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Abstract

TREX: A Small Antenna RF Spectrometer

Sasa Nedeljkovié
Doctor of Philosophy
Graduate Department of Physics
University of Tbronto

2007

TREX (21 cm Reionization EXperiment/Trail Reflection EXperiment) is a digital
spectrometer with a broadband antenna optimized for frequencies of 70-250 MHz. A
frequency-independent rectangular approximation of a two arm conical spiral antenna has
been designed, built and tested. I have developed a short integer fast Fourier transform
which performs faster than any other known algorithm on Intel platforms. There are two
primary scientific goals for TREX: detection of the reionization epoch, and observations
of forward scattering of meteors at multiple frequencies.

A method to detect the reionization signature via the red-shifted 21 cm hydrogen
line is discussed in detail. If the spectrum signature due to this line is in the form of
a sharp “temperature step” of ~ 0.02K, it should be possible to detect it by using two
specially designed antennas each rescaled by 1% in the frequency range of 150-250 MHz.
I have measured the levels of noise in Algonquin Park, Canada, and concluded that
activity in the sporadic E layer of the ionosphere seriously affects observations of the 21
cm reionization signature.

Meteor forward-scattering is a well known method of detecting meteors using a radio
telescope to receive signals emitted by distant transmitters and scattered from a meteor
trail. If the same meteoroid is detected at additional frequencies due to forward scattering
of rays coming from spatially separated transmitters, it is possible to estimate where the

scattering occurred, and find the meteoroid velocity vector. Previously, there were no

il



known methods to estimate orbital parameters from forward-scattering observations. In
this project, a pipeline to find orbital parameters from the observations is developed.

I performed a set of meteor observations at the Algonquin Radio Telescope site and
used data to demonstrate the method of measuring the speed of a meteoroid. The data
gathered show increased activity during the Lyrid meteor shower as expected. Finally,

no evidence was found for the Pegasid shower.
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Chapter 1

Introduction

Advances in high speed digital electronics and data acquisition have enabled the devel-
opment of new radio frequency spectrometers capable of exploring exciting astrophysicdl
‘questions. At the same time, the processing power of affordable computers is becoming
sufficient for real time data analysis. A simple instrument to measure spectra up to
250MHz will be presented. The setup is designed to detect the epoch of reionization of

the Universe, as well as to conduct forward-scattering meteor observations 86].

1.1 Thesis Overview

In this chapter, an overview will be given of the experimental specifications for detecting
the signature of the first luminous objects in the Universe. How the setup is used to
observe meteor forward-scattering will also be discussed.

The instrument design will be presented in Chapter 2. The antenna beam patterns
for a set of conical spiral antennas are shown, and the actual design overview is given.
A short integer FFT algorithm using Single Instruction Multiple Data technology is
developed and tested. The format for recording the observed data is described.

In Chapter 3, the basics of meteor astronomy with a focus on forward-scattering

observation techniques are presented. It is shown that a typical radio meteor trail is in

1
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the state of plasma. A simple derivation of the dispersion equation leads to a division of
meteor trails into underdense and overdense classes. The numerical condition required to
check whether a given trail can be detected in a fixed receiver for a given transmitter is
derived. The solution is used to generate meteor footprints and observability functions.
An algorithm to find the velocity vector of a meteoroid is also discussed.

Chapter 4 looks at the data gathered using the TREX apparatus described in Chapter
2. The measurements were done in April, June and July of 2006 at Algonquin Radio
Observatory, Algonquin Park, Ontario, Canada. The North American FM broadcasting
is described, and the Toronto broadcast footprint is found in the observed data. The data
also show raised activity for the Lyrid meteor shower, but no evidence for the Pegasids.

The summary, conclusion and ideas for future work are given in the last Chapter.

1.2 21 cm Reionization Experiment

The epoch of reionization defines the time when the first luminous objects in the universe
were formed. At redshift 5 — 50 (see Fig. 1.1), the light of the first generation of stars
reionized the Universe, ending the Dark Ages. In this section we first briefly describe
the history of the Universe, and then focus on a method to measure the time of the

reionization.

1.2.1 History. of the Universe

According to the Big Bang theory, the universe originated from a gravitational singularity
about 13.7 billion years ago. After the Big Bang, the distance between any two individual
points increases with time. Since the laws of physics are independent of the metric
expansion, objects bound by physical forces do not expand. For example, the Earth does
not expand together with the expansion of the Universe because of the influence of the

gravitational force, but the distance between galaxies increases [103]. During the first
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Figure 1.1: Redshift vs age of the Universe (left) and redshift vs frequency of the red-

shifted 21 cm line for a standard ACDM cosmological model.

107*3 s, all four fundamenta] forces were unified and particles did not exist. According
to quantum mechanics, it is meaningless to speak of durations shorter than this interval,
known as Planck time. At about 107% s, the universe experienced exponential growth
during a cosmic inflation period when elementary particles were created. After inflation,
these particles were in a relativistic quark-gluon plasma state. The very early Universe
was homogeneous and isotropic with high energy density, temperature and pressure. The
radiation and plasma were in the thermal equilibrium. Individual photons were absorbed
and re-emitted, making the universe opaque to the radiation. With time, space expanded
and the Universe cooled. Eventually, the temperature was low enough for quarks and
gluons to combine into baryons such as protons and neutrons (at ~1 s). During this
process, an unexplained asymmetry between matter and antimatter was created. Later,

protons and neutrons formed deuterium and helium nuclei.

After about 300,000 years the temperature of the Universe dropped below 3000 K and
electrons and nuclei combined into atoms of mostly hydrogen. As a result, the primordial
plésma suddenly became a neutral gas largely transparent to the radiation. Today, the
remnant of this primordial radiation is well-known as the cosmic microwave background

radiation [33], [106], [19]. The time period when most of the matter in the universe
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was neutral is called the Dark Ages. The only significant radiation emitted during the
Dark Ages is the 21 cm line of neutral hydrogen. The cooling of the cosmic background
radiation triggered recombination in the intergalactic medium (IGM) as explained in
[103]. The darkness lasted until the formation of the first star-like objects, when the

Universe was lit up again.

The new radiation sources, formed from the cold and neutral self-gravitating gas
clumps, reheated and reionized the surrounding clouds. The complete physical image of
the reionizing sources is yet to be understood, but according to known spectral properties,
these objects were more likely stars than quasars [142]. The epoch when ionized HII
shells surrounding the first individual sources overlapped is called the reionization epoch,
defined by the redshift of reionization z.;. Studies of quasar spectra at redshifts z < 5
show no absorption of quasar emission redshifted into the Lyman series due to neutral
hydrogen along the line of sight. This is known as absence of Gunn-Peterson effect and
is attributed to the IGM being highly ionized for z < 5 [127]. According to popular
models, the first sources of light began to form at redshift z ~ 50 and reionized most of
the hydrogen in the universe by 2 ~ 5. More optimistic models put limits into the range
20 > 2., > 5 [119]. A good overview of the formation of the first star-like objects and

their influence on the surrounding media is given by Loeb and Barkana, 2001 [66).

The early universe was very simple, while the universe today is very complex and rich
in structure. The first structures were formed due to small irregularities in the density of
the universe. The places with larger density attracted more material and became more
dense, until eventually the first objects were formed. The light from the first luminous
objects ionized the surrounding universe again. Today, most of the gas in the universe is

ionized.
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1.2.2  Probing Reionization with Redshifted 21 cm Hydrogen
Line

It is possible to detect the reionization epoch by observing the redshifted hydrogen 21 cm
line. Emitted during the Dark Ages, the line disappeared after the reionization epoch,
leaving a spectrum signature in the form of a “temperature step”. Even though the
predicted value for the reionization step is very small compared to the sky noise, using
the all sky feature of the reionization signature, I will show that in certain models the
step may be measurable with a system of two or more small antennae.

Different methods of measuring 2,,; have been proposed in the last few years, but
the most promising method is looking at the 21 c¢m hydrogen line [121]. The observed
frequency of the temperature step v is a function of the redshift z and rest frequency of

the 21 cm line, vy o = 1420.4057 MHz given by

Y21 cem
V= .
1+ 2

If the transition from a neutral to almost completely ionized IGM occurred at 20 > 2,.; >
5, the 21 cm line would be redshifted to the interval 70-240 MHz. The relation between
redshift and the age of the Universe for the standard ACDM (Lambda-Cold Dark Matter)
cosmology is given in Fig. 1.1. The model assumes the Universe to be homogeneous and
isotropic on large scales, spatially flat and filled with radiation, dark energy, ordinary
and dark matter. Six parameters describing the model can be found in [129].

The 21 cm signature is detectable only if an efficient mechanism exists to decouple the
spin temperature from the cosmic background radiation. Otherwise, neither emission nor
absorption would be detectable. Two possible processes responsible for the decoupling
are collisions between hydrogen atoms, and scattering by Lya photons. The dominant
process, except in very dense IGM regions, is Lya scattering [76]. As was first pointed
out by Field and Wouthuysen [31, 153], this process involves the intermediate transition

of an electron to the 2p state, in order to make a hyperfine transition and change the
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spin direction. During the Dark Ages, the Field-Wouthuysen process would produce a
signal which disappears after the reionization epoch, leaving a spectrum signature in the

form of a step.

Combining observational and .numerically simulated data gives us more than enough
inspiration to try to measure the redshift of reionization. Data obtained from quasar
SDSS 1044-0125 discovered by Fan et al, 2000 provides strong evidence that reionization
occurs around z = 6 [20]. Using numerical simulation, Gnedin suggested that z,.; is well

defined by looking at the time derivative of the mean free path of ionizing radiation [34].

The detection of the reionization step is not an easy task. In 1997, the observation of
two frequency bands with central frequencies corresponding to redshifts 5.0 and 8.5 was
proposed [69]. The method requires a still non-existent giant metrewave radio telescope
such as the Square Kilometre Array (SKA). The step should be detectable for an Einstein-
de Sitter universe with h = 0.5, as shown in [121]. Tt is supposed to be an edge of more
than 0.02K, somewhere between 70 — 240MHz (Fig. 1 in Shaver et all, 1999 [121], same
as Fig. 1 in Shaver and Bruyn, 1999 [120] and Fig. 1 in Tozzi et all, 2000 [137]).

The reionization step should be present over the whole sky, which opens the possibility
of detections with a. small telescope. The main requirement is to obtain very accurate
spectra over the required frequency range. However, when changing frequencies, telescope
parameters also change [62]. Even the best small broadband antennas cannot be used in
a single mode to measure the step. It only can be measured by using a specially designed

system composed of rescaled antennas.

By building a system of two rescaléd antennas, the broadband problem may be re-
duced. If the second antenna is rescaled by a factor s, the antenna beam pattern for
some frequency sv is going to be the same as in the case of the non rescaled antenna
at frequency v. Assuming that synchrotron emmision and the reionization signature

are the only two components contributing to the antenna’s temperature, the antenna
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temperature measured by an antenna with the beam pattern P(v,r) at frequency v is

v cr(V v\ )
T(v) =Te(v) %Zy(g/)) + TGR%TR((I;)—) + // P(v,r)Ty(r) (V_o) ds, (1.1)
sky

where T,.; and Tgg are the temperature contribution from reionization and from the
ground (back lobes), and Q, Qsky, Qor are solid angles of the whole antenna, the part
of the antenna which can “see” the sky, and the antenna’s back lobes, respectively, where
Qcr = Q4 — Quy [61]. Tp(r) is the temperature of a point in the sky defined by the
vector r for the frequency vy, and a(r) is the spectral index. The integration is done over
the surface of the visible sky.

Equation (1.1) can be simplified using two approximations. Firstly, a specially de-
signed telescope system could completely reflect the sky signal to the antenna’s side lobes,
and remove the background term. Secondly, if the spectral index can be assumed to be

constant over the sky

a= // a(r)dQ = const, (1.2)

sky
then the difference between temperatures measured by an antenna rescaled by a factor s

at the frequency sv and a non-rescaled antenna at the frequency v is

= Tu(y) - Zl) (13)

T, (fz/)

Sa

T1 (l/) —

In order to adequately simulate the reionization signature observations, we must in-
clude all important physical processes. The sky emission in the observed range is com-
posed of galactic synchrotron emission (~ 70%) with spectral index ~ —2.6, galactic
thermal emission (~ 1%), with a ~ —2.1, integrated emission from extragalactic sources
(~ 27%), with a ~ —2.75, and the 2.73 K cosmic background [61], [65], [80]. In our sim-
ulations we unite galactic synchrotron, galactic thermal, and extragalactic synchrotron
emission into a single component by using different spectral indices for different direc-
tions in the sky. The cosmic background radiation can be included in the reionization

signature itself. All-sky maps at 34.5 MHz [22] and 408 MHz [40] are used as boundary
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conditions for simulating the sky’s temperature at different frequencies. The simulated
all-sky map at 180 MHz is shown in Fig. 1.2. Because the 34.5 MHz map covers the dec-
lination range from —50° to +70° there are three clearly distinct regions in our simulated

map.

declination (degree)

5 10 15 20
right ascension (degree)

5000 10000
temperature (K)

Figure 1.2: Simulated map of the entire sky at 180 MHz in equatorial coordinates.

A conical spiral antenna was chosen for the simulated observation because of its
broadband characteristics and relative simplicity [62]. The reionization step from equa-
tion (1.3) does not depend on the antenna beam pattern. In a more detailed model,
where the spectral index is not constant over the whole sky, the ability to measure the
step will depend on the antenna’s parameters. For this antenna, the opening angle of the
cone is set to 6 = 15 degrees, the radius of the top of the cone is 7, = 0.125 m, and the
radius of the bottom of the cone is 7., = 2.25 m. The design of the antenna, as well

as the appropriate beams, will be discussed in the next chapter. To minimize the influ-



CHAPTER 1. INTRODUCTION 9

ence of the Earth’s rotation, the antennas in the simulation were pointed toward Polaris.
The site of the simulated observation was chosen to have the geographical latitude of 45
degrees North.

The reionization signature is included in the simulation as the function

(Tstep for v < vy
Trei = J Tstep;”f__—; for v, < v < vy (1.4)
0.0K for v > vy,
\

where Ty, ~ 0.02 K, and v, and v, are the beginning and the end of the transition. Fig.
1.3 shows a function dT' = Ti(v) — % plotted versus frequency for different rescaling ‘
factors of antennas, assuming that the spectral index over the whole sky is constant.
Under such assumptions, the reionization signature can be detected (for any rescaling
factor) from the graph. For each curve three frequency regions can be discussed. Large
frequencies, v > 1y, have dT" = 0 and define a completely ionized Universe. The transition
region is defined with 15 > v > s1q, and finally the Dark Ages can be seen at frequencies
lower than sv;.

A more realistic model includes the spectral index variations over the sky. In Fig. 1.4
the reionization signature is given for a normally distributed spectral index, with mean
at —2.7, and 0.1 variance. The signal was produced for a 24-hour time period using
24-minute steps. By using different sizes of sky with the same spectral index, two curves
were produced. For the first run, the sky consisted of 1600 x 800 points, all with a different
spectral index. In the second run, it was assumed that squares of 2 X 2 map points have
the same spectral index. The curves strongly depend on the chosen @. As in figure 1.3,
three regions of the signature are present. To be able to see the reionization signature,
construction of a system composed of two antennas rescaled by ~ 1% is needed. Since
the signature strongly depends on the step temperature value, rather than the frequency

range, it might be detected even with a larger rescaling factor system (see Fig. 1.5).
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Figure 1.3: The reionization signature dT" = T} (v) — Tzs(;") versus frequency. The spectrél
index is constant over the whole sky, a(r) = —2.9, and the reionization step is defined

as in (1.4), with T, = 0.02 K, 14 = 190 MHz and v, = 210 MHz. Different curves are

obtained for different antenna rescale factors: s = 1.5, 1.1, 1.05 and 1.01.

However, smaller s provides stronger constraints on the reionization epoch.

Using such a model one can conclude that the signature is measurable with the system
rescaled by 1% if the reionization of Ty, ~ 0.02 K occurred at redshift 2 < 8 (frequency
nus > 150 MHz), as shown in figure 1.5. A smaller rescaling would give a better view of
the reionization epoch, but construction of such a system would be much more difficult.

To obtain the necessary sensitivity and reduce noise, an integration time of ~ 100

hours is needed. The minimum detectable temperature AT, is [61]:

K sTsys
VAvt’

where K is a sensitivity constant, T, is the total system temperature, Av is the band-

width and ¢ is the integration time. For a bandwidth of 1 MHz, with Teys = 300 K
(overestimated), K, ~ 1 and the needed sensitivity of 0.0002 K, the integration time is
~ 625 hours.
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Figure 1.4: The reionization signature versus frequency, plotted with Gaussian distribu-
tion of spectral indices over the sky with mean at -2.7 and 0.1 variance. The two curves
are obtained by taking different-size sky areas with the same «. The rescaling factor is

taken to be 1.01, and all other parameters are the same as in Fig. 1.3.

‘The main sources of potential contamination are the spectral lines and terrestrial
interference. Radio lines of various origins occur often in the given radio band, but can
be identified and removed with higher resolution spectroscopy. Terrestrial sources are in
relatively narrow-bands and vary with time. Interference with FM and TV bands can be

avoided by a careful choice of observational site.

There is a number of proposed observatories with the task of probing the epoch of
reionization [30]. Many of them are a part of the Square Kilometer Array (SKA) project,
a future giant radio telescope with a total collective area of one square kilometer [124].

When finished, SKA will be over 30 times the size of the Arecibo Radio Telescope. The |

low Frequency Array (LOFAR) is an array of small antennas currently under construction



CHAPTER 1. INTRODUCTION 12

o
o
w
r——
~
/
1

o
(=}
s
T
I

P R B P S N R T e SO
140 160 180 200 220 240
the "step " frequency [MHz]

Figure 1.5: Measurable reionization signature as a function of step temperature, fre-
quency “F2 and the rescaling factor. Three different curves were modeled: for s =0.1
(top line), s = 0.05 (middle line) and s = 0.01 (bottom line). The area above the curves
presents the signatures which are-possible to measure. The spectral indexes and the

antenna beam patterns are the same as in the previous figure. The difference vy — 1 is

set to be 20 MHz.

in the Netherlands [45]. It will have 77 stations filled with almost 200 antennas spread
over a circle 150 km in diameter. Two types of antennas will scan the sky in two frequency
ranges, 30-80 MHz and 120-240 MHz. At the present time, the construction of the first
station is almost done and the station is supposed to be operational in 2007 [39]. Another
radio array targeting the reionization epoch is the Mileurs Widefield Array (MWA) [84].
It will have 8000 dipole antennas optimized for 80-300 MHz. These arrays will have
a spatial resolution high enough to ldok at the fluctuations of the 21 cm reionization
signal. This project is still in the planning stage. Other smaller scale experiments will

use the all-sky property of the reionization step. The global reionization signature will
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be a target of the Cosmological Reionization Experiment (CORE) [16]. CORE is a small
antenna project, in parts very similar to the system proposed in this thesis. At this time,

CORE is still in development.

Success of detection of the global 21 cm reionization step depends on the ability to
identify and isolate all the different sources of noise. In the data collected during our
observational campaign we have estimated that the stability of the spectrum for a system
with a single antenna (Fig. 4.2) is not sufficient enough for performing high precision
measurements as required to identify 21 cm reionization signature. Activity in a sporadic
E-layer of the atmosphere due to meteor forward scattering interferes with single antenna,
observations. Removing all meteor-caused signals is very hard since they occur frequently.
For our system, we have estimated a meteor flux in FM bands for one year of observations
of over 10" meteors with brightness temperature greater than 500 K. This amounts to
more than one meteor reflection per second visible in one of the FM bands. Since the
number of meteors with 7" < 500 K is even higher (see Fig. 4.12), it becomes extremely
difficult to find a time period without any meteor activity over the needed bandwidth.
A possible solution might be to perform integration over each individual frequency band
with all meteor detections above certain threshold at a given frequency. However, this

~approach must be carefully planned, since the 21 cm step intensity is expected to be
only ~ 20 mK, so just by having more meteor counts below the threshold level at some
frequency, and less counts at some other frequency, might lead toward the false 21cm

signature detection.

During the past three years, we have tested the levels of radio noise at a number of
locations in and around Algonquin Park, Ontario, Canada. As it will be shown in Section
1.4 and Chapter 4, none of these locations are quiet enough for observing the redshifted
21 cm line. The main sources of spectral contamination are man-made transmitters and
the activity of the sporadic E layer of the ionosphere (see Chapter 3). Thus, we have

decided to shift the focus of this thesis towards the investigation of processes inside the
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sporadic E layer, in particular, meteor trail detection via forward-scattering. In Chapter
5, we will discuss the effects of this noise on the future 21-cm reionization signature

instruments.

1.3 Trail Reflection Experiment

Another purpose of the instrument is the detection of meteors through forward scattering
[89]. When signals produced by FM radio and TV stations are reflected by a meteor trail,
vital information describing the meteor can be extracted. When a meteoric particle enters
the ionosphere at a height of 70-160 kilometers, it produces a trail of free electrons due
to collisions with air molecules. Any radio wave incident on such a trail is partially
scattered. When the transmitter (radio or TV station) is located far enough from the
receiver that direct contact is impossible due to the curvature of the Earth, the signal
reflected from a meteor trail can be detected. This technique is known as forward meteor
scattering. Even when all characteristics of the transmitter ahd receiver beams are known,
the orbital elemenf,s of a meteor cannot be resolved. One possible way to find the orbital
elements is to have one transmitter and many receivers looking at the same trail. By
comparing data from different receivers, the path of the meteoroid can be calculated. In
another approach, a system such as TREX, with a resolution of a few kHz, can resolve
different terrestrial signals at very high frequencies (VHF). An example of the spectra
recorded with TREX is given in Fig. 1.6. All non-field-of-view VHF sources can be used
as transmitters for the forward-scattering method. Knowing the frequency, directivity,
and the power of the transmitters, and keeping in mind that there are a large number
of sources, it is possible to extract all meteor parameters by having only one receiver.
The meteor multi-frequency forward scattering observations will be described in detail

in chapter 3.
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Figure 1.6: The time evolution of spectra showing meteor forward scattering at multiple
frequencies. There are 500 spectra; sampled over the total collection time of 4.5 minutes.
The color defines the intensity at the given frequency. Data was obtained in June 2006

at the Algonquin Radio Observatory.
1.4 Choosing the Observing Location

Noise at radio frequencies originates on the ground, in the atmosphere, or in objects on the
celestial sphere. Terrestrially produced noise can be roughly divided into two categories:
the noise due to the ground or other obstructions within the antenna beam, and man-
made noise. Depending on the antenna directivity, the main fraction of the received
signal comes from the area where the main lobe is pointing. There is also a contribution
due to the side and back lobes which depends not only on the antenna’s parameters
but also on factors such as the antenna’s elevation, ground composition and the ground
structure. Man-made noise includes commercial transmissions, as well as unintended
radiation from electrical equipment including power transmission lines. Atmospheric
noise can roughly be explained by the emission from atmospheric gases due to different
atmospheric processes such as lightning. Last but not least is the noise coming from
celestial radio sources. It grows exponentially toward lower frequencies.

Man-made interference can be the source of signal masking and contamination of

astronomical signals. The radio spectrum is divided into bands designated for different
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Frequency (MHz) | Description

0.030 - 0.535 maritime and aeronautical communications and
navigation, international fixed public band

0.535 - 1.705 standard AM band broadcasting

1.705 - 30 amateur radio, LORAN, government radio
communications, international shortwave broadcasting,
fixed and mobile communications,
radio navigation, industrial, scientific
and medical equipment

30 - 50 government and non-government communications,
fixed and mobile

50 - 54 amateur radio

54 - 72 television channels 2 to 4

72 - 76 government and non-government services,
fixed and mobile

76 - 88 television channels 5 and 6

88 - 108 FM radio

108 - 137 aeronautical navigation

137 - 174 government and non-government communications,
fixed and mobile, amateur

174 - 216 television channels 7 to 13

216 - 470 amateur radio, government and non-government
communications, fixed and mobile,
air traffic radio navigation

470 - 608 television channels 14 to 36

608 - 614 radio astronomy, mobile

614 - 806 television channels 38 to 69

806 - 3,000 aeronautical radio navigation, amateur radio,
government and non-government communications, fixed
and mobile, television broadcasting,
digital audio broadcasting

3,000 - 30,000 government and non-government communications,
fixed and mobile, amateur, radio navigation,
direct-to-home satellite broadcasting

30,000 - 300,000 experimental, government, amateur, fixed

Table 1.1: Canadian spectra allocation: radio bands from 30 kHz to 300 GHz.
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purposes. Canadian radio band allocations are presented in Table 1.1. Radio signals of

astronomical origin are far weaker than the signals used by terrestrial communication

systems. Interference can result in “bad data” and often cause a completely wrong

scientific interpretation. Fig. 1.7 shows a signal leaking from one FM band into the
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surrounding radio frequency (RF) bands.
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Figure 1.7: An example of RF interference: the FM transmitter at Bracebridge owned by
the Haliburton Broadcasting Group Inc, emitting an FM signal at 99.5 MHz, pollutes the
surrounding spectra from 96.5 MHz to 102.5 MHz. All 10 measurements taken during

the summer of 2004 are plotted.

For the purpose of meteor observation we use FM commercial transmitters as a source
for forward-scattering. FM stands for “Frequency Modulated”. Frequency modulation is
a type of angle-modulated signal where the information is transmitted by changing the
frequency of the signal. If the information to be transmitted is in the form z(t), limited
in magnitude as |z(t)| < 1, the FM modulation is defined by using a carrier of the form

Acos(2m fot):

M(t) = Acos (27r Otf(T)dT) = Acos [2% /Ot (fe+Af :c(r))dr} ,

where fc is the carrier frequency, A is the amplitude, f (7) is the frequency of the oscillator
and Af is the maximal frequency shift with respect to the carrier frequency. In North

America, the FM radio band goes from 87.9 MHz up to 107.9 MHz. In order to resolve

two FM signals arriving at two successive frequencies, the frequencies have to be 200 kHz
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apart. Knowing that the total FM bandwidth is 20 MHz, and that the stations must be
200 kHz apart, there cannot be more than 100 stations visible in the whole FM band.

Worldwide, there are very few exceptions to the FM spectrum as defined in North
America. Japan is using a completely different FM radio band from 76-90 MHz, with
a band separation of 100 kHz. Some Eastern European countries are still using OIRT
(Organisation Internationale de Radiodiffusion et de Télévision), at frequencies of 65.9-
74.0 MHz separated by 30 kHz. An example of an OIRT FM transmitter is Radio Kultura
in Minsk, Belarus, transmitting at 71.9 MHz. Presently, OIRT broadcasters are vanishing
in favor of the standard FM.

The maximal range of an FM signal depends on the curvature of the Earth, the terrain
configuration and the positions of the receiver and transmitter. The ionosphere, under
normal conditions, does not influence the propagation of FM waves. Oneb should keep

in mind that signals can be reflected from mountains and buildings. To calculate the

Figure 1.8: Maximal line-of-sight distance from the transmitter.

maximal line-of-sight distance one can “hear” an FM station, one can use a 2D approach.

Let us assume that the Earth has a perfect spherical shape on a 2D image defined by a
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circle with equation

? +y* = R? (1.6)
where R = 6.38 x 10° m is the Earth’s radius, and z and y define the surface of the Earth.
We set a coordinate system in such a way that the top of the transmitter is on the y-axis
and the coordinate center is at the center of the Earth (Fig. 1.8) The maximum line-of-
sight distance d of a receiver (point B) at zero altitude, from the transmitter (point A)
at an altitude h, is defined by the line tangential to the circle, defined by equation (1.6)

passing through A. The slope a of the tangent line (y = az + b) is

_@_—:L’B B

a= = = ,
dt yp  F/RP—z}

where zp and yp are the coordinates of point B.

The second condition is that the point A(z4 = 0, y4) lies on the tangent y4 = az 4 +b.
Thus b = ya (see Fig. 1.8). The point B(zp, yz) is also on the tangent yz = azg + ya

resulting in
B

YB ZF\/_RTJJ?B—B Ya

After substituting yg = £1/R? — 1% the previous equation becomes

R? —a% = 2% L ys\/R2 — 1%,

Assuming that the solution is in the 1st quadrant

— R A/ h2
xB_R-Fh h +2Rh,
R2

“R+h

YB

Once the position of point B is known, it becomes straightforward to determine the

angle o and the corresponding arc I:

N v
! = Ra = Rarctan —h——jfﬂ (1.7)

The maximal arc distance a receiver (at sea level) can receive a line-of-sight signal

from a transmitter at an altitude h (from sea level) is given by expression (1.7).
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The famous CN Tower is often credited as the tallest building in the world. Located
in Toronto, Canada, and completed in 1976, the tower is 553 meters high (including
antennas). Using equation (1.7), the distance one can receive a signal emitted from the
CN Tower is found to be about 85 km.

The maximum distance of the transmitter for forward-scattering observations depends
on the height of the scattering point. For a meteor height of 160 km, the maximum

distance between a transmitter and a receiver is about 2800 km.

1.4.1 Brdadcasting in North America

A database with all FM, AM and TV broadcasting information for all of Canada and
border regions of the USA is available on the Canadian Government, Industry Canada,
Spectrum Management and Telecommunication website [130]. The USA equivalent of
the Canadian broadcast database system is FMQ FM Radio Database Query, operated
by the Audio Division of the Media Bureau, USA federal government [140).

Both databases were used to creafe a full North American map of FM transmitters.
In total there are 38313 FM transmitters. The map is plotted in Fig. 1.9. The histograms
of horizontal and vertical power emitted are shown in Fig. 1.10 and the distribution of
the frequencies in Fig. 1.11. |

It is not easy to find a radio quiet area to perform radio astronomical observations.
Rapid industrial growth requires constant development of new telecommunication ser-
vices. The government controlled radio spectrum is fully allocated up to almost 300 GHz
with very few windows available for astronomical observations. As shown in Fig. 1.9,
North America is almost completely éovered with FM radio waves. Only inaccessible re-
gions such as the northern parts of Canada are radio quiet. Hard terrain, polar climate,
lack of roads and living facilities makes potential observations from these areas expen-
sive. An example of a suitable place for observation of the 21 cm reionization signal is

the northern part of Baffin Island, Nunavut.
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Figure 1.9: North American FM coverage

Observations of meteor scattering do not need a perfectly radio silent location. Algo-
nquin Park, located in the Canadian province of Ontario offers 7,725 square kilometers
of forests, lakes, and rivers isolated from modern life. In the heart of the park is the Al-
gonquin Radio Observatory. It is a relatively quiet observational place with road access
and electric power. During 2005 and 2006 I performed a set of observations from the

Algonquin Radio Observatory (see Chapter 4).
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Figure 1.10: Histogram of horizontal (left) and vertical (right) power for all North Amer-

ican FM transmitters.
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Figure 1.11: Distribution of the frequency bands for all North American FM transmitters.
1.5 Other Applications

On July 30, 2004 at 14:22 local time a solar burst was recorded at multiple frequencies.
The solar activity was observed from the roof of the University of Toronto Physics De-
partment building from Jul 20 to Aug 10, 2004. A log-periodic antenna was attached to
two 20 dB amplifiers, a bandpass filter, a 500 MHz A/DC and a computer. In Fig. 1.12
the signal intensity at 47 MHz is shown for July 30, 2004 from 14:03 until 19:36 local
time. The first peak is in excellent agreement with the U.S. Dept. of Commerce, NOAA,

Space Environment Center solar event list [94]. The remaining peaks are periodic and
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are most likely oscillations inside the ionosphere.

S )
31/07/04 00:00:00 [ hours]
UT time

Figure 1.12: Solar Burst observed on July 30, 2006, Department of Physics, UofT: UT

time vs intensity in arbitrary units at 47 MHz.



Chapter 2

The Instrument

The need for better resolution, larger collecting area, and higher sensitivity in different
radio bands has led to the development of a new generation of radio telescopes. Pre-
vious designs, such as the Arecibo radio telescope, are based on the use of mixers and
other analog elements (see Fig. 2.1). These older telescopes are convenient for narrow
band observations. We designed a completely digital solution for wide band scanning of
frequencies up to 250 MHz, in short, a digital spectrometer. Its is essentially a system

composed of an antenna, an amplifier, an A/D converter and a computer.

An introduction to the theory behind two arm conical spiral antennas (2ACSA) will
be given in section 2.1. 2ACSAs have uniform performance characteristics over a wide
range of frequencies. The construction of a 2ACSA is a complex and high cost process, so
we have considered different approximations in order to obtain a design with frequency
independent beam patterns in addition to structural simplicity.

The setup must include filters and amplifiers used to isolate and amplify the needed
portion of the spectra. In the case of TREX, a 50-200 MHz band pass filter is used as

an anti-aliasing filter to limit the bandwith of the signal.

The amount of data collected per second exceeds the transfer rate of all commercially

available A/D converters, which are typically capable of transfering only a few MB/sec,

24
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antenna

oscillator

Figure 2.2: TREX schematics.

leading to very inefficient data acquisition. In section 2.2 it will be shown that in order
to obtain spectra up to 250 MHz the data sampling has to be done using a 500 MHz
or faster A/D converter. An ongoing project to develop a faster A/D converter and
acquisition system using 64 bit PCI-X is underway at the Physics Electronics Resource
Centre at the University of Toronto. Such a design will permit the streaming of all data

to computer memory in real time.

After the raw data are received in the main memory, a fast Fourier transform (FFT)

needs to be performed to obtain the power spectrum. FFT calculation is a very com-
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putationally intense task. N-point FFT uses —;—N log, N operations. Two well known
fast FF'T packages are FFTW (Fastest Fourier Transform in the West) and Intel’s IPP
(Integrated Performance Primitives). These algorithms are optimized for working with
floating-point numbers.

I have developed an FFT algorithm using integer, rather than floating-point arith-
.metics, to additionally speed up the calculations. As will be shown in 2.3.1, Intel’s
processor streaming SIMD (Single Instruction Multiple Data) extensions were used to
speed up the FFT algorithm by adapting it to specific hardware; in this case, a Pentium
4.

2.1 Rectangular Approximation of Two Arm Coni-
cal Spiral Antenna

The theoretical basis for the 2ACSA was given in the 1950s. In 1957, Rumsey [114]
suggested two necessary conditions for constructing a frequency-independent antenna:
the angle principle and the truncation principle. The angle principle claims that the
performance of an antenna defined entirely by angles will be frequency independent.
Such a principie does not set any constraints on the size of the antenna, so in general
it implies an infinite geometry and at the same time an infinite frequency range. For
practical usage, the truncation principle states that the antenna must have an active
region of finite size. An active region could be defined as the part of the antenna that
contributes to absorbing radiation at a given frequency. By changing the frequency,
the active region also changes. If the antenna dimensions are expressed in terms of the
wavelength, all proportions must stay the same.

In the case of the conical spiral antenna, the active region at a given wavelength \
occurs when 2—’;3 ~ 1, where p is the radius of the antenna region. The active region

changes from the small end to the large end as the wavelength changes from the minimal
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Figure 2.3: The top and side views of 2ACSA. Parameters used are Pmin = 0.1 m,

Prmaz = 0.6 m and h = 2.5 m.

to the maximal value. Fig. 2.3 shows 2ACSA with Pmin = 0.1m and pye; = 0.6m.

For measurements requiring a high precision antenna beam pattern, the symmetry of
the antenna should be preserved. A signal from the antenna passes through a number
of components, called antenna feed, before reaching an amplifier. There are significant
problems with designing a feeding system due to the fact that the feeding starts from
the smaller end of the antenna (the top of the antenna). A submarine antenna system
proposed by Dyson, 1959 [23] and later by Wills, 1985 [151], has the feeding coaxial cable
carried along the antenna arm. To preserve symmetry, an unused (dummy) coaxial line
is carried along the other antenna’s arm. This technique reduces the unbalanced mode

on the line significantly.

In 1967, Yeh and Mei numerically solved the electromagnetic antenna equations for
the thin-wire model in which the antenna’s arms are modeled with a wire of constant
radius [156]). The radius must be much smaller than the wavelength. However, accord-
ing to Rumsey’s first principle, all antenna parameters must be defined by angles, and
obviously, the thin wire model is not completely frequency independent. A better model
includes arms expanded in width: the thinnest at the cone apex and thickest at the base

of cone. In this work we will use the thin wire approximation.
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In the thin-wire approximation, the conical spiral antenna is designed by winding two
or more wires around the surface of a truncated cone. Two angles define such an antenna:
the half angle of the cone ¢ (between the symmetry axis and the side of the cone) and
the wrap angle a.. For § = 90° the antenna becomes a pure 2-dimensional spiral. The
wrap angle is the angle between the spiral arm and the radial line from the apex of the
cone. The smaller and the larger ends of the cone are defined with the diameters d;y,

and dpqz.

The 2-dimensional mathematical equation of the logarithmic spiral is
p = aeb¥l (2.1)

where the radius p and the angle ¢ are the standard cylindrical coordinates, while a and
b are constants. ¢ can take values from 0 to co. Using this equation, the conical spiral

antenna arm is defined with

ri(@) = raetl (2.2)

where r; is the radial distance from the cone apex to a point on the conical surface. The

constant b can be expressed in terms of the antenna angles 6 and « as

sin @

b= .
tan o

The value of 74 can be calculated from the boundary conditions by putting ¢ = 0 into
equation (2.2) to give

r, = dmin
47 9%ing’

A two arm CSA will have two symmetric arms with respect to the z-axis. The second
arm can be obtained by rotating the first arm by the angle 7, while keeping z constant.

For the second arm, the radial distance from the cone apex r, is

ra(@) = rae®®@=m, 9] > 1. (2.3)
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2.1.1 Modeling Rectangular 2ACSA

I have developed a generic algorithm for designing a rectangular approximation of a
conical spiral antenna. I used equations (2.1-2.3) to find a set of points defined with an
increment A¢ of the angle ¢. A¢ is chosen in such a way that —i—% is an integer, so that the

number of antenna sides for a single antenna stays fixed. In the general case, the offset

21

should be set accordingly to the number of sides as ~—— Each two successive points of

sides
the same arm are connected linearly taking into account the limitations of the analysis
software. In the simplest possible model, the angle ¢ takes values of 2k, %Tl’ + 2km and
§7r + 2km, where k is a non-negative integer. The structure obtained has the symmetric

shape of the Star of David when seen from the top. By taking values k7 and -’;-W for ¢, a

rectangular structure is defined, as shown in Fig. 2.4.

Figure 2.4: Top view of the four different approximations of 2ACSA with A¢ = %’l (top
left), 5 (top right), 2= (bottom left) and 35 (bottom right). The other parameters are
set as in Table 2.1.

I have written an algorithm to find the antenna having the most symmetric beam
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pattern with the smallest possible back and side lobes. The dimension of the antenna
should be on the order of a few meters. The required specifications are given in Table

2.1. The inner and outer radius set the constraints on the active regions of the antenna

Symbol | Value Info

h ~3m Total cone height

Prmin ~0.1m Inner radius

Pmaz > 0.6 m Outer radius

fmin 70 MHz Minimal frequency

Jmaz 250 MHz Maximal frequency

0 arctan £2¢2 | Cone angle

Q ~ 1.3 rad Wrapping angle

Al 0.25 m The largest distance between antenna points
A¢ 2—;’-, o 25’5, 35 | Determines the shape of the antenna
Twire 0.001 m Radius of the wire

c 50 MS/m Conductivity of the copper wire

Table 2.1: The parameters used for testing 2ACSA.

for the required minimal and maximal frequencies. The cone angle 6 depends on the
height and the base of the antenna.

The antenna beam pattern Py(c, §) represents the response of the antenna at the given
frequency as a function of direction, described by the angles & and § of an equatorial
coordinate system. In short, the beam pattern defines the region of the sky where the

antenna emits or receives radiation. The normalized power pattern is defined as

1
Pf,n(Oz, (5) = P

fymazx

Ps(a, ), (2.4)

where P, is the maximal response.
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The main beam or main lobe of an antenna is defined as the lobe with the largest
maximum. Other lobes are called minor, or side and back lobes. The power received
from the main lobe Py, can be obtained by integration over the main lobe solid angle

Py = / / Py (e, 6)d2, (2.5)

main
lobe

where d€2 = sin ddadd.
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Figure 2.5: Antenna beam patterns for the 2ACSAs in Fig. 2.4 with the parameters as
given in Table 2.1 with § =0 (h = 0).

The radiation from a conical spiral antenna on the z-axis is maximal in the direction
defined by the smaller end of the cone. In this direction the electric field is mostly
circularly polarized.

The antenna characteristics were studied for different frequencies using the open

source “Antenna Scatters Analysis Program (ASAP)” written by Jerry Wayne McCor-
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mack (73], as well as with the commercial software EZNEC [131]. The limitations of both
packages are that the wire radius is supposed to be less than 0.01 m with the longest

segment less than 0.25 m and the shortest segment less then 30 wire diameters.

The antenna beam patterns are plotted for a range of frequencies of interest for each
of the structures given in Fig. 2.4. In the simplest scenario, where the height is set to be
zero, the normalized antenna beam patterns are shown in Fig. 2.5. Clearly, in the case of
the antenna shaped like the Star of David (A¢ = 235), the beams are not very symmetric.
All four antennas have big back lobes compared to the main ones, especially at lower
frequencies. It is interesting to notice that the square approximation with A¢ = —2175 has
very symmetric beams similar to the spiral case simulated with A¢ = g_g_ The frequency

dependence of the beam patterns is not obvious from these graphs.

The simulation shows that the antenna characteristics can be improved by changing
the cone angle 6. In figures 2.6 and 2.7, the normalized antenna beam patterns are

plotted for the same set of four antennas but with 8 = 30° and 6 = 45°, respectively.

Looking at the plots given in Fig. 2.5, 2.6 and 2.7, it can be seen that a suitably tuned
rectangular 2ACSA with A¢ = 24—” has the potential to approximate a two arm conical

spiral antenna well enough for the high accuracy observations in the needed frequency

band.

By changing the number of wire wraps (the wrapping angle @), the bandwidth prop-
erties of the rectangular 2ACSA can be improved. In the previously plotted cases with
a = 1.3 rad, the total length of the wire was ~ 4.7 meters. By changing the wrapping
angle to a = 1.4 rad and keeping all other parameters as in Table 2.1, the total length
of used wire becomes ~ 7.5 meters. In the case of the wrapping angle o = 1.5 rad, the
length becomes ~ 18 meters. The beam patterns are shown in Fig. 2.8, and the antenna

posessing a wrapping angle of 1.5 rad is plotted in Fig. 2.9.

I have also investigated the influence of adding more arms. In Fig. 2.10, a rectangular

antenna with four arms is shown, along with its corresponding antenna beam pattern.
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Figure 2.6: Antenna beam patterns for the 2ACSAs from Fig. 2.4 with the parameters
as given in Table 2.1 and 8 = 30°.

Comparing to the equivalent two-arm case, we see that there is an additional breaking
of symmetry.

The antenna side and back lobes can also be influenced by construction errors. If the
building precision is £1 cm, the resulting antenna and antenna beam patterns will look
as shown in Fig. 2.11.

We ran the generic algorithm to test beam patterns for a set of antennas with different
parameters in a given range. After comparing different antennas, we chose a rectangular
approximation of the 2ACSA with a height of 3 m, a = 1.5 rad, A¢ = 90°. The antenna
has a pyramidal structure defined by four rods fixed at the top and at the bottom. The
rods have to be built from a hard dielectric material. A copper wire is used to form the

two antenna arms wrapped around the four rods. The mechanical properties and final
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Figure 2.7: Antenna beam patterns for the 2ACSAs from Fig. 2.4 with the parameters
as given in Table 2.1 and 8 = 45°.
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as given in Table 2.1. Both plots are done for ¢ = 90 degrees. Left o = 1.4 rad, right

a = 1.5 rad.
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Figure 2.10: Left: top view of four arm CSA with the parameters as given in Table 2.1,

a = 1.5rad and A¢ = 2475. Right: the normalized antenna beam patterns for the 4ACSA.

design are given below.

Mechanical Properties of the Rectangular 2ACSA

The skeleton of the antenna should be built from a dielectric material with excellent
mechanical properties. The antenna should have a light weight mounting, in order to be
easily transported. The chosen material should have appropriate mechanical properties

such that the structure does not get deformed with time due to the influence of atmo-
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Figure 2.11: Top: 2ACSA and the normalized beam patterns. o = 1.5 and the other
parameters as in Table 2.1. Bottom: 2ACSA with the same parameters and +1 cm

construction tolerance.

spheric conditions. The wire tension also plays an important role in possible mechanical
deformations. The structure needs to be stiff enough to minimize deformations. Lastly,
as shown in subsection 1.2.2, antennas used for observing the 21 cm reionization line
require a construction precision better than 1 mm. Fortunately, the precision achieved
in the Department of Physics Machine Shop, University of Toronto, where our antenna
was constructed, is high enough to satisfy this requirement.

The most important mechanical properties of any material are its resistance to bend-
ing, the ability to sustain a tensile load, and the expansion coefficients. Yield strength
is a value found experimentally through testing indicating the amount of resistance to

permanent deformation (bending). If a material is stressed below its yield strength, it
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will return to the original state after the stress stops. If a material is stressed beyond its
yield strength, it will not return to the previous state when thé stress is removed. The
higher the yield strength, the more resistance to bending a material exhibits. Tensile
strength defines when the tested material will fail under a tensile load (being pulled from
each end Qf the material). Linear thermal expansion is a ratio of the change in the linear
dimension to the original dimension for a unit change of temperature.

In engineering, stress is defined as force per unit area. If the stress stretches the
material, it is called tensile stress, if it compresses the material, it is known as a com-
pressive stress, and if it shears the material, we call it a Shéaring stress. The tensile
and compressive stresses o are simply calculated from the force F acting on the material
with a cross-section A, such that ¢ = %. In the case of a circular cross-section, the
tensile/compressive stress is

F

o=x—.
rir

The stress equation due to bending is given by

M My
=4+ =477 2.
o ':tZ 7 (2.6)

where M is the bending moment (force times distance), Z is the section modulus (distance
from the axis up tolthe distance of the object’s furthest point), y is the perpendicular
distance from an axis through the center of gravity of the cross-sectional area to the
stressed fiber and I is the moment of inertia, which, for a full cylinder is I = %‘1—4.

The electrical properties of the material are defined by the dielectric constant or
permittivity. It is a dimensionless constant that indicates how easily a material can
become polarized. The constant is the ratio of the permittivity of the material in normal
ambient conditions to the permittivity of a vacuum. Changes in temperature, moisture
levels, electrical frequency and part thickness may affect the dielectric constant.

An excellent choice for the frame material for the antenna, is fiberglass, also known

as G10 or GFEC. The most common application of G10 is in the production of printed
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circuit boards. The main advantages of G10 are stiffness, strength, toughness (resistant
against severe impacts), good density and excellent dielectric properties. On the other
hand, G10 is UV-sensitive, expensive, and hard to cut, requiring power tools and special
“cutting-equipment. Dust produced while cutting G10 is very toxic and carcinogenic. The

properties of G10 are summarized in Table 2.2.

Density 1790 kg/m?3
Specific Gravity 1.82

Coefficient of Thermal Expansion | 0.9x107° m/m/C°
Tensile Strength 45 MPa ‘
Yield Strength 22 MPa

Table 2.2: Properties of G10.

We can estimate the minimal diameter of the antenna side rods made of G10 as
follows. Consider a rod of length L and diameter d, supported at both ends. A force
F is applied to both ends in such a way that it tends to compress/stretch the rod. A
force Fy acts on the center of the rod, pushing it toward the ground (opposite from the
support points). The maximal nominal tensile (o) and compressive (0p) stresses are the

combination of the bending and the tensile stresses given by

4 (2LF,
Oq = —% ( d + Fm) (27)
4 (2LF
Oy = % ( d ¥_ Fz> (28)
Maximum nominal shear stresé can be calculated from
ol
a — 2 a
_ 1
Ty = 20b

For our purpose, the force F, can be ignored, so the nominal shearing stress is

4 LF,
TEEE
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or by solving for d,
3
1= (£52) "

T T

Knowing that the yield strength of fiberglass is ~ 20 MPa, and assuming that all pressure
(in the form of F,)) applied to ouf rod of length L = 3 m is concentrated in the center, such
that F;, = 10* N, one can calculate the minima)] diameter to be d ~ 8 cm. The obtained
diameter is overestimated, since the force F, is overestimated and not concentrated at
a single point. By adding additional supporting rods, the shear stress can be further
suppressed.

The compression due to antenna weight is‘ negligible. Keeping in mind that the
density of G10 is 1790 kg/m?, and if each antenna side has a diameter of 8 cm and is 10

m long, the total mass is only

d\ 2
m=p <—2-> wL ~ 90kg.

A 900 N weight causes pressure of P = % ~ 18 kPa on the rod’s cross-section, which
is negligible compared to tensile strength of G10 (45 MPa). The same conclusion can
also be obtained from equations (2.7) or (2.8). In the case of a real antenna, the mass of
G10 is defined by the height of the antenna, plus the mass of thin wire. An additional
complication is the fact that the rod is not vertical to the ground, but rather at some
angle. However, even by including all “worst case” parameters, it can be concluded that
tensile deformation will not play a critical role in the design. For a pipe with exterior

and interior diameters, dy and di, respectively, the equations (2.7) and (2.8) become

. F,
ooyxF My 4 F 32 F,Ld,

AT T(ds—di)? | 7 dl

Despite the significant change in tensile strength for the case of the pipe due to the fact
that the cross-section of the pipe is smaller than in the case of the rod, this term can be
neglected.

The simplest design would be 4 rods of appropriate lengths connected at the top of the

structure (see Fig. 2.12). Each rod is composed of 3 smaller parts. Having multiple rods
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per antenna side would allow simpler machining (as an example, the limit on length of
equipment available at the Machine Shop, Department of Physics, University of Toronto
is only 1.5 m), as well as easy transportation once the antenna is disassembled.

A wire is wrapped around the antenna structure through holes in each rod. In Table
2.3 the distance from the base of the rod to the holes is given for the first arm. The
wrapping starts from the top of the 1st rod. The second antenna arm is wrapped in the

same way as the first arm but starting from rod 3.

Rod 1 (m) | Rod 2 (m) | Rod 3 (m) | Rod 4 (m)
2.785241 2.777342 2.769234 2.760913
2.752372 2.743607 2.734610 2.725377
2.715901 2.706175 2.696193 2.685948
2.675433 2.664641 2.653565 2.642198
2.630531 2.618556 2.606266 2.593653
2.580708 2.567421 2.553785 2.539789
2.525425 2.510682 2.495552 2.480022
2.464084 2.447726 2.430937 2.413706
2.396021 2.377871 2.359242 2.340123
2.320500 2.300361 2.279691 2.258476
2.236703 2.214357 2.191422 2.167882
2.143723 2.118928 2.093480 2.067361
2.040555 2.013042 1.984805 1.955824
1.926080 1.895553 1.864222 1.832065
1.799062 1.765189 1.730424 1.694744
1.658124 1.620539 1.581965 1.542375
1.501742 1.460038 1.417237 1.373308
1.328222 1.281949 1.234458 1.185715
1.135689 1.084345 1.031649 0.977565
0.922056 0.865086 0.806616 0.746605
0.685014 0.621801 0.556923 0.490336
0.421995 0.351855 0.279867 0.205984
0.130155 0.052328

Rod 3 (m) | Rod 4 (m) [ Rod 1 (m) [ Rod 2 (m)

Table 2.3: Antenna 1: The position of holes for the first antenna arm. The wrapping

starts from rod 1. The second arm is symmetrically wrapped starting from rod 3.

The 21 cm Reionization EXperiment needs two identical but rescaled antennas. The

second should be exactly 5% smaller than the first. Both antennas should be built from
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Figure 2.12: TREX schematics
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the same material according to the schematics given in Fig. 2.12. The bigger antenna
has a total wire length of 19.69 m, while the smaller should have 18.7 m. In reality, the
length of wire depends heavily on how the the wrapping is performed.

The antenna (see Fig. 2.13) performed exceptionally well during the severe summer
thunderstorm on July 17, 2006 in Algonquin Park. Despite strong winds of up to 130km /h

the antenna was not damaged.

Figure 2.13: TREX antenna at the Algonquin Radio Observatory, July 2006.

2.2 From Antenna to Computer: Cables, Filters,
Amplifiers and A/DC

Radio waves captured by the antenna are converted to electric current. The detected
signal has to pass through a set of filters and amplifiers before reaching an A /D converter

where conversion into digital form occurs. Finally, a spectrum is generated and the data
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are recorded.

In order to achieve the maximum power transfer and the minimum signal reflection
at the destination, the source impedance must be equal to the load impedance. Two
very common coaxial cables have an impedance of 50 Q and 75 €. 50 Q coaxial cables
are commonly used with radio transrhitters, radio receivers, laboratory equipment and
for ethernet networks. 75 Q coaxial cable is mostly used in video applications, CATV
networks, TV a,ntenna wiring and telecommunication applications.

For an ordinary coaxial cable used at a reasonable frequency, the characteristic
impedance depends on the dimensions of the inner and outer conductors, and on the
characteristics of the dielectric material between the inner and outer conductors. The
length of the coaxial cable does not influence the line’s impedance. In order for a cable’s
characteristic impedance to make a difference in the way the signal passes through it,
the cable must be longer than the particular wavelength.

Mismatched transmission lines create a reflected wave of opposite polarity. Such a
wave has a delay time defined by the length of the line and the speed of the wave propa-
gation (the usual speed of propagation inside a coax line is about %c) The reflected wave
distorts the outbound waves and can be reflected again and again. Multiple reflections
create confusion and interference with the true signal.

An impedance matching system is required if there is a need to connect two cables with
different impedances. A well designed matching system can successfully prevent signal
reflections at the cable connection point. The simplest matching system is a transformer

with the proper impedance transfer ratio defined by

%‘g - % (2.9)
where Z4 and Zg are the i‘nput and the output impedance, respectively. N4 and Ny are
the number of turns on the input and the output coil, respectively.

An analog/digital converter maps a continuous signal into a stream of n-bit samples.

By increasing the sampling rate, one can capture faster fluctuations of the signal. The
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n-bit quantization carries an error which can be reduced by choosing an appropriate
n. The whole process of obtaining a sampled signal Tsampled(t) every Ty seconds can be

described as

Tsampea(t) = 2(O)p(t) = 2(t) Y 6(t —mTy), (2.10)

m=-—-o0

where z(t) represents a continuous-time signal at time ¢ and m is the integer representing
the number of samples. p(t) is known as a periodic impulse train fﬁnction, or the sampling
function. A frequency spectrum X sampled Of the sampled data set is obtained after taking
the Fourier transform |
Xoampied(f) = FT[2(t)p(t)] = X (£) * P(f) = X(f) * 3 6(f —kf.).
k=—c0
The operator FT7] denotes the Fourier transform, k is an integer, f stands for frequency
and the sampling frequency is f, = 71: The Fourier transform of multiplication of
two time domain functions is equal to the convolution of their frequency spectra. The
convolution of a signal spectrum X (f) with each ¢ (f = kfs), shifts X(f) and centers it
on kf,. The resulting spectrum Xsampled(f) is a periodic repetition of the original signal
spectrum X (f) centered on 0, £ f,, +2f,, ...

Using the above consideration, the so-called sampling theorem can be derived: the
sampling frequency has to be at least two times higher than the frequency of the wanted
signal. If the sampling frequency is not high enough, the adjacent parts of the spectrum
overlap, and it is not possible to remove the overlapping. Such a distortion of the obtained
spectrum is called aliasing. The minimum sampling rate f; = 2f,,,q, is called the Nyquist
rate. One half of the Nyquist rate % is the Nyquist frequency.

The second important condition included in the sampling theorem is that the signal
must be band limited over some frequency interval foin < f < fimas. Low pass or anti-
aliasing filtering should be applied before sampling. To make sure that the output of the
anti-aliasing prefilter is band limited to the maximal frequency finas, the cutoff frequency

of an anti-aliasing prefilter must be, at most, equal to the Nyquist frequency (finee < %)



CHAPTER 2. THE INSTRUMENT 45

The digitized data are transferred to computer memory via a Peripheral Component
Interconnect (PCI) bus. It is a vendor and platform independent bus created to have high
performance for modern (at least 32 bit, ~ 1 GHz CPU) computer systems, for the first
time seen in 1995, with the first Intel Pentium CPU chip sets. Technically speaking, PCI
is a5V, 33 MHz, 32-bit bus with a basic data transfer rate of 133 MB /s (megabytes).
However, the basic design can be modified to include a 64-bit bus extension (basic data,
transfer rate of 256 MB/s), 66 MHz extension (doubles the basic data transfer rate), 3.3
V operation (different physical co‘nnector), and a small PCI connector for laptops and
other space-limited embedded systems. Most of the modern design optimizations are
included in PCI design: multiprocessor support, multiple bus mastering support, burst
transters, interrupt sparing, write posting and processor bridging. Each PCI Slot consists
of a multiplexed address and data bus, four interrupt lines, +5 V, +3.3 V +12 V and

-12 'V power supply lines, card presence sensing, test and control lines.

With an 8 bit 500 MHz AD converter, the total amount of data generated in one
second is 500 MB, which is about four times more than a standard PCI bus can trans-
| fer. Such a system can work with, at most, 25% efficiency. In reality, due to various
factors such as the time needed for collecting data and generating the spectrum, the true

efficiency is about 5%.

The data transfer between the AD converter and the computer processor can be sped
up by using a faster bus such as PCI-X, or PCl-express. The standard PCI is 32-bit
wide working at 33 MHz with a peak theoretical bandwidth of 133 MB /s, while PCI-X
is 64-bit wide, working at 33/66/133 MHz and capable of transferring up to 1 GB/s,
and the latest PCI-express bus is able to transfer 5 GB/s. Despite the availability of
the buses capable of sustaining the needed transfer rates, at the time of writing there
are still no commercially‘ available A/D cards with the power to stream all the data to
the processor. A faster data acquisition system is currently being built at the Physics

Electronics Resource Centre at the University of Toronto. A 64-bit PCI-X bus can be
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used to transfer the data to computer memory in real time.

2.3 Spectrum Reconstruction

After the data are received in the main memory, the power spectrum has to be calculated
by performing a Fourier transform. The discrete Fourier transform of a periodic vector

function x(nT) is
o0

X(f)= ) x(nT)e 2miinT, (2.11)

n=—oo

One of the simplest FFT algorithms, a Cooley-Turkey method will be described below.
Adapting equation (2.11), an N-point discrete Fourier transform X (k) of the N-elements
sequence z(n), n =0, 1, .., N — 1 can be written as

X(k) = Z Mx(n), k=0,1,.N—1,

n=0

where the matrix elements W§* are defined as

W}I\c{n _ e—21rjlcn/N - e—-jwkn'

The above equation can be rewritten in such a way that the even and the odd terms are

grouped separately

N/2—-1 : N/2—-1
X(k)= ) Wyz2n)+ 3" whenDyon 4 1), (2.12)
n=0 n=0

By defining two subsequences of length N /2:

g9(n) = z(2n),
N
and h(n)=z(2n+1), n=0,1,.. - = 1
with their respective N/2-point FTs

¥
Z W g(n (2.13)
n=0
N g
2

and H(k)= ) Wih(n). (2.14)

n=0
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The most important property of factor W% is
WN —e =2mj/5 _ e—47r]/N WN’
which finally gives us
Wk(2n) (Wz) kn
2

Equation (2.12) can now be written as

=" W) + Wk > W h(n),
n=0 n=0

or in a simpler form using (2.13) and (2.14):
X(k) = G(k) + WEH(k). (2.15)

Hence, X (k) can be constructed from the two 2-point FTs G(k) and H (k).

The total number of operations needed for performing an N-point FT is N2. After
splitting the initial number of points into the two subsets of the same length (see eq.
.2.15), the number of operations consists of all multiplications needed to perform two %’--
point FTs and %-multiplications with factors WE. If N is sufficiently large, the number

of multiplications is

5] te =5t

o(N' N _N* N N
2 2 "9 7T 9

By continuing to split into smaller and smaller subsets, the total computing cost will be
ALy m Only the second term is important because 15\’,; — 0, for large m. In the final
hmit, the total cost of an N-point FFT is 5N log, N.
| The frequency resolution of the obtained spectrum must be high enough so that the
individual sources can be recognized. As a reference, the different FM stations must be
at least 200kHz apart.
Since Intel’s SIMD2 technology permits parallelization of mathematical operations,

FFT code can be additionally sped up by parallelizing more FFTs. An initial N-point
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sequence z(n) can be split into / subsequences. The size of the computer registers defines
I, which should be a power of 2, such that we can fit the data with the same index in

each subset into the same register. In the end, the result can be converted to one unique

FFT by using (2.15).

2.3.1 An Even Faster FFT Code

I' have developed an FFT code for 16 bit integers, which at the time of writing performed
faster than any other known algorithm. The code uses the ability of Intel’s processor
to perform multiple mathematical operations at the cost of a single instruction. In this
subsection it will be explained how such an algorithm works, and what the calculation
constraints are.

Intel’s new microprocessors such as Pentium 4 and Itanium have implemented a set of
instructions for calculations with multiple data, in a single instruction - SIMD processing
[48]. Primarily designed for speeding up multimedia applications, these instructions can
be used for speeding up almost any programming task. The implementation is done
through the extensions to previously defined instructions. From a programmer’s point of
view, the benefits of SIMD can be implemented using the inlined assembly code, or more
simply, by using Intel’s C++ API extension sets, better known as intrinsics. Intrinsics
are the special coding extensions that allow for the use of C function call syntax and
C variables instead of hardware registers. Use of the intrinsics frees programmers from
having to program in assembly language and manage the registers manually. Compiler
optimization is automated so that the instructions are scheduled to maximize the running
speed.

SIMD extensions use eight 128-bit registers capable of processing the data elements in
parallel. Since each of the registers can store more than one data element, the processor
can operate with multiple data elements simultaneously. The algorithm written uses

SIMD2 extensively with 16-bit data elements (short integers). Each 128-bit SIMD register
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algorithm working with 32-bit floating point data (middle) and 64-bit double floating
point data (bottom). The tests were performed on a 2.4 GHz Intel Xeon machine by Ana
Lubuchenko.

can hold and simultaneously operate with eight 16-bit integer values. Thus, we are
computing eight FFTs simultaneously by packing eight 16-bit data elements into one
128-bit SIMD type. This means that our algorithm performs eight FFTs at the cost
of one. We have tested the FFT performance of this new algorithm and compared the
results with the FFTW code working with 64-bit data and 32-bit data. The results are

presented in figure 2.14.

Our algorithm shows a faster execution time by roughly a factor of two. The drop
in speed at the array size of 24 is due to the processor cache memory. FFTW is also
affected by cache limitations, but with larger array sizes. We are initially using eight
16-bit data arrays compared to only one 32- or 64-bit data. array. One might expect a
greater difference in the execution speed, knowing that 8 FFTs are being executed at the
cost of one in the SIMD2 code. However, FFTW also uses SIMD technology to reduce
the execution time by parallelizing groups of instructions if possible. For example, if
there are two consecutive additions they are done in parallel. Such an optimization is

limited by compiler/programmer ability to transfer the linear code into parallel. A good
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example of the instructions which cannot be done in parallel is

=3+ 5;

y=1z+3,

because the input of the second equation depends on the result of the first one.

There are two limitations to our code. The first one is data overflow caused by thé
2-byte data size limitation. If the result of any operation is longer than 2 bytes, overflow
will be generated. There is no cure for this, since overflow testing would slow down the
algorithm by a factor of ~ 10. The second one is due to arithmetic data shifting. Since
division in the set of short numbers is not hardware defined, one has to use data shifting
to perform this operation. To divide a binary number by 2, it is enough to arithmetically
shift the binary number one place to the right. The shifting also carries the sign, so
that for example, 1/2 = 0, but —1 /2 = —1, which causes an error in the FFT result.
However, despite the loss in the resulting precision, this algoriﬁhm can still be used to
detect individual speétral lines as indicated below.

The two 16-bit sets in Fig. 2.15 show a “ghost” line at 155.9 MHz. The origin of this
“ghost” line is data overflow. At frequencies of about 70-80 MHz in the bottom spectrum
there are also ghost lines originating from the division error discussed above. Despite
these two types of errors, the spectra calculated using our algorithm can still be used for
scientific data analysis. These errors are “constant” in time if the spectra do not change.

In the case of spectral lines caused by meteor forward-scattering, the error is negligible.

2.4 Data Format

The observed data are saved using the Flexible Image Transport System (FITS) file
format [47]. Each file has a size of about 10 MB. The header of the FITS file is in
ASCII format and stores information about the place of the observations, instrument

specification, universal time and information describing the binary part of the file. The
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Figure 2.15: Comparison of spectra calculated from the same dataset using different data -
types: 32-bit ﬂoaﬁng point (top), 16-bit integer (middle) and 16-bit integer using SIMD?2
instructions (bottom). For the two bottom spectra, the FF'T is done with 16-bit precision
and the final power spectra are calculated as 32-bit integers. Data was obtained using a
rectangular approximation of the two arm conical spiral antenna at the Department of

Physics, University of Toronto on July 28th, 2004.
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main part of the fits file is an IV, x N, matrix where each row carries the time information

(first 8 bytes) and the spectrum remaining (N, — 8 bytes).



Chapter 3

Meteor Forward Scattering

3.1 Basics of Meteor Observations

A meteoroid entering the atmosphere forms an ionized column of air capable of reflecting
radio waves. At altitudes of 70-140 km, the meteoroid collides with air molecules and the
impact energy is transformed into heat, evaporating atoms from the meteoroid. These
free atoms also collide with air molecules, producing an optical phenomenon called a
meteor, and ionizing the surrounding media. Thus, an ionized region around the path of
the meteoroid is formed.

Depending on the relative amount of free electrons in a meteor trail, there are two
distinct regimes defining the properties of electromagnetic wave propagation. In an un-
derdense trail, the density of free electrons is smaller than the critical density, making
the trail transparent to incident radiation. In the overdense regime, the core of the trail
behaves as a metallic cylinder, and incident radiation is scattered off.

In this work we focus on radio observations of meteors. For an overview of other
observational techniques, the reader can see the standard meteor textbooks [59] and [74].
In this section, the forward-scattering observation method will be discussed in detail.

We first summarize the basic physical properties of meteoroids and the ionosphere. In

93
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addition, the ablation of meteoroids as well as the creation and the disappearance of
ionized trails are explained. An elegant proof that an ionized trail is in the plasma state
leads toward a simple division into underdense and overdense trails. The principles of the
forward scattering method for observing meteoroids will be explained. A typical forward
scattering system, composed of a transmitter, an ionized trail with a scattering point, and
a receiver, has a complex geometry. In the case of coherent scattering, the transmitter
and receiver must be at the focal points of an ellipsoid. The line describing the path of the
meteoroid is a tangent to the surface of the ellipsoid. A polished mathematical solution
using this ellipsoid to geometrically establish the elements of the forward scattering is
used to define meteor footprints. Finally, a method to estimate the kinetic parameters

of a meteoroid using forward scattering at multiple frequencies is presented.

3.1.1 Properties of Meteoroids

Average meteoroids are usually composed of iron, carbon or silicate rocks. Traces of the
alkali metals sodium and potassium, as well as of the alkaline earth metals magnesium
and calcium, were observed in the spectra of fireballs [6] and smaller meteoroids using
airplane or rocket-borne ion mass spectrometers [35], [118]. Since these metals are easily
ionized due to a low ionization energy of ~ 5 eV they might be the primary source of
free electrons. Alkali metals have one electron in the outer shell that is easily given off.
Compared to the ionization energy of iron, which is 7.87 eV, the energy needed to ionize
potassium is roughly two times smaller (4.34 V). Even a relatively small percentage of
alkaline and alkaline earth metals can create a huge amounﬁ of free electrons compared
to the contribution of other elements. It is interesting to mention that potassium is
rarely detected in spectrographic observations of the visual part of the spectrum because
the most intense potassium line, at 766.49 nm, is in the infrared. The mass density of

meteoroids depends on their composition and is of the order 102 kg/m3.

The size of detected meteoroids spans more than 9 orders of magnitude, from small
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dust particles with a diameter of less then a micrometer (107¢ m), to over 10 kilometers
(10* m). Depending on composition and size, maéses of meteoroids vary from 10716 kg
to 10° kg. If a meteoric particle is very small (< 1075 m), atmospheric drag might slow it
down quickly enough to prevent ablation. Particles with masses as low as 10~16 kg have
been detected by space probes [38]. Radar observations detected particles with sizes of
~ 107® m and masses from 107'° kg and up [51]. Meteors observed visually, with a TV
camera or with a telescope, usually have diameters larger than 10™* m. Meteoroids of
centimeter size cause fireballs - spectacular meteors, with apparent magnitudes of less
than —4, which makes them brighter than Venus. The impact of an asteroid approxi-
mately 10* m in size most likely caused the extinction of the dinosaurs 65 million years
ago. The impact place is marked by a 180 km crater near Progresso in the Yucatan
Peninsula, Mexico. The crater is called Chicxulub, which in Mayan roughly translates as |

“tail of the devil”. It is believed that such impacts happen about once every 100 million

years.
diameter . d |107%—10% m
mass m | 10719 — 108 kg
orbital velocity vy | (1—8) x10* [ m/s
number density of free electrons ne | 1011 —10% m™3
number density of air particles N, | 1017 — 1022 m~3
linear density of free electrons a | 101 —10% m~!
initial radius of trail ro | 1071 —10 m
length of trail L | (1-4)x10* |m
ablation temperature T | 2000 — 4000 K
ablation heights h | (7T=14)x 10* | m
ambipolar diffusion coefficient D, | 0.1 — 1000 m?/s
atmospheric temperature at ablation heights | 7, | 200 — 500 K
Langmuir frequency w, | 10°—10% Hz

Table 3.1: The parameters used for describing meteoroids and meteor trails with the

typical range important for radio observations.

The atmosphere of the Earth is bombarded daily by hundreds of millions of mete-

oroids. The smaller the masses and sizes of meteoroids entering the atmosphere, the
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higher their abundance. Larger bodies hit the atmosphere less frequently. Over a thou-
sand fireballs occur in the Earth’s atmosphere every day. The geocentric velocities of
meteoroids are of the order of the Earth’s orbital velocity around the Sun ~ 3 x 10* m/s,
typically from 10 km/s to 70 km/s. Three different methods for the total mass flux of
meteoroids entering the Earth’s atmosphere have been reviewed in [147]. The estimates
of the total daily mass flux are up to 107 kg, as estimated by Allen and van de Hulst in
the late 1940’s [74]. This number is confirmed using different techniques [13], [146].

Meteoroids entering the Earth’s atmosphere lose their initial velocity due to impacts
with atmospheric particles. When the meteoroid diameter is around one meter, the
meteoroid does not have enough time to lose all its mass. During the fireball stage,
atmospheric friction slows down the meteoroid to a speed of about 3 km/s. In the final
stage of the flight, the velocity is low and the meteor fades into the so-called “dark
flight” stage. If the meteoroid reaches the surface of the Earth, it is called a meteorite.
Depending on its size, a meteorite can create a crater.

A portion of detected meteoroids originate from outside the Solar system. Studies
of orbits detected by space dust detectors on Ulysses and Galileo estimated the mass
distribution of interstellar dust grains in the solar system. The flux of extrasolar mete-
oroids with masses larger than 10~4 kg is estimated at 107% m™2s~! [64]. Ground radar

observations have also reported meteoroids of extrasolar origin [77], [3].

3.1.2 Meteor Showers and Sporadics

The hourly rate of meteors at certain periods of the year increases dramatically. These
time periods, known as meteor showers, occur when the Earth passes through a higher
concentration of space particles. If the particles / mefeoroids are orbiting the Sun following
similar orbits they are called streams of meteoroids.

Looking from the surface of the Earth, it seems as if all members of a particular

stream enter the atmosphere from the same point on the celestial sphere called a radiant.
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All members of a stream follow parallel paths, and to an observer it looks as if the lines
meet at a single point since parallel lines appear to meet at infinity. Since the radiant
has an almost fixed position on the sky, it is common practice to name showers after
the constellation the radiant is positioned in. The most famous meteor showers are the
Perseids active in early August, the April Lyrids and the Leonids in November. As the
Earth revolves around the Sun, the radiant drifts slowly over the sky. Most of the orbits
in planetary systems do not change their orbital plane, so the Earth encounters the same
meteoroid stream every year over the same time period.

Comparison of meteoroid orbits showed that most of the streams are following the
orbits of certain comets. The current theory is that comets leave debris behind, which in
time spreads over the cometary orbit. For example, the Perseid meteor stream is related
to comet 1862 III, while the Leonids originated from comet Tempel-Tuttle. Halley’s
comet is the mother of the Orionid shower, active in October.

Meteoroids with random orbits are called sporadics. The general opinion is that spo-
radics are either of the same origin as stream members but are gravitationally perturbed,
or that they have a collisional origin.

Statistically, there are daily and seasonal variations in the number of detected spo-
radics. The distribution of the sporadics is not uniform over the sky as initially assumed.
There are four apparent directions where sporadics are most likely to be detected: the
Sun, anti-sun, apex and toroidal direction. The activity and the structure over a period
of 10 years of the first two sporadic regions is given in [108], and the activity of all four

regions over a period of 3 years in [10].

3.1.3 Ablation and Deceleration

Dimensions of typical radio meteoroids are much smaller than the mean free path of air
particles and there is no hydrodynamic flow around the meteoroid. The mean free path

of the air particles at these heights is about 0.1 m, with kinetic energies of about 8 eV
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per nucleon.

Collisions with air particles produce impact energy which is transformed into heat
and eventually makes the meteoroid’s atoms evaporate. At a height of ~ 100 km above
ground, the meteoroid’s surface reaches a temperature of about 2000 K. The atoms from
the surface of the meteoroid start to evaporate. This stage of a meteor’s life, when the

melting surface gradually disappears due to evaporation, is known as the ablation phase.

The free atoms evaporated from the meteoroid quickly collide with air particles cre-
ating a meteor. The impact energy is converted into heat and ionization energy. In
addition to the meteor phenomenon, an ionized trail is formed. Both the meteor and the
ionized trail are cylindrically symmetrical due to their formation along the path of the

meteoroid.

Small meteoric particles, with diameters < 107% m have thermal energy emission of
the order of the energy gained through collisions with air. Such particles might slow
down fast enough before ablation can occur and stay unchanged in the atmosphere, or
eventually reach the ground. Realistic atmospheric models have been used in the past
to numerically solve the differential equations of meteor ablation. Simulations confirmed

that the ablation strongly depends on the initial geocentric velocity of the meteoroid [93].

During flight time dt, a meteoric body with velocity v collides with air particles with

total mass dm, equal to

dm, = Appavdt,

where Ay is the effective cross-section of the meteoroid and Pa is the density of the air
at a given height. Only a portion of the kinetic energy (equal to 1/2dm,v?) of the air
flow is transformed into heat. The measure of the energy transfer is the heat-transfer
coefficient A, which always has to be less than 1. Usually it is considered to be between

10% and 60% [74]. After the meteoroid reaches the melting temperature, it starts to lose
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mass by evaporation. The mass loss rate is

dm 1 3
E— = *A—z‘@AMpa,’U . (31)

The latent heat of vaporization @ includes the energy needed to heat the body up to its
melting point, as well as the energy needed for evaporation. In the physical models of
ablation, the latent heat used is @ ~ 10% Jkg~! [93].

The deceleration of the meteoric body is described by the momentum equation

dv

M = mgh — T Appar?,

where m and v are the mass and the velocity vector of the meteoroid, respectively, gy, is
the gravitational acceleration at the given height and T is the drag constant which takes

values between 0.5 and 1. In meteor literature, the shape factor A is defined from the

mid-sectional area of the meteoroid A, as
2/3
A=Ay <—mp—) , (3.2)

where p is the density of the meteoroid. In the case of a cubically shaped object, the

shape factor is A = 1, while for a spherical object A = 1.21.

3.1.4 Creation of Ionized Trails

The creation of the ionized trail can be described by the ionization equation defining the

number of electrons formed due to ablation of the meteoroid as

B dm
o = '—m ’U_c?t—' (33)

The electron line density « is the number of electrons per unit length of the ionized
trail. It is considered to be one of the most important features of the trail. My, is the
average mass of meteoric atoms or molecules, v is the meteoroid’s velocity, and § is

the number of free electrons in a single vaporized meteoroid atom, also known as the
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ionization coefficient. § depends exponentially on the meteoroid’s velocity. d—;;‘— is the
amount of the meteoroid’s mass evaporated per time interval. Physically, this equation
shows the number of free electrons produced along the path of the meteoroid due to rapid

mass loss. Using (3.1), a more common form of the ionization equation is

_ A8 2
a = mAMpa'U . (34)

Taking the time derivative of the ionization equation, the maximal line density along the

trail can be estimated to be [83]

Gy = 5P
mam—4mmH)

where H is the distance over which the atmospheric pressure decreases by a factor of
e, also known as the scale height. It can be expressed using Boltzman’s constant k,

temperature T', average mass of the air molecules m, and gravitational acceleration g as:

kT

H .
Meg

An ionized column reflects radio waves as dictated by the laws of optics. The incident
angle of a radio wave must be equal to the reflected angle. A direct implication of the
specular reflection is that only a limited part of the reflecting surface, in our case the
meteor line/cylinder, is responsible for the reflection of the given radio wave. One can
draw an analogy with observing a light bulb in a mirror: the bulb can be seen in only
one particular area of the mirror. For the trail to be observable, there must be significant
lonization in the reflection region.

The maximal intensity of the reflected signal is obtained in the case of coherent
scattering: the transmitter, the trail and the receiver are aligned in such a way that the
transmitter and the receiver are the foci of an ellipsoid, while the meteor trail is the
tangent to this ellipsoid. In most cases the trail can be approximated as a straight line
of typical length 10 — 40 km [28], but for meteors with a long duration (~ 10 s) the trail

becomes deformed due to the influence of winds.
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As the trail is formed, parts of the trail with positive and negative interference create
constructive and destructive Fresnel zones, respectively. Reflected signals scattered off
different parts of the trail travel different distances, resulting in a phase difference. As the
trail expands, the destructive interference from the front and back leads to an exponential
decay of the reflected signal. A typical first Fresnel zone has a length on the order of a
kilorﬁeter, while the whole trail can be up to 40 km long.

The number density of free electrons n., for most of the radar observed meteors takes
values from 10" m=3 to 10%° m=3 [132]. To relate the number density n. with the linear
density « of free electrons, an initial radius 7o of the trail’s cross-section has to be known.
Equation (3.11) can be used to estimate this. The linear density « is defined inside the

ionized trail, thus

E

e = (3.5)

3
=
(=2 ]

3.1.5 Atmospheric Models

In the simplest atmospheric models, the density of the atmosphere depends only on the

height h. Let us assume that the atmosphere is described by an ideal gas

Pa
= 2T, 3.6
P Ma ( )
where p is the pressure, % =n = _1‘_\/r_ is the concentration or number density of N

air particles inside a volume V with the density p, and particle mass m,, T is the
temperature of the atmospheric gas, and k is Boltzman constant. The change in the

hydrostatic pressure with height can be written according to Pascal’s law
dp = pagdh.

Substituting p, from the last expression into the ideal gas law (3.6),

dp _ mag

P kT

dh,
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and after integration, the barometric formula is

h

ph = Poe™ R, (3.7)

where Fy is the ground pressure at A = 0. A similar expression can be written for the

atmospheric density at height h,
pa(h) = pa(h = 0)e™, (3.8)

where, for convenience, the scale height is introduced. These two approximative expres-

sions agree very well with the true measured pressure and density above ground up to a

height of 140 km.
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Figure 3.1: Height above ground dependence of the average number densities for 7 dif-
ferent atmospheric gases (left). Change of the average temperature of the air with height

(right). NRLMSISE-00 model applied over Algonquin Park, Ontario, Canada.

There are better and more realistic models of the Earth’s atmosphere. One of the most
used empirical models updated with satellite data is the US Naval Research Laboratory
model NRLMSISE-00 [107]. Plots of the temperature and number density of different
atmospheric components as a function of height above the Earth’s surface are given in

Fig. 3.1.
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3.1.6 Ionosphere

The upper part of the atmosphere where solar radiation ionizes a significant portion of
neutral atoms and molecules is called the ionosphere. At altitudes where the density of
the atmospheric media is sufficiently low, collisions among atmospheric particles are rare,
implying slow ionization recombination. Above 60 km altitude, a permanent ionization
of the atmosphere defines the Earth’s ionosphere. Understanding the ionosphere is very

important because of its effects on the propagation of radio waves. In literature, the
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Figure 3.2: A typical temperature/electron-density vs height plot defining the atmo-

spheric layers.

ionosphere is usually divided into layers. Peaks in a typical electron-density versus height
plot, such as the one in Fig. 3.2, are given names D, E, F, and are said to correspond
to different ionospheric layers [115]. This naming system was introduced by Sir Edward
Appleton in the 1920s, who named the “Electric” layer, or E layer. In reality, the
ionospheric layers are not well defined, and are composed of regions with lower or higher
electron densities.

At altitudes of 50-90 km, hydrogen Lyman o (A = 121.5 nm) and hard X rays
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(A <1nm) create the D layer, with a maximum ionization level of 101 electrons per m3.
Recombination is sufficiently high at these altitudes, so the D layer exists only during
daytime, and absorbs frequencies below 10 MHz. This is the reason why AM broadcasting
at frequencies 6f 0.5-2 MHz disappears over the horizon during the daytime.

At altitudes of 90-120 km, the E layer is formed with a maximal ionization of about
10" electrons per m®. Soft X and far ultraviolet rays in the frequency range of A ~ 1—10
nm are the primary sources of ionization for this layer. The E layer reflects frequencies
of up to 10 MHz, and partially absorbs frequencies larger than 10 MHz. Sometimes a
so called sporadic E layer can be formed with an ionization level high enough to allow
reflection of frequencies of up to 100 MHz. The sporadic E layer is not a layer in the real
sense of the word, but rather an isolated region with higher ionization. The ionization
caused by meteors is also a form of a sporadic E layer.

Ultraviolet radiation (A ~ 10 — 100 nmj is responsible for the creation of the F layers
(F1, F2, ...) at altitudes of 120-400 km. The electron density of the F layers reaches
10'? electrons per m3. Day-night variations of the ion number density are big (a factor
~of 10), with a maximal level of ionization during the daytime. F layers are responsible

for reflecting frequencies of up to 50 MHz.

3.1.7 Disintegration of Meteor Trails

The trail’s charged particles start disintegrating in the surrounding medium immediafely
after the trail is formed. Diffusion is the primary process responsible for the disintegra-
tion. Recombination, electron attachment to neutral molecules and atoms, and turbulent
diffusion have also been studied as additional mechanisms limiting the duration of the
trail. The usual approximation is to consider a cylindrically symmetric trail with the
maximal electron density at its centre. A good overview of the disintegrating processes
is given in the standard meteor textbook written by Bronshten [9].

If the disintegration is due to diffusion only, the electron concentration at the center



CHAPTER 3. METEOR FORWARD SCATTERING 65

of the trail n.(r = 0) at a time ¢ can be written as

«

"o =0 G

(3.9)

Assuming cylindrical symmetry of the trail, the diffusion time depends only on the initial
radius of the trail ry and the diffusion coefficient D,. The electron concentration at a
distance r from the center of the trail (n(r)) can be approximated by a Gaussian function
[95]

¢

ne(r) = Tt P [—;%J , (3.10)

mr(t

where a is the electron line density. The radius r changes with time ¢ as

r(t) = /T8 + 4Dqt.

The initial radius 79 can range from 10 cm to 10 m and it can be estimated according to
the work of Bronshten [9] by

0.8

ro ~ 2.58 X 1010%, (3.11)

where v is the velocity of the meteoroid in units of km/s, n is the air-molecule number
density in cm™3, and 7y is given in meters. A similar result is given by Manning, 1958
[70]. In some works, such as [49], an empirical relation between rq given in meters and

the meteor height given in kilometers, ry = 0.035h — 3.45, is used. Another empirical

[V h-95
9 = 1.65 4—0-62 y

where the velocity v is given in km/s and the height % is in km [133]. Observational data,

relation for rg given in meters is

show indications that rq ~ v%8 [9], but the subject is still open.
The ambipolar diffusion coefficient D, determines the speed of the diffusion of the

charged particles from the trail. In a first approximation, it can be calculated as [37]

m kT
D, = —=, [ =~ 3.12
80a0 \| i, (3.12)
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While many of the quantities in the above equation are constant, the most important is
the dependence on the air density p, (see Fig. 3.1). The empirical expression [133] for
D, given in m?/s is

D, = 13.2¢"%". (3.13)

In a more detailed model, the ionized trail is assumed to have three components:

electrons, positive ions, and neutral particles. The ambipolar diffusion is then a function

T,
Da:Di - )
(”ﬂ-)

of the ion diffusion D; [78]

where T, and T; are the temperatures of the electrons and ions, respectively. Furthermore,
it can be assumed that D, = 2D;, since the electrons and ions reach thermal equilibrium
T = T; with the neutral gas through collisions. The ion contribution is defined by the

Einstein equation :
_k T2 1.013 x 10°Pa
‘e 213K DPn

KO)

where 7;, and p, are the temperature and the pressure of the neutral gas, and
Ky = 2.5 x lb“‘ m?s~*V~! is a constant estimated for the case when the only neutral
component is Np and ions are a mixture of Fe(+) and Mg(+) [44], [53]. Using the data
of over 6000 meteors, Verniani, 1973 estimated D, = 100986 m™'A=723 12 / [145]. In the
work by Thorﬁas et al. 1988, for the U.S. Standard Atmosphere, the diffusion coefficient
in the altitude range 80-125 km is approximated as D, = 10%0758m™"h—6.51,2 /5 [136]
The effect of the magnetic field of the Earth on the effective diffusion coefficient of
a meteor trail has been discussed in [111]. The ambipolar diffusion tensor is given for
arbitrary orientations of the magnetic field. It was found that the diffusion of the plasma
inside a meteor trail in a direction orthogonal to the magnetic field is much smaller
than previously thought (see the estimates in the paragraph above). Robson derived the

effective diffusion coefficient as

Dy = Dy sin® usin? 6 + D, (1 — sin? yisin?6), (3.14)
I
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where D) and D, are the ambipolar diffusion coefficients parallel and perpendicular to
the magnetic field, 6 is the angle the field makes with the trail and  is the angle between
the wave vector and the normal to the plane of the trail and the field.

The parallel component D) is used as the effective coefficient when the effects of the
magnetic field can be ignored. For nitrogen alkali ions, Dy~ 14x1075 %@%2, where T’

is the ambient temperature and p is the gas pressure. Equation (3.12) can also be used

to estimate the parallel component. The normal éomponent is given as
D. = TJF—ZZ”__LT (3.15)
fefi

where wye = %g and wy; = % are the gyromagnetic frequencies and f, and f; are the
collision frequencies of the electrons and the ions. A height variation of the parallel and
orthogonal components is given in Fig. 1. of [25]. The important‘ implication of the
influence of the Earth’s magnetic field on the diffusion coefficient for higher altitude is in
the extended duration of the echoes. For the height range of 70 — 120 km the effective
ambipolar diffusion coefficient typically takes values in the range 0.1 — 1000 m2/s .

Fireballs splitting into a number of smaller fragments were directly observed using a
photographing technique. In the general case, there are two main theoretical approaches
to the theory of fragmentation [1]. Quasi-continuous fragmentation is a process when
a meteoroid slowly loses individual smaller parts causing additional ablation. Gross
fragmentation occurs when the body splits into smaller bodies of approximately the same
size which may fragment again and again. Atmospheric fragmentation and comparison
with the photographic observations are discussed by Ceplecha et al, 1993 [14]. In their
work, a single body theory of a meteoroid entering the atmosphere is extended by sudden
gross fragmentation. One of their main conclusions is that the ablation coefficients are
lower by a factor of two than previously thought.

When the meteoroid body splits into a number of fragments, there are small differences

in the velocities of individual fragments. Therefore, the fragments are separated along

the meteoroids trajectory. Orthogonal fragmentation, i.e. when fragments split in the
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directions orthogonal to the trajectory, requires a mechanism accountable for the extra,
momentum, such as the rotation of the meteoric body. A simple 10 particle fragmentation
model with separations along the trajectory, has shown that Fresnel oscillations are
substantially reduced [26]. If the fragments were separated by more then 200 m, the
oscillations are almost completely attenuated. The effects of fragmentatidn on different
types of radar echoes recorded at Buckland Park, near Adelaide, South Australia, have

been summarized in [26].

3.1.8 Underdense and Overdense Trails

More than half a century ago, it was noted that radio echoes can be roughly divided
into two groups, depending on the electron line density of meteor trails [58]. If the
linear density of free electrons is smaller than a critical value of the order of 10 m=1,
a radio wave propagates through the meteor without being attenuated. Each individual
free electron scatters the incident electromagnetic wave and the result is the sum of all
individual contributions in the shape of an underdense trail. When the electfon line
density of a trail is much higher than the critical line density, the central part of the trail
behaves as a perfect conductor. The initial wave is scattered off the surface of the core,
which is approximated as a metal cylinder [152]. Such trails are called overdense. These
two different classes of meteor trails are shown in Fig. 3.3. We will show that thé gas in
meteoric trails is in a plasma state. We will also give a more detailed approach toward
defining underdense and overdense trails by including the collisions in a three component
plasma.

A typical underdense trail has a fast amplitude rise ~ 0.1 s and a slow exponential
decay ~ 1 s due to the diffusion of the trail with an imprinted Fresnel diffraction pattern.
Fresnel patterns can be smoothed out due to fragmentation of a meteoroid [26], see Fig.

3.3.

Radar observations of overdense echoes show that, as in the underdense case, initially,
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Figure 3.3: Underdense (left) and overdense (right) meteor trails with signs of fragmen-
tation recorded during the observation run in Algonquin Park, Ontario, Canada, June
2006. The underdense trail is detected at a frequency of 88.9 MHz and the overdense

trail at 101.3 MHz. Along the y-axis, intensity is given in arbitrary units.

the amplitude rises quickly, as fast as 0.1 s. Thereafter, the amplitude remains constant
for a certain period of time before the metal cylinder approximation stops being valid.
When the concentration of free electrons drops below the critical value, the trail becomes
underdense and decays as an ordinary underdense trail. The effects of fragmentation can
cause quite interesting effects as shown in Fig. 3.3. An excellent reference for studying
‘various types of radar echoes is a Ph. D. dissertation by Daniel Badger, 2002 [1].

McKinley (1961), defined the critical electron line density using the condition that the
dielectric constant & of the electron gas inside the trail’s core is zero [74]. This constant
is given by

N

r=1-—""p, | (3.16)
Vs

where n is the number density of free electrons, r, = 2.8 x 10~!5 m is the classical
electron radius, and ) is the wavelength of the incoming radio wave. He obtained a value
of 2.4 x 10'* electrons/m.

As the region with high electron density expands, the concentration of free electrons
outside the core drops and the dielectric constant becomes positive, limiting the metallic

cylinder approximation. When electron line densities have moderate values, neither the
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overdense nor underdense, approximations hold.

An ionized meteor trail behaves as a plasma. To show that the macroscopic neutrality
required of a plasma holds, we will estimate the Debye radius rp and compare it with
the characteristic dimension of the trail ro. The Debye sphere must be smaller than the
volume of the ionized trail in order for the trail to be neutral. If we can assume that
free electrons and ions are the only two charged components present inside the trail, the

Debye radius is

-y e (3.17)

where the summation is over the particle types (in our case electrons and ions) e;, n;, T}
are the charge, the number density and the temperature of the components, respectively,

and k = 1.3806503 x 10~2* J/K is Boltzmann’s constant.

Assuming that the gas is isothermal, Ty = T5 = T, and that the number densities

are the same, ny = ny = n,, since free electrons were initially bound to the positive ions,

. lﬁokTe
'p = 2677,6 . (318)

A more correct expression would include neutral air particles as well. Knowing that

it follows that

the ablation temperature is on the order of 104 K, and assuming the lower limit for
the number density of detected radio trails to be 10'* m=3, we estimate rp ~ 0.01 m.

Comparing with the minimal value for ry of 0.1 m, we see that the neutrality condition

is fulfilled.

The next condition for a plasma is that the plasma oscillations cannot be dampened
via the influence of particle collisions. The plasma oscillation frequency must be higher
than the collisional frequency. Since the electrons move faster than the ions, they provide
the main contribution to the plasma frequency. If the electrons in the plasma are offset

from their equilibrium position, they execute simple harmonic motion. The equation of
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motion for the electrons gives the characteristic angular frequency of oscillation:

nee?
Wy = 4 / g | (3.19)

The plasma or Langmuir frequency is one of the most important collective characteristics

of the plasma.

Roughly, there are three types of particles defining the behavior of the ionized trails as
far as collisions are concerned: free electrons, ions and neutrals. The collision frequency
Jfe of free electrons thus has a contribution from electron-electron fee, electron-ion f,; and

electron-neutral f.,, collisions:

fc:fee+fei+fen- (320)

The collisional frequency due to electron-electron and electron-ion impacts can be calcu-

4 27 [ ee; \2 =n .
e et — o - ’L = Lei, .2
Jeet fei =34/ <47r60> (WT.)72 (8.21)

where e; is charge of the ions. For an isothermal plasma, L.; is the electron-ion collision

lated as [78], [109]

constant defined by
Le;=1n [127;60
ee

)

2 (kT)3/2] (3.22)

T

Collisions between charged and neutral particles are usually modelled using the rigid
sphere approximation. The collision cross section Oen between these two types of particles
does not depend on the relative velocity. Following [78], we set 0en = 10~19 m?2. Assuming
that the relative velocity is equal to the thermal velocity of free electrons, the collisional
frequency f., is

fen = NnOenve, (3.23)
where n, is the concentration of neutral particles and v, = \/% is the thermal velocity
of the electron gas. Collisions with neutrals are of great importance in the physics of
meteor trails when the concentration of free electrons is less than 10° m=3. In Fig. 3.4,

the electron-neutral collision frequency is compared to the collisional frequency due to
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electron-electron and electron-ion impacts. For such low values, the trail can not be
treated as a plasma; however, the reader should note that most radars are not capable

of detecting trails with such low values of n,.
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Figure 3.4: The plasma frequency wy, the collision frequencies fee + feis fen, fo, and the
critical plasma frequency w,c, versus the mean electron density n, . The three component
plasma is considered to be isothermal with T, = 1000 K, and isotropic with the same
number density of free electrons and positive ions ne. The critical plasma frequency is

plotted for the case when the incident wave has a frequency of 100 MHz.

A comparison of the collision frequency with the Langmuir frequency for the range
of the electron mean number densities is given for a temperature of 7, = 10* K (Fig.
3.4). From the plot, it can be seen that for low number densities of free electrons up to
ne ~ 10" m~3, a dominant contribution to the collisional frequency of free electrons is
due to impacts with neutral particles. For this range, f. is constant and on the order
of 10° Hz. For higher values of free electron number densities, electron-electron and
electron-ion collisions become dominant. The collisional frequency might go over 101° Hz
. depending on the electron number density.

The Langmuir frequency is given in the same plot. We can clearly see that the
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Langmuir frequency is higher than the collisional frequency in the interval important for
the radio scattering of meteor trails, 10° — 1022 m=3. Thus, the second condition for
the plasma state is also satisfied so the ionized gas in meteor trails can be treated as a
plasma.

A dispersion equation for wave propagation in plasma should be derived to clearly
see what happens when an incident wave scatters off the meteoric plasma. With minor

changes, we will follow the approach taken in Foschini, 1999 [32].

Let us start with the perturbation equations for the four Maxwell equations

pl
V.E == (3.24)
€
oB’
/ [ g—
VXE' = p (3.25)
V-B'=0 (3.26)
. OE/
VxB = MQJ, + 60/1/05"— (327)

together with a generalized version of Ohm’s law
i=0(E+v XxB)+pgv. (3.28)

E’ and B’ are the perturbations of the electric field intensity E and the magnetic induction
B vectors, respectively. e = 8.8541878176x 10712 C?/Jm is the permittivity of free space,
and po = 47 x 1077 N/A? is the magnetic permeability of a vacuum. These two constants
define the speed of light in a vacuum as c? = ﬁ o is the electrical conductivity and
Per is the charge density. Plasma is macroscopically neutral, so the charge density can
be assumed to be p; = 0. For the sake of simplicity, we will assume a cold plasma
model by neglecting density perturbations. In a more detailed magneto-hydrodynamic
approach used when considering longitudinal modes of the wave propagation, the density

perturbations should not be neglected. The electric conductivity, in the case of a meteoric

plasma, depends on the number density of free electrons Ne, and on the mean collision
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frequency f.. It is given by
2
nee

o= m (3.29)

The magnetic field important for the the generalized version of Ohm’s law is the Earth’s
geomagnetic field. However, it can be neglected because the electron gyro frequency
Wy = % [100] is much smaller than the frequency of the incident radio wave [32]. Taking

into account all of the above approximations, the perturbation of the vector jis
j=oF (3.30)

If a transmitter emits continuous waves, the electric field vector varies periodically with
time as

E' = Eg/eikr—), (3.31)

By applying Vx to (3.25) and (3.27), and using the vector identity

Vx(VxA)=V(V-A)—(VV)-A (3.32)

it follows that
V2E' + (ioeouo + w2eopo)E' = 0; (3.33)
V2B’ + (o — iweop)E' = 0; (3.34)

In Foschini, 1999 [32] the last equation is incorrectly derived, most likely a typo. Fortu-
nately, it was not used later in the text. The solutions for these two equations are the
nonuniform harmonic plane waves with a complex wave vector. Substituting (3.31) in

(3.33), the dispersion equation can be obtained
2 = wloen + W oo, | (3.35)

Replacing ¢ with expression (3.29), the equation becomes

kzz‘i’f[l— ) +75[(£“’2)2%JJ. (3.36)
¢ 1+ (&) 1+ (&)

w
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In the case when the frequency of the incident wave is much higher than the collisional

frequency, this equation simplifies to

k2 = %; [1 - (%)1 . (3.37)
When an incident wave has a frequency w ~ 100 MHz, the validity of this equation is
limited to trails with n, < 10" m™3 (see Fig. 3.4). If n, has a higher value, the collisional
frequency has to be taken into account, as discussed a few paragraphs below.

There are two recognizable classes of meteors based on the comparison of the Lang-
muir frequency to the frequency of the incoming radio beam. For the case when the inci-
dent wave frequency is higher then the Langmuir frequency, the wave vector is composed
only of a real part, and the wave propagates without being attenuated (underdense). If
the frequency of the incident wave is lower than the plasma frequency, the wave vector
has only an imaginary part and the incident wave is completely reflected (overdense).
- The free electrons have enough time to rearrange themselves to shield the interior from
the incident electromagnetic field.

A more detailed approach, valid for the complete range of free electron number densi-
ties is to include the collision frequency. The critical plasma frequency wyc is introduced
to distinguish between the underdense and overdense trails. It depends only on the mean

collision and the incident wave frequency.
Wi =w? + f2. (3.38)

Knowing w,c (see Fig. 3.4), the critical number density of electrons ranges from 102 m—3
for w ~ 40 MHz, to more than 10 m=3 for w > 100 MHz.

As waves pass through an ionized gas, and especially a plasma, the plane of polar-
ization changes. The effect is known as Faraday rotation. In a magnetic medium, a
linearly polarized wave is separated into two modes, ordinary and extraordinary waves,
with different phase velocities. At e\}ery point in the medium, the two modes super-

pose in a single linear wave, but with the plane of polarization slightly rotated. The
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smaller the frequency of the incident wave, the smaller the effect of Faraday rotation due
to the smaller difference between the phase velocities [78]. Faraday rotation is of great

importance for frequencies in the range 15-40 MHz [117].

3.2 Radio Observations of Meteor Trails

' Depending on the geometry of the propagation line, there are two methods of observing
meteor trails. In a radar or a back-scatter system, the transmitter and the receiver
are located in the same spot, while in a forward-scattering setup, the transmitter and
the receiver are located further away than line-of-sight from each other. As mentioned
earlier, coherent scattering is possible only if both stations, the transmitter and receiver,
are at the foci of a prolate spheroid (ellipsoid), and a meteor trail is a line tangent to the
ellipsoid. In the case of radar observations, the ellipsoid becomes a sphere which makes
data analysis much simpler than in the more general case of forward-scattering. In this
subsection, the theory behind radar observations is discussed before moving on to the

forward-scattering situation.

3.2.1 Principles of Radar Reflection: Underdense trails

The theory behind back-scattering is discussed in multiple places in detail (see for ex-
ample [74]). Here we will follow the approach from [1] to obtain the received power
after reflection from an underdense trail. The flux ®; of the incident wave emitted by a

transmitter with antenna gain Gr at a distance d from the transmitter is

_ PGy

1 = 4drd?’

where Pr is the transmitted power. The scattering cross section o, of a free electron is

oe = 4rr?sin? 4, (3.39)
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where 7, is the classical electron radius and 7 is the angle between the electric vector of the
incident wave and the line of sight of the receiver. v = % for the case of back-scattering.

The contribution of a single electron to the received signal is

o

PrGr (r.\2
= =) . 4

27 n? ( d) (3.40)
Assuming that the trail diameter is small compared to the wavelength, all free electrons
in a small region of the trail defined by the small line ds along the trail, will scatter in

phase producing the maximum possible amplitude of the electric field E,

EO = &/ 2ZQCI)2dS,

where Z; is the wave impedance of free space, and « is the line density of free electrons
on the trail. If the transmitted wave had a sinusoidal modulation of shape e  then the
returned signal will have its phase shifted by —22{d. The signal due to the whole trail,

ERp, is easily obtained after integration along the trail:

ER = /a\/ 220‘1)261‘(“)):_%\[(1)618.

For simplicity, o is assumed to be constant, and only the exponential function stays
inside the integral. A common approximation (1] is d = dy + % where s is the distance
along the trail from the region of the trail defined by ds to the orthogonal point, in radar
terminology known as the ¢ point. The error introduced with such an approximation is

on the order of 0.001% [1]. If the Fresnel length is z = \/%, the integral is reduced to

Z )\ : s 2 )
Ep=a _&fq_ez(wt—f‘;\—do) %(027171'2 — 15%1,2,), (3.41)

where integrals C, ., = C(22) — C(2;) and S, 4, = S(as) — S(x,) are defined by the
Fresnel integrals (see Fig. 3.5)

C(x)z/ cos y2dy, - (3.42)
0

S(z) = /Ow sin y2dy. (3.43)
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The borders z; and z, are defined by the length of the trail, from the initial point of the
trail (in some works, z; = —oo [152]), through the ¢, point up to the last point of the

trail.

S(x) and C(x)

Figure 3.5: Fresnel integrals C(z) and S(z) (left) and the Cornu spiral of Fresnel diffrac-

tion C' vs S (right). In the right plot z goes from -5 to 5.

The Fresnel integrals can be expanded into a Taylor series as

T ) st x4n+3 4
= i = -1)" 3.44
S /0 sinydy :L«:O( S T (344)
T ) o0 :L.4n—|—1
C(z) = dy = -t 3.45
(@)= [ cosyPay > Y G (3.45)
(3.46)
The resulting power flux @, is
E2 O_/zdo)\
(I)R - azﬁo - (I)z (031,1132 + 531,2:2) ’
and finally, the received power Py at the receiver antenna with gain Gp is
a?A3r2
Pp = PrGrGrg Sorid} (C2 o+ 52 ..). (3.47)

The amplitude of the received signal is maximal when the meteoroid reaches the first

Fresnel zone. By definition, the first Fresnel zone extends to the point where the distance
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+82, 4, governing the shape of a meteor reflection as a function

1,22

Figure 3.6: Function C?2

T1,22

of x5 for fixed z; = —5.

from the ¢, point is A/2, changing the phase of the wave by 7. Using the formalism given
above, 5 = 1.51 (see Fig. 3.6). After crossing the first Fresnel zone, the amplitude
oscillates with decreasing magnitude and increasing frequency. The time evolution of the

received power also strongly depends on the trail disintegration.

3.2.2 Principles of Radar Reflection: Overdense Trails

If the electron line density is sufficiently high, above 10'® m~!, the metal cylinder ap-
proximation applies. The incident radiation is reflected off the cylindrical trail and no
radiation enters inside the highly ionized zone. This is just a rough approximation, since
only the central part of the trail can have the overdense character, while all around an
underdense shell is formed. In order to have a total reflection, the dimensions of the

cylinder have to be bigger than the wavelength of the incident wave.

‘The overdense region is defined by the critical radius, i.e. the distance from the center

of the trail within which the dielectric constant is zero. From equation (3.10) we have

a
nem(rg + 4D,4t)2’

r= \/ (2 + 4Dot) In (3.48)
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The condition of zero dielectric constant from (3.16) gives

eA?
n re = 1.

Combining these two relations, the number density of electrons can be removed and

A2
= [(r2 + 4Dt INTe
" \/(TO +4Dat)In 72(rd + 4D, t)?

The maximal radius r, is obtained by taking the time derivative of this equation and

looking for a maximum by equating the derivative with zero:

[N,
Te = 2e (349)

The echoing area of the metal cylinder at distance d from the source is mred. A fraction

of the transmitted signal hits the echoing surface and a portion of the reflected signal

. e . . 2 ' .
reaches the receiving antenna with collective area €. The received power Pg in the

- PTGTGR)\3 TeX
Pr ="\ e (3.50)

This relation was derived in McKinley, 1961 [74], and slightly revised by Ceplecha et. al.

case of an overdense trail is

1998 [15]. The main correction is that the line electron density varies as 055

3.2.3 Forward-Scattering: Underdense Trails

The scattered signal in the forward scatter observations will be received only from those
trails which are tangential to an ellipsoid with foci at a transmitter T and a receiver R.
Obviously, radar observation is a special case of forward-scattering, when the ellipsoid
has both foci at one point: a sphere.

The first attempts to understand the geometry of the forward scatter system were
made in the 1950s. In the cylindrical approximation, the ellipsoid is replaced by a cylinder

drawn around the T-R baseline [41]. This approach works well only if the meteor trails
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are orthogonal to the T-R axis. Hines, 1958 suggested more accurate approach by using
elliptical geometry [42]. His method will be discussed below in order to give a simple feel
for the shape of a detected raise in amplitude in the case of an underdense meteor. Hines’
efforts resulted in the estimation of the total ﬁumber of observable trails as a function of
trail orientation. Due to several approximations used, his work is incomplete in the light

of the results presented in this paper.

Figure 3.7: Geometric parameters describing meteor forward-scattering: 2D case.

Let Py be a particular point on a trail with rectangular coordinates (zo, yo, )
in a Cartesian coordinate system with the origin at the central point between T and
R (see Fig. 3.7 for a 2D projection). A general point P on the linear trail will have
coordinates (xg + 7,8, 1o +my8, 20+1.8), where s is the distance PyP. The distance from

the transmitter to P is

drp = \/(1130 + 125+ D)? + (Yo + 1y8)? + (20 + 125)%, (3.51)

where D is half of the length of the baseline TR. After expanding the Taylor series in s,

(3.51) can be written in terms of the distance from T to P, (dr):

2
drp = dr 1-|——8—cos7'T—|——s—28in2TT+... , (3.52)
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where dr = /(2o + D)% + yZ + 22. The angle between the trail and the line TP is ¢

defined by

Ne(To + D) + nyyo + 1220
dr '

Similar expressions can be written for the receiver, with dr — dg, drp — dpg and

COS Tp =

(3.53)

Tr — TR.
At the point of tangency the distance drp +dpg must be minimal, thus the derivative

L(drp +dpr) = 0. If s < do, dg, after derivation

COS Tr + COS TR

sin? v + sin?7g °
dr dr

(3.54)

For the reflection point s = 0, it follows that cos Tr + cosTr = 0, or after solving the

trigonometric equation, 7 4 7 = 7.

900( ........ ITTRIPPERS RATEEE LD LT PRTIDIP PR [EETETPTPR e ARRTERID

600+ e - b RTINS SRS feeieees b

0...
y [km]

-200}---

400

B0+ b e e e e

B e R
x [km]
Figure 3.8: s = 0 curve for the position of the radiant given in horizontal spherical
coordinates with the origin in the center point between the transmitter T and the receiver
R (azimuth, zenith angle)=(60°, 30°); TR distance is 1000 km and & = 100 km. z and Yy
are given in kilometers and represent the coordinates in the TR, plane. Courtesy of Pavol

Zigo [158].

The previous set of equations written for TP and PR can be numerically solved for
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the reflection point (s = 0) at height  with the condition 2, = V(RE+h)?2 —22 — ¢ in
order to obtain y as a function of x, for a particular radiant [144], [4], [158]. An example
is given in Fig. 3.8. The limitations of the method are quite obvious due to the required
approximations. We will return to this problem shortly, when the full solution will be
given.

In the first approximation, the Fresnel length is defined by the position of the mete-

oroid at time ¢

o vt\/2(dT + dg)(1 — sin® ¢ cos? ) (3.55)

Adrdg ’
where ¢ = 0 is defined to be the time when the meteoroid reached the £, point [144], B is
the angle of the trail relative to the plane formed by dr and dg, and ¢ is the propagation
angle.

The meteor forward-scattering process is very complex due to a number of parame-
ters affecting the ionized trail. Underdense trails can be treated using an analogy with
backward-scattering. A cylindrical trail, with electron distribution being Gaussian in
the radial direction, has an electron density low enough so that the individual electrons

behave like Hertzian dipoles. The received power is then

PrGrGrX\3r? ‘a?sin®y
= TR (C2 o +52.2.) (3.56)

P .
R 1673 drdg(dr + dg)(1 — sin® ¢ cos? 3) :

where Pr is the transmitter power, Gr and Gg are the gains of the transmitter and
the receiver, dr and dg are the distances from the transmitter and the receiver to the
trail, { is the wavelength, « is the linear electron density and sin-y is the polarization
coupling factor. The integrals Cy, 5, and S, ,, are defined above as the functions of
Fresnel integrals. A number of the unknown parameters in equation (3.56) makes it hard
to use.

In Fig. 3.9, the time evolution of the received power is shown (top curve). The
amplitude has maximal value at the moment when the meteoroid is in the first Fresnel

zone. As time passes, the amplitude oscillates around the asymptotic value. Since
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diffusion is not included, the meteor trail does not decay and the signal lasts forever.
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Figure 3.9: Time evolution of amplitudes of the received forward-scattered waves for
the different diffusion coefficients D, = (0, 0.1, 0.2, 0.5, 1.0) m?s~!, The remaining
| parameters are v = 30 km/s, \=1m, ¢ =0, 8 = 7/2, dg = 200 km and dr = 300 km.

The trail disintegration can be added to the power equation as an exponential diffusion

decay
—3272 Dt cos? —8n2p2 c052¢
Py(t) = Pre™ st o= (3.57)

The influence of the diffusion on the amplitude of the received signal is also shown in
Fig. 3.9. The higher the diffusion coefficient, the faster the trail disintegrates. The
disintegration stops when the amplitude hits zero.

Another interesting consequence of equations (3.55) and (3.57) is the influence of the
meteoroid velocity on the Fresnel oscillations. The higher the velocity, the faster the
meteoroid will reach successive Fresnel points and fhe oscillations will be faster, while
the amplitude will have the same intensity. A plot of amplitudes versus time for different
velocities is given in Fig. 3.10. If the amplitude data are sampled fast enough, and if the

geometry of the reflection is known, it is possible to determine the meteoroid velocity by
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fitting the theoretical model to the observed data

~-0.02 0 0.02 0.04 0.06 0.08

-0.02 o] 0.02 0.04 0.06 0.08
time [ s]

Figure 3.10: Amplitudes of the received forward-scattered waves for two different mete-
oroid velocities v = 20 km/s (top) and v = 60 km/s (bottom). D, = 0.1 m?s~!. Other

parameters are the same as in Fig. 3.9.

3.2.4 Forward-Scattering: Overdense Trails

The expression for the power received after the forward scatter reflection off overdense

 trails is obtained by generalizing the radar case [74]:

_ PrGpGg)\3rds a®5sin?
B 30305 drdp(dr + dg)(1 — sin® ¢ cos? 3)’

(3.58)

The diameter of the cylinder must be bigger than the wavelength of the incident wave.
The overdense core is surrounded by an underdense shell which is not taken into account,
thus limiting the validity of equation (3.58).

Timewise, there are three regions of overdense reflection. Before the meteoroid reaches
the t; point, the amplitude of the received signal grows in the same way as in the case
of the underdense trail. At this stage, the diameter of the cylinder is smaller than the

wavelength of the initial wave so the above approximation fails. In the second stage,
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the overdense trail is formed and the signal behaves according to (3.58). Finally, the
diffusion lowers the linear electron density below the critical value, and the trail becomes
underdense.

The significant difference between the received signal reflected off the underdense and
overdense trails is that overdense trails have a quick rise in amplitude. Following this,
the received power is in Stagnation for a certain time period which can be on the order
of 10 s. In the last stage of the overdense trail’s life, the trail exponentially decays in a
similar manner to underdense trails.

There were very few attempts to solve the problem of forward-scattering in the gen-
eral case. In 1990, Jones J. and Jones W. approached the problem of oblique scattering
of radio waves from meteor trails by neglecting the collision frequency inside the ionized
trails and assuming that the wavelength of the incident wave is much longer than the
radius of the trail (long wavelength approximation) [54], [55], [56]. In the case of under-
dense trails, they managed to confirm equation (3.56). However, fqr the case of overdense
trails, a long wavelength approximation does not hold [55] and a numerical approach was
used [56]. The approximation that collisions are neglected is valid only in a certain range
of electron number densities (see Fig. 3.4). The lower boundary is constrained due to
collisions of free electrons with neutrals, while on the upper end, collisions with ions
become an important factor. An elegant proof that meteor trails should be treated like
a plasma, as well as a discussion on the importance of the different types of collisions,

were given in subsection 3.1.8.

3.2.5 Meteor Burst Communication

In the 1950s it was proposed to use meteor forward-scattering as a method for over-the-
horizon communication of distances up to 2400 km [29]. Every day, millions of meteoroids
enter the atmosphere producing sufficient ionization for scattering radio waves. When a

meteor trail is in a “good” position, communication between two stations, located beyond
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the horizon with respect to each other, becomes possible. The duration of such a link

depends on the lifetime of an ionized trail, typically on the order of a fraction of a second.

The principles of meteor burst communication are relatively simple. The first station
constantly emits a pooling signal. The second station listens until it receives the pooling
signal. Once the signal is received, the station sends an acknowledgment. After the first
station receives the answer, it starts streaming data and a link is formed. Each message is
split into a set of packets containing a header with the essential link control information
(package number, synchronization, station identification and error control) and a portion
of the message. The receiving station sets the received packets in a receiving queue until
all message packets are received. In the final step, the packets are connected in a single

message.

Communication systems designed using meteor scattering are more resistant to in-
terception, detection, and jamming than conventional systems. In the case of nuclear
detonation, such systems have a significantly higher reliability than HF and satellite Sys-
tems [98]. While théy would be initially disturbed by a nuclear blast, the recovery time
of a meteor burst communication channel would be on the order of minutes. On the
other hand, the bandwidth of existant meteor burst communication systems is only a
few hundred bits per second, which compared to other common communication systems

is very low [116], [117].

The Snow Pack Telemetry System operated by the USA Department of Agriculture
is the largest working meteor burst communication system. It spreads over 10 western
states and has two master and 500 remote stations positioned in inaccessible terrain.
The stations are unmanned and powered using solar collectors. Once a day, each station
sends a daily weather report. The system has been active since 1978. Another example

is the network of remote weather stations in Alaska, owned by US National Weather.
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3.3 Geometry of Forward Scattering

In this section, a method for checking whether a given meteor is going to trigger a
reflection of a radio wave emitted at a transmitter T, and received at a receiver R, is
developed.

As already briefly mentioned, coherent scattering in the general case occurs when a
meteor trail is tangent to an ellipsoid with foci at the transmitter (1, yr, 27) and the

receiver.(zg, yr, 2r). The equation of the ellipsoid in its native coordinates is
A (3.59)

where a, b and ¢ are the semi-major axes. Since the ellipsoid has only two foci and the
projection of a meteor trail is a line then ¢ must be equal to b. The equation of a plane
tangent to the ellipsoid can be obtained by taking a derivative of (3.59) at an intersection

point (zy, y1, 21):
TT Yy, 2m

Tttt =L (3.60)

3.3.1 Forward-Scattering Analysis: Numerical Approach

Let us assume that the transmitter T and the receiver R have known positions. To find
whether a meteor trail defined by a point (23, yar, zu) and a velocity vector (VMz> Uy,
Vum.) is indeed tangential to an ellipsoid with foci at T and R, we can check whether
equation (3.60) is satisfied to a given precision & for any point along the meteor line.
Knowing that only a part of the meteoric line at altitudes between 70 and 120 km has
a physical meaning, one can numerically loop through this range of altitudes and check

whether the condition for a tangent plane is satisfied:

TMT  YMmMY | Rm2
o b2 + b2 — 1| <. (3.61)

The main problems of this method are choosing the parameter § and defining the

numerical resolution for looping through the meteor line. It is important to notice that if
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the resolution and the parameter § are not matched, the true solution might get skipped.
This algorithm is slow and the results are not certain.

A similar approach has been used for calculating probabilities of establishing links
for meteor burst communication [117]. Rudie, N. J. in his Ph.D. dissertation derived a
vector condition for a line normal to an ellipsoid [113]. At the point of reflection, defined
by vectors Ry and RbR from the reflection point to the foci in the transmitter and the
receiver respectively, the normal N to the ellipsoid is
1 [ Rr Rp }

=2 | 2Z 2R 3.62
2 Rt R4 (3.62)

This condition can be numerically used to verify whether a given meteoroid will cause a
reflection for a specific transmitter and receiver. Rudie’s method is very similar to the
one given by equation (3.61). The main weakness is that the point of reflection is not
known which complicates the calculation, making it strongly dependent on algorithm

resolution.

3.3.2 Forward-Scattering Analysis: Analytical Solution

Let us define a line in 3D by using two points Mi(z1, y1, 21) and Ma(z2, o, 22) on the

line. The line equations are then

YT YTV - (3.63)
T1—2Z2 Y1—Y2 21—2
From the basic line equations one can express y and z as functions of z as
r — X9
— — 3.64
y wl_xz(yl y2) + 2 (3.64)
r — X9
= — ) 3.65
z :L‘l-.’lfz(zl 22) + 22 ( )

By having an ellipsoid and a line in 3D space there can only be three different cases of
spatial ordering:

1) the line does not touch the ellipsoid;
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2) the line touches the ellipsoid at only one point (tangent);
3) the line is passing through the ellipsoid (at two points).

To clearly see all three possibilities, we can input (3.64) and (3.65) into the equation
of the ellipsoid. The result is a quadratic equation in z. Any quadratic equation can
have zero, one or two solutions which correspond to the three different cases.

From the formulation of the problem, we are looking for the tangential solution. For a
particular line, only one solution of the mentioned quadratic equation can exist. Knowing
that the general solution of a quadratic equation Az2+Bz+C = 0 is T12 = W,

with A # 0, the value of the expression under the square root must be equal to zero:

(@1 — 22)* (21 — 22)°0* + (43 — 20201 + 12 + (21 — 2)?)

a2 - .fl«'g (yf + Zf) + 2$1x2(y1y2 + 2122) — .’L‘% (yg + Zg))bQ — a2(y221 - y122)2) = 0. (366)
To avoid division with zero we obtain the constraint:
(yf - 2y2y1 + yg + (Zl — 22)2) a2 -+ b2($1 — 272)2 7é 0.

To get the solution for a and b we need one more independent equation connecting a and
b. We can use the known relation between the focal length and the semi-major axes of
an ellipsoid:

FA=a? - (3.67)

The problem of solving the system of (3.66) and (3.67) can be simplified by noticing
that a and b appear in quadratic “portions”. It is possible to introduce new variables

2 and b? to reduce our system to one linear and one quadratic equation. In

equal to a
total there will be two solutions for a? and two solutions for b2. Since both @ and b can
take on only positive values there will also only be two solutions for a and two solutions

for b. After substituting (3.67) into (3.66), the solution for a? is found to be:

A+ Ay + Ay \/(By + By)’ — ByB,
Cy

, (3.68)

Q19 =
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where the variables A;, Ay, A3, By, By, Bs, By and C are the following polynomials:

A = 2+ 205 P+ i P+ i+ A+ A - Ama f?

Ay = =2yiyaf? — 222 + f2 + xdy? 4 2292 + 1227 + 4222

Az = 93%2% + ?}fzg — 211291 Y2 — 2X1T22122 — 2Y1Y22122

By = (207 — dzami + 225 + i + 5 + 21 + 25 — 2ge — 201%) - f

By = iy5+ 374 + xi2h + yid + 73 (yf + zf) — 2Y1Y22120 — 221 %2 (V1Yo + 2122)
By = 4f*(af — 22w + 25+ + 3 + 27 + 25 — 2y1y2 — 22120)

By = (y5+2)71 — 28(y1y2 + 2122)m1 + f2(m1 — 2)* + 73 (3} + 23)

Cr = 2(zf — 2mom1 + 75+ Y7 + Y5 + 22 + 22 — 21y ~ 22122)

- Knowing a it is straightforward to calculate b from equation (3.67), and also the point
where the center of the scattering occurred. Similar equations can be obtained by ex-

pressing x and z in terms of y.

There are a few additional constraints on the solution. The point of scattering must
be in the line-of-sight with respect to the transmitter and the receiver, otherwise the
path is blocked (in this case by the ground) and it can be assumed that the signal will be
lost. Also, as mentioned above, one has to isolate the part of the trail where ionization

occurred. This method is fast and reliable.

The main problem with the above algorithms is that they assume that the transmitter,
the trail and the receiver are known, which in the general case is not true. In practice,
the trail has to be determined by using the information that the reflection occurred due
to the presence of a meteor trail. For a given transmitter-receiver pair there are multiple
possibilities of detecting many different meteors resulting in the same observational data.

In section 3.7 we will discuss how this problem can be resolved.
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3.4 Probability of Detecting Meteors

To estimate probabilities of detecting meteors for a fixed TR pair we modified the ana-
lytical algorithm given to determine which possible meteor trails will be detected. The
coordinates of the transmitter in geocentric geographic coordinates (longitude, latitude,
altitude) are (Ar, 7, hr) while the coordinates of the receiver are (AR, ¥R, hg). For sim-
plicity we assume that both the transmitter and receiver are positioned at sea level, thus
we can write hr = 0 and hg = 0. Having one point of the trail Mi; (Aa1s, ©mi, 110 km)
and a direction defined by the meteoroid’s velocity vector, the trail is completely defined.
The coordinate transformations needed to obtain canonical from geocentric coordinates
are given in the appendix.

A uniform distribution of meteors over the sky is obtained by using a coordinate
grid defined in the geocentric geographic coordinate system. The meteors are defined
using two points, the first one at an altitude of 110 km with the coordinates (Aar1, Ou1,
hyi = 110km) and the second at an altitude of 80 km having coordinates (Aps2, ©ars,
hye = 80 km). We created a rectangular zone in longitude-latitude space around the
baseline TR such that longitude goes from A, t0 Apos and latitude from Pmin 10 Omagz.
For each point My; with longitude and latitude in the given intervals, and at an altitude
of 110 km My; (Apr1s, ©arii, 110 km), it is possible to create a family of meteor lines using
uniformly distributed direction vectors. A unity vector in spherical coordinates is defined
using azimuthal ¢ and polar 6 angles together with the unity radius. The azimuthal angle
is in the range [0, 27) and the polar angle takes values in the interval [0, 7]. Obtaining
a set of uniformly distributed unity vectors over the surface of the unity sphere is not
trivial. We loop over the polar angle uniformly, while the azimuth angle changes, taking

~ into account the foreshortening due to the polar angle via

_ d¢const
¢ = sinf ’

(3.69)

where ddeons: is some constant value representing the minimal increment. Knowing that
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0 takes values from the interval [0, ], there are two points where d¢ does not have
solutions, namely, where § = 0 and 6 = 7. Physically, at the “bqttom” and the “top” of
the sphere the meaning of the azimuthal angle is not defined: there is only one “bottom”
point with the poiar angle 6 = 0. The same applies for the “top” point. Thus, the
described algorithm provides the distribution of the points on the sphere such that the
surface area between any four closest points is constant. An example of the distribution

having 4613 points is given in Fig. 3.11.
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Figure 3.11: A uniform distribution of points over the surface of a sphere. The parameters

used are ddonst = 7/30 and df = m/30.

Checking if the given meteor produces a forward-scattering reflection at the receiver
point is done using equation (3.68). We limited the altitude of the reflection points to a
range between 80 km and 110 km. It is important to notice that not all of the generated
meteoric lines will intersect the Earth’s atmosphere at an 80 km altitude. Only those
meteoroids that do are taken into account. An example of meteoric lines entering the
Earth’s atmosphere at a point 110 km high is shown in Fig. 3.12. The antenna beam
patterns are set to be uniform over the whole sky: i.e. the antennas are not directed.
The 2ACSA discussed in the previous Chapter has a large main beam covering about
30% of the sky. Typical commercial transmitters are built in such a way as to provide
maximal ground coverage, usually having main lobes pointed in the horizontal direction.

The number counts of detected meteors at each point of meteor origin, are shown in

Fig. 3.13 (top). The coordinates of the transmitter are (279.66°, 39.30°, 0 km) and of
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Figure 3.12: A distribution of meteors with the fixed point of entrance in the atmosphere
at 110 km altitude. The second point for each meteor is at 80 km altitude. The pa-
rameters used are ddconss = 7/30 and df = 7/30. The center of Earth is at the point
(0,0,0).

the receiver (280.64°, 45.82°, 0 km). The distance TR is 729 km. In the plot there are
clearly two visible regions with higher number count, located above the transmitter and
above the réceiver. The reader should note that these two regions are not showing the
position of the scattering points, but just the position of the beginning of the trail. A
plot containing the reflection points varies with altitude and will be dealt with shortly.

The collected power for the setup described above is shown in Fig. 3.13 (bottom).
The power is normalized to the highest value. There is a significant difference in the
shapes of the distributions plotted in the two plots in Fig. 3.13, especially above T and
R. In these regions, the available configurations have angle 3 close to 90°, minimizing
the received power according to equation (3.56).

The higher the grid resolution, the larger number of meteors per grid point. The
overall shapes of graphs shown in Fig. 3.13 are not changed much by increasing the

simulation’s resolution. The plots tend to become more symmetric. For more details see
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Figure 3.13: Top: a number distribution of the initial meteor points at an altitude of 110
km of the trails causing the forward-scattering reflections. Bottom: a detected power
distribution per initial meteor points at an altitude of 110 km. The power is normalized
to the highest value. Latitude and longitude are given in degrees. The geographic
coordinates of the transmitter are (279.66°, 39.30°, 0.0 km) and of the receiver (280.64°,
45.82°, 0.0 km). The transmitter and the receiver antenna beams are set to be uniformly
distributed over the whole sky.
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Fig. 3.17. A more detailed computation also results in an increase of the z scale: i.e. the

highest peaks become even higher, while the low regions grow more slowly.

A second example is presented for a transmitter and a receiver separated by 395
km. The transmitter has geographic coordinates (275°, 45°, 0 km), while the receiver
is located at (280°, 45°, 0 km). The resolution of the simulation is defined by the
parameters dgconst = 35, df = 35> and the longitude and the latitude increments of the
entrance point are 0.1°. The distributions of the initial scattering points at the different

altitudes are given in Fig. 3.14. To verify that the simulation resolution does not have

Figure 3.14: The number distribution of the initial meteor points at an altitude of 110 km
(top left); the end points of the trails at an altitude of 80 km (top right); the scattering
points at 90-95 km altitudes (bottom left); the scattering points at all altitudes (bottom
right). The transmitter is set to be at the point with coordinates (275°, 45°, 0 km), and
the receiver is at (280°, 45°, 0 km). Distance TR is 395 km. The other parameters used

are ddconst = 55 and df = 2%
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much influence on the overall distribution, the results of the simulation are re-plotted

in Fig. 3.15 with the parameters changed to d@cons: = 15 and df = . Similar results

Figure 3.15: The number distribution of the initial meteor point at an altitude of 110 km
(top left); the end points of the trails at an altitude of 80 km (top right); the scattering
points at 90-95 km altitudes (bottom left); the scattering points at all altitudes (bottom
right). The transmitter is set to be at the point with coordinates (275°, 45°, 0 km), and
the receiver is at (280°, 45°, 0 km). Distance TR, is 395 km. The other parameters used

are dconst = % and df = I%'

are obtained by setting dgeonst = 7% and df = Z, and using longitude and latitude
increments of 0.2°. A number distribution of detected trails per the initial meteor point
at an altitude of 110 km as well as a number distribution for the end point of the trail
at an altitude of 80 km are shown in Fig. 3.16.

In Fig. 3.17 the total number densities of forward-scatter echoes summed over all

altitudes between 80 and 110 km are plotted for a transmitter-receiver distance of 1000
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Figure 3.16: The number distribution of the end points of the trails at an altitude of 80
km (left); the scattering points at all altitudes (right). The parameters are ddcons: = 7

and df = 7. The longitude and the latitude increments are 0.2°.

km. The number of generated meteors per initial trail point was varied by changing
thevparameters ¢ and 6. The results are dependent on the simulation resolution. It is
expected that there should be a symmetry of the relative number density with respect
to the line TR, as well as a symmetry with respect to the line perpendicularly bisecting
TR. By increasing the resolution, the results become more symmetric.

An important conclusion is that the number of possible detections is highest in the
localized zone around the baseline TR, excluding the baseline itself. Comparing the
results of our simulation with the semi-numeric results presented in McKinley, 1961, [74]
there is a small discrepancy. The relative number distributions in the region of the sky
above the transmitter and the receiver are of the same order of magnitude as in the
regions around the baseline.

The normalized power density of forward-scatter echoes projected onto the surface of
the Earth for the 1000 km baseline is given in Fig. 3.18. The highest value of the detected
power is clearly visible around the baseline, however there are also two secondary peaks
which do not exist in the number density plot given in Fig 3.17.

The typical length of a meteor trail is about 10-40 km. In our simulations we checked

how the number and power density plots were affected by increasing the maximal length
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Figure 3.17: The number distribution of forward-scatter echoes. The transmitter has

geocentric geographical coordinates (82.74°, 45.0°, 0 km), and the receiver’s coordinates

are (70.0°, 45.0°, 0 km). The distance TR is 1000 km. The longitude/latitude resolution

3 s

is 1.2 arc minutes. The parameters (d@const, df) are: top left (5 75

bottom left (35, 35); and bottom right (%, 7).
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5 1)

of a trail from 40 km to 100 km, and found no change.

For every transmitter-receiver pair, the number distribution of scattering points for

all possible meteors defines a type of instrumental profile of the given forward scattering
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Figure 3.18: The normalized power distribution of the received forward-scatter echoes.
All parameters are the same as in Fig. 3.17. Left: dgoomns = 3z and df = . Right:

dGeonst = 75 and df = 7

setup. The distribution will change depending on the baseline length and the antenna

characteristics.

Meteor Showers: Observable Trails

All meteors caused by a meteor shower appear to be originating from a fixed point on
the celestial sphere (radiant). A simple approximative method to predict the scattering
points of the observable meteor shower trails at a fixed height, for a fixed transmitter
and receiver, is given in [42] and slightly modified in [144]. The theory of this simplified
model is explained above, see equations (3.51 - 3.54).

In our simulations, the radiant is defined by setting the first meteor path point, M;,
with defined geocentric coordinates far from the Earth, i.e. at height hg = 102 m. The

second point describing the meteor path, M,, is set to be at an altitude of 130 km. We
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Figure 3.19: The observability function for a meteor shower with radiant at (60°, 30°,
10% m). The transmitter coordinates are (90°, 36°, 0 km) and the receiver is located at
(90°, 45°, 0 km) with TR distance 1000 km. The maximal length of the trails is 40 km.
Left: the distribution of scattering points at all altitudes; Right: at 100 km altitude.

looped through all possible M, points and checked whether the meteoric line M;M, is
observable for the given T and R. The baseline T-R is set to be 1000 km in order to
campare the results with those presented in [144], and with the observability function
shown in Fig. 3.19. The plot on the right side corresponds to the scattering points at 100

km altitude. There is an excellent agreement with Fig. 3.8 and Fig. 6 from Verbeeck,
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Figure 3.20: The observability functions for meteor showers with radiants in (90°, 36°,
10% m) (top left), (90°, 30°, 10® m) (top right), (90°, 20°, 102 m) (bottom left) and
(90°, 10°, 10*® m) (bottom right). The transmitter coordinates are (90°, 36°, 0 km),
and the receiver is located at (90°, 45°,0 km) with TR distance 1000 km. The maximal

length of the trails is 40 km.

The observability function changes with the radiant position. Examples are given in
Fig. 3.20. The radiants were set to be aligned with the TR baseline, driving the obvious
left-right symmetry on all four shown plots. Obviously, by setting the radiant on the

receiver’s side, the plots would look identical, with the latitude reversed. Again, the
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plots are in agreement with [144], Fig. 4.

3.5 Illumination Footprint of Individual Meteor Trails

The term “illumination footprint” has roots in the theory of meteor burst communication.
It is defined as the geographic region illuminated by a scattered signal from a single
meteor. The footprint depends on the beginning, orientation and length of the trail.
Basically, it defines the position of all possible receivers capable of receiving the signal
emitted from the fixed transmitter and reflected by the given trail. Identifying the region
of possible transmitters for a fixed receiver is in principle the same problem, due to
symmetry of specular scattering.

A simple technique for calculating the ground illumination footprint of individual
trails is discussed in the study done by Jay A. Weitzen in 1990 [149]. His approach is
~ to use Rudie’s equation (3.62) to calculate only whether a certain point on flat ground
can receive a signal reflected by a given trail. His results are incomplete compared to the
data produced using the method discussed here. The two main constraints of Weitzen'’s
technique are the weakness of using Rudie’s equation, as discussed in the previous section,
and the approximation that the Earth’s surface is flat.

The simulation described earlier was used to predict illumination footprints for a fixed
receiver positioned at a site with geographic coordinates (90°, 45°, 0 km). The antenna
beam of the receiver was uniformly spread over the whole sky. The meteor trails start
forming at thé point where the meteoroi_ds enter the atmosphere, for example (80.5°, 45°,
110 km). The trail length was limited to 40 km. Four illumination footprints are given
in Fig. 3.21 for four different orientations of the trail.

The importance of meteor footprints is that for a fixed receiver a single meteor can
reflect only radio waves coming from transmitters in a fixed zone of the Earth’s surface.

If transmitters are “nicely” spatially distributed, and if one can resolve between different



CHAPTER 3. METEOR FORWARD SCATTERING

latitude | ; N A | 1ac1t\lxde | | | , \
54 - 544
52 - 524 o
50 L 504 L
48 F 48 o -
46 ) 'ry“ I a6 L
W _"""@
444 - 44 ~ -
424 - 424 -
404 - 40 -
38 - 38 o
T T T T T T T T T T T T
65 70 75 80 85 90 95 65 70 75 80 85 90 95
longitude longitude
latltllxde L | L L | latitude | L L L |
54 - I 544 L
52 524 -
50 - 50 o
48+ - 48 ~ o
46 o - 46 - -
44 4 o 44 o -
42 4 - 42 4 -
40 I 404 -
384 o 38 -
T T T T T T T T T T T T
65 70 75 80 85 90 95 65 70 15 80 85 90 95
longitude longitude

0.4 0.6
normalized power

104

Figure 3.21: The ground illumination footprints for a family of meteors entering the

atmosphere at a single point with coordinates (80.5°, 45°, 110 km). The transmitter

coordinates are (90°, 45°,0 km). The maximal length of the trails is 40 km. The

orientation of the trails is: Top left ¢ = 60°; Top right ¢ = 150°; Bottom left ¢ = 240°;

Bottom right ¢ = 330°; and 6 = 20°.
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- transmitters, it is possible to define a meteoroid line even without using time delay

information.

3.6 Observations at a Single Frequency

Most observers using standard single frequency forward-scattering methods are using the
data only to count meteors (ﬂux estimates). There are statistical methods of eliminating
a certain number of sporadic meteors in order to estimate the number of meteors in a
given shower. Oleg Belkovich’s group from the Kazan Observatory, Russia, has been
applying a statistical method for estimating the meteor flux of a particular shower using
data collected in the last few decades [4].

An interesting attempt to approximately calculate the height of the scattering point in
forward-scattering observations is described in [12]. In the case of overdense trails with
total reflection (overdense type I), a simple relation between the attenuation and the
position of a receiver and a transmitter is used to estimate the height A of the scattering

point:

L 1 L
(k). a0y

Here L is the distance between the receiver and the transmitter, Rg is the radius of the

Earth, and the angle ¢ is defined by:

1136
o cos¢

(3.71)

where a is the attenuation, given in dB, of the incident to the reflected wave with electric

fields E; and E,
|Eq[?
= —_. .72
a = 10log . (3.72)
Carbognani et al, 2000 used the received signal amplitude in volts to calculate the atten-
uation a = 20log Vz — 2[dB].
In our observations, we can distinguish between overdense and underdense meteors

by observing the time evolution of the signal as shown in Fig. 3.3. If the location of the
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transmitter is known, then overdense type I trails could be used for testing the above

height determination method.

3.7 Broadband Observations

Single frequency observations of meteor forward-scattering cannot be used to determine
the true position of the scattering point, nor the orbit of the meteoric body. Having only
information about when the scattering occurred and the time evolution of the scattered

signal is not enough for a serious geometrical analysis.

As discussed above, for a certain class of trails it is possible to calculate the height of
the scattering zone. There are a few attempts to build an interferometric system capable
of isolating a scattering zone. One such system is currently being developed at the Kochi
University of Technology, Japan by Masa-Yuki Yamamoto [155]. Our approach is to use
a single receiver capable of recording a single meteor trail using waves from spatially sep-
arated transmitters emitting at various frequencies. The data obtained contain intensity
and time information for one meteor at a few different frequencies, including the time
lag between the first reception at one of the frequencies compared to the time when the
signal is detected at the other frequencies. This setup is similar to a radar system of
Peter Browns’s group at the University of Western Ontario, Canada, which uses multiple
receivers and a single transmitter [148]

Having more transmitters makes the geometry of the problem significantly more com-
plex. In the case of multiple transmitters, instead of having only one baseline T-R forming
a single ellipsoid, there ére multiple baselines T;-R, ¢ = 1,... Ny, where Nr is the total
number of transmitters. Each baseline defines a family of ellipsoids. The equation of an
ellipsoid with foci at any two points of 3D space in the general case is a second order
polynomial in 3 coordinates. Ny transmitter-receiver pairs would then give Ny equations

for ellipsoid families, since there is one ellipsoid defining coherent scattering for each de-
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tected reflection. In principle, it might be possible to form a system of equations with
a unique solution defining the trail tangential to one ellipsoid per T;-R family; however,
such a problem is hard to solve.

The simplest approach is to pass through all possible radiants and investigate whether
for each of the possible transmitters, there is a reflection. Assuming that the observed
meteor trail is detected at Ny different frequencies, we isolate all transmitters in a range
of 2400 km around the receiver emiting at these N; frequencies. In the next step we
look for the radiants and a set of transmitters capable of causing detection at all N;
frequencies. Finally, the time of receiving a successful reflection is used to isolate the true
radiant and obtain the velocity of the meteoroid. In Fig. 3.22, we show four different
parameters in the case of detecting a fixed meteor trail at a fixed receiver for all possible
transmitters. The main weakness of this method is computation time. A single check
whether a reflection occurred for a given transmitter-receiver pair takes 107 s with a top
of the line processor. In the case of 10000 transmitters, the computation time is on the
order of 1073 seconds. Searching through all possible meteors with 100 meter resolution
over 1000 square kilometers at an altitude of 140 km will take over 300 thousand years.

Computationaly, this is a very hard problem even for the fastest supercomputers.

3.7.1 Detecting Aircraft With TREX

A possible future application is using a digital spectrometer as an early warning radar.
The typical height range for military aircréft is up to 18 km. An aircraft should produce
forward-scattered signals. Such an air defense instrument is completely passive and
cannot be targeted by high-speed antiradiation missiles. The commercial transmitters
currently used for forward-scattering are not valid military targets and even if destroyed
can be easily remounted. Transmitter power can be on the order of 10 watts, which can
be produced by small solar generators. The cellular telephone transmitter network is

another possible type of transmitter that could be used for military purposes, but in this
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Figure 3.22: Four parameters of successful detections for different positions of transmit-

ters for a fixed meteoroid with the initial point of the trail (80°, 45°, 110 km) and a

receiver at (90°, 45°, 0 km). The total length of the trail is limited to 40 km. The pa-

rameters are: height of the scattering point (top left), distance from the beginning of the

ionized trail (top right), normalized power (bottom left) and time of detection measured

starting with the time of the first detection (bottom right).
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case, the receiver would need to be reconfigured to work in gigahertz bands.

3.7.2 Search for the Orbit: Optimization via Simulated Anneal-
ing

We define the problem of determining an orbit of a meteoroid as: for a given set of

observed forward-scattered signals transmitted by a set of Ny transmitters and received

by a receiver at all FM frequencies, find the most probable orbit of the responsible

meteoroid. The observed data are given as the measured intensity I;(t) at a particular

frequency f at time ¢. Examples of I(t) are given in the next chapter.

The optimization testing function in the general case must depend on the intensity
I4(t). However, we will use only the information for when the first peak occurred at each
frequency for the given meteor trail. The measured spectra intensity includes transmitter
antenna parameters which, for most of the transmitters, cannot be extracted from the
publicly open databases [130], [140]. In addition, the detected power depends on the
polarization angle, which is also an unknown quantity. Above, we showed the geometry
of a typical forward-scattering system and introduced the simplest models for predicting
the received power for a transmitter-meteor trail-receiver system.

The search problem will be described as an optimization problem over 7 dimensional
parameter space. To describe a meteor line we need 4 parameters: radiant position (2)
and a single point at the fixed altitude (2). The velocity of the meteoroid is the fifth
parameter. When all five of these parameters are known, coordinates of scattering points,
if any, can be calculated from (3.68). For a single meteoric line and Ny transmitters,
there can be a maximum of Ny scattering points spread over an infinite distance (see
Fig. 3.23). The first constraints are the maximal énd minimal altitude where the trail
can be formed. We also assume the ionized region can be up to 40 km long. Thus, there
is a need for a 6th and 7th parameter which describe the altitude where the ionized trail

started forming and the altitude where the ionized portion ended.
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Figure 3.23: Possible scattering points are spread along a path of a meteoroid: latitude
vs height (left) and rectangular geographic coordinates z vs z (right). The total length

from the first to the last scattering point is 198.7 km.

We define the optimization function as
B =min Y[/, 1) — to( ), (373
!

where 4 goes from 0 to the number of scattering points for a given line. The time of
the first detected peak at the frequency f is to(f), defined to be zero for the first peak.
t(f, ©) is the current state time of the first peak at the frequency f normalized at the
i—th scattering point. The variation of the optimization function given by (3.73) with
velocity for a fixed line corresponding to a mock observation of forward scattering is
shown in Fig. 3.24. The minimum of E corresponds to the true velocity of the mock
observed meteoroid. The function is continuous with only one minima.

The shape of the optimization function becomes much more complex when other
parameters are taken into account. In Fig. 3.25 the optimization function is calculated
for the latitude of a point at an altitude of 80 km. The radiant, speed and longitude of
- the point at 80 km altitude are fixed.

In Fig. 3.26, the optimization function is plotted for the points of the orbit at an
altitude of 140 km for a receiver positioned at the Algonquin Radio Observatory. We used

the full North American FM broadcasting database to compose a full list of transmitters.
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Figure 3.24: Optimization function E versus velocity v for a fixed trail. The correct value

for the speed is 51.23 km/s.
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Figure 3.25: Optimization function F versus latitude of a point at an altitude of 80 km.

All other meteor parameters are fixed. The correct value is 42°.12827.

The direction of meteor velocity was kept fixed with the angles ¢ = 40° and § = 55°. The
mock observation needed to define o (f) is obtained for a 40 km /s meteoroid which started
forming its ionized trail at (275°, 45°, 140 km). The total length of the mock trail was set
to 8 km. There are multiple local minimums of the optimization function visible in the
graph. When looking for a global solutioﬁ, standard N-dimensional search methods such
-as the simplex method do not work well under such assumptions [96]. Searching through
the full parameter space with the needed resolution could take thousands of years with

computers at the present technological level.
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Figure 3.26: The number of scattering points N (left) and the optimization function E
(right) at the points of orbit at an altitude of 140 km. All meteoroids are coming from
a fixed radiant defined with the angles ¢ = 40° and @ = 55°. The receiver is located
at the Algonquin Radio Observatory (281°.967, 45°.97, 0.2 km) and transmitters are all
North American FM towers. The meteoric lines passing through the points at the left
bottom white portions of both images do not intersect the atmosphere at 80 km. The
mock measurement is defined by a trail with a starting point at (275°, 45°, 140 km) and
speed of 40 km/s.

We propose to use the simulated annealing method in our search for a meteor trail
satisfying the observed data. Simulated annealing is an optimization algorithm based on
a procedure of controlled heating and cooling of metals in order to reduce the defects of
crystal structures [60]. The cooling of a system starts at an initial state where the system
at high temperature is highly disorganized. Thereafter, the system slowly evolves toward
a more ordered configuration, approaching the ground state with zero temperature. The
evolution of the system can go toward a state with higher energy which opens the possi-

bility of avoiding local minima. The method is defined by knowing the energy function




CHAPTER 3. METEOR FORWARD SCATTERING 113

E and by choosing the annealing schedule: the initial temperature T, the number of
iterations for each temperature value, and the rate of cooling. In the general case for a fi-
nite problem, simulated annealing will successfully complete the optimization. However,
sometimes the time needed to obtain the solution will exceed the time needed to search
through the whole parameter space.

The transition from the state with energy E; of the system into another neighboring

state with energy F, is defined by the probability

—(By—Fy)
p =€ kT ,
where £ is a constant, equivalent to Boltzman’s constant for thermodynamic systems. If
the energy of the new state is lower than the energy of the first state, the system will
move into the new state, otherwise there is a probability p of the transition into the new

state.

Figure 3.27: Velocity v (left) and optimization function Ej (right) vs number n of probed
velocities for a fixed trail. A total of 20 runs were plotted. Each search started with

vo = 20 km/s, Ty = 4000, dT = 15, k = 10~". The correct velocity is 51.23 km/s.

A quick test of simulated annealing applied to our problem is done by fixing a meteor
line and doing a search for the minimal E over velocity space. Every neighboring state

is chosen randomly from a Gaussian distribution with a median set in the previous best
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solution and a standard deviation depending on T'/T0. The calculations are done for the

example given in plot 3.24. The results of 20 runs are shown in Fig. 3.27.



Chapter 4

Observations

This chapter provides a short description of the observations performed in the periods of
April 19-24 and June 28 - July 18, 2006 at the Algonquin Radio Telescope site. The main
goal of the ﬁrst' observational run was to test the equipment, to estimate the pollution of
the VHF part of the spectrum, and to quantify the meteor echoes. The second run was
performed in order to collect information on meteor activity and to detect the number of
meteor trails visible at multiple frequencies. The data obtained can be used in the future

to test our method of determining meteoroid orbital parameters using a single receiver.

4.1 April 19-26, 2006

The first forward-scattering observations were performed between April 19-26, 2006 at
the Algonquin Radio Observatory. The exact coordinates of the receiver’s antenna were
(78°4/.22 W, 45°57'.33 N, 226 m). On April 23rd, 2006 the observation site was visited
and the equipment was inspected for possible problems due to strong winds. None were
found. The Algonquin Radio Observatory does not have a weather station, and the
nearest ones are in Petawawa and North Bay. The weather conditions in Petawawa for
the given dates are given in table 4.1 [154]. In total, 300 GB of data were collected. The

acquisition algorithm was set to collect 80 times 2% samples with a 500 MHz A/DC,

115
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Date | T (°C) | Trmaz (°C) | H | vy (*2) | Clouds Rain

Apr 19 | 12 23 47 22 Clear

Apr 20 | 12 23 36 |11 Clear, Partly

Apr 21 |11 18 45 | 17 Clear, Partly, Mostly

Apr 22 | 8 11 75 |33 Clear, Overcast Light

Apr23 |6 7 99 |17 Overcast Light-Heavy
Apr24 | 7 9 100 | 9 Overcast Light-Heavy

Apr 25 | 2 7 80 |37 Clear, Overcast Rain, Light Snow

Table 4.1: Weather report for Petawawa, Ontario (46.0°N, 77.3°W, 130m) for the time
period Apr 19-25, 2006. T is the average daily temperature, H is the humidity index and
Uy is the maximal wind speed for the given date. Note: The weather report for North

Bay (46.3°N, 79.4°W, 371 m) for the same time interval is very similar.

to perform 2'%-point FFT and to record power spectra as fits format files. Strong FM
lines were detected at 92.5 MHz, 96.7 MHz and 99.7 MHz, corresponding to local radio

stations.

4.1.1 Milky Way

TREX in principle can provide an excellent tool for measuring the spectrum of the Galaxy
if some challenges could be overcome. The signal measured by TREX is dominated by
the Galactic synchrotron emission. The spectrum measured with our antenna having the
Galaxy pass directly over the beam is shown in Fig. 4.1 (bottom). It is obtained with
the 50-200 MHz bandpass filter with the resonant frequency in FM band. The cutoff and
the resonant frequencies due to filter characteristics can be identified in the spectrum.
The lines in the spectrum are due to terrestrial emiters (FM, TV and communication
channels). The 21 c¢m signature detection requires removal of all sources of noise with
precision of 5 orders of magnitude smaller than the Galactic signal. The main difficulties
when estimating Galactic emission with TREX type of instrument are due to bandpass
calibration, and because of changes of thé antenna beam with frequency. The system

noise and the filter function can be estimated using the thermal noise of a resistor. If
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the receiver input is terminated with a resistor, the voltage through the resistor will be

proportional to the square root of temperature. Changing the temperature, the charac-

Relative Intensity

Loci I

100 - 150
Frequency:{MHz]

L L
200:

50

Figure 4.1: The power law growth of the Galactic “noise” toward the lower frequencies
(bottom). The intensity is normalized to the highest peak for the given data set. Top:
the time evolution of the spectra, showing the stabilty of the instrument, with the time

resolution of one data set per second.

teristics of the receiver including filters and amplifiers can be found. The calibration of

the antenna could be done with comparing observations for at least three sources. For
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a small antenna system, the obvious choices would be Galaxy over the beam, Galaxy
bellow the beam and the sun (maybe even Jupiter) over the beam. Differences between
these spectra can be used to calibrate the instrument and find a true spectrum of the
Galaxy.

The oscillations of the noise level due to the influence of our Galaxy at two different
frequencies are shown in Fig. 4.2. The maximal signal is received at the moment when
the Milky Way is passing over the antenna beam as plotted in Fig. 4.3. There are
significant differences between the diurnal variations of the Galactic noise at 102.1 MHz
and 105.1 MHz, shown in Fig. 4.2. Such discrepancies make observations of the 21
- cm reionization step very hard. As explained in Chapter 1, the method for detecting
the epoch of reionization, using TREX or any other small antenna ‘telescope, requires
stability in the level of the Galactic noise on the order of less than 0.01 percent (see Fig.
1.5). The only solution is to find and remove the source of the discrepancy. The possible
causes of this problem are either the nature of the hardware, or ionospheric activity. In
the first case, it might be that the antenna beam patterns are more frequency dependent
than thought, or that there is some impedance matching problem. In principle, the
hardware problem can be located by intensive testing and eventually corrected. In the
second case, if the problem is in the ionospheric processes, then more observations and
better understanding of ionospheric physics might eventually lead to a model to remove

the effects.

4.1.2 Lyrids

The Lyrid meteor shower was active from April 16-25, 2006, with its maximum on April
22; 2006 at 16h30m UT (A = 32° 32') [72]. A typical meteor of this shower has velocity
v = 49 km/s, and the radiant has equatorial coordinates ag = 271°, 6z = 34° (constel-
lation Lyra). In the year 1803, a Lyrid meteor storm with ~ 700 meteors per hour was

observed over the eastern US. Ever since, the maximal hourly rate of visual meteors has
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Figure 4.3: Milky Way over the antenna beam. The antenna is pointed toward n Aquila.

varied from 10+ meteors per hour.

Increased meteor activity was observed on April 22nd, 2006. In our data, two peaks
are detected. Both peaks are confirmed at most of the FM bands. In Fig. 4.2 the activity
of the Lyrids can be seen at 102.1 MHz and 105.1 MHz (increased activity during the
third galaxy cycle just after time increment of 34.56 hours). An example of a meteor
reflection, detected at multiple frequencies, during the time of the Lyrids’ maximum, is

shown in Fig. 4.4.

4.1.3 Toronto Footprint

We have selected 23 frequencies to represent a Toronto footprint. These frequencies
were searched for in the data collected during the Lyrid 2006 Algonquin campaign. The
list of Toronto FM stations [11] is given in Table 4.2. The goal was to find meteor

trails reflecting the signals from the greater Toronto area. If transmitted at the same
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Figure 4.4: An example of meteor forward-scattering detected at multiple frequencies as

evidenced by the dark bands running across most frequencies.

f (MHz) | code name Longitude [°] | Latitude [°]
88.1 CKLN | Ryerson University 79.381944 43.648889
88.9 CIRV | Multicultural 79.381944 43.648889
89.5 CIUT | University of Toronto 79.381944 43.648889
89.9 CKRG | Glendon College 79.381944 43.648889
90.3 CJBC | Radio-Canada Espace Musique 79.381944 43.648889
91.1 CJRT | Jazz FM 79.387500 43.642500
92.5 CJAQ | Jack FM 79.381944 43.648889
93.5 CFXJ | Flow 93-5 79.381944 43.648889
94.1 CBL Radio Two 79.387500 43.642500
97.3 CJEZ | EZ Rock 79.387500 43.642500
98.1 CHFI | Adult contemporary 79.387500 43.642500
99.1 CBLA | CBC Radio One 79.381944 43.648889
99.9 CKFM | Mix 99.9 79.387500 43.642500
100.7 CHIN | Multicultural 79.387500 43.642500
101.3 CJSA | Canadian Multicultural Radio 79.381944 43.648889
104.5 CHUM | Hot adult contemporary 79.387500 43.642500
105.1 CHOQ | Franco-Ontarian community station | 79.399167 43.705556
105.5 CHRY | York University 79.503056 43.775556
106.5 CFIE | Aboriginal Voices Radio 79.381944 43.648889
107.1 CILQ | Q107 79.387500 43.642500
88.5 CKDX | Foxy 88-5 (Newmarket) 79.519167 44.011111
96.3 CFMX | Classical 96.3 (Cobourg) 78.143333 44.070556
102.1 CENY | 102.1 The Edge (Brampton) 79.387500 43.642500

Table 4.2: Commercial FM stations heard in downtown Toronto. The last 3 are not

transmitted from the city’s core.
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Figure 4.5: Toronto FM stations as measured at UofT. The data agree with the list of

F'M radio stations given in Table 4.2.

geographic location, the time lag between the first maximum of the detected waves at
different frequencies should be on the order of 10 s. In the case of reflections of the
same trail at two different frequencies, if the two transmitters are at the same location,
the scattering geometry will be the same. In that case, for a fixed meteor trail, the
difference between the times of the maximum of these two received signals depends only
on the frequency as seen in equation (3.55). The meteoroid reaches the ty point at the
same time for both reflections, and the maxima of the detected signals occur when the
meteoroid arrives at the first Fresnel points for the given frequencies, t;( fi) and t1(fz),
where ¢ and k describe FM bands where detections occured. The speed of the meteoroid

v can be estimated using equation (3.55)

v (4.1)

G
= ——§7

t(fi) 7
where the constant G carries all geometrical parameters. From the data the difference
between ¢1(f;) and ¢;(fx) is known, so the speed can be obtained. The maximal effect is
obtained for two frequencies corresponding to the beginning and the end of the FM band

3/2

;i = (%) = 1.34. The time needed to reach the 1st Fresnel zone after a meteoroid
1
has passed through the ¢, point depends on the meteoroid’s speed and can take values

from 3 x 107 s up to 3 x 10™* s. During the Lyrid maximum, we found one reflection

with a possible Toronto footprint, and estimated the meteoroid speed to be (36 + 5)
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Figure 4.5: Toronto FM stations as measured at UofT. The data agree with the list of

FM radio stations given in Table 4.2.

geographic location, the time lag between the first maximum of the detected waves at
different frequehcies should be on the order of 10™* s. In the case of reflections of the
same trail at two different frequencies, if the two transmitters are at the same location,
the scattering geometry will be the same. In that case, for a fixed meteor trail, the
difference between the times of the maximum of these two received signals depends only
on the frequency as seen in equation (3.55). The meteoroid reaches the ¢ point at the
same time for both reflections, and the maxima of the detected signals occur when the
meteoroid arrives at the first Fresnel points for the given frequencies, ¢;(f;) and t1(fx),
where ¢ and k describe FM bands where detections occured. The speed of the meteoroid

v can be estimated using equation (3.55)

_G
tl(fi)fi%’

where the constant G carries all geometrical parameters. From the data the difference

v= (4.1)

between ¢,(f;) and ¢;(f;) is known, so the speed can be obtained. The maximal effect is
obtained for two frequencies corresponding to the beginning and the end of the FM band
%gr = (}%)3/2 = 1.34. The time needed to reach the 1st Fresnel zone after a meteoroid
has passed through the ty point depends on the meteoroid’s speed and can take values

from 3 x 107 s up to 3 x 10™* s. During the Lyrid maximum, we found one reflection

with a possible Toronto footprint, and estimated the meteoroid speed to be (36 £ 5)
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km/s. The main problems with this method of estimating meteor speed are correctly
identifying ¢,(f) and making sure that the signals producing the first reflections at the
given frequencies originated at the given location, in this case Toronto. During the first
observation run, the data collection was set up in such a way to try and capture events
shorter than 10™* s. The data collection was not continuous but rather filled with gaps,

which reduced the number of trails with detected t;(f;).

4.2 June 28 - July 18, 2006

The data collection algorithm for the second run was modified in order to capture under-
dense echoes with a duration of ~ 1 second. 26 samples were collected in 10000 buffers
amounting to 1 GB of raw data. The data were collected over a period of ~ 20 seconds,
then during the next ~ 20 seconds the spectra were calculated with 2'4-point FFTs,
décimated and recorded on the hard disks. We collected 35000 spectra during 20 days of
constant observation requiring 550 GB of disk space. To reduce the number of detected
trails, the antenna was pointed north with an elevation angle of 70°. A snapshot of the
spectra taken on July 9, 2006 is given in Fig. 4.6. Multiple reflections are clearly visible
(see Fig. 4.7).

The level of noise is mostly influenced by Galactic emission (see Chapter 1). Since
Galactic noise grows with power law toward lower frequencies, we expect to have higher
meteor counts at larger frequencies. With our instrument, we are able to verify the
power law growth of Galactic noise toward lower frequencies [88]. On the other hand,
the detected power for meteor scattering increases with decreasing frequency, resulting
in lower meteor counts at larger frequencies as shown in Fig. 4.8. The relative number
of meteor trails, detected at the high end of the FM band compared to the number of
trails at the low end, is in excellent agreement with equation (3.56). There are 1.8 times

more meteors detected at the low end of FM band. We found the average noise level



CHAPTER 4. OBSERVATIONS 124

4e+06

108 110

106

3e+06

104

102

100

98
frequency [MHz]
2e+06
spectrum intensity

94 96

le+06

92

90

88

sample #

o o
o o
A N

Figure 4.6: Meteor forward-scattering observed on July 9, 2006 from 06:06 until 06:30

local time. The spectrum intensity is given in arbitrary units.
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Figure 4.8: Number of detections for FM frequencies lower than 92.5 MHz (left) and
higher than 103.1 MHz (right).

at each frequency and used the maximal value to define an absolute threshold level. An
algorithm to detect meteor reflection at a given freqﬁency above the threshold level was
subsequently applied to the data obtained. The number of counts for three frequencies is
shown in Fig. 4.9 for detections lasting less than one second and exceeding the threshold

level by 5 times.

The distribution of the time length of the observed trails shorter than 5 seconds is
shown in Fig. | 4.10. The histogram is made for all meteors collected during the second
observation run, having maximal intensity 5 times higher than the threshbld, which was
set to be two times higher than the average level of noise for 87.9 MHz. As expected
(see Chapter 3, equation 3.57), the number of shorter trails increases as power law.
Very similar results are obtained when looking at all trails detected at individual FM
frequencies. When reducing the threShold level, the number of detections for a given

decay time becomes higher, but the overall shape of the histogram does not change.
The distribution of amplitudes for meteor forward-scattering for the same data set is

shown in Fig. 4.11. The amplitude is given in units of Kelvin per antenna beam because

meteor trails are linear rather than point sources so the total number will decrease as

the antenna half power beamwidth. The description of the beam used was given in
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Figure 4.9: Meteor counts at 83.1 MHz (top), 103.5 MHz (middle) and 107.3 MHz

(bottom). Each bin represents 1 hour of data.

subsection 2.1.1, Fig. 2.8. The calibration is done by estimating the sky temperature
at different frequencies and comparing such numerical results at different time moments
with the corresponding real data. The estimation of the sky temperature measured by the
antenna is done using the simulated map of the sky at FM frequencieé, as in subsection.
1.2.2, Fig. 1.2 for a given pointing of the antenna with the beam patterns from Fig. 2.8.
Depending on the time of the day and the pointing of the antenna, the Galactic signal
changes in magnitude (see Fig. 4.2) alowing us to calibrate the measured signal. The
results presented in Fig. 4.11 can be used as a useful reference for estimating levels of

noise due to meteor forward-scattering.
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Figure 4.10: Distribution of decay times of meteors collected during 20 day long obser-

vation run in June-July, 2007. Each bin is 0.01s wide.

The cumulative number of meteor reflections estimated for a year of observations with
a TREX-type instrument, capable of real time data acquisition, is plotted in Fig. 4.12.
N(T) is a number of reflections causing a temperature higher than T'. It is important to
note that despite large antenna beam halfwidth (see Fig. 2.8), TREX does not cover the
full sky, but rather about one tenth of the sky. In addition, the data from Fig. 4.12 can
be extrapolated over the whole Earth. Knowing that meteoroid trails can be detected
at distances of up to 1600 km (see subsection 1.4, equation 1.7), the cumulative number
of meteoroids, causing brightness temperature in the given range, entering the Earth’s
~ atmosphere will be about 1000 times larger than plotted in Fig. 4.12. Also, a certain
number of meteoroid trails can not be detected due to geometric constraints. Using
the analytic method presented in sections 3.3 and 3.4 I have performed Monte Carlo
simulations to estimate which fraction of plasma trails can be detected. It is estimated

that TREX detects about 4% of all meteoroid trails entering the Earth’s atmosphere.
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Figﬁre 4.11: Histogram of maximal amplitudes for the forward-scattering data collected

in 20 days. Each bin corresponds to change of sky temperature of 100K.

Information about the mass of a meteoroid is carried within the forward-scattering
power detected at a receiver. The linear electron density from equation (3.3) can be
substituted into equations (3.56) and (3.58) in order to obtain maximal detected power
for underdense and overdense trails, respectively. The other parameters in equations
(3.56) and (3.58) are geometric in origin and do not depend on physical properties of
the observed meteoroid. Fig. 4.13 shows distribution of received power for 10° simulated
meteor trails, all with the identical mass, composition and speed. If all meteoroids
entering the Earth’s atmosphere are of the same size, made of the same material and have
identical speed, the observations would produce similar results. The electron density
can be exactly determined only when the line describing the ionized trail is known.
In the subsection 3.7.2, I have shown that the calculation of orbital parameters from
meteor forward-scattering at multiple ffequencies cannot be done in real time using the

tested numerical algorithms. However, masses of meteoroids detected by TREX can be
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Figure 4.12: The cumulative number of meteor reflections per year detectable with a
TREX type of antenna having the brightness temperature larger than or equal to T.
Shown are the observed data given in Fig. 4.11 extrapolated over a period of one year.

The cutoff at low temperatures is due to the noise threshold level.

estimated by comparing my data with previously published results giving the cumulative
number of meteoroids entering Earth’s atmosphere per year [67], [24], [15]. Averaging
the number of detected meteors with TREX (Fig. 4.12) over the whole surface of Earth,
with the beam covering the whole sky, and including those meteor trails which cannot
be detected due to geometry, the number of trails per year, at brightness temperature
of 500 K is roughly 10'®. That number includes all meteoroids with masses larger than
some mass mg. Comparing with the estimates given in Ceplecha et al, 1998 [15] (Fig.
25), it can be concluded that TREX is capable of detecting particles of masses larger
than 1078 kg.
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Figure 4.13: Cumulative number of simulated meteor reflections with received power
larger than or equal to P. All simulated meteoroids have identical mass, composition and
speed, and differ only in velocity direction. The linear electron density is assumed to be
10'5 m~1, the frequencies of all transmitters are set to 100 MHz, and gains of a receiver

and the transmitters are 1.
4.2.1 Diurnal Variation of Meteor Activity

A maximal number of detected trails is expected at 6 a.m. local time, and the minimal
number of trails at 6 p.m. local time [123], [50], [135]. The maximum is in the early
morning hours since at that time, the apex is in its highest position in the sky, and the
observer is capable of seeing the trails from meteoroids with velocity vectors directed
toward the Earth as well as those overtaken by the Earth. When the observer is facing
antiapex (early evening hours), only the meteoroids fast enough to overtake the Earth
are visible. This diurnal variation is clearly visible in our data. Fig. 4.14 shows the
variation in the number of meteors shorter than one second. The effect is also visible

when looking at the data for individual FM frequencies (see Fig. 4.9).
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Figure 4.14: Diurnal variations in the number of observed trails. Each bin represents 1

hour of data.
4.2.2 Pegasids

The Pegasid meteor shower was supposed to be active from July 07-13, 2006 with its
maximum on July 09, 2006 and the radiant at (340°, 15°) [99], [72]. The Pegasids should
be fast meteoroids with an average velocity of 70 km/s. Our simulations show that the
radiant of this stream is in an excellent position on the sky in the early morning hours at
the time of maximum. Our setup, using thousands of FM transmitters, had an excellent
opportunity to scan for Pegasid activity.

In our data there are no indications of this shower (see Fig. 4.9 and Fig. 4.14 for

Julian date 2453926.0 corresponding to July 9, 2006, noon). Our results confirm the work
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given in [138] where the authors showed that there is no evidence for this meteor shower
1in video observations during the 2001-2004 period, but there were some indications that
this shower might be detectable in radio observations. At the present time, no one has

reported Pegasid activity in 2006 [139].
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Conclusion

In this thesis, the design of a radio frequency digital spectrometer called TREX was
described. The instrument was built, tested and used to make two sets of observations
at the Algonquin Radio Observatory in April and June-July, 2006. The observations
were focused on meteor forward-scattering detection and on the characterization of the
sky spectrum in the RF band. This is the first study of meteoroid detection at multiple
frequencies, revealing properties of the radio sky which will be very useful for the future

planning of observatories capable of detecting the epoch of reionization.

Advances in digital electronics now allow us to develop digital spectrometers which
can be used to probe the epoch of reionization in the universe and to do meteor physics.
Digital radio spectrometers offer many advantages over the traditional approach toward
radio observations. These detectors have a much simpler design than the old fashioned
receivers which use mixers, as explained in Chapter 2. Perhaps the most important
- component of an RF spectrometer is its antenna. We used a rectangular approximation
of a two arm conical spiral antenna as a basic design for our broadband receiver. This

antenna is optimized for capturing frequencies in the 70-250 MHz range.

In order to obtain power spectra from the data collected, a new and efficient FFT

algorithm was developed. It was implemented for Intel Pentium 4 SIMD processors.

134
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Working With_integers, this algorithm performs 8 FFT calculations at once and is signif-
icantly faster than conventional FF'T algorithms. We have used it to reconstruct various

spectra and to find meteor trail reflections, demonstrating its suitability for our purposes.

Knowledge of the epoch of reionization is a missing key in our understanding of the
formation of the first stars. Were the first stars formed simultaneously across the whole
Universe? What were the most luminous sources in the reionization epoch? Questions
such these can most effectively be addressed only after successful reionization observations
have been made and analyzed. In addition, measurement of the reionization signature can
be used to probe modern cosmology theories. The 21 cm line of neutral hydrogen emitted
during the Dark Ages has been redshifted up to metre wavelengths, or in frequency terms,
somewhere between 70-250 MHz. The older the radiation, the longer the wavelength, and
the lower the frequency of the received signal. With the reionization of the Universe, and
loss of neutral hydrogen, this emission ceased to exist, forming a sharp step in the all-sky

broadband spectrum.

Measurement of the reionization step is a difficult task. The signal corresponding to
the step is more than 4 orders of magnitude below the galactic noise. The location of an
instrument with the purpose of detecting the reionization signal has to be chosen very
carefully. The bands where the signal is supposed to be are contaminated by human pro-
duced waves. The propagation of waves in the 30-300 MHz range is “in the liné-of-sight”,
and any obstruction in this optical path causes significant attenuation. The transmitter
antennas are usually mounted on towers, with a typical line-of-sight range of less than
100 km. The amount of RF frequency radiation correlates with the population density,
requiring an observation location that is relatively isolated. Despite these difficulties, we
suggest that a spectrometric system, composed of two or more rescaled small telescopes
with 1% rescaling can take adventage of the signal’s all-sky presence and would be able

to measure a temperature step of ~ 0.02K in the range of 150-250MHz (5 < z < 8.5).

The single dish radio telescope at the Algonquin Radio Observatory works in gigahertz
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frequency bands and the spectrum pollution in the lower frequency bands (< 1 GHz) was
not well studied. I have tested the RF frequency noise levels and detected a larger amount
of noise in the RF bands than expected, despite the isolation of the site. A portion of
the noise is due to human éctivity: radio stations in the FM band, TV stations, and also

by devices in some other communication channels.

There is also the noise introduced by meteor forward—sgattering which can seriously
affect attempts to observe the 21 cm redshifted line coming from the time of reionization.
The number of reflections has daﬂy variations with the maximum occuring in the early
morning hours and the minimum in the early evening. Reionization experiments such as
CORE will have to design a special software filter in order to account for meteor activity.
The postprocessing removal of this type of noise is difficult due to variations in meteor
counts, as well as jumps in the power intensity received from each individual scattering.
LOFAR will not even attempt to use FM frequencies, while MWA will have the same
problem as CORE. Fortunately, the large number of antennas in the array permits an
accurate determination of meteor trail position [104]. By analysing a map of the sky at

a given moment, the meteor noise can be removed [105].

The main part of this thesis has been concerned with meteor forward-scattering. I
have shown that meteoroids produce ionized trails that are in a plasma state. Simple
estimates of the power received by radar and forward-scattering observations were given.
A variation in signal intensity with time has been modeled and successfully compared
to real observations. The geometry of a forward-scattering system was discussed in
detail, resulting in an original analytic solution if a particular meteor trail causes the
reflection for a given forward-scattering system. For a given meteor line, the method
checks whether there exists an ellipsoid, with foci at a receiver and transmitter. Our
approach is computationally faster than any of the numerical methods that have been
used so far. A simple algorithm that applies our analytical solution has been used to

generate ground illumination footprints of meteors and to find the observability functions
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for a meteor shower.

With more detections of the same meteor at many different frequencies, it is possible
to determine its kinetic parameters without making any assumptions about the physical
properties of the trail. I have shown that each meteor trail leaves a unique signature in
the time evolution of the spectrum. Identifying the correct meteor from observational
data is shown to be a very computationally intensive task. To find a meteor that fits the
observations, it is best to search through a seven parameter space. A cost function for
searching the parameter space has been proposed and tested. However, a “brute force”
search through the entire parameter space with the needed resolution, on a single-top-of-
the-line computer processor at the present time, would last a minimum of 300000 years.
We have also tested a number of numerical methods for parameter searching. However,
there are a number of local minima in the search space which make this problem hard to

- solve.

Commercial FM stations can be used as transmitters for forward-scattering obser-
vations. Knowing that in the whole FM band there is enough space for only 100 radio
stations, there is a problem identifying the detected transmitter. This makes numerical
method ﬁt.ting of the observed data more complex than in a case when the transmitters are
unique and well known. We have shown how observations of meteor forward-scattering at
multiple frequencies, with known transmitters at the same location, can be used to char-
acterize meteoroid speeds. Once the speed of the meteor is known, the orbit estimation

problem becomes slightly less difficult.

I have demonstrated that the Algonquin site represents an excellent location for ob-
servations of meteor forward-scattering. However, for the more precise measurements
required to detect the global signature of reionization, the amount of terrestrial man-

made noise is too large.
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5.1 Recommendations for Future Work

The instrument described in this thesis is an obvious demonstration of the potential of
a small radio frequency spectrometer. Such an instrument can be optimized in various
ways depending on the particular observation target. In the near future, the processing
power of small personal computers will be sufficient enough for real time data processing.
At the same time, streaming of all data from an 8 bit 500 MHz A/D converter to the
main computer memory will be possible. An increase in the speed of data transfer and
computation will bring higher temporal and spectral resolution. In the future, the faster
FFT algorithm presented here can be expanded to a new generation of processors and
graphic cards to maximize the computation speed by combining efficient software with
new hardware. By synchronizing two or more TREX systems, a cheap and simple inter-
ferometer could be built. The main advantages of using the rectangular approximation
of a 2ACSA antenna described in this work are its excellent broadband characteristics,
and its mechanical simplicity.

The question of observing the redshifted 21 cm reionization line is still open. I have
pointed toward some of the yet unforeseen problems when planning these observations.
How to correctly estimate the amount of noise originating from meteor forward-scattering,
and the effect of such noise on the reionization signature, is still not known. Despite the
construction of large scale instruments such as LOFAR, there are no known algorithms to
remove meteor noise. By reducing the bandwith and excluding FM bands, the planners of
LOFAR tried to minimize spectrum mitigation. However, forward—scatteriﬁg also exists
in other bands. Algorithms for removing this type of noise will have to be designed and
this work is an excellent starting point for such future research. |

In the general case, the physics of oblique scattering can be tested using multifre-
quency observations through data based on a TREX-type of instrument. Seeing a single
meteor trail reflection at multiple frequencies permits intensive study of reflections hav-

ing different geoinetries. Construction of a forward-scattering system with a number of
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completely known transmitters, each transmitting at a different frequency, would com-
pletely remove the problem of recognizing the location of the transmitters. In addition,
the effects of the polarization of the detected waves could be studied.

The method for finding the orbital parameters of a meteoroid, observed at multiple
frequencies via single antenna receiver, could be improved by designing an interferometer
capable of estimating the location of the ionized trail. The pipeline for extracting infor-
mation on meteoroid orbital parameters from multi frequency observations proposed in
this work is far from a real time application. The parameter space with the six unknowns
(see section 3.7.2) is filled with a number of local minima thus making numerical search
methods almost useless. The brute force search is computationaly slow and, using a
single processor, might last hundreds of thousands of years. Additional information on
a given meteor reflection could speed up the search of parameter space. An interesting
project would be to build a digital interferometer for estimating the location of the trail
and use thus obtained data to constrain the parameter épace.

TREX, or a similar multi-frequency instrument, could also be used to test a number
of theories on meteors. Determination of trail height from Foschini’s work [32] could be
tested by knowing the position of transmitters and their radiation patterns. Also, the
estimation of a meteor shower flux from Belkovich’s work [4] might be tested. Finally,
a number of trail and ionospheric parameters, such as diffusion coefficients, could be
measured precisely. We have also discussed how an instrument similar to TREX could
be used for military purposes.

We are slowly entering a new age in radio astronomy: the age of digital instruments.
When this project was started, there were only whispers of low frequency spectrometers.
Today, there are a few systems under construction, most of them connected with the
SKA project which is expected to be fully operational in 2020. TREX is one of the first

digital radio spectrometer projects, but it certainly will not be the last.



Appendix A

Coordinate Transformations

In this appendix, general rules for 3D coordinate transformation will be discussed. Firstly,

the matrix method will be reviewed followed by a quaternion approach.

A.1 3D Coordinate Transformations using Rotational

Matrix

A.1.1 Translation

Let X be the vector pointing at a point (x,y,z) in the old coordinate system. With X’
we will describe the coordinates of the same point but in the new coordinate system.

Translation is defined as

X' =X-T, (A.1)

where the vector T defines coordinates of the new origin O’ with respect to the old -

coordinate system. Using matrix notation we can rewrite the previous equation as
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A.1.2 Rotation in 3D

141

3D space is defined by three orthogonal axes. Each axis can be rotated by the so called

“Euler angle”. When one of the positive z, y, 2 coordinates is chosen as the axis of

rotation, then the rotation is similar to that of 2D space. The rotation around any given

axis can be presented as a sequence of three rotations about the Euler angles. A single

rotation about the 7-axis is defined as

X' = R/X,

where i can be z, y or z. The rotation matrices for the rotations around z, y and z axes

about angles «, # and +y are

1 0 0

Ry =10 cos(a) sin(a)

and

R,

= |—sin(y) cos(y)

0 —sin(a) cos(a)

cos(B) 0 —sin(B)

= 0 1 0

_sin(ﬂ) 0 cos(B)

-

cos(y) sin(y) O
0

0 0 1

(A.2)

respectively. One should remember that a positive rotation is assumed to be counter

clockwise. The general case is obtained using three sequential rotation

It is important to note that the order of performing rotations matters, i.e.

X' = R,R,R,X

R.R,R, # R,R,R,.



APPENDIX A. COORDINATE TRANSFORMATIONS 142

A 2) }.4
7=z ¥ —y:.,v" xb,t
>z ~ '
\ N / S
K N
., /’
\\‘ __.i"" R(.X m" m" z m‘)
. 7 | .
.
. | ™M
- o, y
by
X .. 7
0] 1 {
T‘A(x k4 y o z! ’n) —_ = = - ‘K
ym
R
x@
o EN

x{ll

Figure A.1: Rotations needed to bring an initial 3D coordinate system (z("), y() 2(1)
into the coordinates with x-axis oriented along the TR baseline. The rotation is done
in two steps: firstly, the initial system (z®), y), 2(D) is rotated about z(MV-axis by an
angle oy into the secondary coordinates (@, y®@, 2); secondly, the temporary system

is rotated about y®-axis by an angle as.

A.1.3 Ellipsoid Equations in the New Coordinates

The center of the ellipsoid with foci at the receiver (zg, yr, zg) and the 4-th transmitter
(zTi, Y13, 27i) is defined as

Trp+ Tri _ Yrt+ Y1 2Rt 2
Toi= "5 Yo = "5 and zg; = —

(A.3)
To switch into coordinates “native” to the T; — R ellipsoid, we have to translate the
’ origin to the center of the ellipsoid defined by (A.3), and perform two rotations in order
to match the z-axis with x;. Necessary rotations are shown in Fig. A.1.

Translation of the origin to (zci, yci, #ci) is performed according to the transfor-
mation of 3D rectangular coordinates rules defined in (A.1). The receiver and the

transmitter coordinates in the new coordinates can be called ROy, ) and
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7}(1)(:1:%-), y%), z%)), respectively. Coordinates of the receiver can be written as

O
Tp" = TR — T

yﬁ%’ =YRrR — Yci

Q_ ., .
2R’ = ZR ZCi-

Similar expressions can be written for the i-th transmitter.
To finish our coordinate transformation we must rotate our axes in such a way that
both foci lie on the z'-axis. We can start by fixing the z(-axis and rotating z(V-y(®) by

the angle a3

(D
cosa = sz =,
V) (0)
or
(1)
cosay = i

2 2
)+ ()
to obtain the new intermediate coordinates z(®,y® 2®. Any of the two expressions

should give us the same result since the origin bisects the T-R line. The rotation is

performed by using the rotation matrix as defined in (A.2)

z®@ cosa; sinoeg 0] |z®
y@| = |—sina; cosa; 0| [y
22 0 0 1| |2®

In the final step, ¥y = y® will be kept constant and z®-y® will be rotated by the

angle oy
(1)
sin g = “R
)2 M2, (N2
(22) + () + (%)
or
(1)
A
sin g = I

)" ()" ()
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The second rotation written in matrix notation is

z; cosas 0 sinap| |z®
Yi| = 0 1 0 y®
2 —sinay 0 cosaspl| |22

In the last step, both rotations written together are X; = R,, R, X. After multiplying

the rotation matrices, we obtain

T; COS (¥ COS Qlg sinagcosas  sinag| [z®
il = —sinoy cos oy 0 y®
2 —COSQ Sing —sinaysinay Ccosag 2

A.2 3D Rotations Using Quaternions

The theory of quaternions is a powerful tool describing 3D rotations about an arbitrary
axis. Introduced in the 19th century by the Irish mathematician Sir William Rowan
Hamilton, quaternions became an important part of modern aerospace calculations, the
special theory of relativity, mechanics, and computer graphics [63], [81]. It has been
shown that combining many quaternion transformations is numerically more stable than
combining multiple matrix transformations. This approach avoids a gimbal lock, a prob-
lem caused by the alignment of two of the three Euler angles together so that one of
the rotation references is canceled. Quaternions are composed of only 4 components,
making their use more attractive than the use of 3x3 rotational matrices. Furthermore,

computationally, successive rotations are performed more quickly.

A.2.1 Mathematical Definition of Quaternions

Quaternions form a 4-dimensional non-commutative division algebra over the field of real
numbers with respect to the operations of addition and multiplication. Each quaternion

contains 4 scalar variables q =(w, z, y, z), similar to a 4D vector. For simplicity, the
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last three variables can be written as a single 3D vector r. The quaternion then becomes
q =(w, r) = w+ zi + yj + 2k, where 4, j and k are orthonormal vectors satisfying the

- rules

P=j=k*=-1
ixj==-jxi=k
Jxk=-kxj=i

kxi=—-ixk=]j

Quaternions can be added and multiplied as a single unit in the same manner as real
numbers in algebra. Quaternions form a commutative group under addition with the

identity element (0, 0, 0, 0). The addition of two quaternions

Qi = (wla z1, Y1, zl) = (wh rl) and

a = (w1, 71, Y1, 21) = (wy, 11)
is performed using the same rule as in the case of vectors
a1 + Q2 = (w1 +wa, T1+ T2, Y1+ Yo, 21+ 22),
while multiplication is defined by
Q192 = (Wywy — 1Ty, Wirz + Wy +Ip X Ia).

Quaternion multiplication is not commutative (qiq2 # q2q:). The conjugate q* of a

quaternion q = (w, r) is defined as
q* = (w7 ——I‘),
and the norm ||q|| is a scalar value

lalf® = aq" = w +r”
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For their application to 3D rotations it is important to define a unit quaternion as any

quaternion satisfying ||q|| = 1. The inverse of a quaternion is

_ q
q = TalP’ llal| # 0.

Every non-zero quaternion has a multiplicative inverse making quaternions a non-
commutative division ring. After introducing a distance function d(qi, qs), quaternions
form a metric space (isometric to the usual Euclidean metric on R*) and the arithmetic
operations are continuous. Using the absblute value as a norm, quaternions form a real

Banach algebra.

A.2.2 3D Rotations Using Quaternions

A rotation in 3D space about a unit axis r for an angle 6 can be significantly simplified

using the representing quaternion

= (cos = rsina)
A= e0sy, ramg)

For a proper rotation q must be a unit quaternion. The rotation of the vector v by an

angle 6 about a unit axis r can be conveniently represented by a quaternion product
(0, v)=q-(0, v)-q . (A.4)

Knowing that the quaternion q is a unit quaternion, its inverse is equal to its conjugate
q~! = q*. A rotation defined using (A.4) does not change the length of a rotated vector.
It is possible to show that rotation using quaternions is mathematically identical to
rotafion using Euler matrices [82].

To perform an inverse rotation by the angle —@ to re-obtain the initial position, it is

enough to swap the rotation quaternion with its inverse

(O? V) - q_l : (Oa V/) "q. (A5)
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A.2.3 Example: Geocentric to Canonic Ellipsoid Coordinates

The specific problem of transforming a geocentric geographical rectangular coordinate
system to a system bound for an ellipsoid using quaternions becomes relatively simple.
The native ellipsoid system has defined as the positive direction of the z’-axis, the line
connecting the center of the ellipsoid with one of the foci (R). Let the coordinates of that
focus in the geocentric coordinates be (xg, yr, 2r) and the coordinates of the ellipsoid
center be (z¢, Yo, 2c). We can introduce quaternions describing these two points as
qr = (0, zg, yR,. zr) and qc = (0, z¢, Yo, 2c)

The coordinate transformation can be done in two steps: firstly, the origin will be
-translated into the center of the ellipse, and then, the rotation to adjust z-axes will be

performed. The translation of the coordinates is done by simple subtraction
P =p-qc,

where p and p’ are the quaternion before and after the translation.
The angle between the vector connecting the origin with the point (zg, yr, 2r), and

the positive direction of the z-axis is

o = arccos TR
VTh+yh+ 25 '

Thus, the rotation has to be done about a vector n normal to the plane defined by the
z-axis and the vector (zgr, yg, 2r). The normal can be calculated using a simple vector
product

n = (zr, Yr, 2r) % (1, 0, 0) = (0, 2r, —Yr)

The rotational quaternion q is

q"’(COSg 0.0 _.~E.R—Sing ;yR.___._
27 VRt A 2 Rtk

The rotation of a quaternion p’ into ellipsoid coordinates is written as

e’
31112).



Appendix B

The Orbital Equation

In this appendix, the equation for the orbit of a celestial body found in the gravity field
of a more massive body will be derived. The final goal is to calculate parameters of the
Iﬁeteoroid when only one point on the orbit, and the velocity vector at that point, are
known.

The problem of predicting the motion of a body under the influence of a gravitational
force due to the existence of some other body was solved by Isaac Newton more than
three centuries ago. Starting with Newton’s laws and knowing the expression for the force
of gravity, Newton was able to solve the diferential equations of motion and obtain the
equation of orbit. The final confirmation of his theory came after comparing calculated
planet positions with observed ones. He confirmed and slightly modified Kepler’s three
famous laws [92]. In this section, the basic equations of planetary motion will be derived.

Keplerian motion, or Kepler’s problem, describes the central motion of a body under
the influence of a force with intensity inversely proportional to the square of the distance
to the center of the force [79]. In the general case, the classical equation of motion for a

body with mass m in any particular set of coordinates is

d2r0B _ - F
m dt2 _Z gl
i=1

where rop is a vector describing the position of the observed body with respect to the

148
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origin, and F; ¢ = 1...N, are all the forces acting on the body.

For the purpose of calculating the orbit of a celestial body inside the Solar System,
we can assume that the Solar System is an isolated system where all external forces,
such as gravitational forces due to the existence of other stars inside the Milky Way, can
be neglected. In addition, one can neglect all non-gravitational forces inside the Solar
system. This approximation is not completely valid since effects such as the influence
of the solar wind should be included in models trying to describe the long-term motion
of small celestial bodies. The differential equation of motion taking into account only

gravitational forces inside the Solar System can be written as

d’roz mM °L mmy
m—at-z—- = —G3—rBS -+ ; GTTBiI‘Bi. ‘ (Bl)

Here G = 6.673 x 10“11%"; is the Gravitational constant, M is the mass of the central
body (Sun), rpg is the vector distance from the object to the Sun, m; are the masses of
the all gravitationally important objects inside the Solar System, rp; are vector distances
from the observed body pointed toward the objects with m; (see figure B.1).

The Sun attracts the observed body with the force

mM
Fps = —G——rps,
TBs

while the Sun is attracted by the body with the force of the same intensity but the

opposite direction
mM
Fsp = G—5—rps.
TBs

The gravitational force due to the Sun is usually much bigger then the sum of all other
forces Fps > Y 1, G%éﬂiir Bi, unless the distance from the observed body to some other
member of the Solar System is small enough to compensate for the effect. For simplicity,
we will consider the approximation where F g is larger than the sum of all other forces.
The correction is addressed in section B.4. The equation of motion for the tested body
becomes

d’rop -G M

—_= —_ ; B.2
dt? rde TBs ‘ (B-2)
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Figure B.1: Definition of the basic elements for the creation of the differential equations
of motion for an object with mass m in the gravity field of objects with masses M and

m;. O represents the origin of the coordinate system.

Let a vector rpg define the position of the center of the Sun in a coordinate system with
the origin set at the center of mass (baricenter). All coordinate systems with their origin
at the baricenter are inertial systems. In a two-body case, the distance from the Sun to

the baricenter is

To§ = TLSM,

I+
where rpg is the distance between the Sun and the body of mass m. Since the mass of
the Sun is much higher then the mass of the Earth, the baricenter is only ~ 450 km away
from the center of the Sun.

The equation of motion for the Sun due to the influence of the tested body in bari-

centric coordinates is

d?rog m
= . B.3
dt? T3 FBs (B.3)
Subtracting (B.2) from (B.3) and knowing that ros = rop + rps, we obtain
2
dI'Bs__G’m—l-M (B.4)

= I'ps.
2 3
dt 5
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A constant

K=G(M+m)

and a vector r = —rpg can be introduced for the sake of simplicity. The mass m is in
the case of meteoroids much smaller than the mass of the Sun, and in principle can be

neglected. The equation (B.4) can be rewritten as

dr K

S ) (B.5)
Similarly, it can be shown that in the general case, the equation of motion including
the external center of gravity forces (B.1) written in the coordinate system bound to the

baricenter is

2 n . .
dr:—GM+mr+ZGmi(£§B—3——£€3). (B.6)

de? r3 — TR TS
The equation of motion (B.5) can be solved either using vector algebra or by direct
integration. I have decided to use vector algebra in order to clearly show that planet
motion around the Sun happens inside a constant plane. A good choice of a coordinate
system for discussing motion inside an orbital plane is a cylindrical coordinate system.
For the direct integration technique, a good reference is Wikipedia’s article on Kepler’s
laws of planetary motion [150], as well as the more general approach in the excellent

textbook of classical physics by Milié¢, 1997 [79].

B.1.1 Kepler’s Second Law

Multiplying (B.5) by r,
d*r
rxX —44rxX

de? r=0,

r3
and using
rxr=_0

d (L ary_d d - &r
a\" @) T aw & PP
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one can see that
d dr
—irx —) =0
i (%)
Defining the velocity vector of the orbital motion as the time derivative of the position

vector v = %, the previous equation gives us
rxv=C_C;, (B.7)

where C; is a constanf vector for any point on the orbit. The important conclusion is
that the orbital motion is bound to a single plane. With r and v the orbital plane is
completely defined in space. Knowing the orbital plane, the problem of defining an orbit
becomes two dimensional: a coordinate system with its center at the baricenter and z
and y-axes in the orbital plane can be introduced. The cylindrical coordinates can be

written as

T =rcosf
y =rsinf
z2=2z

The equation of motion (B.5) in cylindrical coordinates can be written in the form of

three scalar equations. It can be shown that the product

do

2
r*— =C B.8
% | (B
is a constant with a value C; = |C;|. A direct consequence of this equation is that if the

object is closer to the center of gravity, then its angular velocity will be higher.

The area ds which the position vector r sweeps out in time dt defined by the angle

dé is
ds 1,6 1
22 = 92— = ZC,. B.
& =2 lq =3 (B-9)
Equation (B.7) represents Kepler’s well known 2nd law. It shows that orbital motion

happens inside a constant plane, with the baricenter in the plane. The constant vector
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C; is normal to the orbital plane. In equal periods of time, a planet sweeps out equal

areas according to equation (B.9).

B.1.2 Energy Integral

To obtain the energy integral, one can take the dot product of the velocity vector v = %

2 N
& . Lr =14 (&. 4 while the second term can

and equation (B.5). The first term is =

be expressed as
 Kdr . K d _d({ -K
r3dt = B

The dot product can be written as
d (1 (dr dr\ K\ _ 0
dt \2 \dt dt r)
After integration, this equation becomes the so-called energy integral

—v* — — =h. | (B.10)

Multiplying the whole energy integral by the mass m, it is easy to notice that the in-
tegration constant h is the sum of the kinetic and potential energies of the two body

system.

B.1.3 Kepler’s First Law

Let us multiply equation (B.5) by Cj:

& K |
d—tg x Gy + 1 x C = 0. (B.11)

Using (B.7), the first term becomes

d?r dv

d
Excl x C; == (vxCy),

T dt dt

and the second term can be written as

£<—r X (rxv)= £{—(rv)r— —I:—v: 4 (Er) .

r3 r3
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Finally, (B.11) becomes

or

Vv X Cl - %1’ = Cg, (B12)

where C; is a constant vector, a product of the integration. This equation is known
as the Laplacian integral, and the vector constant is called the Laplace vector, or the
eccentricity vector [5]. Knowing that the product v x Ci, as well as the vector r are
lying in the orbital plane, the constant vector C, must also be part of the orbital plane.
Vectors C; and C, are then normal to each other and their scalar product must be equal

to zero

C,C, = 0. (B.13)

~ The relation between the intensities of the two vector constants and the energy integral

h can be found by taking the dot product C, - C; as
C? = 2hC? + K*. (B.14)
Scalar multiplication (B.12) with the vector r gives
C? — Kr = Car.
By introducing the angle ¢ between vectors C, and r, the previous equation becomes
C? — Kr = Cyrcos .

When expressing the distance r between the baricenter and the observed body as a

function of the angle ¢, the equation of orbit is
g
Y : S— B.15
1+ %— cos ( )
The equation of a conic section with eccentricity e and parameter of the orbit p is

p
R — B.16
" 1+ecosp ( )
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Comparing the last two equations, the parameters p and e are

p="

% (B.17)
e= 7{2' (B.18)

The object is closest/furthest (periapsis/apoapsis) from the center of gravity when
the derivative of the equation (B.16) % is zero. After taking the derivative we see that
r has minimal/maximal values when sin¢ = 0. By convention, the angle ¢ is measured
in the orbital plane from the vector C; pointed toward the periapsis in the positive
direction. To completely determine the orbit of a body one thus has to know the two
constant vectors, C; and Cs.

Kepler’s first law states that “the orbit of a planet about a star is a conical section with
the star at one focus”. Mathematically expressed, Kepler’s first law becomes equation
(B.15).

One of the properties of conic sections is the relation between the semi-major axis a

and the parameters p and e:

p=a(l —é€?). (B.19)

An important consequence of Kepler’s 1st law can be obtained by merging (B.14), (B.17),

(B.18) and (B.19) into _ ,
| _K
2h

Thus, the semi-major axis of the conic section depends only on the energy. If the energy

a= (B.20)

has negative value h < 0, the semi-major axis is positive a > 0 and the conic section is
an ellipse. If h = 0 then a must also be 0, and the trajectory is parabola. Finally, if

h > 0, the trajectory is hyperbola with a < 0.

B.1.4 Kepler’s Equation

Let us assume that the orbit of the observed body (B.16) takes the shape of an ellipse.

In the coordinate system native to the given ellipse with semi-axes a and b, the equation
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of orbit is
oL ¥
a2 v

In this coordinate system, the origin is at the center of the ellipse, and the z; and 1,
axes are directed along the principal axes of the ellipse.

Following the approach given in [21], the parametric form of the ellipse equation is

T; =acos K

Y1 =bsin F =avV1—e2sinkE,

where the angle E is measured from the x;-axis toward the radius vector of the object.
To switch back to the coordinate system x — y centered at a focus of the ellipse, while

preserving the direction of the axes, one can apply

x =2, —ae = a(cos E — e) (B.21)

y=y; =bsinE. (B.22)
The coordinates of the celestial body using polar coordinates r and ¢ are

T =T7cosp (B.23)

y = rsin . (B.24)
Combining the previous four equations, it follows that
r=a(l —ecosE). (B.25)

Using (B.25) with (B.21), (B.23), (B.22) and (B.24), it can be shown that

© 1+e E

- = — B.26

tan 5 1% tan 5 ( )
cosE —e

=" = B.27

cose 1+ecosE ( )

To obtain the position of the body as a function of time, equation (B.9) has to be

integrated. Angle 6 in equation (B.9) can be replaced by angle , while the constant C;
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can be taken from (B.17) using the property of an ellipse p = a(1 — €?):

After taking the integral of this equation and using (B.25), (B.26) and (B.27) we obtain

. | K '
E —esinE = Eg(t—T)' (B.28)

Here 7 is the time constant equal to the time of the passage through the periapsis in

Kepler’s equation

which case the angle £ = 0.
In the case where the trajectory follows a parabola or a hyperbola, the above discus-
sion will hold under assumptions that some of the quantities are imaginary numbers. For

more details the reader can see Dubyago, 1961 [21].

B.1.5 Kepler’s Third Law

To complete Kepler’s laws, the third law can be derived from (B.9) and (B.18). The total
area the vector r sweeps out while making a complete turn around the center of gravity

can be calculated by integrating equation (B.9)

/ ds = / SOt (B.29)

Knowing that the orbit is an ellipse, the total area of the orbit with semi-axes a and b is
abm. The total sidereal time needed for a body to make a complete turn is 7. Using the

property of an ellipse p = % and equation (B.18) to eliminate Cj, (B.29) becomes
T? 2
ﬁG(M +m) = 4n°. (B.30)

Kepler’s third law states that the square of the orbital period is directly proportional
to the cube of the semi-major axis of the orbit, as seen in the above equation. Historically,
it is interesting to note that Newton corrected Kepler’s original equation by adding the

small term m. In practice, it is possible to neglect this term if m <« M.
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B.2 Orbital parameters

In the previous section, the equation of the orbit of a small body in the gravitational
field of the Sun was derived. The motion is defined by a vector differential equation of
second order (B.5). Solving this equatioh, the two constant vectors C; and C, appear
as products of the integration. Knowing that C; and C, are orthogonal, we can reduce
the six parameters (C1,1, Ci,2, C13, Ca,1, Co2, Ca3) to the five independent components

deﬁning the orbit by using the scalar product:
C1,1C21 + C12C2 + C13C23 =0,

The primary choice for the origin of the coordinate system used to track the motion
of celestial bodies inside the Solar System is the center of the Sun. The main coordinate
plane z — y is defined as the plane of the Earth’s motion around the Sun — the plane, of
the ecliptic. The 2-axis is then uniquely defined as a normal to the plane with the center
of the Sun as zero point. The z-axis is defined to point toward the « point, i.e. the point
of the spring equinox. This point represents the intersection of the two celestial circles
representing the ecliptic and the equator.

The position of the vernal equinox changes in time due to various processes such as
precession and nutation. To eliminate time variability, the v point, as well as the primary
plane, have to be used for a specific epoch, for example for 2000.0. An older approach
was to pick a specific star, for example Regulus, positioned relatively close to the « point,
and use the intersection of the meridian toward Regulus with the z — y plane.

In the general case, the main coordinate plane and the plane of the orbital motion are
not the same. The intersection of these two planes is a line, passing through the center
of the Sun, called the line of nodes. The points of intersection of the orbit with the main
coordinate plane are called the node points €2 and U. The {2 node is called the ascending
node, because after passing through the node, the celestial body is moving from the zone

with z < 0 into the zone with z > 0. A similar analogy is valid for the descending U
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node. For a graphical interpretation see Fig. B.2. When the orbit is a paraboloid or a

eclipfic plane

Figure B.2: Definition of the orbital parameters in rectangular heliocentric ecliptic co-
ordinates. The z-axis is oriented toward the v point. The x — y plane is the ecliptic
plane. The orbital plane is defined by the angles Q and i. The line of nodes is defined by
the intersection of the orbital ellipse with the ecliptic plane at the points 2 and U. The
x1-axis lies in the orbital plane and is directed toward the periapsis II. w is the angle
between the line of nodes and z1. The observed body has position vector r. ¢ is the

angle between r and ;.

hyperboloid the intersection with the main plane consists of only one node point. If only
the Q2 node exists for an orbit, it can be assumed that the U node is at infinity. The node
line can also be defined using an angle {2 measured from the positive z-axis toward the
{2 node. The angle can take values from 0 to 27. The ascending node and the angle are

both traditionally named using the Greek letter (2.

The exact position of the orbital plane can be described by an inclination angle ¢
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between the z-axis and the vector n = g—ll normal to the orbital plane. The vector n is

oriented in such a way that when looking from the top of the vector, the body is moving
in the direction it indicates. 7 represents the angle between the main coordinate plane
and the orbital plane. It can take values between 0 and 7. When i - 0 or 7, the angle
 doesn’t have a physical meaning and a new coordinate system is needed to describe
such an orbit.

The orbit is completely defined, as already discussed in the previous subsections, if
the eccentricity e and the parameter p are known. The position of the orbit in the orbit
plane can be fixed by introducing the position of the periapsis. The periapsis is the point
on the orbit where the body is closest to the center of gravity. If the central body is
the Sun, periapsis is called perihelion. The position of the periapsis is specified by the
argument of periapsis w, which is the angle between the node line toward the Sun and
the direction of the periapsis, measured in the positive direction. It can take values from
0 to 2w. The point of the farthest distance is called the apoapsis, or aphelion if the
central body is the Sun. The time when an orbiting body passes through the periapsis
is denoted using the Greek letter 7. |

The parameters €2, i, e, p, w and 7 define the position of a celestial body at any
moment in time. To find them in practice, one has to perform a set of coordinate
transformations starting with some given initial conditions, such as the position of the
observed body at three different times, or the position and the velocity vector of the

body at a given epoch. |

B.2.1 Determination of Orbital Parameters from Initial Condi-
tions
Assume that a position r and a velocity v of a body orbiting the Sun at time moment ¢

is given by rectangular heliocentric ecliptic coordinates (z, y, z). The first constant of

integration, C;, and the unity vector normal to the orbital plane, n, can be calculated



APPENDIX B. THE ORBITAL EQUATION 161

using equation (B.7)

Cl =IrXv
n= Gy
=G
The orbital plane is completely determined by the two angles Q and i. The unity

vector n has the following components in rectangular heliocentric ecliptic coordinates

(z, y, 2):

sin (2sin ¢
n=|—cos{sinz

Ccos i

If sin¢ # 0, the angles 2 and 4 can be uniquely calculated using the above vector equa-
tions.
The parameter p can be calculated from (B.17) and the eccentricity e from (B.18) via

the second constant of integration C,. From equation (B.12) follows
| K
Cz =V X Cl — ?r. (B31)

The orbital parameter p is given in (B.17).

The unity vector defining the node line has the rectangular heliocentric ecliptic co-
ordinates 1 = (cos 2, sin€2, 0), and the direction toward the periapsis is defined by the
vector Cy. The aﬁgle between the two vectors can be calculated from the scalar and

vector products:
I- Cz » ngCOSQ + C2ySi1’lQ
Cz B 02 ’
Cl . (1 X Cz)
C1Cy '

In the expression for sinw, the dot product with vector C; is used to properly carry the

COSWw =

sinw =

sign.
The time of the passage through perihelion 7 can be found from Kepler’s equation
(B.28)
) K
E —esinE = Eg(t—T), (B.32)
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using the eccentric anomaly E defined in (B.25) and the semi-major axis a from equation

(B.19).

B.2.2 Determination of the Position from Orbital Elements

In this subsection a method for finding the position of the celestial body .at 5 given
instance of time ¢ from the elements of the orbit is presented. The position will be given
in rectangular heliocentric coordinates. Let us assume that the parameters €, i, e, p, w
and 7 are known. |

First, the eccentric anomaly, E, has to be found from equation (B.32). The angle ¢
follows from (B.26), and r from (B.16). r and ¢ define the position of the given object
in the orbital plane (Fig. B.2):

T Cos
r= lrsinep| - (B33)

0

To obtain the rectangular orbital plane from the heliocentric ecliptic coordinates, the
ecliptic coordinate system has to be rotated by an angle 2 about the z-axis, an angle %
about the new z-axis, and then by the angle w about the new z-axis. This transformation
can be represented by a quaternion Q composed of three quaternions corresponding to

the three rotations

w 1 Q
CoSs 5 COS 5 COs 5

0 sin —;— 0
Q= (B.34)
sin —‘;— 0 0

_0--0J

in 2
| sin 5 |
In this case we need the inverse transformation, so the transformation of some vector r

from the rectangular orbital plane to the heliocentric ecliptic coordinates will be

0, ) =Q'x (0, r)xQ (B.35)
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B.3 Calculation of Orbital Parameters Based on Ob-

servations

For the practical calculation of the orbital parameters of any celestial body, one has to
start with observed data. If an observer measures the position and the velocity of the
body at some time #; in any local coordinate system, such data can always be rewritten
in a coordinate system with the origin at the center of the gravity field, ie. at the center
of the Sun. This is preferable since any local coordinate system is time dependent: a
location on the Earth’s surface follows day-night rotation, as well as the revolution of
the Earth around the Sun. Motion of the Solar System as a whole can be neglected for

observations of objects inside the Solar System.

The most convenient coordinate system used to define the observed position of a
meteoroid is the universal equatorial coordinate system. There is a difference between
the universal and local equatorial systems: in the former, the positions of stars stay fixed
in time, while in the latter this is not the case. The Earth’s polar axis is used aé a z-axis
for any equatorial system because it is a fixed line with respect to the Earth’s rotation.
The basic plane is defined as the equatorial plane. Each point on the equatorial plane is

moving due to Earth’s rotation.

A coordinate system static with respect to the rotation might be defined using a point
on the equatorial plane following the Earth’s rotation. A convenient choice is the vernal
or spring equinox point (7). Thus, a position on the sky can be determined by using two
angles: the declination angle § and right ascension . The declination angle § measures
the position between the object and the celestial equator and it can take values from
—90° to 90°. The right ascension « is the angle measured on the equatorial plane frém
the direction toward the -y point to the foot of the hour circle passing through the object.

It takes values from 0° to 360°.

Switching from any local coordinates to the equatorial coordinate system in which
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stars have fixed coordinates (universal equatorial system) can be done by first transform-
ing the initial local coordinates (for example horizontal) to the equatorial coordinates
moving with the Earth. A celestial object in this system moves in the opposite direction
with respect to the Earth’s rotation along a small circle defined with constant declination.
After a period of one sidereal day (23h 56m 4.091s), the object will pass through the same
point. The position of a celestial object in this system is described by declination and
the longitudinal angle called the hour angle tz. The great circle where tz = 0 is called
the local meridian. By this definition, a celestial object has a constant right ascension
a, but its hour angle tg changes with time. ¢ty will change for the same interval as the
elapsed star or sidereal time s;. Sidereal time is measured as an hour angle of the v point.
s¢ = 0 is when the vernal equinox « = 0 crosses the local meridian ¢, = 0. The relation

between sidereal time, right ascension and the hour angle is

st =0+t (B.36)

B.3.1 Local to Universal Equatorial Coordinates

The equatorial coordinates moving with the Earth used in this thesis are the projected
geographic coordinates. Each point has a geographical longitude A taking values from the
interval [0°, 360°), a latitude ¢ with values [—90°, 90°], and a distance from the origin
r. As in any equatorial coordinate system, the origin is at the center of Earth, the z-axis
points toward the celestial north pole, and x —y is the Earth’s equatorial plane, with the
z-axis pointing toward the Greenwich meridian. The reader should notice a difference
between the local coordinates used here and the standard local equatorial coordinates
used in astronofny.

The standard astronomical definition (see for example [122]) assumes that the z-axis
is pointed toward the intersection of the equator with the meridian passing through the
north celestial pole. A direct consequence of such a definition is that each place on Earth

will have a different local coordinate system. The sidereal time in the place of observation
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is different for different geographic longitudes. The connection between different local
equatorial systems used in astronomy is given by equation (B.36). In this thesis we have
decided to use the Greenwich meridian to define the z-axis.

The declination (4) coordinate of the universal equatorial system (a, 6, r) will have

the same value as the geographic latitude () of our local equatorial system (X, ¢, r):

6=,

while the right ascension « is the sum of the sidereal time of the zero (Greenwich)

meridian GM ST and the geographic latitude.
a=GMST + )\

Mathematically, this coordinate transformation is the rotation for an angle GM ST about
the Earth’s polar axis i.e. t‘he z-axis.

The changes in position of the vernal equinox, as well as the changes of the rotation
axis of Earth in time, cause the equatorial system to change in time. To cope with these
~ changes an epoch for which the coordinates are given should be provided. At the time

of writing the epoch 2000.0 is used.

B.3.2 Sidereal Time at Greenwich

The Greenwich Mean Sidereal Time GM ST defines a global standard of sidereal time. It
is a sidereal time at the meridian of Greenwich. The International Astronomical Union
adopted in 1982 a formula to calculate GMST at 0" UT [75]:

3

_ 2_ -
GM STy = 100.46061837 + 36000.7700536081" + 0.000387933T 38710000

where T is directly dependent on the Julian Day JDj corresponding to the given date at

0* UT
_ JDg — 2451545

T 36525
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Figure B.3: Transformation of local geographical equatorial coordinates (A, ¢) into uni-
versal equatorial coordinates (a, ). Ey is pointed toward the north pole, + is the vernal
equinox point, G is defined as an intersection point of the equator and the ecliptic, and

M is the position of the observed object.

The Julian Day is the number of days elapsed between the beginning of the year -4712
and a given date. It begins at Greenwich mean noon, at 12" UT. The algorithm for
calculating JD, is given in [75]. For a given date in the Gregorian calendar written in

the form Y M D:
eif M<=2thenY =Y —1; M = M +12;
o A =integer(3;); B=2— A+integer (%)
o JDo —integer(365.25(Y -+ 4716))-+integer(30.6001(M + 1)) + D + B — 15245

where integer() values are truncated, not rounded.
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In the case of the Greenwich mean sidereal time for any instant ¢y of UT for a given

date, GM ST, has to be modified as
GMST = GMSTy + tyr * 1.00273790935. (B.37)

GM ST can also be calculated directly at the cost of losing numerical precision using

T3

GMST = 280.46061837+360.98564736629(.J D—2451545.0)+0.0003879337%— 38710000

where JD is the total time elapsed and not only the number of elapsed days
JD = JDy + tyr.

A more precise algorithm for calculation of GM ST is given in [17].

B.3.3 Universal Equatorial to Ecliptic Coordinates

The needed orbital parameters are measured in a coordinate system centered on the Sun,
and the main plane is defined as the plane in which the Earth orbits the Sun for a certain
epoch. The angle between the planes of the equator and the ecliptic is denoted by the
Greek letter €. It is changing with time, and has value of approximately 23° (see table
B.1) for the current epoch.

The base direction of the geocentric ecliptic coordinates is the z-axis which is directed
toward the 7 point. The z-axis is the polar axis rotated by the angle ¢ about the z-axis.
A position in geocentric ecliptic coordinates is measured using ecliptic longitude A and
latitude g in the same way as a and ¢ are measured inside the universal equatorial system.
One should make a clear difference with the A used to denote geographical longitude.

The standard astronomical equations for the transformation of geocentric equatorial

coordinates to geocentric ecliptic coordinates [36] are:

cos A cos B = cos d cos
sin A cos 8 = cos d sin « cos € + sin d sin €

sin 3 = — cos d sin asin € + sin d cos €.
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The inverse transformations are given by:

cos acos § = cos [3cos A
sina cosd = cos Bsin A cose — sin Fsine

sin § = cos 3sin Asin € + sin Fcose.

To perform a transformation from geocentric to heliocentric coordinates, the position
of the Sun must be known. One of the simplest algorithms for finding the coordinates
of the Sun is given in [85] and [134]. It provides numerical accuracy of about 1 arc min.
Due to the algorithm’s simplicity, it will be used only as a starting point to test the basic
principles. One interesting and original attempt to find the parameters of the Earth’s

orbit was made by Rees, 1991, but his results carry relative errors bf a few percent [110].

'B.3.4 Coordinates of the Sun

In the simplest, but still usable approach, the ecliptic (Is, bs,7s) and equatorial (s, ds)
coordinates of the Sun at Julian Date JD of Universal Time (UT) can be approximated

using the following equations [85]:

e D=JD —2451545.0;

g = 357.529 + 0.98560028D (in degrees);

q = 280.459 + 0.98564736D (in degrees);

lg = g+ 1.915sin g + 0.020sin 2¢ (in degrees);

bs = 0 (in degrees);

r¢ = 1.00014 — 0.01671 cos g — 0.00014 cos 2¢g (in AU);

€ = 23.439 — 0.00000036D (in degrees);
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Using the transformations from geocentric ecliptic to equatorial coordinates, the solar

right ascension and declination can be calculated as
e sinag = cosesinlg;
® cosag = coslg;
e sindg = sinesinlg.

For higher accuracy, the algorithm VSOP87 can be used [7], [8]. The full version
of the VSOPS87 algorithm uses 2425 periodic terms to compute the Solar ephemeris.
The maximum error in astronomical longitude does not exceed 0.01 arc seconds. This
algorithm also calculates the latitude of the Sun which can be different from zero.

With the known coordinates of the Sun, a transformation from universal equatorial to
heliocentric ecliptic coordinates can be done by first performing a rotation for the angle
€ about the z-axis (pointed toward the <y point) to the geocentric ecliptic coordinates,

and then performing the transformation to the heliocentric system.

B.3.5 Apex Position and Earth’s Heliocentric Velocity Vector

Conversion of the velocity vector from the geocentric to heliocentric coordinates is straight-
forward if the Earth’s velocity vector at the given time is known. The Earth’s velocity
vector is completely defined by the position of the point on the celestial sphere toward
which the orbital motion of the Earth is directed (apex), and the intensity of the velocity
vector. Assuming that the Earth’s orbit is a perfect circle, then the geocentric.ecliptical

coordinates of the apex (ln, by) are
lo = lg —90°,
by = 0°.

The procedure of obtaining the geocentric ecliptic coordinates of the Sun (g, bs) was

discussed above.
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In reality, the coordinates of the apex are going to be slightly changed due to the
eccentricity of the orbit. The corrected equation for the apex position can be found
by taking the derivatives of the rectangular components of the Earth’s position in the
heliocentric ecliptical coordinate system (zg, yg, 25 = 0) :

d

@
d d . |
SYE= o (rgsinlg).

(rgcoslg),

rg = rg and lg = lg — 180° are the Earth-Sun distance and the longitude of the Earth,
respectively. The expressions for the components of the velocity vector can be written
using the coordinates of the apex and the tangential component of the Earth’s velocity

vy via

—Ip = V3 COSlq,

dt

—yg = Y sinl,.

dt

Following the approach in [21], after combining the previous 4 equations,

vy sin(l, — lg) = ——rECZl—l:,
vpcos(ly — lg) = —%:f—.

These two equations can be divided to obtain the cotangent of the angle difference {,—Is:

1 dTE

cot(ly — lg) = (B.38)

rp dls’

Kepler’s first law can then be used to calculate the derivative of the Earth’s radii:

drg _ d p )
dls  dlg \1—ecos(lg — 1))’

where e = 0.016710219 is the eccentricity of the Earth’s orbit and [, is the longitude

of the Earth’s perihelion for the equinox at the beginning of the year of the observation

(ty), given by the formula

I = 102°5" + 1'03(ty — 1950). (B.39)
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(B.38) becomes
cot(ly —ls) = —esin(lg — Ir).
The difference [, — g is approximatly equal to 90°, so a first order Taylor expansion can

be used to finally obtain the longitude of the apex:

sin(lg — Ir). - (B.40)

° €
lo =15 = 90° + ——;

Many authors disregard this correction since the Earth’s orbit is nearly circular. The
Sun-Earth distance, which is maximal when the Earth is at aphelion, and minimal when
the Earth is at perihelion, changes only by about 3%.

Usually; in meteor-related literature, the intensity of the Earth’s velocity vector is
determined using the energy integral (B.10). The constant h can be found from the

position and velocity at some particular point in the orbit
h==v* - —. (B.41)

If the Earth’s velocity is about 30 km/s (see Table B.1), the kinetic energy term is

approximatevely 4.5 x 10® m?/s2.

For an elliptic orbit, the specific orbital energy simplifies to

K
= —— B.42
and in the case of a hyperbolic orbit it is
K
= —. B.43
L 2a ( )

It was already mentioned that for a parabolic orbit h = 0.

Combining (B.41) and (B.42) gives the velocity of an object at a distance r from the

baricenter moving on an elliptic trajectory around the center of gravity:

v K (2 _ l), (B.44)

r a
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Orbital eccentricity eg | 0.016710219

Average orbital speed vg | 29.783 km/s
Longitude of the ascending node | Q5 | 348.73936°
Argument of the perihelion wg | 114.20783°
Semi-major axis ag | 149.5978875 x 10° m
Semi-minor axis bp | 149.5769998 x 10° m
Distance to aphelion re | 152.097701 x 10° m
Distance to perihelion re | 147.098074 x 10° m
Orbital inclination to ecliptic i 0.00005°

Sidereal orbit period Tr | 365.256366 days
Mass of the Sun Mg | 1.98892 x 10%0 kg
Mass of the Earth mg | 5.9736 x 10%* kg
Gravity constant G |6.672 x 107! Nm?/kg?
Obliquity of the ecliptic € 23.4392911°

Table B.1: Characteristics of Earth’s orbital motion for the epoch J2000, and other

constants important for orbit calculations.

A similar expression can be derived for the case of hyperbolic motion, where the minus
sign becomes a plus.

The position of the Earth orbiting the Sun at any instant is given in terms of the
distance to the Sun and the angle ¢ measured from the Sun-aphelion line to the vector

position rg. In the rectangular heliocentric ecliptic system, the vector rg is (B.33):
rp = rgcospi+ rgsinpgj.
The time derivative of the position vector leads to the equation for the velocity vector.

Ei-?—?—— C—h—ﬂ—“'g-cos —rgsin dor i+ dr—Esin + TE cos do ) 5
a  \ & $YE —TESIMYE dt dt ¥p T TrecosYe— | J

Kepler’s first equation (B.16) has rg defined using the parameters pgr and eg. The

time derivative of (B.16), is

drg _ (egsingg .2 dyg
dt DE B gt

Using the time derivative 222 given in the Kepler’s second law (B.9), the Earth’s velocity
dt

vector is

K
Vg = o [—sinpgi+ (eg + cos pr)j| - (B.45)
\ P&
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The velocity has the highest value when the Earth is at aphelion of the orbit since ¢ g = 0.
It is also obvious from (B.45) that at perihelion and aphelion, only the j component is
nonzero, and thus the velocity vector is normal to the position vector.

The angle ¢z is measured in the plane of the ecliptic, from the aphelion toward the
vector rz. The longitude of the perihelion point for the beginning of the observation year
is given in (B.39). The longitude of the Earth is [z = Ig — 180°, where the longitude of

the Sun is calculated via the algoriﬁhm given in subsection B.3.4. ¢g is then

YE = ZS - l7r-' (B46)

B.3.6 The Transformation Algorithm: Summary

Start with observed i = 1, ...N points in geographic coordinates (i, ¥s, Taci, UT;);

Find GMST; for the given UT; using (B.37);
e Form position quaternion by switching to rectangular coordinates (see appendix A;

e Transformation to universal equatorial coordinates by rotating about z-axis for

angle GMST (see subsection B.3.1);
e Find geocentric ecliptic coordinates of the Sun (see section B.3.4);
e Rotate the quaternions about the z-axis by the angle € (see appendix A);

- o Translate the quaternions to set the origin at the center of the Sun (see subsection

B.3.4);

e Determine the Earth’s velocity and use it to find the velocity of the object in the

heliocentric system (see subsection B.3.5);

e Find the orbital parameters (see subsection B.2.1).
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B.4 Corrections for a Meteoroid’s Orbit

In the previous section, a method for calculating the orbital elements of a body in th'e
gravitational field of the Sun was explained. The calculation was done based on the
assumption that the only important force acting on the observed body is the gravitational
force of the Sun. It was also assumed that the observed data had already been reduced
and that all necessary corrections were done. In this section three needed corrections will
be discussed. We will start with the velocity corrections due to atmospheric drag. Next,
an analysis of the influence of the Earth’s rotation on the measurement of the velocity
vector of a meteoroid will be given. At the end of the section, the perturbations due to

the gravity field of the Earth will be discussed.

B.4.1 Velocity Correction due to Air Resistance

Friction between a meteoroid and the atmosphere forces the meteoroid to slow down.
As the meteoroid loses altitude, the air resistance increases, manifesting itself as higher
velocity loss. The initial velocity of meteoroids is in the range of 10 — 80 km/s, while
the thermal velocity of the air molecules is only ~ 0.5 km/s. The thermal velocity of
the air molecules is usually considered to be negligibly low. The atmospheric density p

is exponentially dependent on the height h as shown in

=h

p = poe™o, (B.47)

where hy is the scalé height expressed using the gas constant R, the absolute temperature
T, the molecular weight p of the air, and gravity constant g as:

ho = 2L (B.48)
1

The drag equation of motion includes the central force (gravity) and the drag force
proportional to the velocity vector. It is described by

d’r r dr dr
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where T is the drag coeficient, expressing the portion of the momentum of the oncoming
flow that is converted into the deceleration of the meteoroid. It can typically take a value

between 0.5 to 1. S is the midsectional area of the meteoric body.

A velocity correction for the drag can be derived from the equations for the velocity
and deceleration of the physical theory of meteors [9]. The derivation of this correction is
explained in detail in Katasev, 1964 [59] under the assumption that all meteoroids have
roughly the same density and that the ablation forces exceed the gravitational force acting
on the meteoric body. The velocity of the meteoroid before entering the atmosphere v
is

Voo = Vg [1 - hoz(—%)ﬂ—} : (B.50)

UG COS 2R

Here v and (£),, are the observed velocity and deceleration, and z is the zenith distance

0
of the radiant, or the angle between the velocity vector and the direction toward the center
of the Earth. In practice, this equation is sometimes additionaly simplified. For instance,

the Advanced Meteor Orbit Radar (AMOR) group is using the empirical correction

v, = v +0.8139, (B.51)

oo

where all velocities are given in units of km/s [2].

A slight improvement to precision when calculating the effect of the atmosphere on
the motion of the meteoroid was discussed by Pecina, 1991 [101]. His approach was to
numericaly integrate the equation of motion (B.49), taking into the account the atmo-
spheric drag and the Earth’s gravity. The integration was done from the observed heights
to the standard reference level of 150 km, where the drag is outweighted by the effect of
gravity. His results suggest that the there is a small difference compared to the classical

method described above.
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B.4.2 Velocity Correction due to the Earth’s Rotation

Since the Earth rotates about its polar axis with period T = 24 h, the motion of the
observing station has to be taken into account. In the case of observing a distant star,
the velocity of the observer causes an apparent shift to a maximum correction of about
0.0008333° at the equator. In the case of a meteor, the corrections are higher by a few
orders of magnitude because the velocity of the meteoroid is much smaller than the speed

of light. The standard equations for the diurnal aberration [36] lead to

Aag = — 1594.4/5km/s cos o cos Bg (B.52)
v} cosdgr
1594.45k
Adg = —M cos o sin fg sin dg, (B.53)

9
where Aag and Adg are the corrections (in angular minutes) for the observed equatorial
coordinates of the radiant (ar, dg). The radiant’s hour angle 0, is given by

0r = GMST — ag. The geographic coordinates of the observation site are (Ao, ®o, To)-

B.4.3 Velbcity Correction due to Earth’s Gravitational Field

The perturbation of a meteoroid’s trajectory due to the influence of Earth’s gravitational
field will be discussed in this subsection. In general, a trajectory with orbital pertur-
bations cannot be solved analytically. The standard approach used for the tracking of
comets, is to numericaly integrate the differential equations of motion for the entire pe-
riod of time [21]. The usual approach in meteor astronomy is to use the so-called zenith
attraction: the radiant is effectively shifted toward the zenith [59].

Assuming that the meteoroid trajectory is perturbed only by Earth’s gravity, and
that the trajectory is hyperbolic, the meteoroid will be seen to be coming from a direc-
tion tangent to the hyperbola. If the geographic coordinates of the observation site are

(Yo, Ao, To), the initial speed v, will be changed into v, accoring to the relation [59]

v2 = — 2gr, (B.54)
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where g is the gravitational acceleration and r is a distance from the center of the Earth
to the meteoroid, r = ro + h. Assuming that the Earth is not a perfect sphere, but

rather, an ellipsoid, the gravitational acceleration varies with the height h as

2
go—Ge . 2 ro
=ge | 1+ =——sin , B.55
g g( Je ' wo) (ro+h> : ( )

where gy = 9.823 m/s? and g, = 9.789 m/s? are the values of the gravitational acceleration
at the surface of the Earth with latitudes of 90° (poles) and 0° (equator), respectively.
The distance, ry, between the observing station and the center of the Earth is
ay
cos g /1+ G tan? o)
Yor/ 1+ 3%- tan® ¢,

where the angle ¢, is the geocentric latitude given as a function of the geographical

ro = (B.56)

latitude @o:
Yo = po — 695".66sin 2¢p + 1".17 sin 4po. (B.57)

a; = 6.378136 x 10° m and b; = 6.356750 x 106 m are the major (at the equator) and
minor (at the poles) semiaxes of the Earth.

The position of the radiant is shifted by the angle Azg for a fixed meridian, where

]. Ug - U, 1
tan (-éAzR) = o UZ tan (5z3> : (B.58)

The true position of the radiant is equal to Azg + 2@*¢™*¢. Formula (B.58) was derived

in 1867 by Schiaparelli [59]. It shows that the zenith correction depends on the zenith
angle of the radiant and the meteor’s relative velocity. For meteors with a radiant close
to the horizon Az ~ 90°, this correction can reach a few degrees.

One of the numerical methods for the determination of the orbital elements of a
meteoroid influenced by the gravitational forces of the Earth and the Sun is described in
[102]. The diferential equations of motion taking into account the two centers of gravity,
are integrated backward in time, from the time the meteoroid was 150 km from the
surface of the Earth, to the moment the meteoroid was at least 107 km away from the

Earth.
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In this work we use an approximate solution as follows. A meteoroid moves from
a region of space where the Sun’s gravity plays the major role into a region where the
gravitational force of the Earth is stronger. The “spheres of activity” of each body can
be estimated using the equation of motion (B.6). If the mass of the second center of
gravity (the Earth) is small compared to the mass of the first center of gravity (the Sun),

the sphere of activity of the smaller body has radius:

Mg 2/5
= — . B.
PES =TE ( Ms) v (B.59)

Calculated in this way, the radius of the Earth’s sphere of activity is ~ 925200 km. For
reference, the radius of the Moon’s sphere of activity is ~ 66000 km [91]. Inside the
Earth’s sphere of activity, the orbit is calculated using only the Earth’s gravity. At a
distance of pgg a switch to the orbital elements inside the Solar sphere of activity has to

‘be performed.
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