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ABSTRACT

Application of error correcting codes for data compression is first investigated by
Shannon where he suggests that there is a duality between source coding and channel
coding. This duality implies that good channel codes are likely to be good source codes
(and vice versa). Recently the problem of source coding using channel codes is receiving
increasing attention. The main application of this problem is when data are transmit-
ted over noisy channels. Since standard data compression techniques are not designed
for error correction, compressing data and transmitting over noisy channels may cause
corruption of the whole compressed sequence. However, instead of employing standard
compression techniques, like Huffman coding, one may compress data using error cor-
recting codes that are suitable for both data compression and error correction purposes.
Recently, turbo codes, repeat-accumulate codes, low density parity check codes, and foun-
tain codes have been used as lossless source codes and have achieved compression rates
very close to the source entropy. When a near-lossless compression is desired, i.e. a small
level of distortion is acceptable, the source encoder generates fixed-length codewords and
the encoding complexity is low. Theoretically, random codes could achieve near-lossless
compression. In literature, this has been proved by presenting a random binning scheme.
Practically, all powerful channel éodcs, e.g. turbo codes, can follow the same procedure
as suggested in random binning and achieve compression rates close to the entropy. On
the other hand, if a completely lossless compression is required, i.e. if the distortion must
be forced to zero, the source encoding is a complicated iterative procedure that generates
variable-length codewords to guarantee zero distortion. However, the large complexity of
encoding imposes a large delay to the system. The iterative encoding procedure can be
regarded as using a nested code where each codeword of a higher-rate code is formed by
adding parities to a codeword of some lower-rate code. This iterative encoding is pro-

posed for practical codes, e.g. turbo codes and low density parity check (LDPC) codes,



in the literature. In contrast to near-lossless source coding, in the lossless case no random
coding theory is available to support achievability of entropy and specify distribution of
the compression rate.

We have two main contributions in this thesis. Our first contribution is presenting a
tree structured random binning scheme to prove that nested random codes asymptotically
achieve the entropy. We derive the probability mass function of the compression rate and
show how it varies when increasing the block length. We also consider a more practical
tree structured random binning scheme, where parities are generated independently and
randomly, but they are biased. Our second contribution is to decrease the delay in turbo
source coding. We consider turbo codes for data compression and observe that existing
schemes achieve low compression rates; but because of large block length and large num-
ber of iterations they impose a large delay to the system. To decrease this delay we look
at the problem of source coding using short block length turbo codes. We show how to
modify different components of the éncoder to achieve low compression rates. Specif-
ically we modify the parity interleaver and use rectangular puncturing arrays. We also
replace a single turbo code by a library of turbo codes to further decrease the compres-
sion rate. Since the scheme is variable-length and also many codes are used, the codeword
length along with the code index (index of the turbo code which is used for compression)
are transmitted as an overhead. Transmission of this overhead increases the compression
rate. We propose a detection method to detect this overhead from the codeword. There-
fore, the overhead is no longer transmitted since it is detected from the codeword at the
decoder. This detection method will reduce the compression rate for short block length

systems but it becomes less attractive for large block length codes.
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Chapter 1

Introduction

We consider the problem of data compression using error correcting codes. In this chapter
we first explain the motivation behind the problem. Then we briefly introduce previous
works on data compression using error correcting codes. Section 3 summarizes the main

contributions of this thesis. Finally, an overview of the remaining chapters is presented.

1.1 Motivation

Source coding and channel coding are dual problems. Source coding (data compression)
attempts to remove the redundancy existing in the message, whereas channel coding adds
redundancy to the message (in a controlled fashion) in order to combat errors occurring
in a noisy channel. The area of channel coding has achieved a state of maturity where
powerful error correcting codes have been designed that can approach the capacity of dif-
ferent communication channels. For example, for additive white Gaussian noise (AWGN)
channel, the capacity is practically reached by designing appropriate low density parity
check (LDPC) or turbo codes. The duality of source coding and channel coding motivates
the application of successful channel coding techniques to the dual problem of data com-

pression. Data compression using error correcting codes is especially suitable for cases



where data are transmitted over noisy channels. Since standard data compression tech-
niques are not designed for error correction, compressing data and transmitting over noisy
channels may cause corruption of the whole compressed sequence. However, instead of
employing standard compression techniques, like Huffman coding, one may compress
data using error correcting codes that are suitable for both data compression and error
correction purposes. Recently, turbo codes, repeat-accumulate codes, low density par-
ity check codes, and fountain codes have been used as lossless source codes and have
achieved compression rates very close to the source entropy.

In this thesis, we mainly consider fixed-to-variable length data compression using
error correcting codes. In this problem, the encoder maps fixed length message blocks
to variable length codewords. Compared to standard data compression techniques, like
Lempel-Ziv coding [1], designed source codes achieve lower compression rates. Another
attractive feature of these fixed-to-variable length schemes is their ability to trade off
data compression for error correction. In the presence of noise, one can remove less
redundancy and allow better error correction capability. It will be shown that this could
be done in a very natural way. The compressed sequence consists of parity bits of a
- channel code. Thus, removing less parity bits is equivalent to applying a more powerful

channel code.

1.2 Data Compression Using Error Correcting Codes

The application of error correcting codes to data compression is inspired by Shannon’s
observation on duality of source coding and channel coding. In his landmark paper {2]
Shannon remarks:

“There is a curious and provocative duality between the properties of a source with
a distortion measure and those of a channel. This duality is enhanced if we consider
channels in which there is a cost associated with the different input letters ... It can

be shown readily that this [capacity cost] function is concave downward. Solving this



problem corresponds, in a sense, to finding a source that is right for the channel and
the desired cost ... In a somewhat dual way, evaluating the rate distortion function for
a source ... the solution leads to a function which is convex downward. Solving this
problem corresponds to finding a channel that is just right for the source and allowed
distortion level.”

Shannon’s work has been followed by others to construct a solid theory on duality
of source and channel coding. In [3] the duality of channel coding and source coding
has been interpreted as a sphere packing versus a sphere covering problem. It is shown
that for Gaussian sources, channel coding is a sphere packing problem whereas source
coding is a sphere covering problem. This implies that a good channel code is likely to be
a good source code [22]. In [5] the duality between channel capacity and rate-distortion
function has been extended to the case where side information is available at both encoder
and decoder sides. As another work that studies the duality between source and channel
coding we can refer to [6]. The authors in [6] consider the extension of this duality to the
side information case where two correlated sources are compressed together. As practi-
cal implementations of this duality we can mention trellis-coded quantization [7], [8] in
source coding which has been inspired by trellis-coded modulation in channel coding. As
another example of this duality we may mention the shaping of constellation points [9]
in channel coding which has been inspired by constraining the entropy of quantization
points [10] in source coding.

Perhaps the most attractive application of the duality between source and channel
coding is the problem of lossless compression of two correlated sources. Because of the
correlation, one source can be considered as the noisy version of the other source after
passing through a channel. Since lossless compression is desired, the distortion measure
(which usually is the probability of error) must approach zero. This is an exact match
for the channel coding case where the probability of error approaches zero. Therefore, a
channel code can be designed to achieve the lossless compression. It is interesting to know

that even the main proof of achievable rate region for lossless compression of correlated



sources is based on random codes [11]. Based on this observation, many codes including
turbo codes, low-density parity check (LDPC) codes and repeat-accumulate codes have
been used for lossless compression of correlated sources where all achieved rates are very
close to the theoretical limits. Related works on this area can be found in [12]-[21] and
references therein.

In contrast to compressing correlated sources, lossless compression of a single
source using a channel code has received less attention. However, this problem has also
been considered in some references including [23}-[31]. In fact, one can use a random
binning method [3] to show that random codes can be used for lossless data compression.
In that sense, it is shown that by increasing the data block length, these random codes
asymptotically achieve the entropy limit. Therefore, a random-like code (e.g. turbo code
or LDPC code) could be employed as a source code. For example, in [27], a turbo code is
used to compress a biased binary independent identically distributed (i.i.d.) source. The
encoder, in [27], generates two parity sequences using two parallel concatenated convo-
lutional codes. Compression is achieved by heavily puncturing these parities.

The random binning argument presented in [3] considers a fixed-to-fixed length
source coding scheme, i.e. a fixed-length message block is mapped to a fixed-length
codeword. Although fixed-to-fixed length schemes asymptotically achieve the entropy,
fixed-to-variable (or variable-to-fixed) length codes achieve lower compression rates in
finite block length systems. To design a fixed-to-variable length code, one may use a
library of parallel random binning schemes with different rates. As a practical imple-
mentation, [26] considers lossless compression of a biased i.i.d. binary source using a
Hamming code, a BCH code and a rate-one code. As an alternative to using a library
of codes, a fixed-to-variable length source code can be implemented by a nested code,
where each codeword of a higher rate code is generated by adding bits to a codeword of
a lower rate code. For example, fixed-to-variable length LDPC and turbo source coders
have been designed in [29] and [22] respectively (alternative schemes based on fountain

and repeat-accumulate (RA) codes are presented in [30] and [31] respectively). In [22],



after encoding the message by a turbo code, the parities are gradually punctured using an
iterative algorithm. Puncturing continues as long as the codeword is decodable with no
errors. However, in [28], after transmitting the syndrome of the message, the message
bits are sent one by one using an iterative doping approach until the transmitted bits are
sufficient to decode the entire message at the decoder. If we refer to the method of [22] as
a decremental redundancy method, the method in [28] can be referred to as an incremental

redundancy method.

1.3» Thesis Contributions

Contributions presented in this thesis can be summarized as follows:

e We consider the theoretical performance of nested error correcting codes for data
compression. For this, we generalize the conventional random binning argument
to a so called tree structured random binning concept. We derive the distribution
of the compression rate achieved by the proposed tree structured random binning
scheme. Comparing this distribution with the distribution achieved using a library
of random binning schemes, we prove that a nested code can achieve rates close to

a library of codes but with much lower encoding/decoding complexity.

e For large data blocks, the proposed scheme is shown to asymptotically achieve the

entropy limit.

e As a practical implementation of this random binning scheme, we examine the per-
formance of the lossless turbo source coding scheme proposed in [22]. Considering

short block length codes, we modify different components of the encoder to achieve

better compression rates.

e We present a detection algorithm to eliminate the overhead introduced by the trans-

mission of the codeword length and the number of codes. Using such an iterative



detection technique proves to further reduce the compression rate for short block

length turbo source codes.

When we establish the tree structured random binning theory, we generally speak about
typical and atypical sequences [3], i.e. no specific source is considered in this case and the
theory is applicable to all types of information sources. However, when we discuss turbo
source coding, a binary biased independent identically distributed source is considered.
This assumption could be justified by noticing the fact that in some cases the source is in
fact discrete (like transmission of text) and could be described by a binary sequence with-
out any loss of information. In case of continuous sources, a quantizer is used and thus
some amount of information is lost. In this case the considered lossless approach serves
as a background for the lossy compression system. The independence is also justified by

the use of a whitening filter.

1.4 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2 is devoted to background and literature review. The chapter begins by
reviewing the fundamental concepts of data compression. We introduce the random bin-
ning argument and fixed-to-fixed length source coding using turbo codes. Then the loss-
less turbo source coding scheme is presented which is a fixed-to-variable length source
coding scheme.

In Chapter 3 we consider data compression using a library of random binning codes
and derive the distribution of compression rate (in this case the scheme is fixed-to-variable
length thus the compression rate is a random variable). The tree structured random bin-
ning theory is established and the distribution of compression rate is derived. Tree struc-
tured random binning considers the theoretical performance of a nested channel code
applied for data compression purpose. At the end of this chapter we consider the limita-

tions caused by using a practical code instead of a random code for tree structured random

6



binning.

Chapter 4 begins by noticing the drawback of lossless turbo source coding schemes,
i.e. large latency (or system delay). To reduce this delay we propose short block length
turbo source codes and modify different components of the encoder to achieve promising
compression rates using these short block length codes.

In Chapter 5 we propose a detection method to detect the overhead introduced by
the codeword length and the index of applied code. Due to this detection method, the
overhead is no longer transmitted since it could be detected at the decoder. Our proposed
method helps to reduce the compression rate of short block length systems, but as the
block length grows it gradually loses its attraction.

Chapter 6 highlights contributions of this work and gives suggestions for future
studies.

The contributions of this thesis are presented in [40]-[47].



Chapter 2

Background

In this chapter we review the concepts of source coding and turbo source coding.
Our focus is on lossless source coding, i.e. compressing data without any loss of informa-
tion. We begin by defining the basic concepts of a source coding system, such as message,
block length, and compression rate. Then we talk about typical sequences and define the
concept of entropy which serves as a lower bound for the achievable compression rate in
lossless source coding. We observe how random codes can achieve this bound by using a
random binning method presented in [3]. Then turbo source coding is considered, where
we review two original works on data compression using turbo codes. We observe that in
[27] turbo codes are used for near-lossless compression, i.e. where a small error probabil-
ity is allowed. However, in [22] the compression is made completely lossless by checking
the decodability of data inside the encoder and prior to transmission. Then we review the
numerical results from [27] and [22] to express the achievable compression rates using

existing turbo source coding methods.

2.1 Definitions

Consider a discrete, i.i.d source X that takes its outcome z from a finite alphabet x

with cardinality |x|. We consider a source coding (data compression) system as shown in



Fig. 2.1. For some positive integer 7, the source encoder takes a vector of n samples from
the source (e.g. X = 7,%,...Z,) and maps it to an index y € {1, 2, ..., 2"R}, where R is a
rational number (between zero and one) such that n R is an integer. Obviously y could be
expressed by nR bits. The source decoder maps y to a vector X, which is an estimate of
x. We further define the parameters as follows:

x is called the message (sequence).

n is called the block length and is expressed in samples.

R is called the compression rate and is expressed in bits per sample (bps).

y is called the codeword.

X is called the reconstructed message (sequence).

The quality of the data compression system is evaluated by a fidelity criterion, or
namely a distortion measure. The distortion d(z,7) is a (non-negative) measure which
specifies the cost of representing the sample z by . Among the most popular distortion
measures we can mention:

- Hamming (probability of error) distortion: is given by

. 0 z=7
d(z,7) = . 2.1)
1 z#7T
-Squared error distortion: is given by
d(z,7) = (z — 2)% (2.2)

The distortion between message sequence x and reconstructed sequence X is de-

fined as the average of the per sample distortions, i.e.:

a6 %) = = 3 d(w:, ). 2.3)
i=1

The total distortion associated with the source code is then defined as:



D = E{d(x, %)}, (2.4)

where E{.} represents the expected value. If the message sequences x are generated with

a probability distribution p(x), then D can be expressed by:

D= p(x)d(x,%). 2.5)

Based on D, we define three types of source coding schemes as follows
- Completely lossless source coding: A source coding scheme is called completely
lossless if D = 0, i.e. if for any given message sequence x with p(x) > 0, d(x, X) = 0.
-Asymptotically lossless (near-lossless) source coding: A source coding scheme is

called asymptotically lossless if

lim D =0. (2.6)

n—00
-Lossy source coding: A source coding scheme is called lossy, if it is not completely
lossless or near-lossless.
In this thesis we mainly deal with completely lossless and near-lossless source cod-

ing schemes.

message Source codeword Source reconstructed message
— ———— -
Encoder

Decoder

Figure 2.1: The block diagram of a source coding system.

2.2 Typical set and the concept of entropy

As the block length grows, the set of all possible message sequences could be partitioned

into two distinct sets. The typical set is the set of sequences that are typically observed
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as the source outcomes. In other words, typical set is the set of sequences that are typical
of the source or represent the type of the source. The atypical set (or non-typical set)
is the set of all sequences that are not typical. Each sequence belonging to the typical
set is called a rypical sequence. Each sequence belonging to the atypical set is called an
atypical sequence.

As an example of typical and atypical sequences, let us consider a binary indepen-
dent identically distributed (i.i.d.) source X, generating binary i.i.d. samples z from an
alphabet x = {0, 1} with Pr(z = 1) = p. When the block length, n, is large, we can say
that nearly each realization of message x has np “ones” and n(1 — p) “zeros” (let np be
an integer). The probability of observing such message x is Pr(x) = p™(1 — p)™(1-#),
Defining a function H(X) = —plogop— (1 —p)logs(1 —p) gives Pr(x) = 271X) (from
now on all logarithms used are base 2 otherwise it is mentioned). In other words, for
large block length system, the outcome of the source consists of 2"7(X) typical sequences
each occurring with probability 2-"#(X)_ The function H(X) is called the entropy of the
source X . For any given source X with probability distribution p(z), the entropy function

is defined as follows [3]:

H(X) = -3 p(z)log(p(x)). @.7)

Similar to the compression rate, the entropy is expressed in bits per sample (bps).
Using this definition for entropy, the typical set (or more precisely the e-typical set) is
formally defined as follows [3]:

Definition: For some fixed value € > 0, the typical set A, is the set of message

sequences x with the following property:

o-n(H(X)+e) < p(x) < 9-n{(H(X)—¢) (2.8)

Now we review some important properties of typical set. For this we need to express

asymptotic equipartiotion property.
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Asymptotic equipartition property [3]: If x,, z,, ... are drawn i.i.d. according to
probability distribution function p(z), then as n — oo, —logp(x) — H(X) in proba-
bility.

The following theorem is taken from [3] and represents three important properties
of the set A,

Theorem 2.1- For the set A.:

1- Pr{A.} > 1 — ¢, for n sufficiently large.

2- |A| < 2MHX)+e) where | A,| denotes the number of elements of A..

3- |A¢| = (1 —€)2nHX=9) for n sufficiently large.

Proof-

1- From the definition of A.in (2.8) we have Pr {A.} = Pr {|—Llogp(x) — H(X)| < e}.
Then from the asymptotic equipartition property and definition of limit, for any ¢ > 0,

there exists an integer nisuch that for any n > n; we have

Pr {‘—%logp(x) — H(X)

< e} >1-6. (2.9)

setting 6 = ¢ completes the proof.

2-We have

1= p(x)

> > p(x)

xXEAg

Z Z 2—n(H(X)+E)

XEAe
—_ |As| 2—n(H(X)+e:)

Hence
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|A| < 2nHOFe), (2.10)

3- From part 1 of this theorem 1 — ¢ < Pr{A.}, for n sufficiently large. Then
similar to the proof for part 2:

1-e< Pr{A.}

< 3 gtk

XEAe
= | A] o—n(H(X)—¢)

Therefore:

[Ae] > (1 = e)2ntHE0=2),

And this completes the proof.

Shannon proves [4] that entropy is the limit of lossless compression, i.e. no lossless
source coding scheme could be designed to compress a source X to arate R < H(X). In
other words to achieve lossless compression we must have R > H(X). However, from
the concept of typical set we can prove that R can be chosen arbitrarily close to H(X).
This could be shown as follows:

Recall that Pr {A.} > 1 — ¢ (theorem 2.1), for n sufficiently large. Also € could
be chosen arbitrarily small, given large enough n. Thus, the probability of typical set is
close to one for sufficiently large block length. This is interesting since the typical set has
only about 2"¥(X) sequences whereas the number of all sequences is 2™ which is much
larger (given (1 — H(X)) >> 0). This is why the typical set is sometimes referred to
as the smallest high-probability set {3]. Using these facts, a lossless source code can be

designed as follows:
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-Each typical sequences is encoded to [n(H(X) + ¢)] bits.

-Each atypical sequence is transmitted uncoded by [nlog |x|] bits.

-Before transmitting each sequence a flag bit is sent to show whether the sequence
is typical or not.

This means that the average (expected) compression rate can be bounded as:

R<

14+ (1-¢e){n(H(X)+e)+1} +e{nlog|x| + 1}

(2.11)

which can be simplified to

24 ¢ —¢g?

R< (1—-¢€e)H(X)+¢€log|x| + (2.12)

It is easy to prove that H(X) < log |x|, with equality achieved for uniform sources,

i.e. when all sequences are equi-probable [3]. Therefore, (2.12) can be rewritten as:

2 +¢e—¢?

R < H(X) +e(log|x| ~ H(X)) + —

(2.13)

As n becomes large, € can be chosen arbitrarily small, i.e. R approaches the entropy

(since for a lossless code R is always lower bounded by H(X)).

2.3 Random binning

In the previous section we observed that achieving the entropy is theoretically possible.
After discovering this fact, researchers started searching for practical codes to achieve the
entropy. As an intermediate step, it was proved that random codes can achieve entropy.
This proof is formulated in [3] as the random binning method.

Generally by an (n,nR) random code we mean a code that to each block of the
message assigns a codeword of length n R bits where each bit is drawn i.i.d. with Pr(1) =
0.5. In other words, in random coding the codeword bits (we also call them the parities)

are unbiased. Random binning follows this idea very closely as explained below:
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Code construction:

1- choose 2"F distinct indexes, for example 1, 2, ..., 2"%,

2-To each message sequence assign an index randomly and equi-probably. In other
words index i is assigned to each sequence with probability 2.

3-All message sequences with a common index are called a bin.

4-Save the codebook (i.e. bins and their elements) at both encoder and decoder

Encoding: Transmit the index of the bin containing the message sequence.

Decoding: Search for a unique typical sequence in the addressed bin. If not found,
report a decoding error.

Figure 2.2 shows an example of a random binning scheme. The set of all message
sequences consists of 5 typical sequences (shown by +) and 11 atypical sequences (shown
by ). These numbers are considered only for demonstration purposes. The random
binning scheme divides the message sequences to 4 bins indexed by 00, 01, 10, and 11,
respectively. Now let us consider the three following examples and see how the decoder
works in these cases:

1- The message sequence is one of the typical sequences in bin 00: The encoder
transmits 00. The decoder searches for a unique typical sequence in bin 00 but since there
are 3 typical sequences in the bin, a decoding error occurs.

2-The message sequence is the typical sequence in bin 10: The encoder transmits
10. The decoder searches in bin 10 for a unique typical sequence and finds it. The
decoding is successful in this case.

3-The message sequence is the atypical sequence in bin 11: The encoder transmits
11. The decoder looks for a unique typical sequence in bin 11. Although the sequence in
bin 11 is unique, it is not typical. Therefore, a decoding error is reported.

From the above example we observe that for short block length systems, the random
binning method has errors and the compression is not lossless. However, the authors in [3]
prove that for a given rate R > H(X), as the block length grows, the probability of error

goes to zero and the scheme asymptotically achieves lossless compression. It is important
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00

01

10

11

Figure 2.2: A random binning scheme with 16 message sequences and 4 bins. * represents
atypical sequences whereas + represents typical sequences.

to notice that in random binning the probability of error is defined on the typical set. In
fact according to the decoder’s structure, the probability of error on the atypical set is one.
However, by increasing the block length, probability of the atypical set, and therefore the
probability of error on atypical set, becomes negligible (theorem 2.1, part 1).

The following theorem is taken from [3] and proves that for any given compression
rate above the source entropy, random binning asymptotically achieves lossless compres-
sion:

Theorem 2.2- For any compression rate R > H(X), by increasing n, the random

16



binning scheme becomes asymptotically lossless.

Proof- Let us show the message by a vector x. The encoder transmits the index of
the bin containing x. If x is an atypical sequence a decoding error occurs. Also, if x is a
typical sequence but another typical sequence X is in the same bin of x, a decoding error

occurs. Thus:

Pr{Error} = Pr(x € A.)Pr{Error|x € A.} + Pr(x ¢ A.)Pr{Error|x ¢ A.}.
(2.14)
For sufficiently large n, we know Pr(x ¢ A.) < e. Also from the decoder’s
structure we have lim,_.o, Pr {Error|x ¢ A.} = 1. Therefore, the second term in the

righthand side of (2.14) can be bounded as:

Pr(x ¢ A)Pr{Error|x ¢ A} <e. (2.15)

For the first term in righthand side of (2.14) we have:

Pr(x € A.)Pr{Errorjx € A.} = Z Z Pr(y = y)p(x), (2.16)

XE€Ae x' €A, x"#x

where y and y are the codewords assigned to x and x, respectively. Now (2.16) can be

rewritten as:;

Pr(x € A.)Pr{Errorlx € A.} = Z (Pr(y' =y) Z p(x € A5)> . 21D

x €A, XEAe

Since in random binning indexes (codewords) are assigned randomly and equi-

probably, we have Pr(y’ =y) = 278, Also > xea, P(x) < 1, which leads to:
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Pr(x € A,)Pr{Errorjx € A} < Z 2R, (2.18)

XIEAE
Finally we know that )", 2% = 27"R|A,|. Also from (2.10) we know
that|A.| < 2MHX)+€) Thus, the first term in righthand side of (2.14) can be bounded

as follows:

Pr(x € A;)Pr{Error|x € A;} < 2 ™R-HX)=¢), (2.19)

For any compression rate R > H(X) + ¢, by increasing n, the righthand side of
(2.19) decreases. This means, given sufficiently large n, this term could become less than

g, and we will have:

Pr(x € A.)Pr{Errorlx € A.} <k, (2.20)

provided that n is sufficiently large. Substituting (2.15) and (2.20) in (2.14) we conclude:

Pr{Error} < 2e,

for sufficiently large n. Notice that ¢ may become small enough by increasing n. This
means R > H(X)+e¢ can be arbitrarily chosen close to H(X) and Pr { Error} < 2e can
become arbitrarily small, provided large enough n. In other words given a compression
rate arbitrarily close to the entropy, the random binning scheme is asymptotically lossless.

This completes the proof.

2.4 Lossless Turbo Source Coding

In the previous section we observed that large block length random codes could achieve
the limit of lossless compression. As a result, random-like codes present themselves as

good candidates for lossless compression. By random-like codes we mean codes with
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constructive encoding and decoding structures that are capable of generating random-
like codewords and performing near optimal decoding. Turbo codes, low density parity
check (LDPC) codes, and repeat-accumulate (RA) codes are examples of these random-
like codes. All these codes are originally designed for error correction (channel coding)
but they could also be used for source coding. In this section we review the research on
lossless data compression using turbo codes. Notice that there have been much works
on compressing two correlated sources using turbo codes (the Slepian-Wolf model [11])
but we shall not consider them since our focus is on compressing a single source. For
compression of correlated sources see [12]-[21] and references therein.

Compression of a single source using turbo codes 1is first considered in [27] where
a near-lossless compression scheme is developed. Later a completely lossless scheme
1s presented in [22]. The structures of source encoders proposed in [27] and [22}] are
presented in this section. Then we explain the structure of source decoder which is the

same for both schemes. Numerical results from the two references are given at the end.

2.4.1 Near-lossless and Completely Lossless Turbo Source Encoder

The near-lossless turbo source encoder is originally presented in [27]. The block diagram
of this near-lossless encoder is shown in Fig. 2.3. First the message x is encoded using a
turbo code (consisting of two parallel concatenated convolutional codes and a code inter-
leaver as shown in Fig. 2.3). Then the parities are interleaved using a parity interleaver
and are punctured to form a codeword y. This scheme is a fixed-to-fixed length com-
pression scheme, i.e. the input, x, and the output, y, both have fixed lengths. The main
advantage of this scheme is its simple encoding, however the drawback is that a com-
pletely lossless compression cannot be guaranteed. More precisely, choosing a proper
length for y (say [ bits) ensures removing most of errors and giving a good estimate of
the message, yet a small error probability is still inevitable. One solution to decrease this

error probability is by increasing the number of decoding iterations [27].
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Notice that there is no fundamental difference between code interleaver and par-
ity interleaver. We just name them differently to emphasize that one is used as part of

turbo code to interleave message bits whereas the other is used for interleaving the coded

(parity) bits.
X »| Convolutional Parity
code 1 — ™| interleaver “—’.g
21y
s —»
.
code Convolutional Parity "
interleaver [ code 2 — ™1 interleaver [™

Figure 2.3: The block diagram of a near-iossless turbo source encoder

To guarantee a completely lossless compression, another turbo source coding scheme
is proposed in [22]. The completely lossless scheme is similar to the near-lossless scheme
with the difference that the puncturing block in Fig. 2.3 is replaced by an iterative punc-
turing block. The iterative puncturing block consists of a source decoder which performs
tentative decoding and a comparator which compares the tentative reconstructed message
with the original message. The iterative puncturing process is as follows:

Initialization: Puncture half of the parities.

Iteration:

1-Puncture 24/n more parities (1/n from each branch)'.

2- Decodc; the codeword consisting of non-punctured parities.

3- Compare the decoding result with the original message.

4- If there is no error (i.e. decoding gives exactly the original message) return to 1.

5- Add the last 21/n punctured parities to the codeword. Transmit the codeword y
and the codeword length [ to the decoder.

Notice that in the presented completely lossless compression scheme the idea is

! Assume that we choose the block length n such that /7 is an integer.
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to place a decoder along with the encoder and check if decoding will be successful (be-
fore transmission). This will take off the advantage of having a simple encoding process
(because of checking and iterations) but will guarantee completely lossless compression.
Since the scheme is now fixed-to-variable length (fixed-length input but variable-length
output) the codeword length must be sent to the decoder. However, this codeword length
is an integer between 0 and n which is divisible by 2/n, thus it could be sent by [logz 41
bits, i.e. the smallest integer number of bits which is greater than or equal to loggg. For
large n, transmitting these bits slightly increases the compression rate. For example for
n = 10000, only 6 bits are required to represent the codeword length at the decoder. This
means the compression rate increases by 0.0006 bps. Knowing the codeword, the decoder

will be able to reconstruct the message. In fact, this has already been checked by the

encoder prior to transmission.

2.4.2 Turbo Source Decoding and Numerical Results

We begin by defining the concept of L-value.

Pr(z=1)
Pr(z=0)"

Definition: An L-value for a binary random variable z is defined by log

The turbo source decoding process is the same for both near-lossless and completely
lossless turbo source coding schemes. Since both [27] and [22] are dealing with i.i.d.
binary biased sources with Pr(1) = p, we explain the turbo source decoding for this
type of sources. The block diagram of a turbo source decoder is shown in Fig. 2.4. The
interleaver in Fig. 2.4 is the same as code interleaver in Fig. 2.3. The deinterleaver
does the inverse function. In Fig. 2.4, L is the L-value representing the source a priori
knowledge, i.e. L = logT;Lp. Z;, A;,E;, and Dy, j =1, 2, are also L-values. Z; and Z,
are the L-values related to parities from the two convolutional codes. Each element of Z;
and Z, is zero if its related parity bit is punctured, is +oc if its related bit is intact and is
+1, and is —oo if its related bit is intact and is —1. A, represents the a priori L-values
for the first decoder. The first constituent decoder takes L, P, and A; and calculates

soft value D; using the BCJR algorithm [22] (notice that A; is not available in the first
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iteration). Then extrinsic information on the systematic bits, E, is expressed as:

E;=D;-A;-L, (2.21)

E, is interleaved and passed to the second decoder as the a priori input A,. The second
decoder takes L, P, and A,, and feeds back extrinsic information Eo = Dy — Ay — L
which becomes the a priori knowledge of the first decoder (after deinterleaving). This
process iterates until convergence is achieved or a maximum number of iterations is

reached (See [32] for details on turbo decoding algorithms).

iL
Z, D,
Decoder 1 E,
Interleaver
A
A,
D
Decoder 2 E,
Deinterleaver
z,

TL

Figure 2.4: Block diagram of the turbo source decoder.

Table 2.1 shows the compression rates achieved by near-lossless (R;) and com-
pletely lossless (R;) schemes. For the near-lossless scheme the block length is 16384 bits
and for the completely lossless case the block length is 10000 bits. It is observed that
in some cases the completely lossless scheme achieves both better compression rate and
zero error probability, however this comes at the expense of more encoding complexity.
In other words the completely lossless scheme has performed several encoding and de-
coding iterations but the near-lossless scheme has just measured the error probability for
different compression rates and has fixed the compression rate to the smallest one which
achieves an error probability below a defined threshold. The threshold considered in [27]

is a bit error rate equal 107°.

22



Table 2.1: The compression rates achieved by near-lossless (R;) and completely lossless
(R») turbo source coding schemes, compressing a binary i.i.d. source with Pr(1) = p.

p |HX)| R | Ry
0.01| 0.081 }0.16 | 0.25
0.05| 0.286 | 0.38 | 0.44
0.10 | 0.469 | 0.58 | 0.59
0.15| 0.610 | 0.75 | 0.71
0.20 | 0.721 | 0.87 | 0.80

2.5 Conclusion

In this chapter we presented the fundamental concepts to be used in our work. We re-
viewed the basic definition of source coding and presented the main parameters of any
source coding scheme. Then we reviewed the concept of typical sequences and intro-
duced entropy as a limit for achievable rate of a lossless compression scheme. After that
we showed that random codes are capable of achieving this limit, using a random bin-
ning scheme. To search for constructive methods to achieve competitive compression
rates, we studied the performance of turbo codes for this purpose. It was observed that
whether used for near-lossless or completely lossless compression, turbo codes are able to
achieve small compression rates. Near-lossless turbo source coding offers a very simple
and low-complexity encoding method, whereas completely lossless turbo source coding

guarantees a zero error probability.
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Chapter 3

Lossless Source Coding Using Nested

Error Correcting Codes

In this chapter, we consider the theoretical performance of nested error correcting codes
for data compression. For this, we generalize the conventional random binning argument
to the so called tree structured random binning concept. We derive the distribution of
the compression rate achieved by the proposed tree structured random binning scheme.
Comparing this distribution with the distribution achieved using a library of random bin-
ning schemes, we prove that a nested code can achieve rates close to a library of codes
but with much lower encoding/decoding complexity. Furthermore, for large data blocks,

the proposed scheme is shown to asymptotically achieve the entropy limit.

3.1 Introduction

The application of error correcting codes to data compression was first introduced by
Shannon {2] and was later considered in many references, including [23]-[31] (related
work on joint compression of correlated sources could be found in [12]-[21] and ref- -
erences therein). In [2], Shannon observed that source coding and channel coding are

information theoretic duals of each other. This duality can be used to employ a channel
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code as a source code (or vice versa). In fact, one can use a random binning method [3]
(will be discussed in Section 3.2) to show that random codes could be used for lossless
data compression. In that sense, it was shown that by increasing the data block length,
these random codes asymptotically achieve the entropy limit. Therefore, a random-like
code (e.g. turbo code or low density parity check (LDPC) code) could be employed as a
source code. For example, in [27], a turbo code is used to compress a biased binary inde-
pendent identically distributed (i.i.d.) source. The encoder, in [27], generates two parity
sequences using two parallel concatenated convolutional codes. Compression is achieved
by heavily puncturing these parities.

The random binning argument presented in [3] considers a fixed-to-fixed length
source coding scheme, i.e. a fixed-length message block is mapped to a fixed-length
codeword. Although fixed-to-fixed length schemes asymptotically achieve the entropy,
fixed-to-variable (or variable-to-fixed) length codes achieve lower compression rates in
finite block length systems. To design a fixed-to-variable length code, one may use a
library of parallel random binning schemes with different rates. As a practical imple-
mentation, [26] considers lossless compression of a biased i.i.d. binary source using a
Hamming code, a BCH code and a rate-one code (see Section 3.3). As an alternative to
using a library of codes, a fixed-to-variable length source code can be implemented by
a nested code, where each codeword of a higher rate code is generated by adding bits
to a codeword of a lower rate code. For example, fixed-to-variable length LDPC and
turbo source coders have been designed in [29] and [22] respectively (alternative schemes
based on fountain and repeat-accumulate (RA) codes are presented in [30] and [31] re-
spectively). In [22], after encoding the message by a turbo code, the parities are gradually
punctured using an iterative algorithm. Puncturing continues as long as the codeword is
decodable with no errors. However, in [28], after transmitting the syndrome of the mes-
sage, the message bits are sent one by one using an iterative doping approach until the
transmitted bits are sufficient to decode the entire message at the decoder. If we refer

to the method of [22] as a decremental redundancy method, the method in [28] can be
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referred to as an incremental redundancy method.

In this chapter we consider the theoretical performance of nested error correcting
codes for data compression. We generalize the conventional random binning argument to
the so called tree structured random binning concept. Then we derive the distribution of
the compression rate achieved by the proposed tree structured random binning scheme.
Comparing this distribution with the distribution achieved using a library of random bin-
ning schemes, we prove that a nested code can achieve rates close to a library of codes
but with much lower encoding/decoding complexity. Furthermore, for large data blocks,

the proposed scheme is shown to asymptotically achieve the entropy limit.

3.2 Review of Random Binning

In source coding the input sequence and the output sequence of a source encoder could
be either fixed length or variable length sequences. In other words if the input sequence
consists of n samples and the output sequence consists of [ bits, both n and { (or one
of them) could be random variables. Therefore, four different types of source coding
schemes are defined as follows:

(1) fixed-to-fixed length scheme: a scheme for which both n and [ are constants.

(i1) fixed-to-variable length scheme: a scheme for which n is constant but [ is a
random variable.

(iii) variable-to-fixed length scheme: a scheme for which n is a random variable but
[ is constant.

(iv) variable-to-variable length scheme: a scheme for which both n and [ are random
variables.

In this chapter we focus on fixed-to-fixed and fixed-to-variable length schemes. We
first review the concept of random binning as a fixed-to-fixed scheme. Then we present
a fixed-to-variable length scheme, called tree structured random binning, as an extension

of random binning.
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The idea of lossless compression using the random binning procedure was in-
troduced in [3] to prove that fixed-to-fixed length coding schemes may asymptotically
achieve the entropy. To illustrate, let us consider a discrete i.i.d. source X that takes its
outcome r from a finite alphabet x with cardinality |x|. Also let n be the message block
length in symbols, R be the compression rate in bits per sample, and call the space of all
n tuples X = I,75...T,, T; € X, as x" with cardinality |x|". For a fixed ¢ > 0, we denote

the e-typical set [3] by A,, such that for each sequence x € A,,

9-n(H(X)+e) < Pr(x) < 2-™HX)=e), 3.1

It can be shown [3] that for any arbitrary value of &, Pr{A.} > 1 — ¢, provided that n
is sufficiently large. In this case, the number of typical sequences satisfies the following

inequality [3]:

(1 i E.)2‘".(1{(}()—5) < |AE| < 2n(H(X)+€). (3.2)

Given this, the basic idea of random binning for lossless compression of X is to choose
2"R indexes' (say 1 to 2"®) and randomly and equi-probably assign an index to each of
the |x|" possible outcomes. The set of all sequences with a common index is called a bin,
and the encoder transmits the index of the bin containing the message sequence. In the
decoding process, the decoder searches for a unique typical sequence in the addressed bin.
If the message sequence is not typical, or if there is at least one other typical sequence in
its related bin, a decoding error occurs.

Let us consider two typical sequences x and x . The probability that x does not fall
in a common bin with x" is (1 — 27%). Thus, the probability that x does not fall in a
common bin with any other typical sequence is (1 — 2~ %)l4¢I=1_Therefore, the decoding
error probability averaged over all possible random binning realizations is bounded by the

following inequality,

'For simplicity we assume nR is a non-negative integer.

27



P, <e+(1—(1—2R)Ad-1 (3.3)

In [3] it is shown that for sufficiently large n, and any R > H(X) +¢, P, < 2¢. A similar
result can be obtained here by noticing that (1 — 2 "R)lAcl=1 > 1 _ (|4, — 1)2-"&,
Therefore, from (3.3):

P, < e+ (JA] - 1)27"R, (3.4)

Using (3.2), (3.4) can be rewritten as:
P, < g 4 2nHX)+e)g-nR (3.5)

For R > H(X) + ¢, 2MHX)+e)g—nR g 5 monotoniéally decreasing function of n and
its value becomes smaller than ¢ for sufficiently large n. Therefore for large values of
n, from (3.5), we can see that P, < 2¢. That is for large enough block lengths, the rate
can be arbitrarily close to the source entropy, H (X ), while the decoding error probability
averaged over the codes’ ensemble is negligible. Thus, at least one code of this ensemble
is able to compress the source with negligible error, while its rate approaches the source
entropy as the block length increases. For practical implementations of random binning,
one may use random-like codes e.g. LDPC or turbo codes, where the codeword is gen-
erated using a syndrome-former [29] or alternatively as the parities of a non-systematic
punctured code [27]. In this case, the typical set decoding can be implemented by near

maximum likelihood decoding of these codes.
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3.3 Performance Evaluation of a Library of Random Bin-

ning Schemes

To achieve lower compression rates using finite-length codes, and ensure completely loss-
less compression (not only over the typical set but over all message sequences), fixed-to-
fixed length source coding schemes can be replaced by fixed-to-variable length schemes.
In this case, the message length is fixed but the codeword length can change from one
codeword to another. As an example of fixed-to-variable length codes, a library of M
random binning schemes can be used in parallel where R; < Ry < ... < Ry with
R; < [log|x|] being the compression rate of the ith scheme (for simplicity we assume
that nR; is an integer for all values of ). The encoder in this case works as follows. The
message’ is encoded using code 1 and its decodability is tested (at the encoder). If it
is decodable with no error (i.e. if it is the only typical sequence in the bin), the related
codeword is transmitted. Otherwise the message is encoded using code 2, 3, ..., M until
the first successful decoding is reached. Note that as long as Ry; > H(X), lossless com-
pression is guaranteed for sufficiently large n. Also, completely lossless compression can
be provided by adding an uncoded scheme to the library.

Now, let us derive the distribution of the compression rate for this parallel random
binning scheme. To proceed, suppose we are given a typical sequence x and would like to
find the probability that x is encoded torate R;. Recall that given a rate R;, the probability
that x does not fall in a common bin with any other typical sequence is (1 — 2 ~"F:)l4el-1,
Thus, the probability that x cannot be encoded to arate R; < R; is 1 — (1 — 27"Ri)Hel-1,
Also the probability that x can be encoded to rate R; is (1 — 27" )1 4¢l=1_ Therefore, the

probability that x is encoded to rate R; is:

j=1
Pr (R;) = (1 — 27"fi)l4cl-1 H{(l — (1 — 27niylAd-1y (3.6)
=1

2We assume that the message is a typical sequence. To encode atypical sequences, an uncoded scheme
with rate [logz |x|] bps can be added to the library.
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If we let n go to infinity, then (1 — 27"%) is equivalent to ezp(—2~""%) and (1 —
2"Ri)l4el-1 s equivalent to exp(—(|Ae| — 1)27%); which can be rewritten as
exp(—2~ (RS2 i if R, > foaallAll) | ¢ (1 — 2-"Rs)l4el=1 tends to one

: : : loga(JAc|-1)
by increasing n. Also if R; < -=#2fel=2)

— ¢, then (1 — 27™%)l4el=1 tends to zero
(1 — (1 — 27)l4el=1 tends to one) by increasing n. Furthermore, for sufficiently large
values of n, H(X) — & < % < H(X) + ¢ (obtained by taking log, from all sides of
(3.2) and neglecting w as n goes to infinity). For any |A.| > 2, it is easy to show
that logy |A¢| — 1 < loga(|Ac| — 1) < logs |Ac|. By dividing all sides by n and recalling
HX)-e< l"gz—,lA" < H(X)+e¢,weconclude H(X)—¢ < %'i:ﬂ < H(X)+¢ (ne-
glecting =* as n goes to infinity). Therefore, R; < H(X)— 2e is a sufficient condition for

R; < %'%‘I_—l) —cand R; > H(X)+ 2¢ is a sufficient condition for R; > %ﬁ +e.

From the above discussion and using (3.6):

lim Pr(R;)=0;VR;: Ry < H(X)—2¢, or Ri_y > H(X) + 2¢. 3.7

n—oo

One can justify (3.7) as follows. From (3.6), notice that if R, < H(X) — 2¢, (1 —
27"R)14el=1 goes to zero and hence Pr(R;) goes to zero. Similarly if R;_; > H(X)+ 2,
(1—(1—27"Ri-1)l4cl=1) o0es to zero and hence Pr(R;) goes to zero. Now assume that the
setof rates R; < Ry < ... < Ry is given such that for a unique index 7, R; > H(X)+2e,
and R; ; < H(X) — 2¢. Then using (3.7), as n goes to infinity, Pr(R;) goes to one
and Pr(R,;) goes to zero. This implies that by increasing the block length, the rate
distribution tends to a discrete delta function in R; where R, is the smallest available rate
greater than H(X) + 2¢. That is, for sufficiently large block lengths, R; can be chosen
arbitrarily close to the entropy. Notice that (3.6) represents the rate distribution only for
typical sequences. For atypical sequences, the rate distribution is considered as a discrete
delta function at R = [logy |x|] (uncoded scheme). This event occurs with probability
less than or equal to € which could become arbitrarily small by increasing n [3]. Also

notice that when x is encoded using a library of codes, transmitting the code index is not
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necessary. Moving on to the decoding process, nR; bits are decoded using code 1. If
decoding fails (the indexed bin in code 1 does not contain a unique typical sequence),
the decoder adds n(R; — R;) bits and then examines the decodability using code 2. This
process continues until the first successful decoding is reached. Note that in any case,
succesful decoding can be guaranteed by adding an uncoded scheme to the library.

The practical implementation of this parallel random binning scheme was examined
by Ancheta [26] where a rate zero code (an all zero codeword), a Hamming code, a
BCH code, and a rate one code (uncoded transmission) were used in parallel to compress
messages of block length 15 for a biased binary i.i.d. source. Similar to [26], [29] and
[30] have proposed different compression schemes using different library of codes to
achieve compression rates close to the source entropy®. It is important to mention that
the improvement achieved using these codes, relative to the single-code case, is at the

expense of large encoding/decoding complexity.

3.4 Lossless Source Coding using Tree Structured Ran-

dom Binning

As an alternative to using a library of codes, one can use a nested code where each code-
word of higher rate code is formed by adding some bits to a codeword of lower rate code.
Later, we show that this is equivalent to a tree structured random binning scheme where
each bin is split into smaller bins until each bin contains no more than one typical se-
quence. For practical implementations of this tree structured random binning scheme, the
reader is referred to [22]-[31]. In [22], ([31]), after encoding the information bits by a
turbo code (RA code), the parities are gradually punctured using an iterative algorithm.
The puncturing process continues as long as the codeword is decodable with no error.

However, in [29] and [30] after transmitting the syndrome of the message, the message

3In [29] and [30] the ideas of using a nested code and a library of codes are combined to further reduce
the compression rate. In other words, a library of nested codes is used.
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bits are sent one by one using an iterative doping approach until the transmitted bits are
sufficient to decode the entire message at the decoder.

Now we introduce our tree structured random binning scheme and show that it
asymptotically achieves the entropy.

Code construction: To construct the code, an index y € {1,2,..,2™}, for some
integer m > 1, is assigned to each message sequence, randomly and equi-probably. All
message sequences with a common index form a bin. Each bin containing more than one
typical sequence is split into 2™ smaller bins. The splitting process for each bin continues
until no bin contains more than one typical sequence.

Encoding: The encoder observes an n-bit message block x, and transmits the ad-
dress of that bin containing x.

Decoding: The decoder searches for a unique typical sequence in the addressed
bin. If x is not typical, a decoding error occurs.

Since the splitting process for some bins may terminate sooner than others, the con-
structed code has a variable length output. Fig. 3.1 shows an example of a tree structured
random binning scheme for 16 sequences. The number of typical sequences is assumed
to be 5 (only for demonstration purposes).

Let us refer to the ¢ typical set [3] of the message sequences by A, (with cardinality

| A¢|). Tt is known [3] that for sufficiently large n:

Prxe A.) > 1—c¢, (3.8)

and also:

(1 _ E.)211(H(X)~—5) < |AE| < 2n(H(X)+e). (3.9)

For ¢ > 0, let N; be a non-negative integer and define Ny = |A.| — 1. Assume that the
bin containing x is split [ — 1 times (! > 1) and x is in a common bin with N;_; other

typical sequences, where /V;_; > 0. Since N;_; > 0, the bin is split into 2™ smaller bins.
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Figure 3.1: A tree structured random binning scheme with m = 1 for a source with 16
message sequences, including 5 typical sequences. Typical sequences are shown by + and
atypical sequences are shown by *.

Then the probability that x falls in a common bin with N, other typical sequences, where

0 < N; £ N, is given by

N

N,
MmN !

(2m _ 1)N[.-1—~N1

Qm(Ni—1, Ny) =

(3.10)

for any typical sequence x. To justify (3.10), note that x can fall in each of the 2™ bins
N,

and the IV, sequences that are in the same bin with x can be selected in - ways,
N

with each of the N;_; — N, other typical sequences can fall in each of the 2™ — 1 other

bins. If V; = 0, the splitting process for the bin containing x is terminated and [ is the

length of the codeword assigned to x.
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Now, if the length of the codeword assigned to x is denoted by [, this codeword
can be expressed by ml, bits where [, is a random variable with the following probability

mass function;

Ni_,

Z Z Y Qm(Niet 0 HQm N1, Ny). (3.11)

M=1N;=1 N_;=1
For simplicity, we denote gm, (I, = ) by ¢,,(!) in the sequel. Note that g,,,({) is the
probability that V; > 0 for ¢ < { and N, = 0. From (3.11), one can observe that q,,(l) is

a function of m, [, and N,. For brevity, the dependency of ¢,,(I) on N, is dropped in the

notation.

Theorem 3.1- For any value of Ny > 0 and for ! > 0:
gm(l) = (1 = 27N — (1 = 27m+m)No, (3.12)

Proof :The proof of this theorem is by induction on / > 1. Consider a typical sequence

x. The probability that the length of the codeword assigned to x is 1, ¢, (1), is given by

gm(1) = Qm(Np, 0) = (1 — 27™)Mo, (3.13)

Assume that for some [, (3.12) is valid. Then, from (3.11),

No N1 Nl 1
m(l+ 1) Z Z Z Qm (N, 0) H m(Niz1, Ni),
N1=1Nz=1 Ni= i=1 (3.14)
which can be rewritten as:
N1 N
Gm(l+1) = ZQm No,Np) x 3 .. ZQm N, 0 H Qm(Nic1, V).
Ni=1 N3=1 Ni= =2 (3.15)
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From (3.11) and (3.12), it is easy to show that

N Ni—;
. ZQm N, 0 HQm(Ni_l,Ni)=(1-z-mt)N1-(1_2—ml+m>~1. (3.16)
Na=1 N;= i=2

Now, from (3.15) and (3.16),

—mA\N, No NO 1—9o—-mli 1__2—ml+m N
Gl +1) = (L =27 N | (GFDOSEEN. aa)
Ni=1 1

One can use the binomial expansion to show that

i Ny (1—2-'"1)N1=(2'"—2-ml

yNo 1. (3.18)
Mm=1 \ M am—1 :

Hence using (3.18) and after simplification, (3.17) can be expressed as
gm(l+1) = (1 —27™=myNo _ (1 — 2=m)No, (3.19)

In Fig. 3.2, we show the probability mass function (pmf), g,,(!), for the codeword length
of the tree structured random binning scheme with Ny = 2% and m = 1. As shown,
the expected value of [ is 41.33 bits. Note that if one uses a library of random binning
schemes with [ = {1, 2, ...}, (i.e. R; = i/n fori = 1,2,...), from (3.12), the expected
value of the codeword length can be found equal to 40.63 bits . The probability mass
function using a library of random codes is illustrated in Fig. 3.3. As another comparison
Fig. 3.4 and Fig. 3.5 show the pmf of compression rate with Ny = 22°, and m = 1, using
tree structured random binning and a library of random binning schemes, respectively. It
is observed that in both comparisons, the average compression length achieved by tree
structured random binning scheme is 1.33 bits more than the minimum achievable length,

i.e. logaNy. Later we will show that this always holds for large values of Ng.
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Figure 3.2: Probability mass function of the codeword length for a tree structured random
binning scheme with Ny = 2°, and m = 1. [ = 41.33 bits.

From (3.12), recall that
q(l) = (1=2"HN — (1 — 2=H+1)No, (3.20)

The following theorem states two important properties of ¢, () in the extreme case when
Ny goes to infinity. Later, these properties will be used to show that the tree structured
random binning scheme is entropy achieving.

Theorem 3.2. If [V, goes to infinity, then:

1) For any finite value of I, limy, .o ¢1 () = 0, i.e. the probability of any codeword

with finite length [ is zero.

l

2) q1(1) is concentrated about loge(Np), i.. for any value of [ such that Tos NG 18

much smaller or larger than one, ¢;({) tends to zero. In fact, ¢;(I) will not tend to zero if

Y
and only if TogaNg 80€s to one.

Proof 1) For any finite value of /, from (3.20), limp, . g1 ({) = 0.

2) Let Ny — oo and [ — oo . Given this, (1 — 27) is equivalent to exp(—2~!) and
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Figure 3.3: Probability mass function of the codeword length for a library of random
binning schemes with Ny = 2%°. [ = 40.63 bits.

from (3.20):
q1(1) — exp(—Np27") — exp(—2Ny27Y). (3.2D)

Notice that the righthand side of (3.21) is non-zero only if for a finite value, ¢, Ng2~! — ¢.

Therefore, log, Ng — I — logsc and finally m converges to one.

Remark : Let us define a random variable 3 = | — log, Ny. Since Ny2~! = 278,

from (3.21), by increasing Ny, ¢;(!) tends to f(3), where
f(B) = exp(=277)(1 — exp(-277)). (3.22)

In other words, for large values of Ny, one can think of g¢;(!) as the function f(g),
shifted by logo(/NVy) and sampled at positive integer points {. For f(3), one can prove
that f_t:j f(B)dB = 1. Therefore, the non-negative function f(3) represents a probabil-

ity density function. Furthermore, calculation shows that f_“:: Bf(B)dB = 1.333. Given
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Figure 3.4: Probability mass function of the codeword length for a tree structured random
binning schemes with Ng = 220, [ = 21.33 bits.

the expected value of 3, 3, the expected value of | can be represented as
1) = loga Ny + B. (3.23)

Now if we assume [ to be continuous, one would have [, = log, Ny + 1.333. However,
B is in fact discrete (because [ is discrete) and its expected value, B, is a function of Nj,.

Table 3.1 shows the value of [; for different values of Nj.

Table 3.1: Expected value of codeword length, 11, versus logs Ng.
loga Ny 2 5 7 10 20 40
[, 3.505 | 6.355 | 8.338 | 11.333 | 21.333 | 41.333

Fig. 3.6 compares the average codeword length generated by tree structured random
binning and a library of random binning schemes. It is observed that by increasing N,
the average codeword length of a tree structured code converges to log, Ny + 1.333 bits
whereas the average codeword length of a library of codes converges to log, Ny + 0.630

bits. Thus, a tree structured code is only 0.703 bits worse than a library of codes.
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Figure 3.5: Probability mass function of the codeword length for a library of random
binning schemes with Ny = 2%, | = 20.63 bits.

In what follows, we first show that the proposed tree structured random binning
scheme is entropy achieving for large block lengths and m = 1. Then we generalize our

results to the case of m > 1. To proceed, let [, be the expected value of [ for a fixed m,

1.e.
In =Y Lgm(l). (3.24)
1=1
Also, let R, be the average compression rate achieved by the proposed random binning
scheme, i.e.
By = —lpn. (3.25)
n

One can see from (3.25) that R, is a function of both m and n. From theorem 3.2 (part

2), and (3.24),

Iy

No—oc lOg2.N0 -

(3.26)

Since Np = |Ac| — 1, from (3.9), logaNg < n(H(X) + €). Then, from (3.25) and (3.26):

lim Ry < H(X) +¢, (3.27)

Ng—oo
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Figure 3.6: The difference between average codeword length and logy Ny for a library of
codes (Dashed) and a tree structured code (Solid).

for m = 1. Since ¢ could be arbitrarily small for large enough block lengths [3], one can
conclude that the scheme is entropy achieving for m = 1 and large block lengths.

Now assume that ah arbitrary typical sequence, X, is encoded by a tree structured
random binning code with m > 1 (Scheme 1). The length of the codeword assigned to
x is l,, samples, where each sample consists of m bits. Therefore, this codeword can be
described by ml,, bits. To reduce the compression rate, one may reduce m to m = 1
(Scheme 2); thus the codeword length may be decreased to /; bits, where m(l,, — 1) <
[y £ ml,,. More precisely, since Scheme 1 splits each bin to 2™ bins (adds m bits to the
codeword at each step), Scheme 2 may do better by adding one bit to the codeword at
each step and reducing the codeword length to [; bits. However, [; cannot be less than
m(l, — 1), otherwise Scheme 1 would assign a codeword of length m({,,, — 1) bits to x.

One may rewrite m(l, — 1) < l; as ml,, < l; + m — 1, which leads to:
mly, <l +m—1. (3.28)

From (3.25), (3.27), and (3.28) one can conclude that the scheme is entropy achieving for
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any value of m and large enough n. Table 3.2 shows the value of [,,for Ny = 2% and

different values of m.

Table 3.2: The value of I,,for Ny = 20 and different values of m.

m| Im

1 |41.33
2 | 41.83
3 |42.36
4 |42.79
5 | 43.32
7 | 43.56

3.4.1 Completely lossless compression

To guarantee completely lossless compression, one has to encode all atypical sequences
to rate one®. Note that, in this case, a flag bit has to be sent to identify whether the coded
sequence is typical or atypical. If the sequence is typical, the address of the bin containing
that sequence is transmitted after the flag bit. On the other hand if the sequence is atypical,
the sequence itself is transmitted after the flag bit. If we denote the average compression

rate for this system by ﬁ; then

—~—

_ 1
Ry, = (1 - Eo)Rb + & + ;, (3.29)

where ¢ represents the value of € for which the curves Pr{A.} and 1 — ¢ intersect, i.e.
Pr{A.} = 1 — &°. Obviously for a large enough block length, €, goes to zero and
therefore limy, .o .ﬁ; = limpy;—oo R,. For the case of finite block length systems, one

has to analyze the behavior of ¢y versus n to compute E To do this, we start by defining

g(e) = Pr(x € A) = Pr {'—%zogmx) ~ H(X)

< e} . (3.30)

“In this subsection we restrict our study to completely lossless compression of binary sources. If the
source alphabet contains 29 elements, atypical sequences are sent at rate g bits per sample.

Seo is uniquely found since Pr{A.} is a non-decreasing function of € and 1 — ¢ is a decreasing function
of €.
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For a memoryless binary source, with p = Pr{z = 1}, it is easy to show that

wy n
gle) = > p“(1—p)* (3.31)
w=wg w
where
—& +log(l — p) + H(X)-I
= -1, 3.32
v [ log(1 - p) — log(p) (3:32)

£+ log(l —p)+ H(X)J
w, = |n + 1, (3.33)
1 [ log(1 — p) — log(p)
where |w, | represents the largest integer less than or equal to w;. Note that for any value
n
of n, |[Ac| = Yuto, . As an example, Fig. 3.7 shows g(g) versus ¢ for n = 4000
w

bits where g(¢) intersects with the line 1 — € at €, = 0.0317. In Fig. 3.8, we show the

value of ¢ as a function of the block length n.
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Figure 3.7: g(¢) (dashed) versus ¢ for n = 4000. The solid line shows 1 — €.

Note that the minimum rate required for completely lossless compression can be

obtained by finding a set A, to minimize R, x Pr(A,) + (1 — Pr(A,)), where R, is a
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function of |A.|. One should also note that the value of fib in (3.29) can be considered as

an upper bound for the achievable rate of completely lossless compression.
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Figure 3.8: The value of ¢; as a function of n.

3.4.2 Tree structured codes with biased parities

Dividing each bin to two bins in the tree structured random binning can be interpreted
as adding unbiased independent random parities to the codeword until it can be distin-
guished from other codewords (in the typical set). This is possible when a random code
is used. But when a practical code (like turbo or LDPC code) is used to generate the
parities, these parities are always correlated (because of the code structure). For example
when a convolutional code is used, the parities are correlated because of the trellis. It is
possible to choose these parities far away from each other on the trellis so that the corre-
lation decreases, but this correlation still exists. Sometimes there exists a one to one map
from this parity sequence to another sequence which is uncorrelated (or less correlated),
but that sequence would be biased. For example, assume we have a binary biased i.i.d.
source X which generates independent bits z; with Pr{z; = 1} = p for some p < 0.5.
1

We use a single memory convolutional code with generator polynomial G(D) = 15
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to generate parity sequence y;y»ys..., then puncture these parities and for some k£ > 1
transmit y,yoxyak.... The transmitted sequence can be mapped one to one, to the follow-
ing sequence Yk, Yok + Yk, Y3k + Yok, ... Also from the generator polynomial we have
¥i = yi—1 + z;. Thus for any integer : > 0, we will have

ik+k
Yik T Yik+k = Z Zj,
j=tk+1
defining yo = 0. All additions are binary additions, i.e. they are exclusive or’s. Since
z;s are independent and biased, the mapped sequence is also an independent and biased
sequence. In fact one could show that [3]: Pr(yu + yirsr = 1) = 3(1 — (1 — 2p)¥).

Regarding the above observation, we extend the results on the rate distribution of
tree structured random binning as follows:

Assume that we are given Ny + 1 message sequences. A tree structured scheme
assigns codewords to these sequences in an iterative manner as follows. At the [th iter-
ation, the [/th bit of each codeword is generated independently with Pr(1) = p. After
generating the /th bit for all codewords, the codewords assigned to all typical sequences
are compared with each other. If the codeword assigned to a typical sequence is unique in
the typical set (no other typical sequence has a codeword exactly the same as this one) bits
number [ 4 1 and higher are not generated for this codeword, i.e. the encoding procedure
for the related typical sequence (and all atypical sequences sharing the same codeword) is
terminated. The iteration continues until the codewords generated for any pair of typical
message sequences are different from each other.

The above explained encoding algorithm can be regarded as a tree structured ran-
dom binning scheme with m = 1 such that when a bin is split to two smaller bins, one of
these bins is selected by probability p and the other is selected by probability 1 — p. In
other words message sequences go to one bin with probability p and to the other one with
probability 1 — p.

Now we find the distribution of codeword length using this procedure. For this, let
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us begin by finding the cumulative distribution function of codeword length, i.e. given
a typical sequence x we are looking for Pr(l, < [), where [, is the length of codeword
assigned to x. Assume that codewords of length [ bits are assigned to typical sequences.
Let y be the codeword assigned to typical sequence x. The probability that y is unique in

the typical set, i.e. no other typical sequence is assigned a codeword identical to y, is:

Pr(l. <0) =Y Pr(y)(1 - Pr(y))™, (3.34)

i.e. itis the probability that y is one of 2’ possible codewords and none of other N, typical
sequences is assigned y. Since the parities are biased with Pr(1) = p, the probability of

observing a sequence y with weight w is p*(1 — p)'~* and (3.34) can be rewritten as:

i
!
Prl, <l)=> pU(1—p)Y(1 - p¥(1 — p)t-®)Me (3.35)

w=0 w

From this cumulative distribution, the length distribution of codewords can be found as

Pr(l, =1)= Pr(l, <1)— Pr(l, <1—1), which s:

a® =" [ 1) g - e - pra - pywye

o[-
- Xulo p¥(1—p)7 (1 - p¥(1 - p)v )M
w

(3.36)

Replacing p by 3 in (3.36) gives ¢, (1) = (1 — 27N — (1 — 271+1)No_which is the same
result as achieved for tree structured random binning with unbiased parities (See (3.12)).

Fig. 3.9 shows the probability mass function of the codeword length for a tree
structured random binning scheme where parities are biased with p = 0.2. The number of
typical sequences is Ny = 2%°. From Fig. 3.9 the expected value of the codeword length

is I = 57.67. Given for comparison, the value of log No/H(X) is 55.41 bits.
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bits.

3.5 Conclusion

We studied the theoretical performance of nested error correcting codes for data com-
pression. We presented a tree structured random binning method which is an iterative
encoding method. In the proposed method parities are added to codewords until all typ-
ical sequences are distinguished from each other. We proved that tree structured random

binning asymptotically achieves the entropy and derived the distribution of compression

rate.
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Chapter 4

Lossless Turbo Source Coding

In this chapter we consider the performance of short block length lossless turbo source
coding. We optimize different components of the encoder to achieve improved compres-
sion rates. We introduce a new puncturing scheme with an improved performance at
compression rates close to 0.5. Also, instead of square shape puncturing arrays, we use
a rectangular puncturing array to allow for finer puncturing. Finally, we replace a single

code with several codes operating in parallel to achieve better compression rates.

4.1 Introduction

For practical implementations of tree structured random binning, one may use an error
correcting code (e.g. turbo [22] or RA [31] code). Let us call the encoder and the decoder
of the related error correcting code as channel encoder and channel decoder, respectively.
Then the source coding scheme works as follows

Source Encoder: The source encoder consists of a channel encoder and a channel
decoder. The block diagram of this source encoder is depicted in Fig. 4.1. The source en-
coding procedure is an iterative encoding procedure, in which an incremental redundancy
step is performed and then followed by a tentative decoding step.

(i) Incrementing redundancy: In the incremental redundancy step, the message is
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Figure 4.1: The block diagram of source encoder.

encoded using the channel encoder and the output sequence is stored (in case of systematic
channel encoder, as in Fig. 4.1, the message bits are discarded and only the parities are
stored).

(ii) Tentative decoding: In the tentative decoding step, for some integer m > 1,
the first m bits of this output are used to decode the message!, after which the decoder
output is compared with the original message. If the message can be decoded with no
error (i.e., the m bits are sufficient to describe the message), these m bits are transmitted
to the decoder as the codeword. As long as no physical channel is involved, the decoder
can decode the message with no error using this codeword.

(iii) Iteration: If the encoder observes errors after the tentative decoding, it appends
m more bits to the codeword and runs the tentative decoding process again. The tentative
decoding and incremental redundancy steps continue until the message can be recovered
with no error.

Source Decoder: The source decoding is the same as the channel decoding. Fur-
thermore if the source statistics are known at the decoder, they are used as a priori knowl-
edge to achieve better performance. In this case, these statistics will also be used in the
tentative decoding process at the encoder side.

When a physical channel is involved, the encoder could combat the channel noise

by adding some extra parities to the generated codeword. The number of these parities

'In practice the encoder begins by assigning a pre-defined number of bits to the codeword, e.g. the
closest number to nH (X). This helps to decrease the number of decoding iterations [31].
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could be defined based on the channel capacity and the error correcting capability of the
underlying channel code. Also if the channel state information is available at the encoder,
the encoder can take a more precise approach by passing the codeword through a simu-
lated channel prior to each round of tentative decoding. One may notice that, in general,
the codeword length is variable which may lead to error propagation [3]. However, the
length of each codeword could be expressed by a few bits. These bits are highly protected
to ensure error-free transmission, and are transmitted to the decoder (in other words these
bits are transmitted via a noiseless channel). Therefore, the error propagation is avoided.

In what follows, we consider the lossless turbo source coding method, originally
presented in {22]. For simplicity, we only focus on cases in which no physical channel
is involved. We first review previous works on turbo source coding. We observe that
lossless turbo source coding offers promising compression rates at the expense of having
a large latency. To reduce this latency we propose a short block length turbo source coding
scheme that achieves compression rates close to the entropy. For this, we modify different
components of the original turbo source encoder [22]. Then we present numerical results
to illustrate the effect of these modifications on the achieved compression rate. We also

evaluate the computational complexity of the proposed encoding scheme.

4.2 Previous Work

Turbo codes were first introduced in [33]. Although these codes were originally designed
for forward error correction (channel coding), they can also be used for data compres-
sion (source coding). Most of previous works on turbo source coding have focused on
near-lossless coding where small levels of distortion can be tolerated (e.g., [12]-[21] and
references therein). In general, near-lossless coding suffers from a drawback that renders
its use in some important applications. That is, allowing a small level of average distortion

results in occasional high-level distortions in some samples which can damage important
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details of the information. This, of course, is not acceptable in applications such as com-
pressing medical images where image details are of extreme importance [34]. Therefore,
a completely lossless (we simply call it lossless) source code is required. Such a source
code is also referred to as a zero-error code [35].

The original idea of lossless turbo source coding was introduced in [22] to compress
binary biased i.i.d. sources. The block diagram of the turbo source encoder is shown in
Fig. 4.2. In this case the turbo encoder consists of two parallel concatenated convolutional
encoders and a code interleaver. A message of block length n bits is encoded by the
two parallel concatenated convolutional codes. The two parity sequences, y; and y»,
are interleaved using a parity interleaver prior to storage. Let the source alphabet be
x = {—1, 41} (for simplicity of notation), p = Pr(z = +1), and m be an even number
that divides 2n. At each encoding iteration, m/2 parities of each sequence are added to
the codewords.

Notice that in the original work of [22], instead of adding parities and checking for
the first successful tentative decoding, the procedure begins by considering all parities
intact. Then parities are punctured step by step until tentative decoding fails. In other
words a decremental redundancy approach is taken. In the sequel we use terms punctur-
ing and adding parities alternatively toward the same goal which is lossless compression
of the message. After finalizing iterative encoding the codeword is delivered to the chan-
nel decoder (for tentative decoding), along with the source a priori knowledge which is
presented as an L-value, i.e. log{—p.

After performing the encoding process (i.e. reaching the first successful tentative
decoding), the codeword, y, and the codeword length, [, are multiplexed as a pair (y, )
and are sent to the decoder. Note that any sequence that is not compressed can be trans-
mitted uncompressed along with a codeword length | = n. In this cése, transmission of a
flag bit is not necessary since the length [ = n reflects an uncompressed sequence.

The block diagram of a turbo source decoder is shown in Fig. 4.3. In Fig. 4.3, L

is the L-value representing the source a priori knowledge, i.e. L = log{&. Z;, A;, E;,
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and D;, j = 1, 2, are also L-values. Z; and Z, are the L-values related to y; and y»,
respectively (after iterative encoding).Z; and Z, is zero if its related parity bit is erased,
is oo if its related bit is intact and it is 1, and is oo if its related bit is intact and it is 1.A
represents the a priori L-values for the first decoder. The first constituent decoder takes
L, P, and A, and calculates soft values D, using the BCJR algorithm [22] (notice that
A, is not available in the first iteration). Then extrinsic information on the systematic

bits, E,, is expressed as:

E,=D;-A;-L, 4.1)

E, is then interleaved and passed to the second decoder as the a priori input A,. The
second decoder takes L, P, and A, runs the BCJR algorithm to calculate D, and feeds
back extrinsic information E; = D, — A, — L which becomes the a priori knowledge
of the first decoder. This process iterates until convergence is achieved or a maximum

number of iterations is reached (see [32] for details on turbo decoding algorithms).

M - Iterative
Parity Interleaver . —
X Turbo Encoding ” y.1
Encoder y : MUX |——-
2 Parity Interleaver Itera“Ye I
Encoding

Figure 4.2: Block diagram of the turbo source encoder.

In Fig. 4.4, we show the histogram of the achieved compression rates for a turbo
source coder with n = 100, and m = 4. The source is binary memoryless with p = 0.10
(H(X) = 0.469 bps). The turbo encoder consists of two identical recursive convolutional
encoders with generator polynomial G(D) = %. The code interleaver and the
parity interleaver are pseudo-random interleavers, i.e. they are randomly generated but
are not altered after creation. From Fig. 4.4, the average compression rate of the turbo

source encoder is found to be 0.667 bps. On the other hand, from (3.29), the average

compression rate achieved by tree structured random binning with the same parameters is
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Figure 4.3: Block diagram of the turbo source decoder
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Figure 4.4: Probability mass function of the compression rate for a lossless turbo source
encoder with n = 100, p = 0.10, and m = 4.

To achieve improved compression rates in lossless turbo source coding, several en-
coding/decoding iterations of large block lengths are required which results in a large
latency [36]. Therefore, design of short block length schemes that achieve compression
rates close to the entropy is of great interest. In this chapter, we propose a lossless com-

pression scheme based on short block length turbo source codes. In this, we focus on
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the design of the parity interleaver for different compression rates where we introduce a
new puncturing technique that is shown to offer better compression rates than the ones
introduced in the literature for a range of binary sources (i.e., entropy close to 0.5). For
further enhancement, we employ (i) a finer puncturing method using rectangular arrays

and (ii) a library of codes as opposed to a single code [22].

4.3 Proposed Encoding Scheme

In this section, we modify different components of the conventional turbo source encoder

in [22] to achieve better compression rates for short block length systems.

4.3.1 System Model

Figure 4.5 shows a block diagram of the proposed turbo source encoder. The message
block u is generated from an i.i.d. binary source with Pr(1) = p. As shown, a library of
M turbo codes is used. Each turbo encoder block, in Fig. 4.5, consists of two constituent
convolutional codes and one code interleaver. We consider the same constituent codes for
all encoders but allow the code interleaver to change from one code to another. The turbo
encoder number % produces two sets of parity bits, y;; and y; ., which are interleaved
using a parity interleaver II;. These parities are then written into two N, by N, arrays
where N, x N, = n and n is the length of the message block, u. The iterative puncturing
process starts by puncturing the parities in one column of the array at each step, followed
by checking the decodability of the punctured block before proceeding to the next step
(this means puncturing m = 2NV, parities at each encoding iteration). This puncturing
process continues as long as lossless recovery of the message is still possible. All non-
punctured parities as well as the number of punctured columns, S;, are multiplexed as
a pair (y;, S;). Among the outputs of all encoders, the minimum length output, say
output number ¢, is chosen and y;. along with (S;., i*) are sent to the decoder. Note that

transmitting .S;» and * require [logs(V,/2)] and [log, M| excess bits, respectively, where
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[loga M represents the smallest integer greater than or equal to logo M. Also note that
the message bits are not sent since their statistics are known at the decoder. The decoding
process is the same as the standard decoding of turbo codes [22]. In the original scheme
of turbo source coding [22), M = 1, N, = N, = /n, and I1, is a random interleaver. It
is shown in [22] that for a binary i.i.d source with entropy of 0.47 bps, one can achieve
a compression rate of 0.60 bps using n = 10000 bits. Lempel-Ziv coding with the same

block length achieves a compression rate of 0.66 bps [22].

Yi1 N by N Iterative
Turbo Interleaver #1 pOY IN, array Puncturing — ¥, S, .
1 Encoder y P— MUX = Si. , 1
12 terative
#1 Interleaver #l—’ N, by N, array Puncturing — S ——
U : 2
3
Y, Iterati g Y
M1 p terative 8
Turbo Interleaver #M N, by N, amay Puncturing T ——¥w-Su
— Encoder y 7 : MUX
#M M2 | Interleaver #M] N, by N, array Pl:;g::rviig S

Figure 4.5: Block diagram of the proposed turbo source encoder.

4.3.2 Design of the parity interleaver

In [22] the parity interleaver is random, but it is not altered after being constructed. This
leads to a pseudo-random puncturing of parities. In [27], the performance of pseudo-
random puncturing is compared to that of a structured puncturing where the non-punctured
parities have equal space on the trellis. It is shown in [27] that for compression rates close
to one (i.e., sources with entropy close to one), pseudo-random puncturing performs better
than structured puncturing. For smaller compression rates, on the other hand. structured
puncturing performs better than pseudo-random puncturing. Here we consider the perfor-
mance of these two puncturing methods along with a proposed puncturing method. The
proposed puncturing scheme is shown to offer a performance close to structured punctur-

ing at small compression rates, but with an improved performance at compression rates
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close to one. For compression rates close to 0.5 (entropy close to 0.5), our proposed punc-
turing scheme outperforms both structured and pseudo-random puncturing. The concepts
behind the proposed puncturing scheme arise from the design criteria of both structured
and pseudo-random puncturing. In what follows we explain the operation of the struc-
tured and the proposed puncturing schemes.

If we let K be the number of non-punctured parities, structured puncturing works
as follows:

(1) Initialization: Choose | = &.

(ii) For j = 1to K: transmit parity bit number | j{ |, where | j{] is the largest integer
less than or equal to jl.

Note that in structured puncturing, no parity interleaver is involved and the location
of punctured parities differ from one rate to another.

Now we combine the ideas of pseudo-random puncturing and structured puncturing
to design an interleaver that performs well, for a wider range of compression rates. Recall
that in channel coding problems, the message bits are unbiased (each bit is either zero or
one with probability 0.5) and hence, all parity bits are unbiased. On the other hand, in the
dual source coding problem the message bits are biased and hence the parities will also
be biased. In other words, parity bit number j, 1 < j < n, can be modeled as a binary
random variable with Pr(1) = g;. Let g;(D) and go(D) represent the feed-forward and
feed-back polynomials of the convolutional encoder. It is proved in [37] that if and only
if g1(D) is not divisible by g»(D) in GF(2), the encoder output is asymptotically uniform,
i.e. as j increases, g; goes to 0.5. But even in this case, still a few first parities might
be considerably biased. For example, for a recursive convolutional encoder with feed-
forward and feed-back polynomials g;(D) = 1+ D?, and go(D) = 1+ D + D? and a
source with p = .01, simulations show that the first 110 parities have q; < .40 (see Fig.
4.6). Based on this observation, the proposed puncturing method works as follows. The
interleaver begins by choosing K = tan parities using the same algorithm explained

for structured puncturing. These parities are interleaved and then written at the end of the
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puncturing array. Usually all message blocks are compressed at rates above the entropy
limit, and hence these parities are never punctured. However, when the block length is
very small, some blocks are compressed to rates less than the entropy and some of these
parities are punctured. This structured part of the interleaver maintains the maximum
distance of non-punctured parities below a defined level and avoids long erasure bursts.
Letting f; = %"1 the remaining parities are interleaved using a pseudo-random inter-
leaver, which draws the jth parity with probability Z—{J-l—f: After drawing each parity, its
related probability is forced to zero and the probabilities related to the remaining parities
are rescaled. Using this method, most of the biased parities are placed at the beginning of
the puncturing array. This assists in puncturing more biased parities and hence, achiev-
ing a more balanced compressed stream (the non-punctured parities are zero or one with

probabilities closer to 0.5).

probability of observing one

0 50 100 150 200 250 300 350 400
bit number

Figure 4.6: Probability of observing “one” in the output bit stream of a convolutional code

with feed-forward and feed-back polynomials g, (D) = 1+ D?, and g,(D) = 1+ D+ D2
The input stream is binary i.i.d. with Pr(1) = .01.
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4.3.3 Rectangular puncturing arrays

In [22], a square parity puncturing array was considered (N, = N, = \/n). In this case,
the scheme allows to decrement the compression rate in steps of size 2/N.. Note that
this step size may not be fine enough for sources with small entropy. Also as the block
length decreases, the step size becomes larger. To achieve a finer puncturing, the square
puncturing array can be replaced by an NV, x N, rectangular array where N, < N.,.
This allows to decrement the compression rate in steps of size 2/N,, which improves
the compression rate. This can be explained as follows. If we let N}, divide N,, and by

noticing N, N, = N2 = n, the gain in compression rate can be bounded by:

—_ — 2
—TOSRS—RTS—C——]%—rO, @2)

where R, and R, are the average compression rates using square and rectangular punc-
turing arrays respectively, and r, is the increase in compression rate due to the larger

overhead size introduced by the rectangular array, given by

ro = l—lOQ(Nv/z)] - [lOQ(Nc/z)-'
; " .

4.3)

4.3.4 Using a library of codes

The idea of using a library of codes was first proposed in [28] in the context of source
coding using low density parity check (LDPC) codes. Similarly, for turbo source coding,
we can employ M codes operating in parallel (see Fig. 4.5) and send the best result along
with the number of punctured parities and the code index to the decoder. In this case, the
average compression rate of the system is less than or equal to the average compression

rate achieved by any of its codes.
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4.4 Numerical Results

In the following results, we consider the constituent codes as recursive convolutional

1+D?

codes with a generator polynomial (D) = 5> 5-

Figure 4.7 shows the average com-
pression rate of a lossless turbo source coder using the puncturing methods discussed
in the previous section, for n = 1024 bits, N, = 32, and p = 0.01, 0.02, ..., 0.20.
As shown for p < 0.09, structured puncturing performs better than both the pseudo-
random and the proposed puncturing schemes. The difference in compression rates is
considerable for small rates. For instance, when p = 0.01 (H(X) = 0.081), struc-
tured puncturing achieves 0.195 bps, while the pseudo-random and the proposed punc-
turing schemes achieve 0.266 bps, and 0.255 bps, respectively. For p = 0.10 — 0.15,
the proposed puncturing scheme outperforms the other two schemes. For instance, when
p = 0.12 (H(X) = 0.529), our proposed puncturing scheme achieves 0.665 bps, while
pseudo-random and structured puncturing achieve 0.704 bps, and 0.682 bps, respectively.
For p > 0.16, pseudo-random puncturing achieves the lowest compression rate. This is
shown, for example, for p = 0.20 (H(X) = 0.722) where pseudo-random puncturing
achieves 0.871 bps, while our proposed and structured puncturing schemes achieve 0.901
bps, and 0.921 bps, respectively. From these results one can conclude that for sources
with entropies close to, 0, 0.5 and 1, structured, proposed and pseudo-random puncturing
offer the best compression rates, respectively.

Figure 4.8 shows the histogram of the achieved compression rates for n = 1024 bits,
when N, = 32 and N, = 8. The source is binary i.i.d. with p = 0.05 (H(X) = 0.286
bps) and a structured puncturing is used (offers the best compression rate for p < 0.09).
The average compression rates in this case are 0.417 bps for N, = 32, and 0.395 bps for
N, = 8. Note that the decrease in compression rate is achieved at the expense of increased
encoding complexity. This is clear since with finer puncturing, more decodability tests
and hence more decoding iterations are required to encode each message block.

In what follows, we evaluate the computational complexity of lossless turbo source

coding.
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Figure 4.7: Average compression rate for n = 1024, N, = 32, and different puncturing
schemes.

In [38], the total number of additions and multiplications required for decoding one
block of data are computed as follows?

A=2x (6T —4) x1I xn, (4.4)
B=2x(10T+2)x I xmn, (4.5)

where T is the number of states in the trellis diagram of each constituent code, I is the
number of decoding iterations, A is the total number of additions, and B is the total num-
ber of multiplications. To compute the encoding complexity of turbo source coding, we
replace the number of decoding iterations in (4.4) and (4.5) by the average number of
encoding iterations. By the average number of encoding iterations, we mean the average
number of puncturing steps required to encode each block multiplied by the maximum
number of decoding iterations. Now we show how to evaluate the average number of en-
coding iterations. Let us denote the most probable compression rate by R,. For example
in Fig. 4.8.b, Ry is the closest compression rate to 0.4 bps. Let the encoder begin with

puncturing the proper number of parities to obtain Ry. If the punctured block is decodable,

2When the constituent codes are different, the coefficient 2 is replaced by a summation over different
constituent codes [38].
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Figure 4.8: Probability mass function of compression rate for block length n = 1024 bits
(a) N, = 32, (b) N, = 8. The source is binary i.i.d. with p = 0.05 (H(X) = 0.286 bps).

the puncturing process continues. But if the punctured block is not decodable, parities are
added step by step until the block is decodable. For blocks that are encoded to rate R,
two puncturing steps are required; one puncturing step is performed to confirm that R,
is achievable, and the second is performed to ensure that no better rate can be achieved.
Now define AR = 2/N,, and let & > 0 be an integer. For blocks that are encoded to rate
Ry — hAR, h + 2 puncturing steps are required. In this case, the system requires A + 1
puncturing steps to confirm that this rate is achievable, and one more puncturing step is
required to ensure that no better rate can be achieved. For blocks that are encoded to rate
Ry+hAR, h+1 puncturing steps are required. In this case, as soon as the system ensures
that this rate is achievable, no more puncturing is required. This is simply because rates
lower than Ry + hA R were examined before. In order to evaluate the average number of
puncturing steps required to encode each data block, we multiply the required number of
puncturing steps that achieve each compression rate by its related probability and calcu-
late the sum. Then, we multiply the obtained sum with the maximum number of decoding
iterations to obtain the average number of encoding iterations. Notice that, choosing a

setting point other than R will result in a larger expected value of the encoding iterations.
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Table 4.1 shows the average compression rate, R, and the corresponding average
number of encoding iterations, I, versus p for a lossless turbo source encoder with a block
length of 1024 bits and using either square or rectangular puncturing array (subscripts
s and r, refer to square and rectangular puncturing respectively). For the rectangular
puncturing array, the results are shown for the case of 8 x 128 array. Note that, these
results are given for the best code design at the different compression rates (see Fig. 4.7).
That is for, p = 0.01,0.05, p = 0.10, and p = 0.15, 0.20, we use structured, proposed,
and pseudo-random puncturing schemes respectively. It is observed that for p = 0.01,
i.e. when the entropy is close to zero, the decrease in compression rate offered by the
rectangular array is negligible (0.004 bps for p = 0.01). For p = 0.05, 0.10, 0.15, and
0.20, replacing the square array with a rectangular array results in 0.022 bps, 0.014 bps,
0.018 bps and 0.014 bps gain in the compression rate, and a corresponding 18%, 42%,
49% and 75% increase in the encoding complexity, respectively. Through simulations,
we have noted that any further decrease in NV, results in a negligible reduction in the
compression rate for all values of p. One may use (4.2) to prove that decreasing N, from
8 to 4 will result in less than 0.007 bps reduction in compression rate. From (4.4) and
(4.5), the number of additions and multiplications required to encode each data block
are computed as A = 40960 x I, and B = 86016 x I, where I is replaced by I or
I,. For example with p = 0.05, encoding a data block using a square puncturing array
requires 1.01 x 10° additions and 2.12 x 10% multiplications. On the other hand, using a
rectangular puncturing array with N, = 8 will result in 1.19 x 10° additions and 2.50 x 10°
multiplications.

So far, we have only considered the performance of the proposed code design for
the case of a single code. In what follows we present simulation results for the case when
more than one code is used (see Fig. 4.5). In Table 4.2, we show the average compression
rate versus p, for M = 1 and M = 4 codes. These results are obtained for the case of
square shape puncturing array, and based on the best puncturing method (i.e., according

to Fig. 4.7 and similar to Table 4.1). One can see that using a library of 4 codes will result
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Table 4.1: Average compression rate and the average number of encoding iterations using
32 x 32_squ_are shape puncturing array (R, ;) and 8 x 128 rectangular shape puncturing
array (R,, I;).

p |HX)| R, | I, | & | I,
0.01 | 0.081 | 0.195 | 23.0 | 0.191 | 33.0
0.05 | 0.286 | 0.417 | 24.6 | 0.395 | 29.1
0.10 | 0.469 | 0.604 | 24.8 | 0.590 | 35.3
0.15 | 0.610 | 0.764 | 21.1 | 0.746 | 31.4
0.20 | 0.722 | 0.871 | 22.3 | 0.857 | 39.0

in a lower compression rate with a minimum of 0.015 bps for p = 0.20 up to 0.029 bps
for p = 0.05. This will also increase the computational complexity M times, but since
the codes are operating in parallel, no delay is added to the system. As a final study, Table
4.3 shows the achieved compression rates for the complete system described in Fig. 4.5
where we employ a rectangular array with N, = 8 and a library of 4 codes for a data
block of length n = 1024. Again the best puncturing method is used for each rate (i.e.,
according to Fig. 4.7 and similar to Table 4.1). Also shown in Table 4.3, for comparison,
are the achieved compression rates R, for the original turbo coding scheme in [22] with
a block length of 10000 bits using a pseudo-random interleaver and a square puncturing
array. It is observed that for p = 0.20, the scheme in [22] outperforms the proposed
scheme. This is due to the larger block length used for the code presented in [22] (10000
bits, compared to 1024 bits used for the modified code).

Table 4.2: Average compression rate versus p, for n = 1024, using M = 1 code, and
M = 4 codes.

p | 001 ] 005010 ] 015 | 0.20
H(X) | 0.081 | 0.286 | 0.469 | 0.610 | 0.722
Tcode | 0.105 | 0.417 | 0.604 | 0.764 | 0.871
A codes | 0.167 | 0.398 | 0.591 | 0.742 | 0.856
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Table 4.3: Average compression rate versus p, for n = 1024, N, = 8, and M = 4 codes.
Shown for comparison, R, is the achieved compression rates for the original turbo coding
scheme in [22] with a block length of 10000 bits using a pseudo-random interleaver and
a square puncturing array.
D 0.01 | 0.05 | 0.10 | 0.15 | 0.20
H(X) |0.081 | 0.286 | 0.469 | 0.610 |{ 0.722
R, 10.165 | 0.386 | 0.575 | 0.721 | 0.835
R, |0.243|0.435|0.597 | 0.723 | 0.824

4.5 Conclusion

We considered the performance of short block length lossless turbo source coding. In this,
we optimized different components of the encoder to achieve improved compression rates.
We introduced a new puncturing scheme that was shown to offer a performance close to
structured puncturing at low compression rates, but with an improved performance at
compression rates close to one. For sources with entropy close to 0.5, our proposed punc-
turing scheme was shown to outperform both structured and pseudo-random puncturing
methods introduced in the literature. Also, instead of square shape puncturing arrays, we
used a rectangular puncturing array to allow for finer puncturing. Finally, we replaced a

single code with several codes operating in parallel to achieve better compression rates.
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Chapter 5

Detection of Code Index and Codeword

Length in Turbo Source Coding

In this chapter we propose a detection algorithm to detect the codeword length and the
code index at the decoder so that transmitting these numbers is no longer required. This
will considerably reduce the compression rate for short block length systems. However,
as the block length increases the effect of the proposed detection algorithm on the com-

pression rate becomes less important.

5.1 Introduction

Consider the turbo source coding scheme proposed in Fig. 4.5. We observed that this
scheme can achieve promising compression rates; however, the achieved rates are still far
from the tree structured random binning bound. For example, from Fig. 4.4, the average
compression rate of the turbo source encoder is found to be 0.667 bps. On the other hand,
from (3.29), the average compression rate achieved by tree structured random binning
with the same parameters is equal R, = 0.575 bps. A considerable part of the perfor-
mance loss in short block length lossless turbo source coding is due to the transmission of

the codeword length (S;- in Fig. 4.5) and index of the proper code (z* in Fig. 4.5) to the

64



decoder. Transmitting S;» and 7* require {loga(V,/2)] and [logo M| excess bits, respec-
tively, where [log, M| represents the smallest integer greater than or equal to log, M. For
example for N = 100, N, = 50, and M = 1 (according to Fig. 4.4), 5 bits are required
to transmit .S;. which means having a 0.05 bps excess rate.

To reduce the compression rate for short block length systems, we propose a new
detection algorithm. Using this algorithm, the decoder detects the codeword length and
the code index from the transmitted codeword. Therefore their transmission is no longer
required. In Section 5.2 we present the algorithm to detect the code index. Then, in

Section 5.3 we modify the algorithm to detect the codeword length at the decoder.

5.2 Detecting the Code Index at the Decoder

Consider the turbo source decoder as shown in Fig. 4.3. To simplify the notations, let us
show A, the vector of a priori L-values of the first constituent decoder, by A. Then, the

(normalized) mutual information between A and the message,x, is given by [22]:

A = _ly ~zkL(zslax)

I(x;A) = H(X) - — ; loga(1+e ). (5.1)

From the concept of the extrinsic information transfer (EXIT) chart [39] it is known

that the sufficient condition to have successful decoding is that /(x; A) converges to
H(X), by increasing the number of decoding iterations. In(5.1), if for every &, L(zk|ax) —

+00 X zx then I(x; A) — H(X) and decoding is successful. When the matched decoder

is used at the decoder, this event occurs with high probability. Note that L(z,lax) —

+00 X z) implies that a, — 400 X zi. Therefore, for the matched decoder case, the

extrinsic L-values tend toward infinity by increasing the number of iterations. On the

other hand, using a mismatched decoder is equivalent to using a decoder of a new code.

Since the received parities do not necessarily belong to a codeword of this new code, the

probability that the L-values tend toward infinity is low. Thus, a cost function f(.) can
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be defined to detect the proper code index using the a priori L-values. This function f(.)
should satisfy the following properties:

1- f(.) should be symmetric about zero.

Because the reliability is defined based on the absolute values and the sign of L-
values is not important in the decision.

2- f(.) should be non-increasing between zero and infinity.

Because as the absolute value increases the reliability increases or at least does not
decrease.

3- There is no penalty for infinite L-values, i.e., f(+00) = f(—o0) = 0.

There are different choices for such function. After testing many choices we found
f(z) = exp(— |z|) to be a good choice, in the sense that it gives a lower detection error
probability (see Subsection 5.2.1 for definition of detection error probability).

Using this function, detection of the code index is performed as follows. The re-
ceived parities are decoded using all decoders. After finalizing the decoding process, the

following parameter is computed for each code

1 n
§== > exp(-la), (5.2)
k=1

and the code index is detected as the index of the decoder which achieves the minimum
value of £. The decoded vector is then the output of this decoder. Usually, by increasing
the number of decoding iterations, £ converges to zero for the proper decoder. Figure 5.1
shows £ versus the number of decoding iterations for p = 0.02, n = 128, N, = 4 and
M = 2 codes. The message has been encoded by code number 1. It is observed that for
code number 1, the value of £ reduces to zero, while for code number 2, £ is more than

0.6.

5.2.1 Errorsin Code Detection and Error-Free Detection

Two types of errors may occur in the process of detecting the code index.
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Figure 5.1: £ versus the number of iterations for n = 128, N, =4, M = 2, and p = 0.02.

1- The first type of error occurs when the L-values do not tend to infinity (i.e., the
mutual information does not converge to the entropy) even for the matched decoder case.
Note that the tendency of the mutual information to the source entropy is a sufficient, but
not necessary, condition for successful decoding [39]. In this case, £ does not converge to
zero for the correct code, and an error may occur.

2- The second type of error occurs when the received parities belong to a codeword
of at least one other code, in addition to the proper code. In this case, £ converges to zero
for this code, and an error may occur.

It is possible that both types of errors occur simultaneously.

Let us denote the probability of detection error by P;. When P, is not zero, the
compression is not completely lossless. To ensure that the compression is lossless, the
encoder computes the value of £ for each code and reassigns the code indexes such that
1 = 1 is assigned to the code with minimum value of £ and ¢ = M is assigned to the

code with maximum value of £. The distribution of this reassigned index is strictly non-
uniform, thus it can be efficiently compressed using a Huffman code. For example the

probabilities of reassigned indexes for a source with p = .02 and a turbo source encoder
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withn = 128, N, = 4, and M = 4 are 0.8732, 0.1015, 0.0210, and 0.0043. The average
number of bits required to send this index by a Huffman code is 1.152 bits which is
strictly less than 2 bits required to send the index without using the detection criterion and
Huffman coding. If R represents the average compression rate when no Huffman code
is used and R, represents the average compression rate when the index is reassigned and
transmitted, then: B

_ [logaM 1 — I

Rij=R-——"— =2 (5.3)
n

where [, is the average number of bits required to transmit the reassigned index by Huff-
man code (transmission of the code index without applying the detection criterion and
reassignment requires [logo M| bits). Thus, the gain achieved using the proposed detec-
tion algorithm can be expressed in bits per sample (bps) as follows:

"= [lOggM‘l - Zh
-————n .
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5.2.2 Numerical Results

In this section, we provide some numerical results. For all simulations N, = 4, convolu-
tional codes are systematic with feed-back generator polynomial go(D) = 1+ D+ D? and
feed-forward polynomial g;(D) = 1 + D?. The parity interleaver is a block interleaver
with 8 rows for p = .02 and p = .05, and 4 rows for p = .08. For each code, 10* message
blocks are compressed and 10 iterations are performed for turbo decoding. Tables 5.1-5.3
show the gain achieved by the proposed detection algorithm, for different system param-
eters. In Table 5.1, p = 0.02, n = 128, and M, the number of codes, increases from 4 to
16. It is observed that the proposed method performs better for larger number of codes.
In the case of M = 16 codes, our detection method helps to reduce the compression rate
by 0.015 bps, which is more than 10% of the entropy (H(X) = 0.141 bps) and 7% of R.
Table 5.2 shows that for fixed M and p, by increasing the block length, the index detection

algorithm becomes less effective. From Table 5.3 one can observe that when M and n
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are fixed, by increasing p, r slightly increases. However, the detection algorithm is more
effective for smaller values of p, where r contains a larger fraction of the compression

rate.

Table 5.1: The gain of the index detection algorithm versus the number of codes, for
p = 0.02 and n = 128 bits.

Table 5.2: The gain of the index detection algorithm versus the code block length, for

M| RMps)| P, I Ry (bps) | r (bps)
4 | 0.250 | 0.127 | 1.152 | 0.243 0.007
8 | 0245 |0.345{1.591 | 0.234 0.011
16 | 0.243 0429 | 2.104 | 0.228 0.015

p=0.02and M = 8.

Table 5.3: The gain of the index detection algorithm versus p, for M = 8 and n = 128

n |R(bps)| P; | 1n | Rq(bps)|r (bps)
64 | 0295 [0.557 | 2.095| 0.281 | 0.014
128 0.245 [0.345 | 1.591 | 0.234 | 0.011
256 | 0.236 | 0.098 | 1.148 | 0.229 | 0.007

bits.
p | R(ps)| Py ln | Ra(bps) | r (bps)
0.02] 0245 |0.345 | 1.591 | 0.234 | 0.011
0.05| 0.408 | 0.073 | 1.084 | 0.393 | 0.015
0.08 | 0.539 | 0.023 | 1.024| 0.524 | 0.015

5.3 Detection of Codeword Length at The Decoder

In this section we assume only one code is used and show how to detect the codeword
length at the decoder. The proposed approach is similar to the approach introduced to

detect the code index. Again, defining the soft value, &, as

1 n
== eap(~axl), (5.5)
k=1
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Figure 5.2: The value of £ versus the codeword length, for p = 0.10, n = 100, m = 4,
and 10 decoding iterations.

we show how the decoder can detect the codeword length (in bits) from the received bit
stream. The decoder begins by assuming the codeword length [ = m = 2N, (S;- = 1),
i.e. it takes the first m received parities, performs a defined number of iterations and
then computes the value of £ from (5.5). Then [ is increased to 2m, and the decoding
procedure is repeated for the first 2m parities. As long as all the parities belong to the
same codeword, £ will decrease by increasing (. This is true since obtaining more valid
information increases the absolute values of a;’s and hence £ decreases. Note that further
increase of / leads to the case where the parities of the next codeword are appended to the
parities of the current codeword. In this case, the decoder receives incorrect information
and £ increases. Thus, the proper value of [ can be detected. Fig. 5.2 shows the value of
€ versus [ for one message block. In Fig. 5.2, p = 0.10, n = 100, m = 4 (N, = 2), and
10 decoding iterations are performed for both detection and decoding!. The actual value

of [ is 64 bits, which is shown to be correctly detected.

'Notice that the number of turbo decoding iterations performed for detection can be different from the
number of iterations performed to decode the message.
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5.3.1 Errors in Detection of Codeword Length and Error-Free De-

tection

Similar to the case of detecting the code index, the detection of codeword length is also not
always successful. In some cases a detection error may occur, i.e. £ reaches its minimum
at length [y # [. To study these error events, let us consider the pattern of errors in the
example above (Fig. 5.2). Given a detection error, the expected values of [ and [, are
found to be [ = 69.34 and I; = 76.54, respectively. Also, if we call the value of £ at
l4 by £, the average value of &, for all message sequences is found equal to 0.033.
However, computing this value exclusively for erroneous sequences shows an increase
to 0.161. From this observation the occurrence of detection errors can be justified as
follows. The convergence of £ to zero is not a necessary condition for terminating the
encoding process. The encoder has a built-in decoder so it decodes the codeword and
compares its binary output with the message. As soon as this output is identical to the
message, the encoding process is terminated. However, sometimes the value of £ is still
significant when the encoding process is terminated. In this case minimizing £ at [ cannot
be guaranteed and detection error may occur. By noticing that | = 69.34 is larger than
n X R = 61.7 bits (without considering the 5 bit overhead), we found out that this error
mainly occurs for high-weight atypical sequences (which have longer codewords). In fact,
simulation results show that the expected weight of the message sequence when an error
occurs is 13.01 which is larger than n x p = 10. Figure 5.3 shows the value of £ for a
codeword of length 76 bits. As shown from these results, the detected codeword length is
80 bits.

Since errors may occur in the detection process, the encoding procedure is not loss-
less anymore. However, lossless encoding can be guaranteed by checking the detection
criterion at the encoder and prior to transmission. In this, the encoder will always send a
flag bit to show whether the detection procedure is successful or not. If the detection is

not successful, the codeword length is transmitted with [log(n/m)] ([log N,/2)]) bits,
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after the flag bit. Given this detection criterion, only 1 + [log(n/m)] Py excess bits are
transmitted where P; represents the probability of detection error. If the number of these

excess bits is less than [log(n/m)}, or equivalently as long as

_
[loga(n/m)]’

the proposed detection criterion will assist in reducing the compression rate of the lossless

Pi<1- (5.6)

turbo source coder. If we denote the average compression rate with and without our
detection criterion, respectively, by R, and R, then
% _7_ (1= Py)[logs(n/m)] —1

Ri=R- : (5.7)
n

For example if we consider a turbo source code with n = 100 and m = 4, and a source
with p = 0.10, then the probability of detection error is Py = 0.027 and the corresponding
R, = 0.628 bps (without the detection method, R = 0.667 bps). It is observed that the
proposed detection method reduces the compression rate by 0.039 bps. Compared to the
random binning bound, the compression rate R is 0.053 bps far from ﬁb.

Notice that similar to the approach proposed for detecting the code index, the code-
word length could be compressed by a Huffman code. However, simulations show that in

this case the gain achieved by applying Huffman coding is negligible.

5.3.2 Numerical Results

To examine the performance of the proposed detection method under different encoding
parameters, in Table 5.4 we show the value of P; for two different turbo codes using
different block lengths. The source is binary i.i.d. with p = 0.10. Py; and P, represent
the detection error probability for Code 1 and Code 2, respectively. In these results, Code

. . . . . . 2
1 consists of two identical recursive convolutional codes with G(D) = lj—;fﬁg where

1+D34 D4

code 2 consists of two identical recursive convolutional codes with G(D) = 5 55 75

It is observed that P; depends on both the block length and the code structure. Also as
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Figure 5.3: The value of £ versus the codeword length, for p = 0.10, n = 100, m = 4,
and 10 decoding iterations. The correct codeword length is 76 bits but the detected length
1s 80 bits.

seen, as the block length increases P; decreases. The reduction of compression rate using
the proposed detection method is also given in Table 5.4. In Table 5.4, ry = R, — Ry
represents the reduction of compression rate for Code 1 and 7, = R; — Ry, represents
the reduction of compression rate for Code 2. We noted that for a fixed block length,
these values are almost the same for both codes. Also it is observed that as the block
length increases, r; and r, decrease, i.e. the performance loss avoided using the proposed
detection method is less significant for larger block lengths. In fact, since P; > 0, one
may note from (5.7) that for any given code, R — Ry < ”"LW—ﬂ. For example, for
m = 4andn = 800, R— Ry < 0.009, whereas form = 4 and n = 1600, E— R, < 0.005,
Therefore, this method is not appropriate for large block length systems.

Up to this point, we have only considered the case where the number of decoding
iterations used for detecting the number of transmitted parities is fixed to that used for de-
coding the message. In Fig. 5.4, we examine the performance of the proposed detection
method using different number of decoding iterations. These results are shown for code

1, with a block length n = 100, m = 4 and a binary i.i.d. source with p = 0.10. As
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Table 5.4: P; and the reduction of compression rate for different block lengths and differ-
ent code structures. m = 4, p = 0.10, and 10 decoding iterations are performed.

n 100 200 400
Py | 27e—2|46e—3|1.0e-3

Ri(bps) | 0.667 | 0.652 | 0.625
) 0.039 | 0025 | 0015
P | 32e—2|10e—2|2.8e—3

Ra(bps) | 0651 | 0.627 | 0.595
- 0.038 | 0.025 | 0015

detection error probability

2 4 6 8 10 12 14 15
number of decoding iterations used in detection

e

107

Figure 5.4: P, versus the number of decoding iterations for n
p = 0.10.

100 , m = 4, and

evident from these results, the probability of detection error is a function of the number
of decoding iterations. Also, from Fig. 5.4, it is observed that P, flattens after 14 itera-
tions. Hence, by changing the number of iterations, one may trade-off P, for the decoding

complexity.
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5.4 Conclusion

We observed that the achieved compression rate of lossless turbo source coding is far
from the tree structured random binning bound. This difference in performance was
shown to be partly due to the transmission of the code index and the codeword length,
which requires a considerable excess rate for short block length codes. To improve the
performance of turbo source coding, instead of sending the code index and the codeword
length, we proposed methods to detect this information at the decoder side. The proposed
detection methods were shown to improve the performance of the lossless turbo source
coding. From the numerical results we conclude that the proposed detection algorithms
are more effective for sources with small entropies and systems with short block lengths.
As the number of codes increases, the algorithm achieves higher gain (in case of detecting
the code index). Finding a better detection criterion leads to a more considerable gain and

smaller compression rates for the system.
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Chapter 6

Conclusion

We starts by summarizing the key points of each chapter. Our main contributions are

presented in Section 2. Section 3 gives some suggestions for future research.

6.1 Summary

In this thesis, we considered the performance of nested error correcting codes for lossless
data compression.

In Chapter 2 (background) we reviewed the concept of typical sets and presented
entropy as the limit of lossless compression. We observed that each source X can be com-
pressed without any loss of information as long as the compression rate is greater than the
source entropy H(X). Standard data compression techniques like Huffman coding and
Lempel-Ziv coding are able to achieve the entropy limit. However, transmission of data
over a noisy channel will cause errors and since standard compression codes are not capa-
ble of error correction, the whole output sequence will be corrupted. This fact drew atten-
tions to the possibility of combining two fundamental problems of data transmission: data
compression and error correction. In other words if one finds codes that are capable of
performing both data compression (source coding) and error correction (channel coding),

the source coding and channel coding blocks of a transmission system can be combined
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as a joint source channel coding unit. Shannon was the first one to investigate the fact
that channel codes themselves could be employed as good source codes (or vice versa).
In recent decades Shannon’s work was followed by other researchers and application of
channel codes for data compression received increasing attention. As a first step toward
designing good source codes, it was proved that random codes could achieve entropy.
This proof was formulated in [3] and the proposed scheme was called random binning.
The basic idea of random binning is simple; choose a compression rate above entropy,
generate codewords using random parities for each sequence, transmit the codeword and
use the optimal decoder at the receiver. Given these, it was proved that the probability of
error over the typical set approaches zero as the block length approaches infinity. The-
oretical success of random codes suggests that random-like codes can serve as practical
source codes because they generate random-like codewords and have constructive near-
optimum decoding schemes. Turbo codes, LDPC codes, RA codes, and fountain codes
are examples of random-like codes which have been successful in achieving near-entropy
compression rates. If we only care about the probability of error over the typical set, i.e.
near-lossless compression is desired, the complexity of source coding is very low. The
encoder only generates and transmits the codeword, as it does in random binning or in
the conventional channel coding problem. However, due to different reasons, sometimes
a completely lossless compression is desired. In this case the source encoder must have
a built-in decoder and check for possible decoding errors. This process is called tentative
decoding. If tentative decoding is not successful, the codeword length will be increased
by adding more parities and tentative decoding is performed again. This is equivalent to
using a nested code, i.e. a code where each codeword of a higher-rate code is formed by
adding parities to a codeword of a lower-rate code. Iterative process of adding parities
and checking for errors continues until successful tentative decoding is reached. This is
why completely lossless codes have complicated source coding process which adds more
delay to the system.

After presenting the background, we considered two important problems receiving
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little attention in literature. The first problem was to establish a theory showing how the
compression rate changes as the block length increases.

In Chapter 3 we considered completely lossless data compression using nested error
correcting codes. Using nested codes implies that the codeword is variable-length and the
compression rate is a random variable. Finding the probability mass function of this
random variable was of interest. In Chapter 3 we established a tree structured random
binning theory to show how nested random codes perform lossless compression. The
probability mass function of the compression rate was derived and it was proved that tree
structured random binning asymptotically achieves entropy. Furthermore, we considered
a more practical problem of tree structured random binning using biased parities and
derived the distribution of compression rate in this case.

The second important problem to consider was the role of delay in the system.
Most communications systems have a maximum threshold for delay which cannot be ex-
ceeded. We considered completely lossless turbo source coding as an example of practical
schemes and investigated satisfaction of the delay constraint. We observed that existing
turbo source coding schemes achieve promising compression rates; however, their large
block length (order of 10000 bits) causes a large delay. To reduce this delay we turned to
short block length codes.

In Chapter 4 we designed short block length turbo source codes with low compres-
sion rates. To this end, we showed how to modify different components of the source
encoder to reduce the compression rate. Specifically we investigated design of parity in-
terleavers, applied rectangular puncturing arrays, and replaced a single turbo code by a
library of turbo codes to decrease the compression rate. We observed that applying the
proposed modifications dramatically reduces the compression rate. We also investigated
computational complexity of encoding for original and proposed schemes.

In Chapter 5 we showed how to detect the overhead introduced by the code index
and the codeword length at the decoder. Using the proposed detection technique, this

overhead is no longer transmitted since it can be detected from the codeword. Therefore,
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the compression rate is further decreased. We must mention that the detection technique

becomes less attractive for large block length systems.

6.2 Contributions

The main contributions presented in this thesis can be summarized as follows:

e We considered the theoretical performance of nested error correcting codes for data
compression. For this, we generalized the conventional random binning argument
to a so called tree structured random binning concept. We derived the distribution
of the compression rate achieved by the proposed tree structured random binning
scheme. Comparing this distribution with the distribution achieved using a library
of random binning schemes, we proved that a nested code can achieve rates close

to a library of codes but with much lower encoding/decoding complexity.

e For large data blocks, the proposed scheme was shown to asymptotically achieve

the entropy limit.

e As a practical implementation of this random binning scheme, we examined the
performance of the lossless turbo source coding scheme proposed in {22]. Consid-
ering short block length codes, we modified different components of the encoder to

achieve better compression rates.

e We presented a detection algorithm to eliminate the overhead introduced by trans-
mission of the codeword length and the code index. Using such an iterative detec-
tion technique proved to further reduce the compression rate for short block length

turbo source codes.
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6.3 Future Work

For future research we propose generalizing the tree structured random binning theory for
random-like codes. In other words, we propose to derive the distribution of the compres-
sion rate for turbo source codes and LDPC source codes. This could be performed in two
steps. First, one analyzes the rate distribution by considering the actual code, e.g., turbo
code or LDPC code, with the optimum decoder (maximum likelihood decoder). Then the
distribution is analyzed by considering the practical decoding, e.g., BCJR in case of turbo
codes or belief propagation in case of LDPC codes. This generalization will give us an
insight how a practical scheme works and provides us with guidelines for designing better
data compression schemes.

We also suggest generalizing the tree structured random binning theory for sources
with memory in order to find out how the scheme achieves the entropy rate. General-
ization of this theory to joint compression of correlated sources is another interesting

problem.
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