Therefore, the computational complexity per mode n for one iteration k of step p is

O

(
M

[
I2 +

N∑
n=2

In

]
+ (p− 1)

[
I ·M + 2I(p− 1) + (p− 1)2 + I2

]
+ 2I3

)
. (5.18)

Regarding the memory requirement, as in MPCA, the respective computation can be

done incrementally by reading Xm sequentially. Thus, except for N = 1, the memory

needed for the UMPCA algorithm can be as low as O(IN), although sequential reading

will lead to higher I/O cost.

From the analysis above, it can be seen that as a sequential iterative solution, UMPCA

may have a high computational and I/O cost. Nonetheless, since solving the UMPCA

projection is only in the training phase of the targeted recognition tasks, it can be done

offline and the additional computational and I/O cost due to iterations and sequential

processing are not considered a disadvantage. In the testing phase, the extraction (pro-

jection) of features from a test sample is a linear operation, as efficient as conventional

linear subspace algorithms.

5.3 Experimental Study

This section investigates the various properties of the UMPCA algorithm. The face

and gait recognition performance and the comparisons against existing solutions will be

examined in detail in Chapter 7 as well. The UMPCA properties studied here are: a)

the effects of initialization, b) the effects of projection order, and c) the convergence of

the algorithm. Since UMPCA and MPCA are both unsupervised algorithms with the

objective of variance maximization, the properties of UMPCA are similarly affected by

the eigenvalue distribution of the input data. For the same reason as in the MPCA

1Since only the largest eigenvalue and the corresponding eigenvector is needed in UMPCA, more
efficient computational methods may be applied in practice.
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property study, the section reports only the experimental results on the three synthetic

data sets generated in Section 4.6.1 (page 86).

(a) (b)

(c) (d)

Figure 5.2: Illustration of the effects of initialization on the scatter captured by UMPCA:
Comparison of the captured Sy

Tp
with uniform and random initialization (averaged of 20

repetitions) over 30 iterations for p = 1, 2, 3, 5, 9 on synthetic data set (a) db1, (b) db2,
and (c) db3; (d) Illustration of the captured Sy

Tp
of 10 random initializations for p = 3

on db2.

5.3.1 The effects of initialization and projection order

The effects of initialization are studied first, with the uniform initialization and random

initialization tested up to 30 iterations and the projection order fixed to be [123]. Figure

5.2 shows the simulation results on the three synthetic data sets. The results shown for
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random initialization in Figs. 5.2(a), 5.2(b), and 5.2(c) are the average of 20 repeated

trials. From Figs. 5.2(a) and 5.2(b), it can be seen that for p = 1, both the uniform

and random initializations result in the same Sy
Tp

. For p > 1, two ways of initialization

lead to different Sy
Tp

, with the uniform initialization performs better (i.e., results in larger

Sy
Tp

) on db2. In addition, it should be noted that for db1 and db2, Sy
Tp

decreases as p

increases, and the algorithm converges in around 5 and 15 iterations for db1 and db2,

respectively. While for db3 in Fig. 5.2(c), the uniform and random initialization do not

results in the same Sy
Tp

even for p = 1 and Sy
Tp

does not always decrease as p increases.

This unusual behavior on db3 matches the difficulty observed in Section 4.6 (page 86)

for MPCA. It may be partly explained by observing from Fig. 5.2(c) that the algorithm

converge slowly and 30 iterations may not be sufficient to reach convergence. As pointed

out in Section 4.6 (page 86), practical data such as face and gait data shares similar

characteristics with db1.

Figure 5.2(d) further shows some typical results of the evolution of Sy
Tp

for ten random

initializations on db2 with p = 3. As seen from the figure, the results obtained from

random initialization have high variance. Therefore, the uniform initialization is preferred

and used in all the following experiments for UMPCA. However, if the computational

cost is not important, a number of random initializations can be tested to choose the one

results in the best performance, i.e., the largest Sy
Tp

.

Next, the effects of the projection order are tested, with representative results shown

in Fig. 5.3 for p = 1, 2 on the three synthetic data sets. As shown in the figure, the

projection order affects UMPCA as well, except for p = 1 on db1 and db2. Nonetheless,

no one particular projection order consistently outperforms all the others. Thus, in the

following experiments, the projection order is fixed to be sequential from 1 to N . As in

the initialization, if computational cost is not a concern, all possible projection orders

could be tested and the one results in the largest Sy
Tp

should be taken for each p.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Illustration of the effects of projection order on the scatter captured by
UMPCA: on db1 with (a) p = 1 and (b) p = 2, on db2 with (c) p = 1 and (d) p = 2, on
db3 with (e) p = 1 and (f) p = 2.
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5.3.2 Convergence studies

Lastly, this subsection studies the convergence of the total scatter captured in each

elementary multilinear projection and the convergence of the corresponding projection

vectors in each mode. Figure 5.4 depicts the evolution of the captured total scatter and

the 2-mode projection vector difference over 50 iterations for p = 1, ..., 10. From Figs.

5.4(a), 5.4(c), and 5.4(e), it can be observed that the algorithm converges (in terms of the

total scatter) on db1 and db2 in around 10 and 30 iterations, respectively, while on db3,

the convergence speed is considerably lower in general, indicating again the difficulty of

db3. Figures 5.4(b), 5.4(d), and 5.4(f) demonstrate that the projection vectors obtained

converge as well though in some cases, they may converge slower than the total scatter

captured. In addition, it is again observed that the convergence speed of the projection

vectors on db3 is also much lower than the other two data sets.

5.4 Summary

In this chapter, the UMPCA algorithm is derived, where uncorrelated features are ex-

tracted directly from tensorial data through the tensor-to-vector projection. The al-

gorithm successively maximizes variance captured by each elementary projection while

enforcing the zero-correlation constraint. As in MPCA, the UMPCA solution employs al-

ternating projection and is iterative too. The connections to existing solutions are pointed

out and design issues such as initialization and termination are discussed, following by

the analysis on the computational complexity and memory requirement. Experimental

studies on the properties of UMPCA are carried out on the synthetic data sets used in

the studies of MPCA and the results give some guidance on the settings of UMPCA in

practice.

The MPCA and UMPCA algorithms proposed so far have addressed the two un-

explored approaches in Fig. 3.7(a) (page 51). They are both unsupervised learning
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Illustration of the convergence of UMPCA: the evolution of the total scatter

captured on (a) db1, (c) db2, and (e) db3; and the evolution of the dist
(
u

(2)
p(k) ,u

(2)
p(k−1)

)
on (b) db1, (d) db2, and (f) db3.
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algorithms, which do not take underlying class structure information into account in the

feature extraction process, even when such information is available. They aim to maxi-

mize the total scatter, which includes both the within-class scatter and the between-class

scatter. While a large between-class scatter is good for separating classes, a large within-

class scatter has a negative impact on the classification performance. In the next chapter,

the supervised multilinear subspace learning will be explored. Specifically, a new super-

vised multilinear subspace learning algorithm closely related to UMPCA proposed in

this chapter will be developed. It extracts discriminative features by maximizing the

between-class scatter while minimizing the within-class scatter, and the zero-correlation

constraint is also enforced.



Chapter 6

Uncorrelated Multilinear

Discriminant Analysis

6.1 Introduction

This chapter proposes the UMLDA algorithm and its enhancements. On one hand, the

focus here is on supervised multilinear subspace learning, which is different from the

previous two chapters of unsupervised methods. On the other hand, UMLDA shares

similarity with UMPCA in Chapter 5 in the motivation of deriving uncorrelated features

that are often desirable in recognition tasks since they contain minimum redundancy

and ensure linear independence of features. As in UMPCA, UMLDA aims to achieve the

objective through the tensor-to-vector projection rather than the tensor-to-tensor projec-

tion. From the discussions in Section 3.4.4 (page 57), the existing supervised multilinear

subspace learning algorithms concentrate on discrimination criterion construction while

none of them produces uncorrelated features as the classical LDA does. Moreover, as

pointed out in Section 3.5 (page 60), in supervised multilinear subspace learning through

the tensor-to-vector projection, the approach of scatter ratio maximization has not been

studied. The only method in this category tries to maximize the scatter difference through

114
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a heuristic approach as in the unsupervised method TROD.

Therefore, the proposed UMLDA aims to extract uncorrelated discriminative features

directly from tensorial data through solving a tensor-to-vector projection that maximizes

the traditional scatter-ratio-based criterion. It addresses the shaded empty box in Fig.

3.7(b) (page 51) under the tensor-to-vector projection. The solution consists of sequential

iterative processes based on the alternating projection method as in UMPCA. In addi-

tion, an adaptive regularization factor is incorporated, where the within-class scatter

estimation is increased through a data-independent regularization parameter. The reg-

ularization targets to enhance the performance in the small sample size scenario, which

often causes difficulties in practical recognition applications, especially for supervised al-

gorithms. Furthermore, as different initialization or regularization of UMLDA results in

different features, an aggregation scheme is adopted to combine several differently initial-

ized and differently regularized UMLDA feature extractors at the matching score level

using the simple sum rule. With the aggregation, the complementary information from

differently initialized and regularized UMLDA recognizers are exploited, resulting in en-

hanced recognition performance while alleviating the regularization parameter selection

problem faced in most regularization methods.

The rest of this chapter is organized as follows. In Section 6.2, the UMLDA problem

is formulated and an iterative solution is derived, with an adaptive regularization pro-

cedure introduced for better generalization in the small sample size scenario. Next, the

connections to the existing supervised subspace learning algorithms are discussed. Issues

regarding the initialization method, projection order, termination condition, and conver-

gence are also addressed in this section. Section 6.3 presents the matching score level

aggregation of multiple UMLDA feature extractors that are differently initialized and

regularized to enhance the recognition performance. In Section 6.4, the properties of the

proposed UMLDA solutions are illustrated through a set of face recognition experiments.

Finally, Section 6.5 summarizes this chapter.
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6.2 The UMLDA with Regularization

In this section, UMLDA is formulated and a regularized solution is derived. Its connec-

tions with existing solutions, as well as the design and computational issues, are then

addressed. Similar to UMPCA, in the presentation, for the convenience of discussion,

the training samples are assumed to be zero-mean so that the constraint of uncorrelated

features is the same as orthogonal features, from Proposition 5.1 (page 97).

6.2.1 The UMLDA problem

The classical Fisher’s discrimination criterion in LDA [3] is defined as the scatter ratio

for vector samples and this ratio is extended to scalar samples with Definition 2.5 (page

32). As in UMPCA, the pth projected (scalar) features are {ymp ,m = 1, ...,M}, where

M is the number of training samples and ymp is the projection of the mth sample Xm by

the pth elementary multilinear projection {u(n)T

p , n = 1, ..., N}:

ymp = Xm ×Nn=1 {u(n)T

p , n = 1, ..., N}. (6.1)

Their corresponding between-class scatter Sy
Bp

and the within-class scatter Sy
Wp

are then

Sy
Bp

=
C∑
c=1

Mc(ȳcp − ȳp)2, Sy
Wp

=
M∑
m=1

(ymp − ȳcmp)
2, (6.2)

where C is the number of classes, Mc is the number of samples for class c, cm is the class

label for the mth training sample, ȳp = 1
M

∑
m ymp = 0 and ȳcp = 1

Mc

∑
m,cm=c ymp . Thus,

the Fisher’s discrimination criterion for the pth scalar samples is

F y
p =

Sy
Bp

Sy
Wp

. (6.3)

Also, let gp denote the pth coordinate vector. Its mth component gp(m) = ymp .
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A formal definition of the multilinear subspace learning problem to be solved in

UMLDA is then given in the following.

A set of M tensor object samples {X1, X2, ..., XM} (with zero-mean) is available

for training. Each tensor object Xm ∈ RI1×I2×...×IN assumes values in the tensor space

RI1
⊗

RI2 ...
⊗

RIN . The objective of UMLDA is to find a tensor-to-vector projection,

which consists of P elementary multilinear projections {u(n)
p ∈ RIn×1, n = 1, ..., N}Pp=1,

mapping from the original tensor space RI1
⊗

RI2 ...
⊗

RIN into a vector subspace RP

(with P <
∏N

n=1 In):

ym = Xm ×Nn=1 {u(n)T

p , n = 1, ..., N}Pp=1,m = 1, ...,M, (6.4)

such that the Fisher’s discrimination criterion F y
p is maximized in each elementary mul-

tilinear projection direction, subject to the constraint that the P coordinate vectors

{gp ∈ RM , p = 1, ..., P} are uncorrelated.

In other words, the UMLDA objective is to determine a set of P elementary multilin-

ear projections {u(n)T

p , n = 1, ..., N}Pp=1 that maximize the scatter ratio while producing

features with zero-correlation. Thus, the objective function for the pth elementary mul-

tilinear projection is

{u(n)T

p , n = 1, ..., N} = arg maxF y
p , (6.5)

subject to
gTp gq

‖ gp ‖ ‖ gq ‖
= δpq, p, q = 1, ..., P,

where δpq is the Kronecker delta defined in (5.4) (page 98).

6.2.2 The derivation of Regularized UMLDA (R-UMLDA)

To solve the problem, the successive determination approach in the derivation of the

ULDA in [45] is followed, similar to the successive approach in UMPCA. The P ele-
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mentary multilinear projections {u(n)T

p , n = 1, ..., N}Pp=1 are determined sequentially in

P steps, with the pth step obtaining the pth elementary multilinear projection:

Step 1: Determine the first elementary multilinear projection {u(n)T

1 , n = 1, ..., N} by

maximizing F y
1 without any constraint.

Step 2: Determine the second elementary multilinear projection {u(n)T

2 , n = 1, ..., N}

by maximizing F y
2 subject to the constraint that gT2 g1 = 0.

Step 3: Determine the third elementary multilinear projection {u(n)T

3 , n = 1, ..., N} by

maximizing F y
3 subject to the constraint that gT3 g1 = 0 and gT3 g2 = 0.

Step p (p = 4, ..., P ): Determine the pth elementary multilinear projection {u(n)T

p , n =

1, ..., N} by maximizing F y
p subject to the constraint that gTp gq = 0 for q = 1, ..., p−

1.

The algorithm to compute these elementary multilinear projections is summarized in the

pseudo-code in Fig. 6.1. The detailed derivation is presented below.

As in UMPCA, to solve for the pth elementary multilinear projection {u(n)T

p , n =

1, ..., N}, N sets of parameters corresponding to N projection vectors, u
(1)
p ,u

(2)
p , ...u

(N)
p ,

need to be determined, one in each mode. However, simultaneous determination of these

N sets of parameters in all modes is a complicated nonlinear problem without an existing

optimal solution, except when N = 1, the classical linear case where only one projection

vector is to be solved.

Therefore, this typical multilinear problem is solved again by the alternating projec-

tion method. For each elementary multilinear projection to be determined, the parame-

ters of the projection vector u
(n∗)
p for each mode n∗ are estimated one mode by one mode

separately, conditioned on {u(n)
p , n 6= n∗}, the parameter values of the projection vectors

in the other modes. Each conditional subproblem is linear and depends only on u
(n∗)
p .

This iterative process corresponds to the loop indexed by k in Fig. 6.1. In each iteration

k, the loop indexed by n in Fig. 6.1 consists of the N conditional subproblems.
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Input: A set of zero-mean tensor samples {Xm ∈ RI1×I2×...×IN ,m = 1, ...,M} with class

labels c ∈ RM , the desired feature vector length P , the regularization parameter γ, the

maximum number of iterations K, and a small number ε for testing convergence.

Output: The P elementary multilinear projections {u(n)T

p , n = 1, ..., N}Pp=1 that best sepa-

rate classes in the projected space.

Algorithm:

For p = 1 : P (step p: determine the pth elementary multilinear projections)

If p > 1, calculate the coordinate vector gp−1: gp−1(m) = Xm ×1 u(1)T

p−1 ×2 u(2)T

p−1 ... ×N

u(N)T

p−1 .

• For n = 1, ..., N , initialize u(n)
p(0) ∈ RIn .

• For k = 1 : K

– For n = 1 : N

∗ Calculate ỹ(n)
mp = Xm×1 u(1)T

p(k) ...×n−1 u(n−1)T

p(k) ×n+1 u(n+1)T

p(k−1)
...×N u(N)T

p(k−1)
,

for m = 1, ...,M.

∗ Calculate R(n)
p , S̃(n)

Bp
, and S̃(n)

Wp
. Set u(n)

p(k) to be the (unit) eigenvector of(
S̃(n)
Wp

)−1
R(n)
p S̃(n)

Bp
associated with the largest eigenvalue.

– If k = K or dist
(
u(n)
p(k) ,u

(n)
p(k−1)

)
< ε for all n, set u(n)

p = u(n)
pk for all n,

break.

• Output {u(n)
p }. Go the step p+ 1 if p < P . Stop if p = P .

Figure 6.1: The pseudo-code implementation of the R-UMLDA algorithm for feature

extraction from tensor objects.
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To solve for u
(n∗)
p in the n∗-mode, assuming that {u(n)

p , n 6= n∗} is given, the tensor

samples are projected in these (N − 1) modes {n 6= n∗} first to obtain

ỹ(n∗)
mp = Xm ×1 u(1)T

p ...×n∗−1 u(n∗−1)T

p ×n∗+1 u(n∗+1)T

p ...×N u(N)T

p , (6.6)

ỹ
(n∗)
mp ∈ RIn∗ . The conditional subproblem then becomes to determine u

(n∗)
p that projects

the vector samples {ỹ(n∗)
mp ,m = 1, ...,M} onto a line so that the scatter ratio is maximized,

subject to the zero-correlation constraint. This is a (linear and simpler) ULDA problem

with the input samples {ỹ(n∗)
mp ,m = 1, ...,M}. The corresponding between-class scatter

matrix S̃
(n∗)
Bp

and the (regularized) within-class scatter matrix S̃
(n∗)
Wp

are then defined as

S̃
(n∗)
Bp

=
C∑
c=1

Mc(¯̃y(n∗)
cp − ¯̃y(n∗)

p )(¯̃y(n∗)
cp − ¯̃y(n∗)

p )T , (6.7)

S̃
(n∗)
Wp

=
M∑
m=1

(ỹ(n∗)
mp − ¯̃y(n∗)

cmp
)(ỹ(n∗)

m1
− ¯̃y(n∗)

cmp
)T + γ · λmax(S̆(n∗)

W ) · IIn∗ , (6.8)

where ¯̃y
(n∗)
cp = 1

Mc

∑
m,cm=c ỹ

(n∗)
mp , ¯̃y

(n∗)
p = 1

M

∑
m ỹ

(n∗)
mp = 0, γ ≥ 0 is a regularization

parameter, IIn∗ is an identity matrix of size In∗ × In∗ , and λmax(S̆
(n∗)
W ) is the maximum

eigenvalue of S̆
(n∗)
W , the within-class scatter matrix for the n-mode vectors of the training

samples, defined as

S̆
(n∗)
W =

M∑
m=1

(
Xm(n∗) − X̄cm(n∗)

) (
Xm(n∗) − X̄cm(n∗)

)T
, (6.9)

where X̄c(n∗) is the n∗-mode unfolded matrix of the class mean X̄c = 1
Mc

∑
m,cm=cXm. In

the following, the motivation for introducing the regularization factor is explained.

In the targeted applications of face and gait recognition (and many other applications

as well), the dimensionality of the input data is very high while at the same time, the

number of training samples for each class is often too small to represent the true char-

acteristics of their classes, resulting in the well-known small sample size problem [92].
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Furthermore, empirical study of the iterative UMLDA algorithm (i.e., γ = 0) under the

small sample size scenario indicates that the iterations tend to minimize the within-class

scatter towards zero in order to maximize the scatter ratio since the scatter ratio reaches

maximum of infinity when the within-class scatter is zero and the between-class scatter

is non-zero. However, the estimated within-class scatter on the training data is usually

much smaller than the real within-class scatter, due to limited number of samples for

each class. Therefore, regularization [29], which has been routinely used for combatting

the singularity problem in the LDA-based algorithms under the small sample size sce-

nario [69,92], is adopted here to improve the generalization capability of UMLDA under

the small sample size scenario, leading to the R-UMLDA algorithm. The regularization

term is introduced in (6.8) so that during the iteration, less focus is put on shrinking the

within-class scatter. Moreover, the regularization introduced is adaptive since γ is the

only regularization parameter and the regularization term in the n∗-mode is scaled by

λmax(S̆
(n∗)
W ), an approximate estimate of the n∗-mode within-class scatter in the training

data. The basic UMLDA is obtained by setting γ = 0.

With (6.7) and (6.8), it is ready to solve the P elementary multilinear projections.

For p = 1, the u
(n∗)
1 that maximizes the Fisher’s discrimination criterion

u
(n∗)T

1 S̃
(n∗)
B1

u
(n∗)
1

u
(n∗)T

1 S̃
(n∗)
W1

u
(n∗)
1

(6.10)

in the projected space is obtained as the unit eigenvector of

(
S̃

(n∗)
W1

)−1

S̃
(n∗)
B1

(6.11)

associated with the largest eigenvalue for a nonsingular S̃
(n∗)
W1

. Next, given the first

(p − 1) elementary multilinear projections, where p > 1, the pth elementary multilinear

projection aims to maximize the scatter ratio F y
p , subject to the constraint that features

projected by the pth elementary multilinear projection are uncorrelated with those pro-
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jected by the first (p− 1) elementary multilinear projections. Again, let Ỹ
(n∗)
p ∈ RIn∗×M

be a matrix with its mth column to be ỹ
(n∗)
mp , i.e., Ỹ

(n∗)
p =

[
ỹ

(n∗)
1p , ỹ

(n∗)
2p , ..., ỹ

(n∗)
Mp

]
. The

pth coordinate vector is then obtained as gp = Ỹ
(n∗)T
p u

(n∗)
p . The constraint that gp is

uncorrelated with {gq, q = 1, ..., p− 1} can be written as

gTp gq = u(n∗)T

p Ỹ(n∗)
p gq = 0, q = 1, ..., p− 1. (6.12)

Thus, u
(n∗)
p (p > 1) can be determined by solving the following constrained optimization

problem:

u(n∗)
p = arg max

u
(n∗)T
p S̃

(n∗)
Bp

u
(n∗)
p

u
(n∗)T
p S̃

(n∗)
Wp

u
(n∗)
p

,

subject to u(n∗)T

p Ỹ(n∗)
p gq = 0, q = 1, ..., p− 1. (6.13)

The solution is given by the following theorem for nonsingular S̃
(n∗)
Wp

:

Theorem 6.1. When S̃
(n∗)
Wp

is nonsingular, the solution to the problem (6.13) is the (unit-

length) generalized eigenvector corresponding to the largest generalized eigenvalue of the

following generalized eigenvalue problem:

R(n∗)
p S̃

(n∗)
Bp

u = λS̃
(n∗)
Wp

u, (6.14)

where

R(n∗)
p = IIn∗ − Ỹ(n∗)

p Gp−1

(
GT
p−1Ỹ

(n∗)T

p S̃
(n∗)−1

Wp
Ỹ(n∗)
p Gp−1

)−1

GT
p−1Ỹ

(n∗)T

p S̃
(n∗)−1

Wp
, (6.15)

Gp−1 = [g1 g2 ...gp−1] ∈ RM×(p−1). (6.16)

Proof. The proof of Theorem 6.1 is given in Appendix A.7.
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By setting R
(n∗)
1 = IIn∗ and from Theorem 6.1, a unified solution for R-UMLDA

is obtained when S̃
(n∗)
Wp

is nonsingular: for p = 1, ..., P , u
(n∗)
p is obtained as the unit

eigenvector of (
S̃

(n∗)
Wp

)−1

R(n∗)
p S̃

(n∗)
Bp

(6.17)

associated with the largest eigenvalue. In addition, as in UMPCA, the maximum num-

ber of features that can be extracted by R-UMLDA does not exceed min{minn In,M},

similarly from Corollary 5.1 (page 103).

6.2.3 Connections with existing solutions

This subsection discusses the connections of UMLDA (i.e., no regularization) with exist-

ing supervised subspace learning algorithms.

The UMLDA algorithm follows the approach of successive scatter ratio maximization

of the ULDA derivation in [45], proven to be equivalent to the classical LDA [46, 158].

Hence, when N = 1, UMLDA reduces to LDA, which can also been seen from Section

2.2.4 (page 25).

From Section 3.4.4 (page 57), TR1DA [142,123] [116] shares similarity with UMLDA

in that it also seeks for a tensor-to-vector projection to maximize some scatter measure

(difference), with a heuristic greedy approach of residue calculation as in TROD [116]. In

contrast, UMLDA takes a systematic, more principled formulation with the correlation

among features taken into consideration.

6.2.4 Initialization, projection order, termination, and conver-

gence

This subsection discusses the various implementation issues of R-UMLDA, in the or-

der of the algorithm flow in Fig. 6.1: initialization, projection order, termination, and

convergence.
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As in UMPCA, the R-UMLDA algorithm is iterative, and initial estimations for

the projection vectors {u(n)
p } are necessary. However, the determination of the optimal

initialization in R-UMLDA is still an open problem too, with no guidance from either the

algorithm or the data on the best initialization that could result in the best separation

of the classes in the feature space. The uniform initialization and random initialization

mentioned in Section 5.2.4 (page 104) are empirically studied here as well. The empirical

studies in Section 6.4 indicate that the results of R-UMLDA are affected by initialization,

and the uniform initialization gives better results.

The mode ordering in computing the projection vectors also affects the solution.

Similar to initialization, there is no way to determine the optimal projection order either

and it is considered to be an open problem as well. Empirical studies on the effects of

the projection order indicate that with all the other algorithm settings fixed, altering the

projection order does result in some performance differences, but there is no guidance

from either the data or the algorithm on what projection order in the iteration leads to

the best separation of classes. Therefore, there is no preference on a particular projection

order and in practice, the projection vectors are solved sequentially (from 1-mode to N -

mode), as in UMPCA.

Remark 6.1. Although the optimal initialization and the optimal projection order cannot

be determined, the aggregation scheme suggested in Section 6.3 reduces the significance

of their optimal determination.

As seen from Fig. 6.1, the termination criterion can be simply set to a maximum

number of iterations K or it can be set by examining the convergence of the projection

vectors:

dist
(
u(n)
p(k)
,u(n)

p(k−1)

)
< ε, (6.18)

where ε is a user-defined small number threshold, and this distance is defined as in (5.16)

(page 105). As to be shown in Sec. 6.4, the recognition performance increases slowly
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after the first a few iterations. Therefore, the iteration can be terminated by setting K

in practice for convenience, especially when the computational cost is a concern.

Regarding the convergence, the derivation of Theorem 6.1 (Appendix A.7) implies

that per iteration, the scatter ratio F y
p is a non-decreasing function (as it either remains

the same or increases) since each update of the projection vector u(n∗) in a given mode

n∗ maximizes F y
p , while the projection vectors in all the other modes, {u(n), n 6= n∗},

are considered fixed. However, the ratio F y
p may not have an upper-bound as in MPCA

and UMPCA since it may reach infinity if there exists a projection that can lead to zero

within-class scatter, especially when there are only a small number of samples and the

regularization is not strong enough. Therefore, R-UMLDA may not converge in terms

of F y
p in all cases. Simulation studies presented in Section 6.4 indicate that in practice,

the projection vector {u(n)} obtained by the R-UMLDA algorithm converges within 10

iterations for facial objects with strong regularization, where the convergence is up to

sign.

6.2.5 Computational aspects of UMLDA

Next, the computational complexity and memory requirements of UMLDA are analyzed.

It is assumed again that I1 = I2 = ... = IN =
(∏N

n=1 In

) 1
n

= I for simplicity in the

analysis.

For the computational complexity, the most computational demanding steps are the

calculations of the projection ỹ
(n)
mp , the computation of S̃

(n)
Bp

, S̃
(n)
Wp

, and R
(n)
p , and the

calculation of the leading eigenvector of
(
S̃

(n)
Wp

)−1

R
(n)
p S̃

(n)
Bp

. The complexity of calculating

ỹ
(n)
mp for m = 1, ...,M , S̃

(n)
Bp

, and S̃
(n)
Wp

are in order of O(M ·
∑N

n=2 I
n), O(C · I2), and

O(M · I2), respectively. The computation of R
(n)
p is in order of

O
(
I ·M · (p− 1) + I3 + 2 · (p− 1) · I2 + (p− 1)3 + 2 · I · (p− 1)2

)
= O

(
I3 + (p− 1) ·

[
I ·M + 2 · I2 + (p− 1)2 + 2 · I · (p− 1)

])
. (6.19)
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Lastly, the computation of
(
S̃

(n)
Wp

)−1

R
(n)
p S̃

(n)
Bp

and its eigen-decomposition1 are of order

O(2 · I3) and O(I3), respectively. Therefore, the computational complexity per mode n

for one iteration k of step p is

O

(
M

N∑
n=2

In + (C +M)I2 + (p− 1)
[
I ·M + 2I2 + (p− 1)2 + 2I(p− 1)

]
+ 4I3

)
.

(6.20)

For the memory requirement, as in UMPCA and MPCA, the respective computation can

be done incrementally by reading Xm sequentially. Hence, the memory needed for the

UMLDA algorithm can be as low as O(IN) except for N = 1 although sequential reading

will lead to higher I/O cost.

From the discussions above, similar to UMPCA, the UMLDA algorithm obtains the

solution through a sequential iterative procedure and this may lead to a high compu-

tational and I/O cost. However, this is not considered a disadvantage since solving the

UMLDA projection is only in the training phase and it can be done offline. In the testing

phase, the extraction (projection) of features from a test sample is also an efficient linear

operation.

6.3 Aggregation of R-UMLDA Recognizers

This section proposes the aggregation of a number of differently initialized and regular-

ized UMLDA recognizers for enhanced performance, motivated from two properties of

the basic recognizer using R-UMLDA as the feature extractor. On one hand, by Corol-

lary 5.1 (page 103) and as to be shown in Sec. 6.4, the number of useful discriminative

features that can be extracted by a single R-UMLDA is limited. On the other hand, since

R-UMLDA is affected by initialization and regularization, which cannot be optimally de-

termined, different initialization or regularization could result in different discriminative

1UMLDA also needs only the largest eigenvalue and the corresponding eigenvector, so more efficient
computational methods may be applied in practice.
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features (also see Sec. 6.4). From the generalization theory explaining the success of

random subspace method [39], bagging, and boosting [111, 120, 9], the sensitivity of R-

UMLDA to initialization and regularization suggests that R-UMLDA is not a very stable

learner (feature extractor) and it is good for ensemble-based learning. Therefore, the

aggregation of several differently initialized and regularized UMLDA feature extractors

is proposed to get the regularized UMLDA with aggregation (R-UMLDA-A) recogni-

tion system so that multiple R-UMLDA recognizers can work together to achieve better

recognition performance.

Remark 6.2. Different projection orders could also result in different features so R-

UMLDA with different projection orders could be aggregated as well. However, since the

effects of projection orders are similar to those of initializations and the number of possible

projection orders (N !) is much less than the number of possible initializations (infinite),

the projection order is fixed and only the initialization and regularization procedures are

varied in this dissertation.

There are various ways to combine (or fuse) several extracted features, including the

feature level fusion [104], fusion at the matching score level [105,52], and more advanced

ensemble-based learning such as boosting [111,93,80]. In the R-UMLDA-A proposed here,

the simple sum rule in combining matching scores is used although more sophisticated

method such as boosting is expected to achieve better results.

Since high diversity of the learners to be combined is preferred in ensemble-based

learning [93], both uniform and random initializations are used in R-UMLDA-A for more

diversity. In this way, although the best initialization cannot be determined, several R-

UMLDAs with different initializations are aggregated to make complementary discrim-

inative features working together to separate classes better. Furthermore, to introduce

even more diversity and alleviate the problem of regularization parameter selection at

the same time, this work proposes to sample the regularization parameter γa from an

interval [10−7, 10−2], empirically chosen to cover a wide range of γ, uniformly in log scale
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so that each feature extractor is differently regularized, where a = 1, ..., A is the index of

the individual R-UMLDA feature extractor and A is the number of R-UMLDA feature

extractors to be aggregated.

Figure 6.2 provides the pseudo-code implementation for R-UMLDA-A for tensor ob-

ject recognition. The input training samples {Xm} are fed into A differently initialized

and regularized UMLDA feature extractors described in Fig. 6.1 with parameters P , K,

and γa to obtain a set of A tensor-to-vector projections

{u(n)T

p , n = 1, ..., N}Pp=1(a)
, a = 1, ..., A. (6.21)

The training samples {Xm} are then projected to R-UMLDA feature vectors {ym(a)
} using

the obtained tensor-to-vector projections. To classify a test sample X , it is projected to

A feature vectors {y(a)} using the A tensor-to-vector projections first. Next, for the ath

R-UMLDA feature extractor, the nearest-neighbor distance of the test sample X to each

candidate class c is calculated as:

d(X , c, a) = min
m,cm=c

‖ y(a) − ym(a)
‖ . (6.22)

The range of d(X , c, a) is then matched to the interval [0, 1] as:

d̃(X , c, a) =
d(X , c, a)−minc d(X , c, a)

maxc d(X , c, a)−minc d(X , c, a)
. (6.23)

Finally, the aggregated nearest-neighbor distance is obtained employing the simple sum

rule as:

d(X , c) =
A∑
a=1

d̃(X , c, a), (6.24)

and the test sample X is assigned the label:

c∗ = arg min
c
d(X , c). (6.25)
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Input: A set of zero-mean tensor samples {Xm ∈ RI1×I2×...×IN ,m = 1, ...,M} with class

labels c ∈ RM , a test tensor sample X , the desired feature vector length P , the R-

UMLDA feature extractor (Fig. 6.1), the maximum number of iterations K, the number

of R-UMLDA to be aggregated A.

Output: The class label for X .

R-UMLDA-A algorithm:

Step 1. Feature extraction

• For a = 1 : A

– Obtain the ath tensor-to-vector projection {u(n)T

p , n = 1, ..., N}Pp=1(a)
from

the ath R-UMLDA (Fig. 6.1) with the input: {Xm}, P , K, γa, using

random or uniform initialization.

– Project {Xm} and X to {ym(a)
} and y(a), respectively, using {u(n)T

p , n =

1, ..., N}Pp=1(a)
.

Step 2. Aggregation at the matching score level for classification

• For a = 1 : A

– For c = 1 : C

∗ Obtain the nearest-neighbor distance d(X , c, a).

– Normalize d(X , c, a) to [0, 1] to get d̃(X , c, a).

• Obtain the aggregated distance d(X , c).

• Output c∗ = arg minc d(X , c) as the class label for the test sample.

Figure 6.2: The pseudo-code implementation of the R-UMLDA-A algorithm for tensor

object recognition.
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6.4 Experimental Study

This section investigates the various properties of the UMLDA algorithm. As usual,

detailed results and comparisons on face and gait recognition will be presented in Chapter

7. The properties studied for UMLDA are: a) the effects of initialization, b) the effects

of regularization, c) the effects of projection order, d) the convergence, e) the number of

useful features, and f) the effects of aggregation.

Since different from MPCA and UMPCA, UMLDA is a supervised algorithm, the

synthetic data sets used in the previous two chapters can not be used in this study.

As discussed before, the behavior of supervised learning algorithms may be influenced

significantly by the number of training samples per subject, denoted by L. Therefore,

the UMLDA properties are studied on a subset of the PIE face database, which has a

large number of samples for each subject. The study results obtained from the other face

and gait databases are similar to the results on this PIE database.

In the PIE database used here, seven poses (C05, C07, C09, C27, C29, C37, C11)

are chosen, with at most 45 degrees of pose variation and under the 21 illumination

conditions (02 to 22). Thus, there are about 147 (7× 21) samples per subject and there

are a total number of 9,987 face images (with nine faces missing). All face images are

normalized to 32× 32 pixels, with 256 gray levels per pixel, as described in Section 3.2.3

(page 43). This database is randomly split into training and testing samples for the

empirical study here.

In the implementation of R-UMLDA, in order to get better conditioned matrix for the

inverse computation and to relax the limitation on the maximum number of uncorrelated

features that can be extracted, a small term (% · Ip−1) is added in computing the matrix

inverse of

(
GT
p−1Ỹ

(n∗)T

p S̃
(n∗)−1

Wp
Ỹ

(n∗)
p Gp−1

)
in (6.15), with % = 10−3. In the implementa-

tion of the R-UMLDA-A, the maximum number of R-UMLDA to be aggregated is set

to A = 20, and uniform initialization is used for a = 1, 5, 9, 13, 17 with corresponding

γa = 10−2, 10−3, 10−4, 10−5, 10−6 while random initialization is used for the rest values of
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a.

6.4.1 The effects of initialization, regularization, and projection

order

Figure 6.3 illustrates the effects of initialization and regularization on two face recognition

experiments: one with L = 2 and one with L = 20, corresponding to the small sample

size scenario and the scenario when a large number of samples (per subject) are available

for training. The CRRs for various γs are depicted in Figs. 6.3(a) (L = 2) and 6.3(b)

(L = 20) for the uniform initialization, and in Figs. 6.3(c) (L = 2) and 6.3(d) (L = 20)

for the random initialization (averaged over 20 repeated trials). Figures 6.3(e) and 6.3(f)

show the plots for the CRRs from eight repetitions of the random initialization with

γ = 10−3. They demonstrate that the recognition results are affected by initialization

and different initialization results in different results. By comparing Fig. 6.3(f) against

Fig. 6.3(e), it can be seen that the sensitivity to initialization is smaller for a larger L.

Furthermore, by comparing Fig. 6.3(a) against Fig. 6.3(c), and Fig. 6.3(b) against Fig.

6.3(d), it is observed that the uniform initialization outperforms the random initialization

for both a small L and a large L. Therefore, the uniform initialization is used when only

one R-UMLDA feature extractor is employed, and in the following discussions on the

convergence and the number of useful features, the results reported are obtained using

the uniform initialization.

Besides the effects of initialization, the effects of regularization are also observed

in Figs. 6.3(a), 6.3(b), 6.3(c), and 6.3(d). For a small L, the UMLDA with a strong

regularization (larger γ) can outperform that without regularization (γ = 0), while for

a large L, a too strong regularization may results in poorer performance, as observed in

other regularization algorithms [92].

The effects of projection order are also studied. Similar to initialization, the projection

order affects UMLDA in most cases but there is no guidance on its optimal determination
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Illustration of the effects of initialization and regularization on the recognition
performance of R-UMLDA: Uniform initialization with various γs for (a) L = 2 and (b)
L = 20; Random initialization with various γs averaged over 20 repetitions for (c) L = 2
and (d) L = 20; Eight repetitions of random initialization with γ = 10−3 for (e) L = 2
and (f) L = 20.
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for recognition. If the computational cost in training is not a concern and it is possible

to construct a validation set, all possible projection orders could be tested and the one

with the best results on the validation set should be used. In this work, the projection

order is fixed to be sequential from 1 to N , as in MPCA and UMPCA.

(a) (b)

(c) (d)

Figure 6.4: Illustration of the convergence of R-UMLDA for L = 5: the evolution of

dist
(
u

(1)
p(k) ,u

(1)
p(k−1)

)
over 50 iterations for (a) p = 1 and (b) p = 8 with various γs (the

legends); the CRRs for various Ks (the maximum number of iterations) for (c) γ = 0

and (d) γ = 10−3.
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6.4.2 Convergence

The convergence is illustrated in Fig. 6.4. Figures 6.4(a) and 6.4(b) depict two examples

of the evolution of dist
(
u

(1)
p(k) ,u

(1)
p(k−1)

)
for p = 1 and p = 8, with various γs, for up

to 50 iterations. As seen in the figure, in the worst scenarios, the projection vector

converges around k = 15 for p = 1 and around k = 30 for p = 8. In addition, a stronger

regularization (larger γ) is more likely to result in faster convergence. Furthermore, the

recognition performance is examined for various Ks, as shown in Figs. 6.4(c) and 6.4(d)

with L = 5 for γ = 0 and γ = 10−3, respectively. It indicates that the first a few iterations

improve the recognition performance the most, and more iterations afterwards give slow

improvement in the recognition rate, especially for a larger γ. Therefore, K is set to

a fixed number, K = 10, to terminate the iteration in practice. When computational

efficiency is important, K can be further reduced to improve processing speed, while

sacrificing some recognition performance.

6.4.3 The number of useful features and the effects of aggrega-

tion

R-UMLDA is limited in the number of extracted features (P ) useful for recognition, as

depicted in Fig. 6.5(a), where the CRRs are shown for up to 60 features for L = 5 and

with various γs. In particular, the first a few features are very powerful, while beyond

a certain number (e.g. 20), the performance varies very slowly with an increased P .

Fortunately, from the study of the effects of initialization and regularization, it is found

that different initialization or regularization produces different results (Fig. 6.3). Thus,

the proposed aggregation scheme makes use of this property and combines differently

initialized and regularized R-UMLDA recognizers to achieve enhanced results. At the

same time, the problem of regularization parameter selection is alleviated. The results

of aggregation are shown in Fig. 6.5(b) for L = 5 and up to 20 R-UMLDA recognizers
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(a) (b)

Figure 6.5: Demonstration of (a) the recognition performance for L = 5 as P increases
for various γs in R-UMLDA, and (b) the effectiveness of aggregation in R-UMLDA-A.

to be combined, by the R-UMLDA-A described at the beginning of this section. The

figure demonstrates that the aggregation is an effective procedure and there are indeed

complementary discriminative information from differently initialized and regularized R-

UMLDA recognizers.

6.5 Summary

In this chapter, the UMLDA algorithm is proposed to extract discriminative features

directly from tensorial data through solving a tensor-to-vector projection so that the

traditional Fisher’s discrimination criterion is maximized in each elementary projection,

while the features extracted are constrained to be uncorrelated. In addition, an adaptive

regularization factor is incorporated, resulting in the regularized UMLDA. The regu-

larization aims to enhance the performance in practical applications where the input

dimensionality is very high but the sample size per class is often limited, such as face

or gait recognition [92, 81]. Furthermore, as different initialization or regularization of

UMLDA results in different features, an aggregation scheme is proposed to combine sev-

eral differently initialized and regularized UMLDA feature extractors at the matching
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score level using the simple sum rule, so that the recognition performance is further im-

proved. At the same time, the regularization parameter selection problem is alleviated

in the proposed aggregation scheme. In the experimental section, various properties of

the proposed algorithm are studied on a subset of the PIE face database. The presented

experimental results explain the rational behind the proposed solution and algorithmic

designs chosen, such as initialization, termination, regularization, and aggregation.

At this point, all the algorithms proposed in this research have been presented, with

their respective properties studied. The three contributed solutions have addressed the

three unexplored directions of multilinear subspace learning, as indicated by the shaded

empty boxes in Figs. 3.7(a) and 3.7(b) (page 51). In the next chapter, these algorithms

are evaluated on practical face and gait recognition problems through the comparison of

recognition performance against competing solutions in the literature.



Chapter 7

Face and Gait Recognition Results

7.1 Introduction

The previous three chapters have introduced several new algorithms in both unsuper-

vised and supervised multilinear subspace learning, with their properties studied. In this

chapter, these algorithms will be applied to the face and gait recognition problems to

evaluate their performance. Specifically, they will be tested on the face and gait databases

described in Chapter 3 to investigate whether the proposed new algorithms can advance

the current state of multilinear subspace learning and achieve better recognition results

on face and gait recognition than existing subspace learning solutions. The following six

sets of experiments have been designed for the performance evaluation:

1. The number of training samples available per class has significant effects on recog-

nition performance. A subset of the PIE database is used to study the performance

of the proposed and existing subspace learning algorithms under varying number

of training samples per class.

2. Besides the number of training samples per class, the number of classes to be

classified can affect the recognition performance of many algorithms. A subset of

the FERET database is employed for the performance study of subspace learning

137



Chapter 7. Face and Gait Recognition Results 138

algorithms under varying number of classes.

3. As shown in Corollary 5.1 (page 103), UMPCA can only extract a limited number

of uncorrelated features. Thus, it is expected to perform poorly compared to other

algorithms in the two sets of experiments above. However, for the case of unsuper-

vised learning in low-dimensional subspace, UMPCA can be particularly effective.

Thus, a specific study is carried out on another subset of the FERET database.

4. The USF gait database has seven probes captured under different conditions and

it is used to test the gait recognition performance of the proposed and existing

subspace learning algorithms under conditions with various difficulties.

5. Many state-of-the-art gait recognition algorithms in the literature have more sophis-

ticated preprocessing and matching algorithms than those described in Chapter 3.

Therefore, it is worthwhile to compare the MPCA-based algorithms, which show

good performance in the first set of gait recognition experiments above, against

those state-of-the-art gait recognition algorithms.

6. The boosting framework has been studied on the face recognition problem, with

promising results reported [93]. However, there is no similar investigation on the

gait recognition problem yet. The final set of experiments studies whether the

MPCA+boosting algorithm can be beneficial in gait recognition.

This chapter proceeds with a discussion in Section 7.2 on the algorithms to be com-

pared and their respective settings in the experiments. Then, a comprehensive compari-

son of all these algorithms are carried out on both face and gait recognition problems in

Sections 7.3 and 7.4. Section 7.3 presents the recognition results on both the PIE and

FERET face databases and Section 7.4 presents the results on the USF gait database.

Next, Section 7.5 discusses observations from the experimental evaluation. Finally, this

chapter is summarized in Section 7.6.
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Table 7.1: List of unsupervised subspace learning algorithms to be compared.

Acronym Full name Mode

PCA principal component analysis [47,128] Linear

2DPCA two-dimensional PCA [153] Multilinear

CSA concurrent subspaces analysis [146] Multilinear

TROD tensor rank-one decomposition [116] Multilinear

MPCA multilinear PCA [Chapter 4] Multilinear

UMPCA uncorrelated MPCA [Chapter 5] Multilinear

Table 7.2: List of supervised subspace learning algorithms to be compared.

Acronym Full name Mode

PCA+LDA PCA+linear discriminant analysis [3] Linear

ULDA uncorrelated linear discriminant analysis [154] Linear

R-JD-LDA regularized version of the revised direct LDA [92,90] Linear

DATER discriminant analysis with tensor representation [150] Multilinear

GTDA general tensor discriminant analysis [124] Multilinear

TR1DA tensor rank-one discriminant analysis [142,123] Multilinear

MPCA-S MPCA with discriminative feature selection [Chapter 4] Multilinear

MPCA+LDA MPCA-S+linear discriminant analysis [Chapter 4] Multilinear

R-UMLDA regularized uncorrelated multilinear discriminant Multilinear

analysis [Chapter 6]

R-UMLDA-A R-UMLDA with aggregation [Chapter 6] Multilinear

7.2 Algorithms and Their Settings

The new multilinear subspace learning algorithms proposed in this dissertation are com-

pared against other linear or multilinear subspace learning algorithms in the literature

on the problems of face and gait recognition. The unsupervised and supervised subspace

learning algorithms to be compared are listed in Tables 7.1 and 7.2, respectively. It

should be noted that in Table 7.2, the ULDA algorithm compared here is different from

the ULDA in [45] so it is different from the classical LDA. The MPCA-S algorithm is
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MPCA with discriminative feature selection described in Section 4.4 (page 78). CSA

is implemented as MPCA without centering of the data. For feature extraction using

CSA and MPCA, including MPCA-S and MPCA+LDA, the Q-based method described

in Section 4.3.6 (page 74) is used to determine the subspace dimensionality in projection,

with a fixed Q = 0.97 (97%). In addition, 2DPCA is only applied to the face recognition

problem since it cannot handle the third-order tensors in gait recognition.

As discussed in Section 3.1 (page 37), the recognition performance is evaluated by

the identification rate calculated through similarity measurement between feature vec-

tors. However, among the algorithms considered here, 2DPCA, CSA, MPCA, DATER,

and GTDA produce tensorial features and they need to be vectorized for classification.

Hence, for the unsupervised methods, 2DPCA, CSA, and MPCA, each entry in the pro-

jected tensorial features are viewed as an individual feature and the corresponding total

scatter as defined in Definition 2.4 (page 32) is calculated. The tensorial features pro-

duced by these methods are then arranged into a vector in descending total scatter. For

the supervised methods, DATER and GTDA, the projection is obtained with Pn = In

for n = 1, ..., N and then the tensor-to-tensor projection is viewed as
∏N

n=1 In elementary

multilinear projections. As in Section 4.4 (page 78), the discriminability of each such ele-

mentary multilinear projection is calculated on the training set and the tensorial feature

is arranged into a feature vector in descending discriminability.

All the iterative algorithms are terminated by setting the maximum number of iter-

ations K for fair comparison and computational concerns. Since CSA and MPCA have

very good convergence performance, K is set to 1. For all the other algorithms (TROD,

UMPCA, DATER, GTDA, TR1DA, R-UMLDA), K is set to 10. For all the algorithms,

up to 600 features, while not exceeding the maximum number of features, are tested,

unless stated otherwise. For instance, LDA, ULDA, and R-JD-LDA algorithms can not

extract more than (C − 1) features.

For the recognition experiments of only one R-UMLDA, the uniform initialization is
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used and γ is empirically set to 10−3, with up to 30 features tested. For R-UMLDA-A,

up to 20 differently initialized and regularized versions of the UMLDA feature extractors

are combined with each producing up to 30 features, also resulting in a total number of

600 features. The aggregation parameter settings are the same as those in Section 6.4

(page 130).

For the TR1DA algorithm described in Section 3.4.4 (page 57), the tuning parameter ζ

needs to be set heuristically. Several values of ζ for each L are tested on the PIE database.

The best ζ used for each range of L is: ζ = 2 for L ≤ 7, ζ = 0.8 for 8 ≤ L ≤ 15, and

ζ = 0.6 for L ≥ 16. For the GTDA algorithm, ζ is set following the procedure suggested

in [124]. For R-JD-LDA, the default maximum number (≈ 0.8 · (C−1)) of features and a

regularization parameter of 0.001 originally suggested by the authors of [92,90] are used.

For face recognition performance evaluation, the CRR, i.e., the rank 1 identification

rate, is reported. Since gait is a more difficult biometric to recognize, both the rank 1

and rank 5 identification rates are reported for gait recognition performance evaluation.

In calculating the identification rates, the similarity between feature vectors measured

using the L1, L2, and angle distance measures in Table 3.1 (page 40) are tested for each

algorithm. The one resulting in the best performance is reported here, unless stated

otherwise.

For each best-performing distance measure, the best recognition results reported are

obtained by varying the number of features used and the number of R-UMDLA recogniz-

ers aggregated for the R-UMLDA-A algorithm. For the PCA+LDA and MPCA+LDA

algorithms, the dimensionality of the feature vectors for input to LDA can affect the

performance. Therefore, 18 values of the PCA/MPCA dimensions for input to LDA are

tested, sampled with equal spacing from 80 to 600, and the best results obtained will

be compared against other algorithms. For all the other algorithms, the best results are

obtained by only varying the number of features used. For fair comparison, there is no

further fine tuning of other parameters (such as the regularization parameter for the R-
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JD-LDA) for optimal performance on the testing data, including the proposed methods.

For better viewing, the top two recognition results in each experiment are shown in bold

when reporting them in tables.

7.3 Face Recognition Results

In the face recognition experiments, face images are input directly as second-order tensors

to the multilinear algorithms, while for the linear algorithms, they are converted to

vectors as input. For each subject in a face recognition experiment, L samples are

randomly selected for training and the rest are used for testing. Accordingly, in presenting

the recognition results, the mean and standard deviation (Std) over 20 random splits

are reported, unless stated otherwise. In the following, three sets of face recognition

experiments are presented.

7.3.1 Face recognition results on the PIE database

The first set of experiments is on the subset from the PIE database used in Section 6.4

(page 130), with seven poses (C05, C07, C09, C27, C29, C37, C11) of at most 45 degrees

of pose variation and under the 21 illumination conditions (02 to 22). This subset contains

9,987 face images, around 147 samples per subject. All face images are preprocessed to

32× 32 pixels, with 256 gray levels per pixel.

In order to study the recognition performance with different Ls, nine face recogni-

tion experiments are performed on this PIE database with L = 2, 3, 4, 5, 6, 8, 10, 20, 40.

The top CRRs are listed in Table 7.3, where the MPCA+LDA and the R-UMLDA-A

algorithms give the best overall performance. The detailed results for L = 2, 4, 6, 10, 20,

and 40 by the unsupervised and supervised algorithms are depicted in Figs. 7.1 and

7.2, respectively, where the horizontal axis is shown in log scale. From Fig. 7.1, it is

observed that although UMPCA performs poorly due to the limited number of features
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Table 7.3: Face recognition results on the PIE database: the top CRRs (Mean±Std%)
for various Ls.

L 2 3 4 5 6 8 10 20 40

PCA 28.5±0.8 36.5±0.9 43.7±1.1 49.2±0.8 53.7±0.9 61.7±0.8 67.6±0.9 84.4±0.7 96.1±0.5

2DPCA 21.6±0.7 27.7±1.0 33.1±0.9 37.6±0.6 41.4±0.5 48.7±0.7 54.5±0.9 73.5±0.8 90.1±0.5

CSA 20.3±0.9 26.0±1.1 30.9±0.7 34.7±0.7 38.2±0.7 44.6±0.8 49.5±0.8 66.3±0.7 83.2±0.6

TROD 21.8±0.9 28.3±1.2 34.0±1.1 38.5±0.9 42.6±0.8 50.1±0.9 55.7±0.9 74.6±0.9 90.5±0.6

MPCA 25.3±0.8 32.5±0.9 38.7±1.0 43.7±0.7 47.9±0.8 55.4±0.8 61.4±0.9 79.3±0.7 93.6±0.5

UMPCA 21.4±1.7 27.2±2.3 31.3±1.4 35.4±2.1 39.4±2.0 45.9±1.7 51.5±2.6 67.7±1.8 84.2±1.6

PCA+LDA 48.0±1.7 60.1±1.7 67.6±2.1 72.2±1.3 76.4±1.4 83.0±1.2 87.2±0.9 86.4±1.1 98.6±0.2

ULDA 44.1±1.3 55.7±1.3 63.4±1.4 67.8±1.1 70.7±0.9 74.5±1.0 75.2±1.1 83.6±1.0 97.7±0.3

R-JD-LDA 42.7±2.0 58.9±1.7 66.5±1.9 72.1±1.2 75.7±1.4 81.1±1.0 85.1±0.9 93.5±0.6 98.0±0.3

DATER 46.3±2.3 61.0±2.2 68.7±1.5 73.2±1.8 77.0±1.4 82.9±0.7 85.8±0.8 93.3±0.6 98.2±0.4

GTDA 40.1±2.0 50.4±2.0 57.3±1.4 61.8±1.5 65.7±1.4 71.9±1.1 76.6±0.9 88.3±0.6 96.5±0.5

TR1DA 33.5±2.9 52.6±1.4 63.7±1.8 69.2±1.5 72.8±1.7 76.1±1.2 81.0±1.1 90.0±0.6 95.7±0.4

MPCA-S 36.9±4.7 48.3±2.4 54.9±1.5 59.4±1.4 63.5±1.5 70.3±0.9 74.8±1.0 87.3±0.5 96.0±0.4

MPCA+LDA 50.4±1.5 61.2±1.7 66.7±1.7 73.2±2.3 78.7±1.3 85.4±0.8 89.3±0.8 96.6±0.4 99.3±0.1

R-UMLDA 40.3±1.7 50.9±1.7 58.3±1.3 63.4±1.5 67.0±1.1 72.7±1.0 76.7±1.4 87.7±0.7 95.1±0.3

R-UMLDA-A 45.2±1.8 58.6±1.7 69.0±2.1 74.9±1.2 79.4±1.2 85.0±1.0 88.7±0.9 95.2±0.4 98.6±0.3

that it can extract, this algorithm outperforms all the other unsupervised algorithms in

the low-dimensional subspace (for P = 1, ..., 32). It is also noted from Fig. 7.2 that

for L = 10, 20, the first a few features extracted by R-UMLDA are the most powerful

features in recognition. For all values of L in Fig. 7.2, R-UMLDA outperforms most

algorithms except PCA+LDA and MPCA+LDA in low-dimensional subspace. Among

the unsupervised algorithms, PCA gives the best performance. It is worth noting that

MPCA greatly outperforms CSA for all Ls, indicating that centering does have a pos-

itive impact on recognition. MPCA also outperforms 2DPCA and TROD for all Ls.

Furthermore, MPCA-S outperforms MPCA significantly, , showing the effectiveness of

the proposed discriminative feature selection procedure for MPCA.

Figure 7.3 shows the typical recognition results of PCA+LDA and MPCA+LDA

algorithms for L = 2, 6, 40, under various PCA/MPCA dimensions before LDA. The
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(a) (b)

(c) (d)

(e) (f)

Figure 7.1: Face recognition results by unsupervised learning on the PIE database: CRR
against the number of features used for (a) L = 2, (b) L = 4, (c) L = 6, (d) L = 10, (e)
L = 20, and (f) L = 40.



Chapter 7. Face and Gait Recognition Results 145

(a) (b)

(c) (d)

(e) (f)

Figure 7.2: Face recognition results by supervised learning on the PIE database: CRR
against the number of features used for (a) L = 2, (b) L = 4, (c) L = 6, (d) L = 10, (e)
L = 20, and (f) L = 40.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.3: The sensitivity of the face recognition results on: the PCA dimensionality
in the PCA+LDA algorithm for (a) L = 2, (c) L = 6, and (e) L = 40; the MPCA
dimensionality in the MPCA+LDA algorithm for (b) L = 2, (d) L = 6, and (f) L = 40,
tested on the PIE database with the angle distance measure. The seven legends indicate
the seven PCA/MPCA dimensions tested.
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horizontal axis is shown in log scale in this figure. It can be seen that the performance

of the two algorithms is sensitive to the PCA/MPCA dimensionality before LDA except

when there are a large number of samples per class for training. Therefore, they re-

quire the determination of appropriate PCA/MPCA dimensionality in practice for best

performance.

In addition, it should be noted that in each experiment, if the regularization pa-

rameter for R-JD-LDA and R-UMLDA, and the range of γ for R-UMLDA-A are tuned,

improved performance can be obtained since stronger regularization results in better per-

formance for a small L and weaker regularization is better for a larger L [92]. Nonethe-

less, with fixed range of γ, R-UMLDA-A still outperforms all the other algorithms except

MPCA+LDA for most of the L values ranging from 2 to 40.

7.3.2 Face recognition results by supervised subspace learning

on the FERET database

It is pointed out in [93] that the learning capacity of any LDA-like algorithm is directly

proportional to L, and reciprocally proportional to C. Thus, the recognition performance

with different Cs is evaluated in this subsection. A subset is selected from the FERET

database for this purpose and it is composed of those subjects with each having at least

six images with at most 45 degrees of pose variation, resulting in 2,803 face images from

335 subjects. Face images from this FERET database are also preprocessed to 32 × 32

pixels, with 256 gray levels per pixel, as described in Section 3.2.3 (page 43). Four

experiments are carried out on this database with C = 80, 160, 240, 320 and fixed L = 4

so that no more than half of the face images are used for training. The numbers of

training and testing faces for each experiment are detailed in Table 7.4.

The CRRs for all the unsupervised subspace learning algorithms are below 50% in

this set of experiments so they are not reported here. Table 7.5 lists the top CRRs for

supervised subspace learning algorithms, where MPCA+LDA and R-UMLDA-A outper-
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Table 7.4: The four experiments testing performance for different number of classes (C)
on the FERET database.

C number of training faces number of testing faces

80 320 825

160 640 1113

240 960 1273

320 1280 1433

Table 7.5: Face recognition results by supervised subspace learning algorithms on the
FERET database: the top CRRs (Mean±Std%) for various Cs.

C 80 160 240 320

PCA+LDA 69.7± 2.2 71.8±1.3 73.0±1.0 73.7±1.5

ULDA 58.9± 1.5 40.2±1.3 10.8±0.8 21.0±0.9

R-JD-LDA 70.7± 1.9 72.5±1.5 70.2±0.9 66.4±1.0

DATER 71.7± 1.5 69.3±2.0 64.7±1.0 63.2 ±1.5

GTDA 63.3± 2.0 61.1±2.7 58.3±1.6 55.8±1.7

TR1DA 71.5± 1.5 69.1±2.2 63.3±1.6 60.3±2.0

MPCA-S 59.2± 2.7 54.9±2.8 55.1±2.0 53.0±1.5

MPCA+LDA 74.0± 1.7 77.1±1.1 77.2±1.1 77.9±1.5

R-UMLDA 59.6± 1.8 58.0±1.6 56.3±1.6 56.9±1.4

R-UMLDA-A 75.0± 1.8 75.7±1.7 74.1±1.2 73.8±1.4

form all the other methods in all cases. Moreover, it can be observed that the recognition

performance of PCA+LDA, MPCA+LDA, and R-UMLDA-A are just slightly affected by

C. PCA+LDA and MPCA+LDA even get better performance with a larger C, indicating

their capability in handling large number of classes. In contrast, ULDA and TR1DA are

affected more by C, with decreased recognition rates as C increases. Detailed recognition

results are shown in Fig. 7.4 with the horizontal axis in log scale. It is observed that

in most cases, the first a few (around 7) features extracted by R-UMLDA are the most

discriminative ones.
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(a) (b)

(c) (d)

Figure 7.4: Face recognition results by supervised subspace learning algorithms on the
FERET database: CRR against the number of features used for (a) C = 80, (b) C = 160,
(c) C = 240, and (d) C = 320.

For PCA+LDA and MPCA+LDA, it is noted again that their performance is sensitive

to the dimensionality of PCA or MPCA feature vectors to be fed into LDA. Figure

7.5 shows some typical face recognition results of the PCA+LDA and MPCA+LDA

algorithms with various PCA/MPCA dimensions before LDA, obtained on the FERET

database with C = 160 and the angle distance measure. The horizontal axis is again

shown in log scale. As seen from the figure again, it is important for these two algorithms

to choose the appropriate dimensionality before LDA.
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(a) (b)

Figure 7.5: The sensitivity of the face recognition results on the PCA/MPCA dimen-
sionality in (a) PCA+LDA and (b) MPCA+LDA, tested on the FERET database
with C = 160 and the angle distance measure. The seven legends indicate the seven
PCA/MPCA dimensions tested.

7.3.3 Face recognition by unsupervised learning in

low-dimensional subspace

In the previous two sets of face recognition experiments, it has been observed that the

unsupervised subspace learning algorithms have poor performance in most cases, com-

pared with the supervised counterparts, partly due to their unsupervised nature and the

difficulty of the databases chosen. In addition, it is also noted that UMPCA can only

produce a limited number of features, as analyzed in Corollary 5.1 (page 103), so its

performance on low resolution faces is poor in turn. On the other hand, since no class

specific information is required in the learning process, the unsupervised subspace learn-

ing methods have wider applications. In particular, in the so-called one training sample

case important in practice [138], an extreme small sample size scenario where only one

sample per class is available for training (i.e., L = 1), the supervised subspace learning

algorithms studied in this dissertation cannot be applied since it is impossible to mea-

sure the within-class scatter with only one sample per class available. In contrast, the
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unsupervised subspace learning methods are still applicable even in this difficult scenario.

(a) (b)

(c) (d)

Figure 7.6: Detailed face recognition results by unsupervised subspace learning algo-
rithms on the FERET database for L = 1: (a) performance curves for the low-dimensional
case, (b) performance curves for the high-dimensional case, (c) the variation captured by
individual features, and (d) the correlation among features.

In this subsection, a higher resolution and less challenging face database is constructed

to study the recognition performance of the unsupervised subspace learning algorithms,

particularly in low-dimensional subspace. Another subset of the FERET database is

selected to consist of those subjects with each having at least eight images with at most

15 degrees of pose variation, resulting in 721 face images from 70 subjects. All face
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(a) (b)

(c) (d)

Figure 7.7: Detailed face recognition results by unsupervised subspace learning algo-
rithms on the FERET database for L = 7: (a) performance curves for the low-dimensional
case, (b) performance curves for the high-dimensional case, (c) the variation captured by
individual features, and (d) the correlation among features.

images are preprocessed as usual and normalized to 80× 80 pixels, with 256 gray levels

per pixel.

For the unsupervised subspace learning algorithms, the extracted features are all

arranged in descending variation captured, (measured by respective total scatter). In

this set of experiments, only the L2 (Euclidean) distance measure is tested. For each

subject in a face recognition experiment, L(= 1, 2, 3, 4, 5, 6, 7) samples are randomly
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selected for training and the rest are used for testing.

Figures 7.6 and 7.7 show the detailed results for L = 1 and L = 7, respectively. It

should be noted that for PCA and UMPCA, there are at most 69 (uncorrelated) features

when L = 1 since there are only 70 faces for training. As mentioned above, L = 1 is

the one training sample (per class) case, and L = 7 is the maximum number of training

samples that can be used in this set of experiments. Figures 7.6(a) and 7.7(a) plot the

CRRs against P , the dimensionality of the subspace, for P = 1, ..., 10, and Figs 7.6(b) and

7.7(b) plot those for P ranging from 15 to 80. From the figures, UMPCA outperforms

the other five methods in both cases and across P s, indicating that the uncorrelated

features extracted directly from the tensorial face data are effective in classification. The

figures also show that for UMPCA, the recognition rate saturates around P = 30, which

can be explained by observing the variation captured by individual features as shown in

Figs. 7.6(c) and 7.7(c) (in log scale). These figures show that the variation captured

by UMPCA is considerably lower than those captured by the other methods, due to

its constraints of zero-correlation and the tensor-to-vector projection. Despite capturing

lower variation, UMPCA is superior in the recognition task performed. Nonetheless, when

the variation captured is too low, those corresponding features are no longer descriptive

enough to contribute in classification, leading to the saturation.

In addition, the average correlations of individual features with all the other features

are plotted in Figs. 7.6(d) and 7.7(d). As supported by theoretical derivation, features

extracted by PCA and UMPCA are uncorrelated. In contrast, the features extracted by

all the other methods are correlated, with those extracted by 2DPCA and TROD have

much higher correlation on average, which could be partly the reason of their poorer

performance.

The recognition results for P = 1, 5, 10, 20, 50, 80 are listed in Table 7.6 for L =

2, 3, 4, 5, 6. From the table, UMPCA achieves the best recognition results in all cases re-

ported. In particular, for smaller P (1, 5, 10, 20), UMPCA outperforms the other methods



Chapter 7. Face and Gait Recognition Results 154

Table 7.6: Face recognition results by unsupervised subspace learning algorithms on a
less challenging FERET database: the CRRs (Mean±Std%) for various Ls and P s.

L P 1 5 10 20 50 80

PCA 2.8±0.7 20.3±1.5 31.5±2.3 38.4±2.4 43.1±2.8 44.4±2.6

2DPCA 5.3±0.9 15.9±1.9 19.5±2.1 26.0±3.2 40.4±2.8 44.2±2.4

2 CSA 3.5±0.7 15.5±1.0 29.2±1.9 36.3±2.2 43.8±2.6 45.0±2.8

TROD 3.5±0.8 19.9±3.4 30.1±2.1 37.7±2.4 42.3±2.1 43.8±2.5

MPCA 2.6±0.6 21.4±1.5 28.4±1.8 38.2±2.2 43.9±2.7 45.2±2.7

UMPCA 7.9±1.5 30.0±5.2 41.7±5.6 46.1±6.0 46.7±6.3 46.7±6.3

PCA 2.7±0.6 24.5±1.9 38.0±2.2 46.3±2.2 51.8±2.7 53.0±2.5

2DPCA 5.1±0.9 17.3±1.5 22.3±1.8 30.5±2.7 47.4±2.6 51.8±2.2

3 CSA 3.9±0.8 17.3±1.6 36.4±1.5 44.4±1.9 52.1±2.6 53.5±2.8

TROD 3.9±0.7 23.2±3.3 36.4±2.3 45.1±2.4 50.5±2.7 52.2±2.6

MPCA 2.4±0.6 25.8±1.6 34.9±2.3 45.8±2.2 52.3±2.7 53.9±2.8

UMPCA 7.5±1.0 35.3±3.8 49.7±3.6 56.0±4.0 56.7±4.3 56.6±4.3

PCA 2.8±0.7 26.7±2.4 42.5±2.3 50.2±1.8 57.8±2.2 58.8±2.4

2DPCA 5.4±0.6 18.3±1.1 24.3±1.7 34.1±4.3 51.7±2.5 56.4±2.5

4 CSA 3.7±1.0 19.0±1.4 41.2±2.4 50.2±2.1 58.4±2.8 59.6±2.5

TROD 3.8±0.9 25.3±2.6 42.2±3.1 50.0±2.6 55.6±2.1 57.6±2.4

MPCA 2.3±0.6 29.5±2.3 40.4±2.4 51.2±2.5 58.3±2.5 59.6±2.3

UMPCA 8.1±1.3 40.1±3.8 56.9±3.0 63.3±3.3 64.0±3.6 64.0±3.6

PCA 2.8±0.8 29.2±1.9 47.0±1.7 55.5±2.0 63.6±1.5 64.8±1.5

2DPCA 5.6±1.2 19.9±1.6 26.4±2.4 36.4±3.5 57.0±2.5 61.6±2.3

5 CSA 4.2±1.1 20.7±1.9 46.0±2.2 56.1±2.5 64.8±2.1 65.6±1.7

TROD 4.2±1.1 28.9±3.0 46.7±2.9 55.6±2.1 61.6±1.9 63.7±1.8

MPCA 2.6±0.7 32.6±2.1 43.0±2.6 57.0±2.2 64.4±2.1 65.9±1.7

UMPCA 8.5±1.6 42.5±4.5 61.0±5.2 67.7±5.0 68.7±5.1 68.7±5.1

PCA 2.6±0.8 30.0±2.0 49.6±2.9 58.3±2.5 66.6±2.2 67.9±2.3

2DPCA 5.4±1.4 20.9±1.9 27.9±2.7 38.3±2.9 58.1±1.9 63.2±2.4

6 CSA 4.0±0.8 22.4±1.9 49.1±2.4 59.5±2.7 68.0±2.6 69.0±2.4

TROD 4.3±0.7 28.5±2.8 50.3±2.3 58.7±2.7 64.8±2.3 66.7±2.0

MPCA 2.2±1.0 34.2±2.4 46.4±2.6 60.5±2.6 67.5±2.5 69.4±2.3

UMPCA 9.0±1.2 44.5±4.2 63.1±4.5 70.4±4.8 71.4±4.9 71.3±4.9
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significantly, demonstrating its superior capability in classifying faces in low-dimensional

spaces.

7.4 Gait Recognition Results

The experiments in the previous section demonstrate the effectiveness of the proposed

solutions on second-order tensor objects, under various scenarios. In this section, the

performance of the proposed algorithms are tested on third-order tensorial gait objects.

In the gait recognition experiments, gait samples are input directly as third-order tensors

to the multilinear algorithms, while for the linear algorithms, they are converted to

vectors for input. The standard testing procedures described in Section 3.3 (page 44)

are followed. Since R-UMLDA-A involves random initialization, the results obtained

from this algorithm are reported in the mean and standard deviation over 20 repeated

experiments.

7.4.1 Gait recognition results by subspace learning algorithms

The gait recognition experiments are carried out on the USF gait database V.1.7 de-

scribed in Section 3.3 (page 44) to study the performance of the subspace learning algo-

rithms on probes with varying difficulty. The original resolution 128× 88× 20 results in

vectors of 225280× 1, which makes most linear subspace learning algorithms infeasible.

Therefore, in this set of experiments, each normalized gait sample is downsampled to a

tensor of 32 × 22 × 10 so that all linear subspace learning algorithms can be applied.

In addition, besides the rank 1 and rank 5 identification rates based on gait sequence

matching, the CRRs for individual gait samples are also reported.

Tables 7.7, 7.8, and 7.9 present the CRRs for individual gait samples, the rank 1 and

rank 5 identification rates for gait sequences, respectively. The average for probes A, B,

and C (the easier probes) as well as the average over all the seven probes are also reported.
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In addition, Figs. 7.8 and 7.9 plot the detailed average recognition performance for

supervised and unsupervised subspace learning algorithms, respectively. The horizontal

axis is shown in log scale in these figures.

Table 7.7: Gait recognition results on the 32 × 22 × 10 USF gait database V.1.7: the
CRR (%) for individual samples. MeanABC is the average over probes A, B, and C and
MeanAll is the average over all seven probes.

Probe A B C D E F G MeanABC MeanAll

PCA 54.2 46.6 31.0 18.9 17.5 12.0 12.5 43.6 27.0

CSA 47.5 43.0 26.0 18.9 14.7 11.1 11.6 38.1 24.0

TROD 51.2 45.9 27.4 18.8 16.1 10.7 10.4 41.4 25.0

MPCA 52.4 46.3 29.8 18.0 17.7 11.5 10.8 42.5 26.2

UMPCA 28.9 22.9 11.9 5.7 5.5 3.5 5.4 21.2 11.6

PCA+LDA 74.8 54.6 38.6 23.6 17.9 18.8 12.7 55.5 33.8

ULDA 61.2 45.2 29.3 17.4 13.8 11.5 10.1 45.1 26.5

R-JD-LDA 69.6 53.9 35.2 20.2 16.8 14.6 12.5 51.9 31.0

DATER 61.9 54.4 35.0 17.2 16.1 12.8 11.8 49.6 28.8

GTDA 61.5 54.1 40.2 18.3 16.1 10.1 10.1 51.3 29.2

TR1DA 65.3 54.1 36.9 18.0 16.3 12.3 12.0 51.8 30.2

MPCA-S 57.9 52.2 34.5 17.3 18.2 12.3 11.6 47.0 27.9

MPCA+LDA 74.3 61.0 43.8 23.0 19.8 17.2 14.6 58.9 35.5

R-UMLDA 52.3 45.6 25.5 7.6 3.9 5.5 3.5 40.8 19.9

R-UMLDA-A 68.9±1.5 59.3±0.6 36.3±1.2 14.5±1.0 13.1±1.4 10.0±1.1 9.1±0.6 53.8± 1.1 29.0±0.9

From all the three tables and the figures, MPCA+LDA achieves the best overall per-

formance, demonstrating again the power of this algorithm. The PCA+LDA algorithm

also gives good recognition performance, especially in classifying individual gait samples.

The overall results of the MPCA-S algorithm is competitive as well. It should be noted

that the supervised MPCA-S algorithm results in better recognition rates than the unsu-

pervised MPCA algorithm, especially in the rank 1 identification rates of gait sequences,

indicating the effectiveness of the discriminative feature selection scheme. Among the

unsupervised algorithms, PCA has the best CRRs for individual samples. For rank 1

and rank 5 identification rates, the performance of MPCA and that of PCA are close
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Table 7.8: Gait recognition results on the 32 × 22 × 10 USF gait database V.1.7: the
rank 1 identification rate (%) for sequences. MeanABC is the average over probes A, B,
and C and MeanAll is the average over all seven probes.

Probe A B C D E F G MeanABC MeanAll

PCA 80.3 82.9 56.1 32.8 25.6 22.4 16.3 73.1 43.9

CSA 69.0 65.9 43.9 25.4 25.6 14.9 16.3 59.6 36.5

TROD 74.6 73.2 53.7 26.9 27.9 13.4 14.0 67.2 39.6

MPCA 84.5 80.5 56.1 29.9 25.6 20.9 16.3 72.1 43.5

UMPCA 66.2 56.1 31.7 9.0 7.0 3.0 4.7 51.3 24.8

PCA+LDA 93.0 73.2 58.5 40.3 27.9 26.9 18.6 74.9 47.4

ULDA 87.3 58.5 51.2 26.9 18.6 23.9 16.3 62.8 36.5

R-JD-LDA 88.7 70.7 56.1 35.8 27.9 25.4 18.6 71.4 43.3

DATER 85.9 78.0 53.7 28.4 20.9 16.4 20.9 71.7 40.2

GTDA 88.7 75.6 65.9 25.4 18.6 13.4 18.6 76.7 43.0

TR1DA 85.9 75.6 61.0 23.9 25.6 17.9 23.3 72.3 42.4

MPCA-S 90.1 85.4 68.3 32.8 20.9 20.9 14.0 80.0 45.0

MPCA+LDA 98.6 87.8 75.6 40.3 32.6 26.9 25.6 84.3 53.1

R-UMLDA 87.3 73.2 46.3 9.0 4.7 6.0 2.3 66.3 30.4

R-UMLDA-A 94.6±1.6 78.2±2.9 60.2±2.4 18.3±3.4 18.6±2.9 15.0±3.9 16.2±1.4 75.6±1.9 39.5±1.4

and they outperform the other unsupervised algorithms. In particular, the better per-

formance of MPCA over CSA shows again that centering is good for recognition. The

UMPCA algorithm has the worst results because it can extract at most ten features,

which are not sufficient for good recognition. Similar to UMPCA, R-UMLDA is also

restricted in the number of useful features so its results are not good either. Nonetheless,

as supervised methods, R-UMLDA and R-UMLDA-A have better results than UMPCA

and on the easier probes (A, B, and C), the R-UMLDA-A algorithm is among the top

performing algorithms. Finally, it should be pointed out that as in face recognition, the

performance of the MPCA+LDA algorithm, as well as PCA+LDA, on gait recognition
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Table 7.9: Gait recognition results on the 32 × 22 × 10 USF gait database V.1.7: the
rank 5 identification rate (%) for sequences. MeanABC is the average over probes A, B,
and C and MeanAll is the average over all seven probes.

Probe A B C D E F G MeanABC MeanAll

PCA 95.8 85.4 78.0 56.7 46.5 49.3 48.8 86.4 65.4

CSA 88.7 82.9 68.3 50.7 44.2 38.8 39.5 78.7 56.7

TROD 91.5 85.4 68.3 52.2 46.5 37.3 41.9 81.7 59.0

MPCA 95.8 85.4 78.0 56.7 48.8 47.8 46.5 86.4 65.4

UMPCA 87.3 75.6 58.5 28.4 25.6 19.4 25.6 73.4 43.5

PCA+LDA 98.6 80.5 75.6 59.7 48.8 55.2 46.5 84.9 66.4

ULDA 90.1 78.0 58.5 49.3 41.9 44.8 34.9 75.6 55.3

R-JD-LDA 95.8 85.4 78.0 53.7 48.8 52.2 39.5 86.4 63.7

DATER 95.8 82.9 73.2 56.7 53.5 53.7 48.8 83.1 64.4

GTDA 95.8 82.9 78.0 53.7 44.2 46.3 46.5 84.8 62.5

TR1DA 94.4 85.4 75.6 53.7 46.5 44.8 48.8 83.8 61.6

MPCA-S 100.0 92.7 85.4 55.2 48.8 50.7 53.5 92.7 65.8

MPCA+LDA 100.0 92.7 87.8 70.1 62.8 62.7 51.2 93.5 74.7

R-UMLDA 98.6 82.9 75.6 34.3 27.9 29.9 18.6 85.7 51.2

R-UMLDA-A 99.9±0.3 82.9±0.0 77.8±1.1 48.4±2.4 43.6±2.7 39.3±1.4 32.3±2.9 86.9±0.3 58.8±1.3

is sensitive to the MPCA/PCA dimensionality before LDA too, which will be illustrated

in the next set of experiments.

7.4.2 Comparison with the state-of-the-art gait recognition al-

gorithms

As illustrated in Fig. 1.1 (page 2), a gait recognition system typically consists of the

following components: algorithm to partition a gait sequence into cycles (or half cycles),

feature representation and extraction method, and the matching algorithm. Different

processing steps are expected to have an impact on the recognition results. Since the

focus of this dissertation is on feature extraction, simple procedures have been adopted

for preprocessing and matching.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.8: Supervised subspace learning results on the 32× 22× 10 USF gait database
V.1.7. The average over probes A, B, and C: (a) CRR for individual samples, (c) rank
1 identification rate for sequences, and (e) rank 5 identification rate for sequences. The
average over all seven probes: (b) CRR for individual samples, (d) rank 1 identification
rate for sequences, and (f) rank 5 identification rate for sequences.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.9: Unsupervised subspace learning results on the 32×22×10 USF gait database
V.1.7. The average over probes A, B, and C: (a) CRR for individual samples, (c) rank
1 identification rate for sequences, and (e) rank 5 identification rate for sequences. The
average over all seven probes: (b) CRR for individual samples, (d) rank 1 identification
rate for sequences, and (f) rank 5 identification rate for sequences.
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In this subsection, the MPCA-S and MPCA+LDA algorithms are compared against

the state-of-the-art gait recognition algorithms, which employ more sophisticated prepro-

cessing and/or matching algorithms, and the baseline algorithm provided in the “Gait

Challenge” problem [109]. The algorithms to be compared, as summarized in Table 7.10

in their original formulations, are the baseline algorithm [109], the Hidden Markov Model

(HMM) framework [49] using the entire silhouette as the feature (the direct approach),

the linear time normalization (LTN) algorithm [6] using the silhouette feature, and the

Gait Energy Image (GEI) algorithm [34]. Table 7.10 illustrates the differences between

algorithms. It should be pointed out that in the HMM approach, besides feature extrac-

tion and matching, HMM parameter estimation (training) is a major component too and

it is not shown in the table.

Table 7.10: Comparison of the state-of-the-art gait recognition algorithms.

Approach Preprocessing Cycle partition Feature extraction Matching

Baseline Baseline Period estimation from Silhouettes Spatial-temporal

[109] median of minima distances correlation

HMM [49] Baseline Adaptive filter Silhouettes Viterbi algorithm

LTN [6] Baseline+silhouette Autocorrelation, optimal Silhouettes LTN distance with

refinement filter, merging symmetric matching

GEI [34] Baseline Maximum entropy PCA+LDA on Minimum Euclidean

spectrum estimation averaged silhouettedistance to class mean

MPCA-S Baseline+temporal Running average MPCA Nearest neighbor with

MPCA+LDAlinear interpolation filter MPCA+LDA symmetric matching

This set of gait recognition experiments is performed on the USF gait database V.1.7

with the original full size of 128 × 88 × 20. For the MPCA-based algorithms (MPCA-S

and MPCA+LDA), the seven distance measures in Table 3.1 (page 40) are tested. For

MPCA-S, the feature length H = Hy and the weight vector is w, where Hy and w are

defined in Sec. 4.4 (page 78). For MPCA+LDA, H = Hz and w(h) =
√
λh, where

Hz and λh are also defined in Sec. 4.4. For different Hy (up to 800) and for the seven

distance measures listed, the average rank 1 and rank 5 identification rates are plotted in
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(a) (b)

(c) (d)

Figure 7.10: Gait recognition results against the number of MPCA features used for the

seven distance measures: (a) the rank 1 and (b) rank 5 identification performance of

the MPCA-S algorithm; (c) the rank 1 and (d) rank 5 identification performance of the

MPCA+LDA algorithm.

Figs. 7.10(a) and 7.10(b), respectively, for the MPCA-S approach, and in Figs. 7.10(c)

and 7.10(d), respectively, for the MPCA+LDA approach. For the MPCA-S approach,

the MAD measure, with the proposed weight vector w, significantly outperforms all the

other distance measures for Hy > 200, demonstrating the effectiveness of the proposed

weighting scheme. For the MPCA+LDA approach, the angle and MAD measures out-

perform all the other measures at rank 1 and the MAD measure is better than the angle

at rank 5 for Hy < 200. Thus, both approaches choose MAD as the distance measure in
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(a) (b)

Figure 7.11: The CMC curves of the gait recognition results up to rank 20 for (a) the
MPCA-S algorithm, and (b) the MPCA+LDA algorithm.

comparison against the state-of-the-art gait recognition algorithms. With MAD, when

more and more MPCA features are included, i.e., Hy increases, the identification rate

for MPCA-S keeps increasing first, except some small fluctuations, and becomes steady

beyond a certain point, indicating that most of the MPCA features selected first are

good features for classification. For the MPCA+LDA approach, due to the LDA feature

extraction process where the maximum feature vector length is C − 1, the performance

against Hy is different: with the MAD measure, the identification rates (rank 1 and 5)

reach maximum around Hy = 200 and drop at a higher rate for Hy > 600, suggesting

that more MPCA features (than 200) may lower the performance of MPCA+LDA. Thus,

for best performance in gait recognition, MPCA+LDA needs appropriate determination

of the dimensionality (Hy) before LDA as well.

Based on empirical study, the best gait recognition performance for the MPCA-S and

MPCA+LDA approaches is obtained with Hy = 620 and Hy = 170, respectively, using

MAD. The detailed results are depicted using the CMCs in Figs. 7.11(a) and 7.11(b).

They are compared with the state-of-the-art gait recognition algorithms in Tables 7.11

and 7.12, where the rank 1 and rank 5 identification rates are listed for each probe (A to

G) together with their averages, respectively. From the tables, HMM, LTN, GEI, MPCA-
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S, and MPCA+LDA algorithms have no significant difference in the rank 1 performance,

although LTN is slightly poorer, and they outperform the baseline results by more than

19%. For the rank 5 performance, MPCA+LDA has the best performance.

Table 7.11: The state-of-the-art gait recognition results on the full size USF gait database
V.1.7: the rank 1 identification rate (%) for sequences. MeanAll is the average over all
seven probes.

Probe A B C D E F G MeanAll

Baseline 79 66 56 29 24 30 10 42

HMM 99 89 78 35 29 18 24 53

LTN 94 83 78 33 24 17 21 50

GEI 100 85 80 30 33 21 29 54

MPCA 92 85 76 39 29 21 21 52

MPCA+LDA 99 88 83 36 29 21 21 54

B-LDA-MPCA 100 88 85 39 34 26 32 58

Table 7.12: The state-of-the-art gait recognition results on the full size USF gait database
V.1.7: the rank 5 identification rate (%) for sequences. MeanAll is the average over all
seven probes.

Probe A B C D E F G MeanAll

Baseline 96 81 76 61 55 46 33 64

HMM 100 90 90 65 65 60 50 74

LTN 99 85 83 65 67 58 48 72

GEI 100 85 88 55 55 41 48 67

MPCA 96 90 81 55 52 58 50 69

MPCA+LDA 100 93 88 71 60 59 60 76

B-LDA-MPCA 100 93 90 63 59 54 52 73

From the comparisons in Table 7.10, the performance of the HMM framework is

mainly contributed to the adaptive filter used for cycle partition, the Viterbi algorithm

used for probabilistic matching, and the iterative training of the HMM parameters, while

the performance of LTN is mainly contributed to the silhouette refinement, the robust
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cycle partition procedure, and the LTN distance matching strategy. Besides PCA+LDA

in feature extraction, the GEI algorithm utilizes a robust estimator as well for the cycle

partition taking into account of the periodic nature of the gait signal and it seems that

this tends to improve the recognition performance. To summarize, silhouette refinement

could be a beneficial step for gait recognition and robust cycle partition seems to be an

important component in these state-of-the-art gait recognition algorithms. In addition,

robust matching algorithms such as the Viterbi algorithm used in HMM have great

potential for gait recognition as well.

On the whole, despite a design without optimizing the preprocessing procedures, cycle

partition method, and matching algorithm, the MPCA-based approach to gait recognition

achieves highly competitive performance and compares favorably to the state-of-the-art

gait recognizers. This indicates that the MPCA-based approach is a very promising tool

for gait recognition. Its performance can be further improved by silhouette refinement,

and robust cycle partition and matching algorithms.

7.4.3 Gait recognition with MPCA+Boosting

As mentioned earlier, the boosting framework has been shown to be effective in face

recognition [93], but no similar study has been done for gait recognition. This section

evaluates the effectiveness of the B-LDA-MPCA algorithm in enhancing the gait recogni-

tion performance. In particular, the effects of the gait feature vector dimension Hy and

the regularization parameter κ are studied, in addition to ξ, the number of LDA training

samples per class. This set of experiments uses the full-size USF gait database V.1.7 as

well.

In B-LDA-MPCA, MPCA is applied to get the gait feature vectors {ym} for the input

to the booster. As in [93], the output dimension Hz of the LDA learner is fixed at 35,

which is not optimized, and the maximum number of iterations is set to T = 60. The

best performing set of parameters for the B-LDA-MPCA algorithm is ξ = 3, Hy = 180,
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and κ = 10−2 in the test. The evolutions of various CRRs over the boosting steps are

shown in Fig. 7.12(a) with this set of parameters. In the figure legends, ‘Gal’ means

the CRRs for the gallery set and ‘Prb’ denotes the average CRRs for the seven probe

sets. The CRRs for individual gait samples and gait sequences are denoted by ‘Ind’

and ‘Seq’, respectively. The CRRs obtained from the single learner in each step are

denoted as ‘Sgl’ and the CRRs obtained from the aggregated learners are denoted by

‘Bst’. For instance, ‘PrbSeqBst’ is the average CRR of all probe sequences obtained

from the combined learners. From the figure, the effectiveness of the boosting scheme is

observed. The CRRs for the probe samples (sequences) produced by the single learners

are around 20% (below 40%), while the CRRs by the boosted learners are around 40%

(near 60%), which is a boost of about 20% in the CRR.

The gait recognition results of B-LDA-MPCA on each probe set and their average

are shown in Tables 7.11 and 7.12 with the best parameter set above for T = 24. In the

rank 1 identification rate, B-LDA-MPCA has improved over MPCA+LDA consistently

on each probe set except probe B where there is no improvement. On probe F, the

improvement of 11% is the greatest, and the improvement in the average CRR is 4%.

The consistent improvement shown over both easy probes (A, C) and difficult probes

(D, E, F, G) in rank 1 identification rate demonstrates the effectiveness of the proposed

solution. However, from Table 7.12, its average rank 5 identification rate is lower than

the MPCA+LDA solution with the same parameter settings.

The effects of ξ, Hy, and κ on the gait recognition performance of MPCA+boosting

are shown in Figs. 7.12(b), 7.12(c), and 7.12(d), respectively. Since it is not possible to

show the results of all possible parameter combinations, the effects of a parameter are

shown by fixing all the others. The fixed set of parameters is chosen to be the best set

above: ξ = 3, Hy = 180, and κ = 10−2. In the following, only the results ‘PrbSeqBst’

will be shown.

The minimum number of samples in a class is 7 for the gallery set. Therefore, ξ
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(a) (b)

(c) (d)

Figure 7.12: Illustrations of MPCA+boosting on gait recognition: (a) the evolutions of
various CRRs over the boosting steps with the best parameter set; the effects of (b) ξ,
(c) Hy, and (d) κ.

ranging from 2 to 6 is tested and the results are shown in Fig. 7.12(b). Similar results

as in [93] have been observed here. It shows that the learner cannot be too weak or too

strong for the booster to have a positive effect.

B-LDA-MPCA introduces an additional control of learner weakness by Hy and its

effects are shown in Fig. 7.12(c). As mentioned in Section 7.4.2, the optimal Hy for

a single LDA learner is 200, while the figure shows that the weakened learners with

Hy = 180 give a much better boosting result than the stronger learners with Hy = 200.

Hence, Hy affects the booster in a similar way as ξ.

Finally, the effects of the regularization are shown in Fig. 7.12(d). This figure shows
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that an appropriate regularization parameter κ does result in better generalization. This

study demonstrates that gait recognizer can benefit from making use of the fact that the

within-class scatter of gait patterns under various capturing conditions is greater than

that under the same capturing condition.

Table 7.13: Summary of the performance and computational complexity of MPCA,
UMPCA, MPCA+LDA, and R-UMLDA-A.

Unsupervised task (computational complexity)* MPCA (low) UMPCA (medium)

Low-resolution face recognition No. 2 out of 6 No. 5 out of 6

High-resolution face recognition No. 2 out of 6 No. 1 out of 6

Gait recognition No. 2 out of 5 No. 5 out of 5

Supervised task (computational complexity) MPCA+LDA (low) R-UMLDA-A (high)

Face recognition with L = 2 No. 1 out of 10 No. 4 out of 10

Face recognition with L = 3 No. 1 out of 10 No. 5 out of 10

Face recognition with L = 4 No. 4 out of 10 No. 1 out of 10

Face recognition with L = 5, 6 No. 2 out of 10 No. 1 out of 10

Face recognition with L = 8 ∼ 40 No. 1 out of 10 No. 2 out of 10

Face recognition with C = 80 No. 2 out of 10 No. 1 out of 10

Face recognition with C = 160, 240, 320 No. 1 out of 10 No. 2 out of 10

Gait recognition on the same surface No. 1 out of 10 No. 4 out of 10

Gait recognition on same/different surfaces No. 1 out of 10 No. 8 out of 10

*The performance is indicated by the ranking among algorithms compared, e.g., “No. 2 out of 10”
means that the algorithm is the second best algorithm out of ten algorithms compared. The

computational complexity is indicated by a rough ranking in terms of low, medium, and high.

7.5 Discussions on Face and Gait Recognition Re-

sults

Extensive experiments have been performed on face and gait recognition to evaluate

the proposed algorithms. Table 7.13 gives a summary of the face and gait recognition
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performance as well as the computational complexity for the four proposed (two unsuper-

vised and two supervised) solutions: MPCA, MPCA+LDA, UMPCA, and R-UMLDA-A.

From the results presented, several important observations have been made and they are

summarized below:

1. The MPCA+LDA algorithm has the best overall performance in both face and gait

recognition under various scenarios although the MPCA dimensionality before LDA

needs to be set properly for the best performance. The advantages of MPCA+LDA

over PCA+LDA are due to the proposed MPCA algorithm since the only difference

between the two algorithms is MPCA features versus PCA features. Extracting

features directly from the tensorial data indeed results in more useful representation

on both face and gait data.

2. The MPCA algorithm with discriminative feature selection outperforms the MPCA

operating in the unsupervised mode, showing the effectiveness of the proposed

feature selection procedure. The advantage here comes from taking class-specific

information into account.

3. The combination of MPCA and boosting also have obtained improved rank 1 identi-

fication results over MPCA+LDA in gait recognition, demonstrating possible ben-

efits of the integrated solution. The improvement here attributes to the good

generalization capability of the boosting framework.

4. It is also worth noting the performance difference between CSA and MPCA. The

only algorithmic difference is the centering of the input data before feature ex-

traction. The experimental results on face and gait recognition show that in most

cases, MPCA outperforms CSA. This indicates that centering is indeed beneficial

for recognition tasks since the true variation of the data with respect to the data

center rather than the origin is captured.



Chapter 7. Face and Gait Recognition Results 170

5. The results of UMPCA are not competitive in challenging experimental condi-

tions due to two reasons. The first reason is that it is an unsupervised algorithm

without considering the class-specific information. The second reason is that the

maximum number of uncorrelated features extracted by UMPCA is limited (see

Corollary 5.1 on page 103). However, in the setting of unsupervised learning on a

higher-resolution data set, it outperforms other unsupervised learning algorithms,

particularly in the low-dimensional subspace, despite the fact that it captures much

lower variation. In this case, the uncorrelated features directly extracted from ten-

sorial data are shown to be more useful. In addition, as an unsupervised method,

it can also handle the difficult one training sample scenario.

6. Although random initialization is involved in R-UMLDA-A, from the standard de-

viations based on 20 repeated trials reported in Tables 7.3, 7.5, 7.7, 7.8, and 7.9,

the recognition results obtained by R-UMLDA-A have low variance. This demon-

strates that R-UMLDA-A is a stable algorithm despite of the random initialization

involved.

7. The proposed R-UMLDA-A algorithm, without tuning the regularization parame-

ter, has achieved good overall performance in face recognition experiments under

various scenarios. Its performance for gait recognition on the same surface is also

competitive against other algorithms. Its advantage over MPCA+LDA is that

there is no need to search for the best performing set of parameters and its best

performance is always achieved around the same parameter setting, as evident in

Figs. 7.2, 7.4, and 7.8. This implies that R-UMLDA-A is a robust and effective

recognition algorithm for tensor objects, attributing to uncorrelated discriminative

feature extraction directly from tensorial data, and the regularization and aggre-

gation schemes proposed. It will be particularly useful when there is no sufficient

validation data available for searching the best parameter settings.
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Based on the results and the discussions above, the practical recommendations for

the choice of the proposed algorithms are outlined here. Since among all the algorithms

compared, the MPCA+LDA algorithm has achieved the best overall performance on

both face and gait recognition problems, it should be chosen as long as a good MPCA

dimensionality before LDA can be determined. However, when this is not possible, R-

UMLDA-A is a safe choice since the performance of MPCA+LDA may be dependent on

the MPCA dimensionality before LDA while in contrast, R-UMLDA-A is less sensitive

to parameter settings. UMPCA is more suitable for unsupervised learning tasks that

requires only a small number of features and for tensor objects of high resolution. In

terms of computational cost, MPCA+LDA is a highly efficient algorithm due to the

good convergence performance of MPCA while R-UMLDA-A is more computationally

expensive in the training process since a number of UMLDA feature extractors need to

be trained. The computational complexity of UMPCA is similar to a single UMLDA.

Finally, the recommended parameter settings for these three proposed solutions are listed

in Table 7.14. Nevertheless, when a validation data set is available, it is always preferred

to tune the subspace dimensionality and other parameters of the chosen algorithm for its

best performance.

Table 7.14: Recommended parameter settings for MPCA+LDA, UMPCA, and R-
UMLDA-A.

Setting MPCA+LDA UMPCA R-UMLDA-A

Initialization full projection uniform uniform initialization for a = 1, 5,

truncation initialization 9, 13, 17, random initialization

Sec. 4.3.2 (page 70) (normalized 1) for other values of a

Projection order from 1 to N from 1 to N from 1 to N

Maximum iteration K 1 10 10

Subspace dimensionality C − 1 min{minn In,M} A = 20, P = 15 ∼ 20

Other parameters Hy determined by a γa sampled uniformly in log scale

validation set, Q = 97 from the interval [10−7, 10−2]
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7.6 Summary

This chapter presents experimental results on face and gait recognition problems in order

to evaluate the algorithms proposed in this research against existing linear and multilinear

subspace learning algorithms.

Three sets of face recognition experiments have been carried out on the PIE and

FERET databases. The PIE database is used to evaluate all the algorithms under vary-

ing number of training samples per class. MPCA+LDA and R-UMLDA-A algorithms

outperform the other algorithms in most cases. A FERET database is then constructed

to study the performance of supervised subspace learning algorithms against different

number of classes, where MPCA+LDA and R-UMLDA-A give the best results. The

third set of experiments evaluate the unsupervised subspace learning algorithms on an-

other higher-resolution, and less challenging FERET database. UMPCA has been shown

to outperform the other unsupervised learning algorithms significantly, especially in the

low-dimensional space. Moreover, the one training sample scenario can be handled by

UMPCA as well.

The USF gait database is used for three sets of gait recognition experiments. All

the algorithms are first evaluated on the downsampled low-resolution gait database, with

the MPCA+LDA solution performing the best. Next, the MPCA-based approach is

compared with the state-of-the-art gait recognition algorithms with more sophisticated

preprocessing and matching algorithms. The results indicate that the MPCA-based ap-

proach is a very promising tool for gait recognition and its performance can be further

improved by silhouette refinement, robust cycle partition, and advanced matching algo-

rithms. Lastly, the integration of the boosting technology and MPCA is studied on the

gait recognition problem with improved rank 1 recognition rate observed.

In summary, the experimental evaluations demonstrate that MPCA+LDA gives the

best overall performance but it needs the determination of the appropriate MPCA di-

mensionality before LDA. In contrast, the R-UMLDA-A algorithm offers competitive
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performance in most cases and it has good stability with the same parameter setting.

In unsupervised learning scenarios, especially in low-dimensional subspace, UMPCA has

been shown to have good performance. With both algorithms and experimental results

presented, the next chapter draws the conclusions of this dissertation by recapitulating

the major contributions and pointing out future directions of research.



Chapter 8

Conclusions

This dissertation has focused on investigating the multilinear subspace learning approach

for appearance-based face and gait recognition. It has contributed to both understanding

and developing of multilinear subspace learning algorithms. In this chapter, the key

contributions of the dissertation are summarized and directions for future research in

related areas are provided.

8.1 Key Contributions

The problems of appearance-based face and gait recognition are challenging due to the

large variability of the appearance, the high complexity of pattern distribution, and

the insufficiency of training samples. Subspace learning, or dimensionality reduction, at-

tempts to project high-dimensional data to a low-dimensional space where the recognition

task is easier, and it has become the arguably most successful approach in appearance-

based learning. However, traditional subspace learning algorithms, such as PCA and

LDA, are linear methods. They have to reshape face or gait objects, which have nat-

ural tensorial representations, into very-high-dimensional vectors before learning. This

reshaping leads to high computational and memory demand and the need to estimate a

very large number of parameters. It also breaks the natural structure and correlation in

174
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the original multidimensional representation. In contrast, multilinear subspace learning

treats tensorial objects in their original form and has the potential to learn more compact

and useful representations for better recognition.

This dissertation has contributed in two ways. The first contribution is a framework

that unifies multilinear subspace learning and explains both existing multilinear subspace

learning algorithms and those proposed in this dissertation. It has also contributed

through the development of a number of multilinear subspace learning algorithms. For

completeness, these contributions are summarized below.

1. Multilinear subspace learning relies on multilinear projection, but as a new tech-

nology, a systematic treatment on this topic was not available in the literature.

This research started by addressing this topic first. The basics of multilinear pro-

jection have been thoroughly covered. Three basic types of multilinear projections

have been categorized as: the vector-to-vector projection, the tensor-to-tensor pro-

jection, and the tensor-to-vector projection. The connections between these three

projections have also been analyzed in depth. In addition, several tensor-based and

scalar-based scatter measures have been defined to assist the understanding and

development of multilinear subspace learning algorithms. Under the framework

of the multilinear subspace learning introduced here, existing multilinear subspace

learning algorithms have been understood better and new algorithms have been

developed.

2. The MPCA algorithm has been proposed for analysis of tensor objects. It is a mul-

tilinear extension of PCA. MPCA determines a tensor-to-tensor projection that

captures most of the signal variation present in the original tensorial representa-

tion. Issues due to the iterative nature of the algorithm, including initialization,

projection order, termination, convergence, and subspace dimensionality determi-

nation, have been addressed in detail. A discriminative MPCA feature selection
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procedure has been further proposed and the MPCA+LDA algorithm has been for-

mulated. Moreover, the combination of MPCA with the boosting technology has

also been investigated. The applications of these MPCA-based feature extraction

algorithms on the problems of face and gait recognition have demonstrated their

effectiveness in handling various challenging tasks. In particular, the MPCA+LDA

algorithm has achieved the best recognition performance in most cases, although

the appropriate MPCA feature dimensionality before LDA needs to be determined

for the best performance. In addition, the combination of MPCA and the LDA-

style booster in [93] has shown the effectiveness of boosting on gait recognition for

the first time in the literature.

3. Being aware that PCA derives uncorrelated features, a novel UMPCA algorithm

has been further proposed. This algorithm extracts uncorrelated features directly

from tensorial data through a tensor-to-vector projection. However, the number

of uncorrelated features that can be extracted by UMPCA is no greater than the

lowest dimension so it is more suitable for tensor objects with higher resolution or

for recognition tasks that need only a small number of features. On the problem

of unsupervised face recognition, UMPCA is shown to be particularly effective in

the low-dimensional subspace.

4. LDA produces uncorrelated features as well. Thus, in a similar manner as UMPCA,

a novel UMLDA algorithm has been proposed, with a regularization mechanism in-

corporated to address the small sample size problem. The algorithm is affected by

initialization and regularization. This observation has led to the introduction of

an aggregation scheme to utilize complementary information from differently ini-

tialized and regularized UMLDA feature extractors. As UMPCA, UMLDA is also

limited in the number of uncorrelated features that can be extracted. Nonetheless,

the proposed aggregation scheme has greatly reduced this limitation and also alle-
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viated the regularization parameter selection problem. The simulation studies on

face and gait recognition problems have shown that the R-UMLDA-A algorithm

is effective in face recognition while on gait recognition, it is less competitive, es-

pecially under different surfaces. Nevertheless, R-UMLDA-A has been shown to

have good stability and its best performance is always achieved around the same

parameter setting.

To conclude, from the recognition results and the analysis presented in this disser-

tation, the three proposed solutions can be ranked in order of algorithmic significance

(from high to low) as: MPCA, UMLDA, and UMPCA.

8.2 Future Directions

While many fundamental problems in multilinear subspace learning have been addressed

in this dissertation, this is a new field still with many open problems to be considered.

This section outlines several research topics that worth further investigation. Two main

directions have been identified. One is towards the development of multilinear subspace

learning solutions, while the other is towards novel applications where the proposed

methods can be applied.

8.2.1 Further development of multilinear subspace learning al-

gorithms

In future research, the algorithms proposed in this dissertation can be further enhanced

and new algorithms can be investigated along the following directions:

1. The systematic treatment on multilinear subspace learning in Chapter 2 will bene-

fit the development of new multilinear learning algorithms, especially by extending

the rich ideas and algorithms in the linear counterparts to the multilinear case.
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This dissertation has focused on the extensions of PCA and LDA to their multi-

linear counterparts, and the proposed algorithms project input data to a subspace

through simple multilinear mapping. In future work, more complicated (nonlinear)

mapping can be achieved by developing multilinear extensions of graph-embedding

algorithms such as Isomap [125], Locally Linear Embedding [106], and Locality

Preserving Projections [38,11]. As mentioned in Section 3.4.5 (page 58), there have

been some developments in this area [37,20,151,144,41]. The multilinear subspace

learning framework proposed in this dissertation can help the understanding of

these existing solutions and it can also benefit further development of multilinear

graph-embedding algorithms.

2. The combination of MPCA with LDA and boosting proposed in Chapter 4 has

shown promising results on face and gait recognition. Thus, it will be worthwhile

to investigate the combination of MPCA with other algorithms, such as neural

networks [22] or kernel methods [137, 97, 89, 114] where the input data is mapped

to an even-higher dimensional space for better separation. Furthermore, it will

also be interesting to study whether the combination of the multilinear algorithms

developed here and in the literature, e.g., MPCA with R-UMLDA-A, DATER or

GTDA, can lead to more advanced learning algorithms.

3. As pointed out in Chapter 5, a limitation of UMPCA is the limited number of uncor-

related features that can be extracted. In future research, solutions can be sought

to extract more features through gradual relaxation of either the zero-correlation

constraint or the tensor-to-vector projection constraint. Another direction is to

investigate whether the aggregation used in enhancing UMLDA can be useful for

UMPCA since UMPCA is sensitive to initialization as well. This dissertation has

studied only the aggregation of UMLDA because it is more promising in solving

challenging face and gait recognition problems than UMPCA.
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4. In the R-UMLDA-A algorithm proposed in Chapter 6, simple regularization and

aggregation methods have been adopted. In future work, better regularization

mechanisms (e.g., the incorporation of domain knowledge) and other aggregation

schemes (such as other combination rules, feature-level fusion, boosting or other

ensemble-based learning solutions) can be investigated for possible improvement.

5. This dissertation has examined only linear solutions using vectorial representation

and multilinear solutions using natural tensorial representation. It could be an

interesting topic to study the hybrid approach for higher-order tensors where a

selected number of modes are vectorized to result in tensors with order greater

than one but less than N , from which features are extracted.

6. In the proposed algorithms, there are a number of parameters need to be set and

they may affect the performance if they are not set properly. For example, the

MPCA+LDA algorithm has been shown to be sensitive to the MPCA feature di-

mensionality Hy. In B-LDA-MPCA, the performance depends on the number of

boosting steps T , the regularization κ, the MCPA dimensionality Hy, and the num-

ber of training samples for the LDA learner ξ. In R-UMLDA, the regularization

parameter γ can affect the performance too. New ways can be investigated to

determine or at least guide the optimal parameter setting automatically or semi-

automatically.

7. Finally, in multilinear subspace learning, there are still many unsolved problems

remaining, such as the optimal initialization, the optimal projection order, and the

optimal stopping criterion. This dissertation has made some attempts in solving

some of these problems in MPCA. However, it will be beneficial if further research

can lead to deeper understanding on these issues.
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8.2.2 Exploring other applications of multilinear subspace learn-

ing algorithms

In addition to the tensorial face and gait objects studied in this dissertation, many

other real-world data inputs are naturally tensor objects too, as mentioned in Section

1.4.1 (page 6). Consequently, there are a wide range of applications dealing with these

real-world tensor objects. In face recognition, besides the traditional 2-D image based

approach, high-resolution and three-dimensional face detection and recognition have also

emerged as important research directions [7, 66, 14, 101, 69]. Beyond biometric signal

analysis, many other computer vision and pattern recognition tasks deal with tensor

objects too. Such tasks include image or 3-D object recognition tasks [107] in computer

vision, medical image analysis, clustering [148], and content-based retrieval [36], space-

time analysis of video sequences for gesture recognition [100] and activity recognition [32]

in human-computer interaction (HCI), and space-time super-resolution [117] for digital

cameras with limited spatial and temporal resolution.

In addition, many streaming data and mining data are frequently organized as third-

order tensors [24,121,122]. Data in environmental sensor monitoring are often organized

in three modes of time, location, and type [24]. Data in social network analysis are

usually organized in three modes of time, author, and keywords [24]. Data in network

forensics are often organized in three modes of time, source, and destination, and data

in web graph mining are commonly organized in three modes of source, destination, and

text [121].

The tensor-object-based applications discussed above are becoming increasingly pop-

ular with the advancement in computational power. Thus, it will be interesting to in-

vestigate the application of the proposed multilinear subspace learning algorithms in

solving these problems. For instance, classical applications of unsupervised learning al-

gorithms, such as unsupervised image categorization, classification, or clustering [148],
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can be explored for the MPCA and UMPCA algorithms.



Appendix A

Mathematical Derivations

This appendix provides the mathematical derivations of the five theorems, one lemma,

and one corollary presented in this dissertation.

A.1 Proof of Theorem 4.1 in Chapter 4

Proof. The mean tensor of all the projected samples is

Ȳ =
1

M

M∑
m=1

Ym = X̄ ×1 Ũ(1)T ×2 Ũ(2)T ...×N Ũ(N)T ,m = 1, ...,M. (A.1)

Write the objective function (4.2) in terms of the input tensor samples as:

ΨY =
M∑
m=1

‖ Ym − Ȳ ‖2F=
M∑
m=1

‖ (Xm − X̄ )×1 Ũ(1)T ×2 Ũ(2)T ...×N Ũ(N)T ‖2F . (A.2)

From the definition of the Frobenius norm for a tensor and that for a matrix,

‖ A ‖F=‖ A(n) ‖F . (A.3)

From (2.9), ΨY can be expressed using the equivalent matrix representation by n-mode
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unfolding as follows:

ΨY =
M∑
m=1

‖ Ym(n) − Ȳ(n) ‖2F=
M∑
m=1

‖ Ũ(n)T ·
(
Xm(n) − X̄(n)

)
· ŨΦ(n) ‖2F , (A.4)

Since ‖ A ‖2F= trace(AAT ), ΨY can be written in terms of the n-mode total scatter

matrix of the projected tensor samples:

ΨY =
M∑
m=1

trace
(
Ũ(n)T ·

(
Xm(n) − X̄(n)

)
· ŨΦ(n) · ŨT

Φ(n) ·
(
Xm(n) − X̄(n)

)T · Ũ(n)
)

= trace
(
Ũ(n)T ·Φ(n) · Ũ(n)

)
, (A.5)

Therefore, for given Ũ(1), ..., Ũ(n−1), Ũ(n+1), ..., Ũ(N), ΨY is maximized if and only

if trace
(
Ũ(n)T ·Φ(n) · Ũ(n)

)
is maximized. The maximum is obtained if Ũ(n) consists of

the Pn eigenvectors of the matrix Φ(n) corresponding to the largest Pn eigenvalues.

A.2 Proof of Lemma 4.1 in Chapter 4

Proof. By successive application of the transpose property of the Kronecker product

(A⊗B)T = AT ⊗BT [96]:

ŨT
Φ(n) =

(
Ũ(n+1)T ⊗ Ũ(n+2)T ⊗ ...⊗ Ũ(N)T ⊗ Ũ(1)T ⊗ Ũ(2)T ⊗ ...Ũ(n−1)T

)
. (A.6)

By the Kronecker product theorem (A⊗B)(C⊗D) = (AC⊗BD) [96],

ŨΦ(n) · ŨT
Φ(n) =

(
Ũ(n+1)Ũ(n+1)T ⊗ ...⊗ Ũ(N)Ũ(N)T ⊗ Ũ(1)Ũ(1)T ⊗ ...Ũ(n−1)Ũ(n−1)T

)
.

(A.7)

For all n, when Pn = In , Ũ(n) is a square matrix and Ũ(n)T Ũ(n) = IIn , where IIn

is an In × In identity matrix. Then, Ũ(n)−1
= Ũ(n)T and Ũ(n)Ũ(n)T = IIn . Thus,

ŨΦ(n) · ŨT
Φ(n) = II1×I2×...×In−1×In+1×...×IN .
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A.3 Proof of Theorem 4.2 in Chapter 4

The following lemma explains the relationship between the eigenvalues of two covariance

matrices that are closely related.

Lemma A.1. Let X ∈ RI1×I2 be a sample matrix with I2 samples. X̃ ∈ RI1×P2 contains

P2 < I2 samples from X, and E ∈ RI1×(I2−P2) contains the rest. Let λi1 and λ̃i1, denote

the i1th eigenvalues of XXT and X̃X̃T , respectively. Then, λ̃i1 ≤ λi1 , for i1 = 1, ..., I1.

Proof. Without loss of generality, let X̃ = X(:, 1 : P2) and E = X(:, (P2 + 1) : I2). XXT

and X̃X̃T are both sample covariance matrices and hence symmetric. E is related to

them by XXT = X̃X̃T + EET . EET is a covariance matrix as well. Hence, it is positive

semidefinite. From the Weyl’s theorem [40], which is derived from the Courant-Fisher

“min-max theorem” [40], the eigenvalues of X̃X̃T are not greater than the corresponding

eigenvalues of X̃X̃T + EET = XXT , i.e., λ̃i1 ≤ λi1 , for i1 = 1, ..., I1.

The proof of Theorem 4.2 follows:

Proof. For n = 1, X̌m(1) = Ǔ(1) · Y̌m(1) ·UT
Φ(1)∗ ,m = 1, ...,M . Thus,

Φ̌(1) =
∑
m

X̌m(1)UΦ(1)∗UT
Φ(1)∗X̌

T
m(1)

=
∑
m

Ǔ(1) · Y̌m(1) ·UT
Φ(1)∗UΦ(1)∗ ·UT

Φ(1)∗UΦ(1)∗ · Y̌T
m(1) · Ǔ(1)T

=
∑
m

Ǔ(1) · Y̌m(1)Y̌
T
m(1) · Ǔ(1)T = Ǔ(1) ·

∑
m

(
Y̌m(1)Y̌

T
m(1)

)
· Ǔ(1)T ,

where UT
Φ(1)∗UΦ(1)∗ results in an identity matrix. Since Y̌m(1) is simply the first P1 rows

of Ỹm(1), λ̂
(1)
i1

= λ
(1)∗
i1

for i1 = 1, ..., P1, and λ̂
(1)
i1

= 0 for i1 = P1 + 1, ..., I1.

Similarly for n 6= 1, Φ̌(n) = Ǔ(n) ·
∑

m

(
Y̌m(n)Y̌

T
m(n)

)
· Ǔ(n)T . The columns of Y̌m(n)

are a subset of the columns of Ỹm(n). Therefore, by Lemma A.1, λ̂
(n)
in
≤ λ

(n)∗
in

. Since∑
i1
λ̂

(1)
i1
<
∑

i1
λ

(1)∗
i1

,
∑

in
λ̂

(n)
in

=
∑

i1
λ̂

(1)
i1
<
∑

in
λ

(n)∗
in

=
∑

i1
λ

(1)∗
i1

. Thus, for each mode,

at least for one value of in, λ̂
(n)
in

< λ
(n)∗
in

.



Appendix A. Mathematical Derivations 185

A.4 Proof of Theorem 4.3 in Chapter 4

Proof. For the lower bound, considering the 1-mode eigenvalues λ
(1)∗
i1

first,

ΨX −ΨY0 =

I1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

Y∗var(i1, i2, ..., iN)−
P1∑
i1=1

P2∑
i2=1

...

PN∑
iN=1

Y∗var(i1, i2, ..., iN)

≥
I1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

Y∗var(i1, i2, ..., iN)−
P1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

Y∗var(i1, i2, ..., iN)

=

I1∑
i1=1

λ
(1)∗
i1
−

P1∑
i1=1

λ
(1)∗
i1

=

I1∑
i1=P1+1

λ
(1)∗
i1

, (A.8)

where Y∗var is the total scatter tensor (corresponding to the full projection) defined in

(4.9). The above inequality can be similarly derived for the other n-mode eigenvalues

λ
(n)∗
in

, ΨX −ΨY0 ≥
∑In

in=Pn+1 λ
(n)∗
in

for n = 2, ..., N . Therefore,

ΨX −ΨY0 ≥ max
n

In∑
in=Pn+1

λ
(n)∗
in

. (A.9)

For the upper bound,

ΨX −ΨY0 =

I1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

Y∗var(i1, i2, ..., iN)−
P1∑
i1=1

P2∑
i2=1

...

PN∑
iN=1

Y∗var(i1, i2, ..., iN)

≤
I1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

Y∗var(i1, i2, ..., iN)−
P1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

Y∗var(i1, i2, ..., iN)

+

I1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

Y∗var(i1, i2, ..., iN)−
I1∑
i1=1

P2∑
i2=1

...

IN∑
iN=1

Y∗var(i1, i2, ..., iN)

+...

+

I1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

Y∗var(i1, i2, ..., iN)−
I1∑
i1=1

I2∑
i2=1

...

PN∑
iN=1

Y∗var(i1, i2, ..., iN)

=
N∑
n=1

In∑
in=Pn+1

λ
(n)∗
in

. (A.10)
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A.5 Proof of Theorem 5.1 in Chapter 5

Proof. First, Lagrange multipliers can be used to transform the problem (5.10) to the

following to include all the constraints:

F (u(n∗)
p ) = u(n∗)T

p S̃
(n∗)
Tp

u(n∗)
p − ν

(
u(n∗)T

p u(n∗)
p − 1

)
−

p−1∑
q=1

µqu
(n∗)T

p Ỹ(n∗)
p gq, (A.11)

where ν and {µq, q = 1, ..., p− 1} are Lagrange multipliers.

The optimization is performed by setting the partial derivative of F (u
(n∗)
p ) with re-

spect to u
(n∗)
p to zero:

∂F (u
(n∗)
p )

∂u
(n∗)
p

= 2S̃
(n∗)
Tp

u(n∗)
p − 2νu(n∗)

p −
p−1∑
q=1

µqỸ
(n∗)
p gq = 0. (A.12)

Multiplying (A.24) by u
(n∗)T
p results in

2u(n∗)T

p S̃
(n∗)
Tp

u(n∗)
p − 2νu(n∗)T

p u(n∗)
p = 0⇒ ν =

u
(n∗)T
p S̃

(n∗)
Tp

u
(n∗)
p

u
(n∗)T
p u

(n∗)
p

, (A.13)

which indicates that ν is exactly the criterion to be maximized, with the constraint on

the norm of the projection vector incorporated.

Next, a set of (p − 1) equations are obtained by multiplying (A.24) by gTq Ỹ
(n∗)T

p ,

q = 1, ..., p− 1, respectively:

2gTq Ỹ(n∗)T

p S̃
(n∗)
Tp

u(n∗)
p −

p−1∑
q=1

µqg
T
q Ỹ(n∗)T

p · Ỹ(n∗)
p gq = 0. (A.14)

Let

µp−1 = [µ1 µ2 ... µp−1]
T (A.15)

and use (5.14) and (6.16), then the (p − 1) equations of (A.26) can be represented in a
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single matrix equation as following:

2GT
p−1Ỹ

(n∗)T

p S̃
(n∗)
Tp

u(n∗)
p − Γpµp−1 = 0. (A.16)

Thus,

µp−1 = 2Γ−1
p ·GT

p−1Ỹ
(n∗)T

p S̃
(n∗)
Tp

u(n∗)
p . (A.17)

Since from (6.16) and (A.27),

p−1∑
q=1

µqỸ
(n∗)
p gq = Ỹ(n∗)

p Gp−1µp−1, (A.18)

the equation (A.24) can be written as

2S̃
(n∗)
Tp

u(n∗)
p − 2νu(n∗)

p − Ỹ(n∗)
p Gp−1µp−1 = 0

⇒ νu(n∗)
p = S̃

(n∗)
Tp

u(n∗)
p − Ỹ(n∗)

p Gp−1

µp−1

2

= S̃
(n∗)
Tp

u(n∗)
p − Ỹ(n∗)

p Gp−1Γ
−1
p ·GT

p−1Ỹ
(n∗)T

p S̃
(n∗)
Tp

u(n∗)
p

=

[
IIn∗ − Ỹ(n∗)

p Gp−1Γ
−1
p GT

p−1Ỹ
(n∗)T

p

]
S̃

(n∗)
Tp

u(n∗)
p .

Using the definition in (6.15), an eigenvalue problem is obtained as Υ(n∗)
p S̃

(n∗)
Tp

u = νu.

Since ν is the criterion to be maximized, the maximization is achieved by setting u
(n)∗
p

to be the (unit) eigenvector corresponding to the largest eigenvalue of (6.14).

A.6 Proof of Corollary 5.1 in Chapter 5

Proof. To prove the corollary, it is only needed to show that for any mode n, the number

of bases that can satisfy the zero-correlation constraint is upper-bounded by min{In,M}.

Considering only one mode n, the zero-correlation constraint for mode n∗ = n in
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(5.10) becomes,

u(n)T

p Ỹ(n)
p gq = 0, q = 1, ..., p− 1. (A.19)

First, let ĝ
(n)T

p = u
(n)T

p Ỹ
(n)
p ∈ R1×M and the constraint becomes

ĝ(n)T

p gq = 0, q = 1, ..., p− 1. (A.20)

Since gq ∈ RM×1, when p = M + 1, the set gq, q = 1, ...,M forms a basis for the

M -dimensional space and there is no solution for (A.20). Thus, P ≤M .

Second, let û
(n)
q = Ỹ

(n)
p gq ∈ RIn×1 and the constraint becomes

u(n)T

p û(n)
q = 0, q = 1, ..., p− 1. (A.21)

Since gq, q = 1, ..., p − 1 are orthogonal, û
(n)
q , q = 1, ..., p − 1 are linearly independent

if the elements of Ỹ
(n)
p are not all zero. Since û

(n)
q ∈ RIn×1, when p = In + 1, the set

û
(n)
q , q = 1, ..., p − 1 forms a basis for the In-dimensional space and there is no solution

for (A.21). Thus, P ≤ In.

From the above, P ≤ min{minn In,M} if the elements of Ỹ
(n)
p are not all zero, which

is often the case as long as the projection basis is not initialized to zero and the elements

of the training tensors are not all zero.

A.7 Proof of Theorem 6.1 in Chapter 6

Proof. For a nonsingular S̃
(n∗)
Wp

, any u
(n∗)
p can be normalized such that

u(n∗)T

p S̃
(n∗)
Wp

u(n∗)
p = 1 (A.22)

and the ratio
u

(n∗)T
p S̃

(n∗)
Bp

u
(n∗)
p

u
(n∗)T
p S̃

(n∗)
Wp

u
(n∗)
p

keeps unchanged. Therefore, the maximization of this ratio is

equivalent to the maximization of u
(n∗)T
p S̃

(n∗)
Bp

u
(n∗)
p with the constraint (A.22). Lagrange
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multipliers can be used to transform the problem (6.13) to the following to include all

the constraints:

F (u(n∗)
p ) = u(n∗)T

p S̃
(n∗)
Bp

u(n∗)
p − ν

(
u(n∗)T

p S̃
(n∗)
Wp

u(n∗)
p − 1

)
−

p−1∑
q=1

µqu
(n∗)T

p Ỹ(n∗)
p gq, (A.23)

where ν and {µq, q = 1, ..., p− 1} are Lagrange multipliers.

The optimization is performed by setting the partial derivative of F (u
(n∗)
p ) with re-

spect to u
(n∗)
p to zero:

∂F (u
(n∗)
p )

∂u
(n∗)
p

= 2S̃
(n∗)
Bp

u(n∗)
p − 2νS̃

(n∗)
Wp

u(n∗)
p −

p−1∑
q=1

µqỸ
(n∗)
p gq = 0. (A.24)

Multiplying (A.24) by u
(n∗)T
p results in

2u(n∗)T

p S̃
(n∗)
Bp

u(n∗)
p − 2νu(n∗)T

p S̃
(n∗)
Wp

u(n∗)
p = 0⇒ ν =

u
(n∗)T
p S̃

(n∗)
Bp

u
(n∗)
p

u
(n∗)T
p S̃

(n∗)
Wp

u
(n∗)
p

, (A.25)

which indicates that ν is exactly the criterion to be maximized.

Next, a set of (p−1) equations are obtained through multiplying the equation (A.24)

by gTq Ỹ
(n∗)T

p S̃
(n∗)−1

Wp
, q = 1, ..., p− 1, respectively:

2gTq Ỹ(n∗)T

p S̃
(n∗)−1

Wp
S̃

(n∗)
Bp

u(n∗)
p −

p−1∑
q=1

µqg
T
q Ỹ(n∗)T

p · S̃(n∗)−1

Wp
Ỹ(n∗)
p gq = 0. (A.26)

Let

µp−1 = [µ1 µ2 ... µp−1]
T (A.27)

and use (6.16), then the (p−1) equations of (A.26) can be represented in a single matrix

equation as following:

2GT
p−1Ỹ

(n∗)T

p S̃
(n∗)−1

Wp
S̃

(n∗)
Bp

u(n∗)
p −GT

p−1Ỹ
(n∗)T

p · S̃(n∗)−1

Wp
Ỹ(n∗)
p Gp−1µp−1 = 0. (A.28)
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Thus,

µp−1 = 2
(
GT
p−1Ỹ

(n∗)T

p S̃
(n∗)−1

Wp
Ỹ(n∗)
p Gp−1

)−1

·GT
p−1Ỹ

(n∗)T

p S̃
(n∗)−1

Wp
S̃

(n∗)
Bp

u(n∗)
p . (A.29)

Since from (6.16) and (A.27),

p−1∑
q=1

µqỸ
(n∗)
p gq = Ỹ(n∗)

p Gp−1µp−1, (A.30)

the equation (A.24) can be written as

2S̃
(n∗)
Bp

u(n∗)
p − 2νS̃

(n∗)
Wp

u(n∗)
p − Ỹ(n∗)

p Gp−1µp−1 = 0

⇒ νS̃
(n∗)
Wp

u(n∗)
p = S̃

(n∗)
Bp

u(n∗)
p − Ỹ(n∗)

p Gp−1

µp−1

2

= S̃
(n∗)
Bp

u(n∗)
p − Ỹ(n∗)

p Gp−1

(
GT
p−1Ỹ

(n∗)T

p S̃
(n∗)−1

Wp
Ỹ(n∗)
p Gp−1

)−1

GT
p−1Ỹ

(n∗)T

p S̃
(n∗)−1

Wp
S̃

(n∗)
Bp

u(n∗)
p

=

[
IIn∗ − Ỹ(n∗)

p Gp−1

(
GT
p−1Ỹ

(n∗)T

p S̃
(n∗)−1

Wp
Ỹ(n∗)
p Gp−1

)−1

GT
p−1Ỹ

(n∗)T

p S̃
(n∗)−1

Wp

]
S̃

(n∗)
Bp

u(n∗)
p

Using the definition in (6.15), a generalized eigenvalue problem is obtained as

R(n∗)
p S̃

(n∗)
Bp

u = νS̃
(n∗)
Wp

u. (A.31)

Since ν is the criterion to be maximized, the maximization is achieved by setting u
(n)∗
p to

be the (unit) generalized eigenvector corresponding to the largest generalized eigenvalue

of (6.14).



Appendix B

A Review on AdaBoost

Boosting is a general learning method that can be used in conjunction with many other

learning algorithms to improve their performance. It is motivated by the question of

whether a set of weak learners, which only performs slightly better than random guess-

ing, can be boosted into an arbitrarily accurate strong learner [50,28]. Boosting produces

a very accurate predication rule by combining rough and moderately accurate rules of

thumb as finding many rough rules of thumb can be much easier than finding a single,

highly accurate predication rule. The boosting algorithm starts with a weak learner that

can find the rough rules of thumb. It then repeatedly calls this weak learner by feeding

it a different subset of training samples [111]. Thus, each call generates a new weak

predication rule. The boosting algorithm combines these weak rules into a single (hope-

fully) very accurate prediction rule [111]. It has been shown through both theoretical

study and empirical testing that boosting is particularly robust in preventing overfitting

and reducing the generalization error by increasing the so-called margins of the training

examples [9, 111, 112]. The margin is defined as the minimal distance of an example to

the decision surface of classification [129]. A larger expected margin of training data

generally leads to a lower generalization error.

Among the many boosting algorithms, the AdaBoost formulated in [27] is a very

191
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Input: A set of M training samples, (y1, c1), · · · , (yM , cM ), ym ∈ RI , and cm ∈ {−1,+1}.

Output: The final classifier h(y).

Algorithm:

Initialize D1(m) = 1
M .

Do for t = 1, ..., T :

1. Train weak learner using the sample distribution Dt.

2. Get weak hypothesis ht : RI → {−1,+1}.

3. Calculate εt. If εt > 0.5, stop (fail).

4. Choose αt =
1
2

ln
(

1− εt
εt

)
5. Update:

Dt+1(m) =
Dt(m)
Zt

×

 e−αt if ht(ym) = cm

eαt if ht(ym) 6= cm

=
Dt(m) exp(−αtcmht(ym))

Zt
,

where Zt is a normalization factor to ensure that Dt+1 is a probability distribution.

Output: The final hypothesis:

h(y) = sign

(
T∑
t=1

αtht(y)

)

Figure B.1: The AdaBoost algorithm.

popular one with great success [111, 120, 93]. The pseudo-code for AdaBoost is given in

Fig. B.1 for vectorial input samples. The algorithm takes a training set of M samples

(y1, c1),...,((yM , cM) as the input, where ym ∈ RI and cm ∈ {−1,+1}. It calls a weak

learner repeatedly in a series of rounds t = 1, ..., T . In each call, a distribution (set of
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weights) is maintained over the training set. The weight of this distribution on training

sample ym in round t is denoted by Dt(m). All weights are initialized to be equal

D1(m) = 1/M for t = 1.

In the boosting step t, the weak learner produces a weak hypothesis

ht : RI → {−1,+1} (B.1)

for the distribution Dt. The goodness of ht is then measured by the error εt defined as

εt =
∑

m:ht(ym)6=cm

Dt(m). (B.2)

Next, AdaBoost chooses a parameter αt as in step 4 of Fig. B.1, which measures the

importance of ht. The distribution Dt is updated as in step 5 of Fig. B.1. The update

effectively decreases the weights of those samples correctly classified by ht and increases

the weights of those classified incorrectly. In this way, the weak learner is forced to focus

on the more difficult training samples in the next round [28]. Finally, the final strong

hypothesis h(y) is simply the weighted majority vote of all the weak hypothesis ht(y) as

in Fig. B.1.
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[25] J. P. Foster, M. S. Nixon, and A. Prügel-Bennett, “Automatic gait recognition using

area-based metrics,” Pattern Recognition Letters, vol. 24, no. 14, pp. 2489–2497,

Oct. 2003.

[26] Y. Freund and R. E. Schapire, “Experiments with a new boosting algorithm,”

in Proc. the Thirteenth International Conference on Machine Learning, 1996, pp.

148–156.

[27] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learn-

ing and an application to boosting,” Journal of Computer and System Sciences,

vol. 55, no. 1, pp. 119–139, 1997.

[28] Y. Freund and R. E. Schapire, “A short introducion to boosting,” Journal of

Japanese Society for Artificial Intelligence, vol. 14, no. 5, pp. 771–780, 1999.

[29] J. H. Friedman, “Regularized discriminant analysis,” Journal of the American Sta-

tistical Association, vol. 84, no. 405, pp. 165–175, Mar. 1989.

[30] K. Fukunaga, Introduction to Statistical Pattern Recognition. Boston, MA: Aca-

demic Press, 1990.

[31] M. G. Grant, J. D. Shutler, M. S. Nixon, and J. N. Carter, “Analysis of a hu-

man extraction system for deploying gait biometrics,” in Proc. IEEE Southwest

Symposium on Image Analysis and Interpretation, Mar. 2004, pp. 46–50.

[32] R. D. Green and L. Guan, “Quantifying and recognizing human movement patterns

from monocular video images-part II: applications to biometrics,” IEEE Transac-

tions on Circuits and Systems for Video Technology, vol. 14, no. 2, pp. 191–198,

Feb. 2004.

http://www.cs.cmu.edu/~christos/TALKS/ICML-07-tutorial/ICMLtutorial.pdf
http://www.cs.cmu.edu/~christos/TALKS/ICML-07-tutorial/ICMLtutorial.pdf


Bibliography 198

[33] W. H. Greub, Multilinear Algebra. Berlin: Springer-Verlag, 1967.

[34] J. Han and B. Bhanu, “Individual recognition using gait energy image,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 2, pp.

316–322, Feb. 2006.

[35] R. A. Harshman, “Foundations of the parafac procedure: Models and conditions

for an “explanatory” multi-modal factor analysis,” UCLA Working Papers in Pho-

netics, vol. 16, pp. 1–84, 1970.

[36] X. He, “Incremental semi-supervised subspace learning for image retrieval,” in

ACM conference on Multimedia 2004, Oct. 2004, pp. 2–8.

[37] X. He, D. Cai, and P. Niyogi, “Tensor subspace analysis,” in Advances in

Neural Information Processing Systems 18 (NIPS), 2005. [Online]. Available:

http://books.nips.cc/papers/files/nips18/NIPS2005 0249.pdf

[38] X. He, S. Yan, Y. Hu, P. Niyogi, and H. Zhang, “Face recognition using laplacian-

faces,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27,

no. 3, pp. 328–340, Mar. 2005.

[39] T. K. Ho, “The random subspace method for constructing decision forests,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 8, pp.

832–844, Aug. 1998.

[40] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge Unverisity Press,

1985.

[41] G. Hua, P. A. Viola, and S. M. Drucker, “Face recognition using discriminatively

trained orthogonal rank one tensor projections,” in Proc. IEEE Conference on

Computer Vision and Pattern Recognition, June 2007, pp. 1–8.

http://books.nips.cc/papers/files/nips18/NIPS2005_0249.pdf


Bibliography 199

[42] A. K. Jain, R. Chellappa, S. C. Draper, N. Memon, P. J. Phillips, and A. Vetro,

“Signal processing for biometric systems,” IEEE Signal Processing Magazine,

vol. 24, no. 6, pp. 146–152, Nov. 2007.

[43] A. K. Jain, A. Ross, and S. Prabhakar, “An introduction to biometric recognition,”

IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, no. 1,

pp. 4–20, Jan. 2004.

[44] A. K. Jain, A. Ross, and S. Prabhakar, “An introduction to biometric recognition,”

IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, no. 1,

pp. 4–20, Jan. 2004.

[45] Z. Jin, J. Y. Yang, Z. S. Hu, and Z. Lou, “Face recognition based on the uncorrelated

discriminant transformation,” Pattern Recognition, vol. 34, pp. 1405–1416, 2001.

[46] Z. Jin, J. Y. Yang, Z. M. Tang, and Z. S. Hu, “A theorem on the uncorrelated

optimal discriminant vectors,” Pattern Recognition, vol. 34, no. 10, pp. 2041–2047,

Oct. 2001.

[47] I. T. Jolliffe, Principal Component Analysis, 2nd ed. Springer Serires in Statistics,

2002.

[48] A. Kale, “Algorithms for gait-based human identification from a monocular

video sequences,” Ph.D. dissertation, Department of Electrical and Computer

Engineering, University of Maryland College Park, 2003. [Online]. Available:

http://www.cs.uky.edu/∼amit/thesis.pdf

[49] A. Kale, A. N. Rajagopalan, A. Sunderesan, N. Cuntoor, A. Roy-Chowdhury,

V. Krueger, and R. Chellappa, “Identification of humans using gait,” IEEE Trans-

actions on Image Processing, vol. 13, no. 9, pp. 1163–1173, Sep. 2004.

http://www.cs.uky.edu/~amit/thesis.pdf


Bibliography 200

[50] M. Kearns and L. G. Valiant, “Crytographic limitations on learning Boolean for-

mulae and finite automata,” Journal of the Association for Computing Machinery,

vol. 41, no. 1, pp. 67–95, Jan. 1994.

[51] Y.-D. Kim and S. Choi, “Color face tensor factorization and slicing for illumination-

robust recognition,” in Proc. International Conference on Biometrics, August 2007,

pp. 19–28.

[52] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On combining classifiers,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 3,

pp. 226–239, Mar. 1998.

[53] T. G. Kolda, “Orthogonal tensor decompositions,” SIAM Journal of Matrix Anal-

ysis and Applications, vol. 23, no. 1, pp. 243–255, 2001.

[54] Y. Koren and L. Carmel, “Robust linear dimensionality reduction,” IEEE Trans-

actions on Visualization and Computer Graphics, vol. 10, no. 4, pp. 459–470, July-

Aug. 2004.

[55] P. Kroonenberg, Three-mode principal component analysis: theory and applications.

Leiden: DSWO Press, 1983.

[56] P. Kroonenberg and J. Leeuw, “Principal component analysis of three-mode data

by means of alternating least squares algorithms,” Psychometrika, vol. 45, no. 1,

pp. 69–97, 1980.

[57] S. Lang, Algebra. Reading: Addison Wesley, 1984.

[58] L. D. Lathauwer, “Signal processing based on multilinear algebra,” Ph.D.

dissertation, Katholieke Universiteit Leuven, 1997. [Online]. Available: ftp:

//ftp.esat.kuleuven.ac.be/sista/delathauwer/reports/PHD.pdf

ftp://ftp.esat.kuleuven.ac.be/sista/delathauwer/reports/PHD.pdf
ftp://ftp.esat.kuleuven.ac.be/sista/delathauwer/reports/PHD.pdf


Bibliography 201

[59] L. D. Lathauwer, B. D. Moor, and J. Vandewalle, “A multilinear singualr value

decomposition,” SIAM Journal of Matrix Analysis and Applications, vol. 21, no. 4,

pp. 1253–1278, 2000.

[60] L. D. Lathauwer, B. D. Moor, and J. Vandewalle, “On the best rank-1 and rank-

(R1, R2, ..., RN) approximation of higher-order tensors,” SIAM Journal of Matrix

Analysis and Applications, vol. 21, no. 4, pp. 1324–1342, 2000.

[61] L. D. Lathauwer and J. Vandewalle, “Dimensionality reduction in higher-order sig-

nal processing and rank-(R1, R2, ..., RN) reduction in multilinear algebra,” Linear

Algebra and its Applications, vol. 391, pp. 31–55, Nov. 2004.

[62] M. H. C. Law and A. K. Jain, “Incremental nonlinear dimensionality reduction by

manifold learning,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 28, no. 3, pp. 377–391, Mar. 2006.

[63] L. P. Lebedev and M. J. Cloud, Tensor Analysis. World Scientific, 2003.

[64] C. S. Lee and A. Elgammal, “Towards scalable view-invariant gait recognition:

Multilinear analysis for gait,” in Proc. International Conference on Audio and

Video-Based Biometric Person Authentication, Jul. 2005, pp. 395–405.

[65] L. Lee, G. Dalley, and K. Tieu, “Learning pedestrian models for silhouette refine-

ment,” in Proc. IEEE Conference on Computer Vision, Oct. 2003, pp. 663–670.

[66] S. Z. Li, C. Zhao, M. Ao, and Z. Lei, “Learning to fuse 3D+2D based face recogni-

tion at both feature and decision levels,” in Proc. IEEE Int. Workshop on Analysis

and Modeling of Faces and Gestures, Oct. 2005, pp. 43–53.

[67] S. Z. Li and A. K. Jain, “Introduction,” in Handbook of Face Recognition, S. Z. Li

and A. K. Jain, Eds. Springer-Verlag, 2004, pp. 1–11.



Bibliography 202

[68] J. J. Little and J. E.Boyd, “Recognizing people by their gait: the shape of motion,”

Videre, vol. 1, no. 2, pp. 1–32, 1998.

[69] C. Liu, “Capitalize on dimensionality increasing techniques for improving face

recognition grand challenge performance,” IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, vol. 28, no. 5, pp. 725–737, May 2006.

[70] Q. Liu, X. Tang, H. Lu, and S. Ma, “Face recognition using kernel scatter-difference-

based discriminant analysis,” IEEE Transactions on Neural Networks, vol. 17, no. 4,

pp. 1081–1085, Jul. 2006.

[71] Y. Liu, R. T. Collins, and Y. Tsin, “A computational model for periodic pattern

perception based on frieze and wallpaper groups,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 26, no. 3, pp. 354–371, Mar. 2004.

[72] Z. Liu and S. Sarkar, “Simplest representation yet for gait recognition: averaged

silhouette,” in Proc. International Conference on Pattern Recognition, vol. 4, Aug.

2004, pp. 211–214.

[73] Z. Liu and S. Sarkar, “Effect of silhouette quality on hard problems in gait recogni-

tion,” IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics,

vol. 35, no. 2, pp. 170–178, 2005.

[74] M. Loog, R. P. W. Duin, and R. Haeb-Umbach, “Multiclass linear dimension reduc-

tion by weighted pairwise fisher criteria,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 23, no. 7, pp. 762–766, Jul. 2001.

[75] H. Lu, A. C. Kot, and Y. Q. Shi, “Distance-reciprocal distortion measure for binary

document images,” IEEE Signal Processing Letters, vol. 11, no. 2, pp. 228–231, Feb.

2004.



Bibliography 203

[76] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Coarse-to-fine pedestrian

localization and silhouette extraction for the gait challenge data sets,” in Proc.

IEEE Conference on Multimedia and Expo, Jul. 2006, pp. 1009–1012.

[77] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Gait recognition through

MPCA plus LDA,” in Proc. Biometrics Symposium 2006, September 2006, pp. 1–6,

doi:10.1109/BCC.2006.4341613.

[78] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “A layered deformable model

for gait analysis,” in Proc. IEEE International Conference on Automatic Face and

Gesture Recognition, Apr. 2006, pp. 249 – 254.

[79] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Multilinear principal compo-

nent analysis of tensor objects for recognition,” in Proc. International Conference

on Pattern Recognition, vol. 2, August 2006, pp. 776 – 779.

[80] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Boosting LDA with regu-

larization on MPCA features for gait recognition,” in Proc. Biometrics Symposium

2007, September 2007, doi:10.1109/BCC.2007.4430542.

[81] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Uncorrelated multilinear

discriminant analysis with regularization for gait recognition,” in Proc. Biometrics

Symposium 2007, September 2007, doi:10.1109/BCC.2007.4430540.

[82] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “A full-body layered de-

formable model for automatic model-based gait recognition,” EURASIP Journal

on Advances in Signal Processing: Special Issue on Advanced Signal Processing and

Pattern Recognition Methods for Biometrics, vol. 2008, 2008, article ID 261317, 13

pages, doi:10.1155/2008/261317.



Bibliography 204

[83] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “MPCA: Multilinear principal

component analysis of tensor objects,” IEEE Transactions on Neural Networks,

vol. 19, no. 1, pp. 18–39, Jan. 2008.

[84] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Uncorrelated multilinear

discriminant analysis with regularization and aggregation for tensor object recog-

nition,” IEEE Transactions on Neural Networks, 2008, accepted pending minor

revision.

[85] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Uncorrelated multilinear

principal component analysis through successive variance maximization,” in Proc.

International Conference on Machine Learning, Jul. 2008, pp. 616–623.

[86] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “A taxonomy of emerging

multilinear discriminant analysis solutions for biometric signal recognition,” in Bio-

metrics: Theory, Methods, and Applications, N. V. Boulgouris, K. Plataniotis, and

E. Micheli-Tzanakou, Eds. Wiley/IEEE, 2009, to appear.

[87] H. Lu, J. Wang, and K. N. Plataniotis, “A review on face and gait recognition:

System, data and algorithms,” in Advanced Signal Processing Handbook, 2nd ed.,

S. Stergiopoulos, Ed. Boca Raton, Florida: CRC Press, 2009, to appear.

[88] J. Lu, “Discriminant learning for face recognition,” Ph.D. dissertation,

University of Toronto, 2004. [Online]. Available: http://www.dsp.utoronto.ca/

juwei/Publication/JuweiThesisUT04.pdf

[89] J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Face recognition using kernel

direct discriminant analysis algorithms,” IEEE Transactions on Neural Networks,

vol. 14, no. 1, pp. 117–126, Jan. 2003.

http://www.dsp.utoronto.ca/juwei/Publication/JuweiThesisUT04.pdf
http://www.dsp.utoronto.ca/juwei/Publication/JuweiThesisUT04.pdf


Bibliography 205

[90] J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Face recognition using LDA

based algorithms,” IEEE Transactions on Neural Networks, vol. 14, no. 1, pp.

195–200, Jan. 2003.

[91] J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Kernel discriminant learning

with application to face recognition,” in Support Vector Machines: Theory and

Applications, L. WANG, Ed. Springer-Verlag, 2005, pp. 275–296.

[92] J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Regularization studies of

linear discriminant analysis in small sample size scenarios with application to face

recognition,” Pattern Recognition Letter, vol. 26, no. 2, pp. 181–191, 2005.

[93] J. Lu, K. N. Plataniotis, A. N. Venetsanopoulos, and S. Z. Li, “Ensemble-based

discriminant learning with boosting for face recognition,” IEEE Transactions on

Neural Networks, vol. 17, no. 1, pp. 166–178, Jan. 2006.

[94] X. Lu, “Image analysis for face recognition,” May 2003, 36 pages. [Online].

Available: http://www.face-rec.org/interesting-papers/General/ImAna4FacRcg

lu.pdf

[95] H. Moon and P. J. Phillips, “Computational and performance aspects of PCA-based

face recognition algorithms,” Perception, vol. 30, pp. 303–321, 2001.

[96] T. K. Moon and W. C. Stirling, Mathematical methods and Algorithms for Signal

Processing. Prentice Hall, 2000.
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