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Abstract 

Autonomous science augments the capabilities of planetary rovers by shifting the iden­

tification and selection of science targets from the operator to the rover itself. This 

shift frees the rover of unnecessary idle time as it waits for commands. Addition­

ally, as features can now be evaluated based on their scientific value, data collection 

can become more selective—allowing only the most valuable data to use the limited 

bandwidth between the rover and operator. 

This thesis presents an autonomous science system that is comprised of three 

components: a Bayesian network that uses image data to identify features, an evalu­

ation algorithm that selects the best identified feature, and a path-planning algorithm 

that guides the rover to the most scientifically valuable feature. As autonomous sci­

ence is a relatively young field, efforts to date include partial implementations (e.g., 

identification or sorting without evaluation) or lack a machine learning component. 

In addition to the development of an autonomous science system, one of the pri­

mary contributions of this thesis is an investigation into the effectiveness of pairing 

a larger prime rover with a smaller scout rover for improved autonomous science. In 

this scenario, the scout rover provides the prime rover with a science-driven feature 

map that can be used for path-planning, obstacle avoidance and science target selec­

tion. This scenario was compared to the traditional scenario of the prime rover solo 

in a simulated environment, which revealed the strengths and weaknesses of the two 

approaches. 
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The probabilistic identification and evaluation of objects using the Bayesian net­

work and evaluation algorithm was validated experimentally in a real environment. 

Quantitative results measure the effectiveness of the approach while qualitative re­

sults reveal its behaviour and indicate possible areas of improvement. Together, the 

simulated and real tests provide suggestions for future research. 
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Chapter 1 

Introduction 

Robotic explorers have had a critical role in the exploration of planetary bodies in our 

solar system. Surface exploration of planetary bodies began with the robotic Luna 

missions on the Moon by the Soviet Union, with the first successful landings in the 

early 1960s. However, unlike near-Earth missions such as lunar exploration, missions 

to other planetary bodies become inefficient if a level of autonomy is not granted 

to the robot. The great distances between robotic explorers and their Earth-based 

operators means there are limited opportunities for communication and considerable 

time-delays in the issuing of commands. Limited autonomy results in robots that sit 

idle as they wait to receive commands or send telemetry. 

The current state-of-the-art method of surface exploration of planetary bodies 

is mobile rovers equipped with a selection of tools and sensors that can measure 

and manipulate its environment. The mobility of rovers allows for large areas to 

be explored and documented, enabling a better understanding of geologic trends 

and subtleties. Past rovers such as NASA's Mars Exploration Rovers have greatly 

advanced our knowledge of that planet, and other better-equipped rovers are currently 

scheduled to follow in their footsteps. Improved rover technology means this next 

generation of rovers will have a far greater range and data collection capabilities than 

any of their predecessors. However, limited bandwidth and narrow communication 
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windows create a bottleneck in the transmission of data. The advantages of these new 

rovers would be greatly enhanced if they were permitted to autonomously observe 

their local surroundings and make decisions based on those observations, reducing 

idle time and ensuring only the most scientifically valuable data is collected. 

To this end, a new field called autonomous science is emerging, which grants 

the rover science-influenced decision-making abilities that were previously reserved 

for Earth-based operators. With these systems, rovers use exteroceptive sensors to 

evaluate the scientific value of their surroundings and use that information to in­

fluence their actions. The most promising scientific targets can be autonomously 

identified, and more detailed measurements can be taken without operator interven­

tion. This addresses both the idle time and transmission bottleneck issues that afflict 

non-autonomous systems. 

Autonomous science systems to date have focused on two key areas: the detection, 

identification/classification and evaluation of features, and the integration of evalu­

ated features into the planned activities of the rover. The first area has been nearly 

universally addressed using image processing (although expansion to include other 

sensors is possible), partly because cameras are nearly universally included on rover 

platforms. The second area has been investigated to a far less degree, and mostly has 

been integrated into existing planner platforms. Overall, autonomous science systems 

are a relatively novel development and have extremely limited heritage, due in part 

to the scarcity and cautious nature of rover missions. 

1.1 Motivation 

As autonomous science systems are a relatively recent development for plane­

tary rovers (and are actively being developed), approaches to detecting, identify­

ing/classifying and evaluating features have not been standardized. However, one 
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system [1] has been sufficiently developed to be incorporated into the Autonomous 

Exploration for Gathering Increased Science System (AEGIS), which was uploaded 

to the MER rover Opportunity in 2010. A unique aspect of this system was its use 

of machine learning. Bayesian networks (BNs) were used to detect and classify rocks 

into classes; however, to date it does not use this information to influence the ac­

tions of the rover. This thesis will continue the investigation of classifying features 

using a BN, but will evaluate the classified features and use this information to make 

guidance-related decisions. 

Even with the inclusion of autonomous science, the high cost of rover missions 

would restrict the collection of scientific data by conservatively having the rover avoid 

risky targets that could cause potentially mission-ending scenarios. Also, the energy 

used by a large, multi-sensor, rover (i.e., the prime rover) is better spent perform­

ing scientific analysis than searching for targets. To this end, it would be beneficial 

to pair a primary rover with one or more micro-rover "scouts". These lightweight, 

quick, rugged and possibly expendable scouts could explore, map and evaluate areas 

of potential scientific interest. They could also afford to take more risks in finding 

valuable scientific targets. An example of a rover that fits this description is the 

Kapvik micro-rover that is currently under development in part by Carleton Univer­

sity (Figure 1.1). This thesis will investigate how a scout rover equipped to perform 

autonomous science could aid the primary rover in its collection of valuable science 

measurements. 

1.2 Scope 

The scope of this thesis can be divided into three separate but related processes: 

(i) detecting, localizing, and identifying features, (ii) evaluating features based on 

their estimated identity and their location, and (iii) using the evaluated features to 



Figure 1.1 - A rendering of the Kapvik micro-rover currently under development in 
part by Carleton University. Its footprint is approximately 0.782 x 0.850 m. 

influence the guidance systems of a prime and scout rover. For the first process, the 

focus of the thesis does not encompass the all aspects of the process and is subjected 

to some assumptions. The focal point of this process and the assumptions that were 

made are clarified below. 

1.2.1 Detecting, Localizing and Identifying Features 

An image captured by a stereo camera is processed to detect features, localize them 

relative to the rover, and estimate their physical attributes. The work performed for 

this thesis did not include the development of the algorithms that perform these steps. 

However, suitable algorithms were made available from the output of collaborative 

work within the author's research group. This is detailed later in the thesis. A BN 

was developed to identify features based on physical attributes extracted from the 

processed images. For simplification, the BN was limited to discrete rather than 
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continuous variables. This assumption reflects the type of observations a geologist 

would make in the field, as geologic features are usually identified qualitatively (e.g., 

dark, pitted, layered, etc.) and can vary slightly among rocks of the same type. Exact 

continuous measurements (e.g., 36 % colour intensity, 19 % pit coverage, average 

bedding thickness of 4.4 mm) are often unnecessary for identification. 

When features are localized relative to the rover, two assumptions were made that 

simplify the process of turning this relative localization into a global feature map. 

First, to transform feature locations from the rover to the global reference frame, the 

estimated position of the rover in the global reference frame is required. This thesis 

assumes that this information is known. The required algorithms that perform this 

type of estimation are widely used, including extended Kalman filter simultaneous 

localization and mapping (EKF SLAM), unscented Kalman filter (UKF) SLAM and 

FastSLAM [2]. These algorithms also recursively estimate the position of the features 

and their uncertainty. Although the localization of the rover was assumed, feature 

localization was developed for this thesis (Section 3.2). Second, it is assumed that 

features detected in a measurement can be matched with previous measurements 

(data association). Data association is often required in conjunction with SLAM, and 

as a result, has been developed for specialization in that area [3]. Overall, a SLAM 

algorithm that includes a data association component would be a good approximation 

of the information gained from the assumptions made above. 

1.3 Goals 

Autonomous science systems usually require several algorithms working in harmony, 

including: machine vision, image processing, machine learning, guidance, navigation 

and control. As was described in Section 1.2, the scope of this thesis is to develop 

and integrate a machine learning technique with a guidance algorithm. This work 
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was done in collaboration with machine vision and image processing algorithms, de­

veloped separately but in conjunction with this thesis. As is discussed in Section 2.5, 

developments in the relatively novel field of autonomous science combine different 

approaches to the algorithms mentioned above. Often, only specific parts of the al­

gorithms are developed. Therefore, there remains many approaches to this problem 

that have not been developed. As a result, the goal of this thesis is to develop, com­

bine and test aspects of autonomous science that have not previously been developed. 

This goal will attempt to produce a system with the following properties: 

(i) The rover should be capable of identifying (i.e., not just sorting) several dif­

ferent objects via the machine vision, image processing and machine learning 

techniques. 

(ii) The machine learning technique should be expandable and tuneable to include 

new feature types. 

(iii) A map of identified features should be built with sufficient accuracy that a rover 

can safely plan efficient paths from one point in the map to another. 

(iv) The rover should be able to identify features, plan paths, and drive to goals 

without any intervention from an operator. 

1.4 Overview 

The next chapter provides background information on topics that are used in the 

development of the algorithms used in this thesis. Sufficient detail is provided on the 

most critical topics; however, references are provided for more detailed explanations 

and for processes not critical to the scope of the thesis. A literature review on 

autonomous science systems, with a focus on the three latest large-scale efforts, is 

also presented. 
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Chapter 3 outlines how the overall system merges several algorithms together into 

an autonomous science system. It provides the theory and details on the function 

of each of these algorithms. This includes how features are localized and mapped, 

and how their attributes are estimated. The methods used to evaluate the features 

are discussed, and there is an overview of the method in which these evaluations are 

incorporated into the guidance system of a rover. 

Chapter 4 describes the environments in which the algorithms were tested, as well 

as the conditions of those tests. A full implementation of the system was simulated 

using MATLAB, which was tuned using the results of real-life tests. The hardware 

used in the laboratory testing is specified and the features that defined the envi­

ronment are described. The laboratory testing focused on the machine vision and 

machine learning aspects of the system. 

The results of the full-implementation simulated testing and the partial implemen­

tation laboratory testing are presented in Chapter 5. The results of the simulated 

tests focus on the merging of the machine learning and guidance algorithms, specif­

ically outlining their effects on different rover exploration scenarios. The results of 

the laboratory tests focus on the tuning and performance of the machine vision and 

machine learning algorithms. 

Finally, Chapter 6 summarizes the content of the thesis and adds concluding 

remarks about the contributions that were made. A few suggestions are made on 

possible directions of future work. 



Chapter 2 

Background and Literature Review 

This chapter provides background material for the algorithm development that is 

presented in Chapter 3. The essential information necessary to implement the path-

planning algorithms used in this thesis are presented in Section 2.1. An overview 

of the aspects of Bayesian networks that were necessary for the development of the 

feature identification algorithm is shown in Section 2.2, including an example on 

how they can be trained from data sets. Background information on fuzzy logic 

and how it can be used with Bayesian networks is overviewed in Section 2.3. Other 

topics that were necessary but not the focus of the thesis are presented in Section 

2.4, which includes machine vision, state estimation with the extended Kalman filter 

and velocity-constrained control. Finally, Section 2.5 presents a literature review 

on previously developed autonomous science systems, with a focus on the last three 

major efforts. Also included are remarks on the relevance of previous work to the 

goals of this thesis. 

2.1 Path-planning 

All autonomous planetary rovers to date have used graph-based path-planning algo­

rithms. This includes Sojourner [4] and Spirit and Opportunity [5]. NASA's next 
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Mars rover, Curiosity, will also use this type of algorithm [6]. One advantage of using 

graph-based path-planning is its guarantee to find a solution if such a solution exists. 

It also provides flexibility on how the terrain is described in the form of cost maps. 

Cost maps are formed by discretizing the terrain into vertices and assigning each ver­

tex a traversal cost. Once the rover is localized to a vertex in this map, a goal vertex 

is specified. The path planner plans the optimal path (i.e., the minimal cost based 

on the cost map) from the rover vertex to the goal vertex. A widely used algorithm 

to plan graph-based paths is A* [7], from which many modern algorithms have been 

derived. One such derivation is Theta* [8], which enhances A* by allowing any-angle 

path-planning. 

2.1.1 Cost Maps 

A cost map is used to describe the cost of traversing different features in the terrain. 

For example, the cost of travelling over a rock could be a function of its size, the 

cost of climbing a slope could be a function of its grade, or the cost of navigating 

crevasses could be a function of their depth. Deriving the functions that describe 

these cost-terrain relationships depend on the chassis design of the rover and would 

be determined with testing. The cost itself is often described in terms of power, 

energy, or distance. 

To create a cost map, the terrain must be discretized into a grid of vertices. A 

simple illustration of this process is shown in Figure 2.1. The resolution of the grid 

is selected based on the computational capabilities of the rover. A smaller resolution 

allows for more precise path-planning, but requires more calculations (as more paths 

are possible). Also, the connectivity of the grid (i.e, how nodes are connected to their 

neighbours) can affect the possible travel headings of the rover if paths are limited to 

the vertex connections. In this thesis, an eight-connected grid (i.e., each vertex has 

eight neighbours as shown in Figure 2.1) is used; however, graph-based path-planning 
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can be used with any degree of connectivity. 

Figure 2.1 - A simplified example of a partially populated cost map (background 
image from [9]). 

Each vertex in the cost map must be given a traversal cost. These costs are usually 

derived from observations made with exteroceptive sensors while also considering 

capabilities of the rover's chassis. Testing must be done to accurately describe the 

relative costs of travelling over different types of terrain. For example, if tests showed 

that the rover used 30 % more power to travel over a rock that is half a wheel diameter 

in height, then the cost of vertices containing these rocks must be adjusted accordingly 

relative to empty vertices. Note that useful cost calculations rely on the accuracy of 

the sensors making the observations (e.g., using a camera to measure the height of a 

rock), as well as the accuracy of the localization of the rover (to properly place the 

coordinates of the rock in the cost map). 

To accommodate a graph-based path planner, the position of the rover is usually 

reduced down to one vertex. To validate this alteration, half of the largest dimension 

of the rover's footprint is added to the size of features. This allows for paths to be 

planned while maintaining a safe distance from features. Furthermore, as the edges of 

features rarely coincide with the edges between vertices, vertices partially occupied by 

features are considered fully occupied as a safety measure to ensure adequate distance 

from features is maintained. This process is illustrated in Figure 2.2. 
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Figure 2.2 - Expanding the size of a feature by half of the largest dimension of the 
rover's footprint. The rover is represented by the square, and the shaded vertices are 
those whose costs are affected by the feature, (x, y) is the estimated location of the 
feature, r is the estimated radius of the feature, and h is the rover's largest dimension. 
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2 . 1 . 2 A * 

A* path-planning is an extension of Dijkstra's algorithm that improves calculation 

time by using heuristics. It begins by expanding the start vertex to select the best 

neighbour to expand next. Expanding the vertex s consists of selecting among the 

unexpanded (and reachable) neighbours of s the vertex s' with the lowest heuristic 

cost f(s'). This cost is calculated with the function 

f(s') = g(s') + h(s'), (2.1) 

where g(s') is the cost of travelling from the start vertex sstart to s' and h(s') is 

an admissable heuristic of the cost of travelling from s' to the goal vertex sgoai. 

This means that h(s') must always be less than or equal to the actual minimum 

cost. However, maximizing h(s') can decrease the number of expansions that will 

be required to calculate the path. As h(s') —> 0, the speed advantage of using 

A* in place of Dijkstra's algorithm decreases, and A* essentially becomes Dijkstra's 

algorithm when h(s') = 0. For eight-connected grids, the Chebyshev distance is often 

used to calculate h(s'); i.e., 

•IstraightyS ) \SX Sgoalx \ i \Sy Sgoaly \ yZ.ZS.) 

hdiag(s') = min( |4 - sgoalx\, \s'y - sgoaly\) (2.2b) 

h(s') = Rg \hstraight(s') + (V2- 2)hdtag(s')j (2.2c) 

where Rg is the resolution of the grid. In this example, the cost of travelling between 

vertices is assumed to be the distance between them (i.e., the cost of travelling to 

a vertically or horizontally adjacent vertex is Rg, and the cost of travelling to a 

diagonally adjacent vertex is \f2Rg). This will always yield h(s') < cost(s',sgoa{). 

Figure 2.3 shows the case where h(s') = cost(s', sgoai). Note that multiple paths exist 
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that yield the same Chebyshev distance. 

< 

/ 
/ 

/ 

/ 

/ 

—@\ 
*goal 

0 1 2 3 4 5 6 7 

Figure 2.3 - One of many variations of the shortest path between s' and sgoai whose 
path length is also the Chebyshev distance (?« 8.243-R5 in this example). 

The algorithm continues to expand vertices until sgoai is selected in an expansion. 

The optimal path is extracted by starting from sgoai and repeatedly selecting the 

vertex that led to its expansion (its parent vertex) until sstart is found. The above 

describes the general concept of A*, with some details omitted for brevity (e.g., 

updating g(s') if the latest expansion of one of its neighbours creates a better path 

from the start to s'). A full description is shown in Algorithm 1. The open list in 

Algorithm 1 is a list of vertices that are in consideration for expansion (i.e., they 

were a neighbour of an expanded vertex at least once), and the closed list is a list of 

vertices that have been expanded. 

2.1.3 Theta* 

A major restriction of using A* path-planning is constricting movement to only the 

neighbours of the currently occupied vertex. In an eight-connected grid, this means 

the heading of a path is limited to increments of —. To remedy this restriction, any-

angle path-planning has been developed that does not require paths to be limited 

to the edges between vertices. An example of the path improvement of any-angle 
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Input: Cost map, start vertex sstart, goal vertex sgoai. 
Output: Optimal list of vertices connecting sstart and sgoai. 

1 MainQ 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

/ / I n i t i a l i z e the open and closed l i s t s , then add the 
the open l i s t . 

open = closed = 0; 
g(Sstart) = 0; 

par ent(s start) — Sstart', 
open.Insert(sstart, g(sstart) + h(sstart)); 
// While the open l i s t i s not empty, expand the vertex 

the lowest cost f(s). 
while open ^ 0 do 

s = open.LowestF(); 
open.Remove(s); 
if s = sqoai then 

ExtractPath(); 
return "path found"; 

end 
closed.Insert(s); 
foreach s' 6 neighbrvisib(s) do 

if s' $ closed then 
if s' $ open then 

g(s') = oo; 
parent(s') = NULL; 

end 
UpdateVertex(s, s'); 

end 
end 

end 
return "no path found"; 

25 e n d 

start to 

s with 

Algorithm 1: The A* path-planning algorithm [7]. The functions UpdateV-
ertex, Compute and ExtractPath are shown in Algorithm 2. 
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27 UpdateVertex(s, s') 

28 

29 

30 

31 

32 

33 

34 

35 

/ / Updates g(s') if the cost of travel l ing from s to s' i s lower 
than any other paths seen previously. If g(s') i s improved, 
add s' to the open l i s t . 

9current 9\^ J> 

ComputeCost(s, s'); 
i f g(s') < gCUrrent t h e n 

if s' € open then 
| open.Remove(s'); 

end 
open.Insert(s', g(s') + h(s')); 

end 
36 e n d 

37 ComputeG(s, s') 

38 

39 

40 

41 

/ / If the cost of travel l ing from s to s' i s lower than any 
other paths seen previously, update g(s') and make s i t s 
parent. 

if g(s) + cost(s, s') < g(s') then 
parent(s') = s; 
g(s') = g(s) + cost(s,s'); 

end 
42 e n d 

43 ExtractPathQ 

44 

45 

46 

47 

48 

49 

/ / Extracts the path by starting at the goal and travel l ing 
through the ''family t r e e ' ' of vertices ( i . e . , always 
moving to the parent of a vertex) unti l sstart i s found. 

path = 0; 
currentVertex = sgoai; 
while currentVertex ^ sstart do 

path.Append(currentVertex); 
currentVertex = parent(currentVertex); 

end 
so end 

Algorithm 2: The functions UpdateVertex, Compute and ExtractPath 
used by A* in Algorithm 1. 
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path-planners is shown in Figure 2.4. There are two predominant any-angle path 

planners for graph-based cost maps: Theta* and Field D*. Field D* [10] does not 

edge-constrain paths by linearly interpolating the cost of crossing an edge based on 

the costs of the vertices the edge is connecting. Theta* [8] achieves a similar result 

by allowing the parent of a vertex to be any vertex to which it has line-of-sight. In 

this context, two vertices have line-of-sight if it is possible to connect them with a 

straight line that does not cross any untraversable vertices. Field D* and Theta* 

have been compared for paths planned on randomly generated cost maps [8]. It was 

found that Theta* found shorter paths than Field D*, and gave the best overall trade­

off between runtime and path length. For these reasons, along with its algorithmic 

simplicity, Theta* was selected as the path-planner for this thesis. 

A* 

Any-angle 

Figure 2.4 - Any-angle path-planning generates shorter paths than A* by eliminating 
the restriction that paths must travel along graph edges. 

There are minimal algorithmic differences between A* and Theta*. The pri­

mary difference is how g(s') is calculated (i.e., function C o m p u t e G in Algorithm 

2). Rather than only considering the path from s to s', the cost from parent(s) to 

s' is also considered if there is line-of-sight between parent(s) and s'. This change 

is shown in the updated version of C o m p u t e G shown in Algorithm 3 (note that all 

other functions are identical to those used in Algorithm 1). 

In addition to the changes to C o m p u t e G , the admissable heuristic h(s') must be 

updated. Now that paths can be planned at any angle, the Chebyshev distance will 

not always be less than the path length planned by Theta*. As a result, h(s') should 

r\£ 
%j-

** 
4* 

*** 

*»»• «**• 

/ 
/ 
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37 ComputeG(s, s') 

38 

39 

40 

41 

42 

43 

44 

45 

46 

4 7 

48 

/ / If the cost of t r a v e l l i n g from s to s' (or from parent(s) to 
s' if there i s l i ne -o f - s igh t between them) i s 
other paths seen previously, update g(s') and 
parent(s)) i t s parent . 

if LineOfSight(parent(s),s') then 
if g(parent(s)) + cost(parent(s), s') < g(s') then 

parent(s') = parent(s); 
g(s') = g(parent(s)) + cost(parent(s), s'); 

end 
else 

if g(s) + cost(s, s') < g(s') then 
parent(s') = s; 
g(s') =g(s) + cost(s,s'); 

end 
end 

49 e n d 

lower than any 
make s (or 

Algorithm 3: The new ComputeG function for Theta*. 

now be the cost of a straight line between s' and sgoai, as this path is possible when 

planning with Theta*. 

To calculate if there is line-of-sight between two vertices, Bresenham's line al­

gorithm [11] is commonly used, which was originally developed as a line-drawing 

algorithm in computer graphics. This algorithm indicates which vertices are crossed 

when drawing a straight line through a Cartesian grid. If none of the crossed vertices 

are untraversable, line-of-sight exists. The algorithm uses only logical and integer 

operations, which are beneficial in speeding up repeated line-of-sight checks. 

2.1.4 Fast Re-planning 

In mobile robotics, "fast re-planning" versions of any-angle path planners are used 

to update paths when there are changes to the cost map. This is beneficial when 

rovers are navigating previously unexplored environments, as new observations must 
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constantly be reflected as changes in the cost map. Without fast re-planning, no 

information is retained from previous planned paths and a new path must be planned 

each time there is a change in the cost map. With fast re-planning, vertex information 

is stored and re-used after the cost map has been updated. If the changes to the cost 

map do not greatly affect the previous path, a path is re-planned in much less time 

than the original. As changes to the cost map become greater and more chaotic, the 

re-plan time approaches that of the original planning time. There are fast re-planning 

versions of Field D* [10] and Theta* [12] (known as Incremental Phi*). 

It should be noted that fast re-planning Field D* has substantial heritage in rover 

missions [4, 5, 6]. This alone is a convincing proponent in using a similar algorithm in 

the autonomous science system presented in this thesis. However, extending Theta* 

into the fast re-planning Incremental Phi* is certainly a viable option that lacks her­

itage simply because it is a relatively recent (2009) development. It is recommended 

that future refinements to the autonomous science system weigh the benefits of the 

two systems prior to implementation. 

2.2 Bayesian Networks 

Granting greater autonomy to a robot requires some form of machine learning, such 

that useful information gained from sensors or empirical data can positively influence 

the behaviour of the robot. In mobile robotics, exteroceptive sensors are often used 

to interpret the local environment surrounding the robot, and that information is 

used to influence motion. One use of machine learning is classification, where the 

data from these sensors (e.g., camera, laser scanner) is algorithmically placed in a 

pre-defined category. Probabilistic classification enhances this process by calculating 

the probability that the data belongs in each category. These probabilities can be 

used to measure how well data fits into a category, which allows for the preservation 
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of multiple hypotheses that can be improved with new measurements. This benefit 

would be very useful for rover-based mineral classification as observations made by 

the rover are inherently uncertain and change depending on many conditions. For 

these reasons, probabilistic classification was selected to categorize mineral types. 

A commonly used method for autonomous decision-making and classification is 

rule-based expert systems. These algorithms classify data through a nodal flow chart, 

where each node represents a query about the input data, much like a human expert 

would approach this problem. However, there are weaknesses to this approach that 

would cause problems in developing it for probabilistic classification. These include 

difficulties in using training sets to refine the model and also adapting the model to 

handle missing inputs [13]. Unfortunately, adapting the system to different environ­

ments will require different training sets; therefore, it is desirable that this process 

be simple and efficient to enhance flexibility. Also, there is no guarantee a full set of 

inputs will be available at each step of the classification. For these reasons, this type 

of classification was not explored further. 

A review of the literature showed two prevailing forms of environment classifica­

tion in rover-based systems: Bayesian networks (BNs) and artificial neural networks 

(ANNs). BNs have been used for both detection and classification of rocks on a 

rover platform [1] and ANNs have been used to detect carbonates using Mars ana­

logue targets [14]. To select the most appropriate method, the following criteria were 

considered: (i) accuracy, (ii) computational requirements, (iii) ease of incorporat­

ing a prion knowledge, (iv) human interpretability, and (v) heritage. The following 

comparisons concerning these criteria are largely based on the work of Zhang and 

Bivens [15]. 

Accuracy 

BNs have been shown to be more accurate than ANNs if only small sets of 

training data are available. This becomes less pronounced as the size of data 
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sets increases, but is amplified if the model is using discrete (as opposed to 

continuous) data sets. 

Computational Requirements 

The computational time of ANNs remains nearly static despite an increase in 

the size of data sets. On the contrary, BNs have a nearly linear relationship 

of decreasing speed as the size of data sets increases. As a result, if there is 

a possibility of requiring a model to be expanded in the future, the increase 

in computation time for BNs must be considered in the initial selection of the 

classification algorithm. 

Ease of Incorporating A Priori Knowledge 

When developing BNs, the associativity and dependence of events can easily be 

incorporated into the model. The graphical representation of BNs makes this 

process relatively simple. Also, the integration of known probabilities into the 

model is straightforward. Likewise, methods have been developed to incorporate 

a priori knowledge into ANNs. This is done by introducing a hidden layer of 

neurons with an equal number of neurons as the input layers. Associativity 

between neurons is done by forming connections between the input neurons 

and all the associated neurons in the hidden layer. 

Human Interpretability 

A BN is usually depicted as a directed acyclic graph (DAG), whose connections 

between events show direct causal relationships (i.e., an event at the head of a 

directed edge causes the event at the tail end). This makes human interpretabil­

ity of BNs relatively intuitive. Conversely, the complexity of ANN models can 

hinder human interpretation (sometimes considered a "black box" classifier). 

Heritage 
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Rock classification with a rover-mounted camera in a natural environment has 

been shown to be effective using a BN [1]. ANNs have been used for detecting 

carbonates and other minerals in rocks in a Mars analogue environment [14]. 

Based on the above criteria, it was decided a BN best suits the current application. 

The ability to create an accurate classifier with limited training data is a useful 

advantage of BNs. Also the network will be relatively simple and will use discrete 

events, negating much of the speed and resource advantages of ANNs. Additionally, 

the ease of interpretability also greatly aids in the development of the classification 

algorithm. Finally, past successes using BNs in similar applications creates a useful 

foundation of knowledge to build on. 

2.2.1 Bayes' Theorem 

Bayes' Theorem (BT) allows for the calculation of the conditional probability of 

an event occurring. This probability is conditional based on the knowledge that a 

separate event has already occurred. For example, suppose it is known that a student 

finished his/her thesis before a deadline. Using BT, the conditional probability that 

the student also had time to regularly partake in social activities can be calculated, if 

a causal relationship between these two events can be described. The most common 

form of BT is 

Pv(slF) _ Pjit^iS) (2 3) 

This thesis uses the format of Pr(S = p) for the unconditional probability that S is 

equal top (where p is known as the state of S). If pis absent (i.e., Pr(S')), S is assumed 

to be binary, where S is true and S is false. The format Pr(S'|F) is the probability 

that event S is true given the knowledge that the event F is true. In the above 

example, the event "the student has a social life" would be S, while the event "the 

student finished his/her thesis before the deadline" would be F. Consequently, using 
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BT requires that it is possible to obtain (or calculate) the inverse probability (i.e., the 

probability that the student finished his/her thesis on time knowing they had a social 

life) as well as the unconditional probabilities of these events occurring. Although this 

example depicts binary events, each event can take on any number of discrete states. 

For example, instead of "having a social life", event S could represent the extent of 

a student's social life (e.g., S € {hermit, average, party animal}). In general, BT 

adjusts the probability of the different states of an event based on evidence. 

2.2.2 Network Modelling 

In complex systems (i.e., many events, dependencies), it becomes difficult to keep 

track of inter-dependencies among events such that BT (and its derivations) can be 

applied to calculate conditional probabilities. A solution to this problem is organizing 

the events in a BN, which uses a directed acyclic graph (DAG) to show the dependence 

(and independence) of a collection of events. Each event is represented by a node on 

the graph, and every node is linked by a directed edge to at least one other node. 

The state of a node on the head end of a directed edge is called a parent node, which 

is said to cause the state of the corresponding node at the tail end of the directed 

edge (a child node). Note that no cycles can exist in the graph (acyclic). An example 

of a BN based on the example in Section 2.2.1 (with an additional event) is shown in 

Figure 2.5. 

It is important that the inter-dependencies among the events in the graph struc­

ture properly reflect the real system. Methods exist to ensure this compatibility, 

which should be used when constructing a complex BN [16]. Once the DAG is cre­

ated, the conditional probabilities of all nodes must be initialized. Different methods 

used to initialize these probabilities are discussed in Section 2.2.5. The initial con­

ditional probabilities of each node are usually organized in a conditional probability 

table (CPT) that lists the probability of a node based on the state(s) of its parent 
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node(s). If the node has no parent nodes, the CPT represents the unconditional 

probability of the states of that node. Examples of CPTs for the nodes in Figure 2.5 

are shown in Table 2.1. 

Regularly 

Working on 

Thesis (W) 

Social Life 

(S) 

Finish 

- H Thesis by 

Deadline (F) 

Figure 2.5 - A simple example of a Bayesian network. 

Table 2.1 - The conditional probability tables for the nodes in Figure 2.5. 

(a) Node W 

W Pv(W) 

true 0.85 

false 0.15 

W 

true 

true 

false 

false 

(b) Node S 

S 

true 

false 

true 

false 

PT(S\W) 

0.10 

0.90 

0.75 

0.25 

W 

true 

true 

true 

true 

false 

false 

false 

false 

(< 

S 

true 

true 

false 

false 

true 

true 

false 

false 

;) Node F 

F 

true 

false 

true 

false 

true 

false 

true 

false 

Px(F\S,W) 

0.08 

0.92 

0.80 

0.20 

0.02 

0.98 

0.18 

0.82 

Now that the CPTs have been initialized, BT can be used to calculate different 

conditional probabilities. For example, the probability that a student has a social life 
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given he/she is regularly working on their thesis is 

_ Pr(W\S)Pv(S) _ (qi^7g)(0-10 + 0-75) 
^b\w> - p^w) - Q^5 

2.2.3 Worlds 

A world is an instance where each node is a known state. Hence, for the BN in Fig­

ure 2.5, there are eight possible worlds, shown in Table 2.2. The sum of probabilities 

of all worlds must be equal to one as the set of worlds describes all possible outcomes. 

The probability of an individual world can be calculated as 

Pr(Wi) = Pr(WwjPr(SWi\WWt)Pr(FWz\SWz, WWJ, (2.5) 

which is the chain rule for BNs. For example, using the conditional probabilities 

defined in Table 2.1, the probability of w-j is 

Pr(w7) = Px(y/)Px(S\W)Pr(F\S,W) 

= (0.15)(0.25)(0.18) 

= 0.0068. (2.6) 

2.2.4 World Probability Updates with Evidence 

If the state of a node is observed, the probability of all worlds must be updated to 

reflect this observation, known as evidence. For example, if it was observed that 

a student does not have a social life (S), all worlds that contradict this evidence 

now have zero probability. However, the probability of the remaining worlds must 

now be adjusted such that the total probability of all worlds remains one. Because 

this observation does not provide new information about the remaining worlds, the 

= 0.118. (2.4) 
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Table 2.2 - All possible worlds and their probabilities for the BN in Figure 2.5. 

World 

W\ 

U!2 

W3 

W4 

w5 

w6 

Wj 

w8 

W 

true 

true 

true 

true 

false 

false 

false 

false 

S 

true 

true 

false 

false 

true 

true 

false 

false 

F 

true 

false 

true 

false 

true 

false 

true 

false 

Pr(World) 

0.0068 

0.0782 

0.6120 

0.1530 

0.0023 

0.1103 

0.0068 

0.0308 

scaling factor is the same for each of them. To keep the relative probability among 

the remaining worlds the same, they are simply normalized. For example, consider 

the worlds in Table 2.2. With the new evidence (S), the probability of u>i, w2, w5, 

and WQ is zero. Normalizing the remaining non-zero probabilities yields the posterior 

probability Pr'(w3) as 

P r > a ) = P r W 

Pr(w3) + Pr(w4) + Pr(w7) + Pr(w8) 
0.6120 

0.612 + 0.153 + 0.0068 + 0.0308 

= 0.191. (2.7) 

The posterior probability of all worlds after applying Equation 2.7 is shown in Ta­

ble 2.3. The posterior probability of any state of any event is simply the sum of the 

probabilities of all worlds where that state occurs. For example, before the evidence 

was introduced, the overall probability that the student would finish his/her thesis 
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Pr(F) = Pr(wi) + Pr(w3) + Pr(w5) + Pr(w7) 

= 0.0068 + 0.6120 + 0.0023 + 0.0068 

= 0.6279. (2.8) 

However, after the evidence is observed (i.e., using Table 2.3), this is updated to 

Pr'(-F) = 0.7710. Thus, the evidence that the student does not have a social life 

increased the probability that he/she will finish their thesis on time. 

Table 2.3 - The updated probabilities of all worlds after the evidence S is introduced. 

World 

twi 

w2 

w3 

W4 

w5 

WQ 

w7 

w8 

w 
true 

true 

true 

true 

false 

false 

false 

false 

S 

true 

true 

false 

false 

true 

true 

false 

false 

F 

true 

false 

true 

false 

true 

false 

true 

false 

Pr'(WorL 

0.0000 

0.0000 

0.7626 

0.1907 

0.0000 

0.0000 

0.0084 

0.0383 

In the above example, evidence directly determined the state of an event. However, 

it is not uncommon that evidence changes the relative probabilities among the possible 

states. This is called soft evidence and takes the form Pr'(A) = z, where z is the 

posterior probability of the state of event A. For example, perhaps a professor thought 

they recognized their student at a bar but was not sure it was them. This led the 

professor to believe there was a 60 % chance that the student has a social life (Pr'(S') = 

0.60). To determine the updated probability that the student will finish his/her thesis 

on time, the probability of each world must be updated. Much like the previous 
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example, the posterior probabilities of the world are scaled according to the new 

evidence, once again maintaining the relative probabilities (this time among two sets 

of worlds: when the student has a social life and when the student does not have a 

social life). For Pr'(S') = 0.60, this normalization is 

(^PrM, ifS, 
Pr 'H = { ,^Jan (2.9) 

l w f t W it5' 
The posterior probability of all worlds after applying Equation 2.9 is shown in Ta­

ble 2.4. Using Equation 2.8, the posterior probability that the student will finish 

his/her thesis on time after entering the soft evidence is P r ' (F ) = 0.3359. Thus, the 

evidence that there is a 60 % chance that the student has a social life greatly reduced 

the probability that he/she will finish their thesis on time. 

Table 2.4 - The updated probabilities of all worlds after the evidence Pr'(S') = 0.60 
is introduced. 

World W S F Pr'(World) 

u>i true true true 0.0207 

w2 true true false 0.2380 

u>3 true false true 0.3050 

W4 true false false 0.0763 

w5 false true true 0.0068 

we false true false 0.3350 

w7 false false true 0.0034 

wg false false false 0.0153 

2.2.5 Initializing and Training 

The probabilities in CPTs (e.g., Table 2.1) must be initialized. This is generally done 

in one of two ways: consulting an expert or training with data sets. An expert uses 
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his/her knowledge of the field to assign conditional probabilities. Constructing a BN 

alleviates some of the difficulty in these initializations because only the conditional 

probabilities of child nodes based on their parent nodes must be specified. For ex­

ample, consider the BN in Figure 2.5. It is easier to assign Pr(F|S', W) than Pr(F) 

because F is conditionally dependent on S and W. It was shown that initializing 

conditional dependencies can be relatively simple for experts. When initializing a BN 

used to diagnose diseases based on symptoms, doctors found it relatively simple to 

specify these conditional probabilities versus specifying the unconditional probability 

that a patient has a disease [17]. 

Initializing CPTs with data sets is useful if the sample size is sufficiently large 

and representative of the total population. Suppose students who had completed 

their theses were polled, resulting in the data set shown in Table 2.5. Calculating 

probabilities for the CPTs using BT is relatively straightforward. For example, the 

probability that a student has a social life if they work on their thesis regularly is 

Pv(W) 10 
15 

or the probability that a student will finish his/her thesis on time if they work on it 

regularly and do not have a social life is 

P r ( m S ) = P £ ( W ^ = ( ! ^ ) = 0.833. ( , n ) 

2.3 Fuzzy Logic 

Probabilistic classification using BNs using the methods described in Section 2.2 

often requires converting a continuous measurement into a discrete observation. For 

example, a training set was used to train a BN in Section 2.2.5. This data set 
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Table 2.5 - An example of a data set generated by polling 15 students who had 
completed their theses. 

Student 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

W 

true 

true 

true 

true 

false 

true 

false 

false 

true 

true 

true 

true 

false 

false 

true 

S 

false 

true 

false 

false 

true 

true 

false 

true 

false 

true 

false 

true 

true 

false 

false 

F 

true 

false 

true 

true 

false 

false 

false 

false 

true 

true 

true 

false 

false 

true 

false 

consisted of the results of a survey of recently graduated students that asked the 

following questions: 

(i) Were you regularly working on your thesis? 

(ii) Did you have a social life? 

(iii) Did you finish your thesis by the deadline? 

Realistically, students taking this survey would require more detail to properly answer 

the first two questions. For example, how often and how long does one have to work 

on his or her thesis to answer the first question affirmatively? Also, what are the 

conditions on whether or not a student has a social life? A better way to perform 

this survey would be to provide criteria that a student can use to determine how they 
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should answer the question. For example, a criterion could be "a student has a social 

life if he or she spends more that six hours per week undergoing social activities". 

In addition, more information could be gained if partial truths were allowed (i.e., 

students are allowed to answer "75 % yes"). This use of partial truths to explain 

membership to the state of a variable is the basis of fuzzy logic. 

The goal of fuzzy logic is to logically assign membership of a continuous mea­

surement to a state of a variable, and to indicate the quality of the membership (the 

degree of truth). Fuzzy set theory originated in 1965 in a proposal by Lotfi Zadeh 

[18]. Unlike traditional binary logic where variables have only two states (e.g., true or 

false), a truth value describes the degree to which a measurement belongs to a state. 

Truth values range from zero to one, where zero means "does not belong" to a state, 

and one means "has full membership" to a state, the result is the discretization of a 

continuous measurement into degrees of truth pertaining to a set number of possible 

states. 

2.3.1 Membership Functions 

The membership function (MF) of a state maps a continuous measurement into a 

truth value for that state. For example, if a student spent six hours per week social­

izing, a MF for the state "true" of the variable "has a social life" (S) may produce a 

truth value of 75 %. In this example, the state was a binary variable, but this is not 

a requirement to use fuzzy logic. If the state was expanded to include more detail 

about the extent of a student's social life (e.g., S G {hermit, average, party animal}), 

MFs for each state would convert the average social hours per week into truth values 

for each state. For example, the outcome of this transformation for a student that 

socializes five hours per week could be {0.83, 0.17,0}, which indicates that a student 

is 83 % a hermit and 17 % average. 

The only restriction on the form of a MF is that it maps an input to an output 
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within the interval [0,1]. As a result, many different types of MFs have been investi­

gated. Two common approaches are Gaussian or linear functions. Gaussian MFs are 

useful if there is a singular "best" value for a state and deviation from that value can 

be reasonably assumed to be a Gaussian random variable. Linear functions are useful 

when there is a range of values that describe absolute membership and/or absolute 

non-membership to a state. They are also relatively simple to implement and train. 

Examples of a Gaussian and linear MFs are shown in Figure 2.6. This thesis uses 

fuzzy logic to discretize measurements of the states of different physical attributes. 

As there is no singular "correct" value for many of these states, but rather a range 

of acceptable values, a Gaussian approach is impractical. For this reason, along with 

their simplicity, linear MFs are used in this thesis. 

The truth value of a measurement can be derived from a linear piecewise-

continuous MF as 

0 if x < If, 

&} iilf<x< ls, 

1 iils<x<rs, (2-12) Truth Value = < 

rf if rs < x < rr, 
rf—rs

 b — / ' 

0 if x > rf, 

where x is the measurement and the parameters {lf,ls,rs,rf} are the values of x 

that make up the left foot, left shoulder, right shoulder and right foot of a trapezoid, 

respectively. Note that when ls = rs, the function describes a triangle. The MF 

shown in Figure 2.6(b) can be described as {6, 9,11,14}. 

A set of MFs that describes all possible states of a measurement is sum normal if 

the sum of all truth values for any measurement is equal to one. This is a frequently 

used but not an essential attribute of fuzzy logic. Sum normality is often desirable 

due to its aesthetic and intuitive appeal. Also, it can improve algorithmic simplicity 
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Figure 2.6 - Examples of two types of fuzzy membership functions. 
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due to the simple reason that it imposes a new constraint on the system. However, 

sum normality is not enforced in this thesis. The reason for this is a direct result of 

using fuzzy logic to soften Bayesian evidence. For example, consider the set of MFs 

that are not sum normal in Figure 2.7. Suppose these MFs were developed based on 

a training set (as described below in Section 2.3.2). These functions assign a size to 

a rock based on its width. Now suppose a BN attempts to classify rocks based on 

their size. The MFs in Figure 2.7 suggest there are three distinct ranges of rock sizes. 

By allowing the functions to not be sum normal, anomalies (such as measurements 

directly between states or larger than the largest state) can be properly classified by 

the BN. For example, if a rock was measured to be 70 cm wide, a sum normal set may 

classify this as "large", while the non-sum normal set would indicate that it does not 

belong to any state. This fact (no state membership) would be propagated through 

the BN and would help classify the rock as "unknown", which is desirable behaviour 

if anomalous rocks are to be detected. Another approach to ensure anomalous rocks 

are labelled as "unknown" is Dempster-Shafer theory [19]. This theory deals with 

belief measurements rather than probability, and makes concessions for beliefs such 

as "unknown". However, Dempster-Shafer theory is more computationally and algo­

rithmically complex than traditional Bayesian probability [20]. For these reasons, the 

theory is not pursued in this thesis; however, future investigation into its utility in 

autonomous science is recommended. 

2.3.2 Initializing and Optimizing Membership Functions 

The MFs that are selected to describe the states of a variable can greatly affect the 

quality of the outputs. In this thesis, the MFs map continuous measurements into 

truth values that are used as soft evidence for a BN. Additionally, the objects that the 

BN is attempting to identify must be accurately describable by the MFs. For example, 

if one type of object consistently has a width of 6-8 cm or greater than 20 cm, then 
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Figure 2.7 - A set of fuzzy membership functions that are not sum normal. The size 
of a rock is described by the states "small", "medium", or "large" (dashed, solid, and 
dash-dotted lines, respectively). 

the MFs in Figure 2.7 would not be a good choice. To ensure compatibility, MFs can 

be initialized with a data set of the measurements that it will eventually describe. For 

instance, suppose a data set of 100 rocks were measured and their widths were put 

into a histogram, as shown in Figure 2.8. From this histogram, one can approximate 

reasonable MFs by ensuring high density groups of widths are given their own state. 

An example of a possible set of MFs for the data set is shown in Figure 2.9. These 

MFs do not form a sum normal set. Therefore, any abnormally large rocks or rocks 

that fall in between sizes described by the MFs can be labelled as anomalies by the 

BN. 

The MFs of fuzzy logic systems can be optimized after initialization based on the 

performance of the system. There are many techniques for optimization, including 

genetic algorithms, neural networks, evolutionary programming, geometric methods, 

fuzzy equivalence relations, heuristic methods, gradient descent, and Kalman filter­

ing [21]. Some of these methods assume or ensure sum normal MFs. In general, 

these techniques use either the output of the fuzzy system or the derivative of the 

output with respect to the MF parameters (or both) to optimize the MF parameters. 
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Figure 2.8 - A data set of measurements used to initialize the membership functions 
of the variable "size". 
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Figure 2.9 - Membership functions for the states "small", "medium", and "large" 
(dashed, solid, and dash-dotted lines, respectively) approximated from a data set. 
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However, these techniques are not employed in this thesis—the MF parameters were 

selected manually based on training data. 

2.4 Other Topics 

The following topics are necessary in the development of the autonomous science 

system; however, they are not part of focus of this thesis and will not be reviewed in 

detail here. Their role in the system is described in Chapter 3. 

2.4.1 Machine Vision 

Recently developed autonomous science systems have universally used machine vi­

sion in the visual spectrum for feature detection and/or attribute measurement (see 

Section 2.5). Machine vision is widely used partly because cameras (especially stereo 

cameras) are widely used on planetary rover platforms. In addition, image processing 

algorithms can provide an array of measurements that can be used to identify fea­

tures. Finally, stereo vision can provide 3D position estimates of observed features 

through stereo triangulation. Other methods (e.g., infrared measurements of thermal 

capacitance) can be used in conjunction with machine vision to improve the diversity 

of measurements. 

Appropriate machine vision algorithms were made available from the output of 

collaborative work within the author's research group. The algorithms provide four 

functions: image segmentation, measurement of structural and textural attributes, 

correlation of features, and position estimation of features using stereo triangulation. 

Image segmentation applies K-means clustering [22] using a moving 200 x 200 pixel 

window. The measured structural attributes are extracted from pixel quantities and 

the distribution of features, and the measured textural attributes are a subset of 

the Haralick Textural Parameters [23]. The measurements used in this thesis are 
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described below. 

Size 

The projected area (cm2) of a feature (the pixel count transformed using stereo 

vision). 

Intensity 

The average grayscale pixel colour of a feature. 

Contrast 

A measure of the sharpness of variations in the texture of a feature. High 

contrast is evidence of sudden, crisp changes in texture. 

Energy 

The uniformity of the texture of a feature. Low energy indicates an erratic 

texture. 

Entropy 

The complexity of the texture of a feature. High entropy indicates a complex 

texture. 

Inverse Difference Moment (IDM) 

A measure of the homogeneity of the texture of a feature. High IDM indicates 

a homogeneous texture. 

It should be noted that grayscale images were used throughout the experiments for 

the reasons stated in Section 4.2.2. 

The correlation of features uses both the structural and textural parameters on 

segmented regions to specify which regions are to be considered features. The esti­

mated range and bearing to each feature are extracted via stereo triangulation, which 

requires the rectification of the left and right images and the measurement of the 

displacement of the features between the two images (the disparity map). 
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2.4.2 State Estimation with the Extended Kalman Filter 

State estimation is an important topic in mobile robotics. In the scope of this thesis, 

the state is referring to the position of a feature, and not the pose of the rover (which 

is assumed to be known, as described in Section 1.2). In general, when measuring 

the state of a feature, its state cannot be observed directly (i.e., the observation will 

be subject to the capabilities of the sensor measuring it, as well as the position of 

the rover that is employing this sensor). Also requiring consideration is the fact that 

sensors are inherently noisy, and the effect of this noise needs to be factored into the 

confidence of measurements. A popular method used to update the state of a feature 

after a measurement and to propagate its uncertainty is the extended Kalman filter, 

particularly in simultaneous localization and mapping [2]. This thesis uses a similar 

method to update the state of the features, as described in Section 3.2. 

2.4.3 Velocity-constrained Control 

There are three basic types of control for wheeled vehicles: point stabilization, tra­

jectory tracking and path following. Point stabilization control attempts to minimize 

the error between the current pose of the vehicle and a specified final pose, but does 

not specify the path the vehicle must take between the two poses. Trajectory tracking 

control attempts to minimize the pose of the vehicle relative to a "virtual" vehicle 

that is executing the desired path (i.e., the error at each time step is the difference in 

pose of the vehicle and its virtual counterpart at that time). Finally, path following 

control attempts to minimize the lateral and heading error between the vehicle and a 

defined path, independent of time. The control type used in this thesis is a modified 

version of path following control. 

Path following control usually only affords the vehicle one degree of freedom—the 

angular velocity of the vehicle. The forward velocity is usually specified as constant, 
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while the angular velocity is controlled to minimize the lateral and heading error 

relative to the path. However, this approach can be undesirable when the vehicle 

must undergo turns with large turning radii. Also, vehicles that have the capability 

to turn "on the spot" (near-zero turning radius), such as the vehicle simulated in 

this thesis (see Section 4.1 for the vehicle model), lose this capability if the controller 

requires a constant forward velocity. In addition, velocity constraints (either due to 

the geometry of the vehicle or imposed by the operator) must not be violated in any 

control situation. To this end, the controller used in this thesis is the path following, 

velocity-constrained control developed by Bak et al. [24]. 

This controller has two key properties that make it ideal for the rover model in this 

thesis executing Theta*-planned paths. First, it allows for the specification of sev­

eral types of velocity constraints, namely: minimum and maximum vehicle forward 

velocities, minimum and maximum vehicle angular velocities, minimum and maxi­

mum wheel angular velocities, and a desired vehicle forward velocity. The controller 

attempts to minimize the lateral and heading error from the path while maintaining 

the desired forward velocity but not violating any of the velocity constraints. Second, 

because the path is known, the controller can anticipate upcoming turns and adjusts 

the velocities such that desirable turn properties (overshoot, settling time, etc.) are 

achieved, once again without violating velocity constraints. The combination of these 

two properties allows for smooth, constrained execution of the planned paths. 

2.5 Literature Review on Autonomous Science 

Autonomous science systems would greatly benefit existing and future planetary 

rovers for the reasons discussed in Chapter 1. These systems are often an amal­

gamation of many different algorithms. In general, the goal of autonomous science 

is to extract information from observations of a rover's surroundings and use that 
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information to make intelligent decisions. Many different approaches to autonomous 

science have been developed to achieve this goal. However, most systems to date 

share the following underlying sequence of algorithms: 

(i) Capture an image of the region to be evaluated. 

(ii) Identify rocks in the region using segmentation and detection image processing 

(and sometimes machine learning) algorithms. 

(iii) Extract physical attributes of the identified rocks using classification image pro­

cessing (and sometimes machine learning) algorithms. 

(iv) Evaluate or rank the rocks based on their estimated physical attributes. 

(v) (If applicable) Re-plan list of tasks being executed by the rover if a sufficiently 

interesting rock is found. 

Although efforts to date have generally followed this sequence, there is a lot of room 

for diversity. This includes the type of image processing used for rock identification, 

methods used for classification (e.g., whether or not machine learning techniques are 

used, and if they are, how they are used), the system used to evaluate and rank rocks, 

and how all of this information is used to make intelligent decisions. The review below 

focuses on the last three major efforts in developing an autonomous science system 

for planetary rovers. Previous work that contributed to the described systems, as 

well as the system presented in this thesis, is described in Section 2.5.4. 

2.5.1 Thompson, Niekum, Smith and Wettergreen [1] 

A Bayesian approach to autonomous science was developed by Thompson et al. Their 

work was performed alongside NASA's Jet Propulsion Laboratory (JPL), eventually 

contributing to the Autonomous Exploration for Gathering Increased Science System 
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(AEGIS) project. A version of AEGIS was uploaded to the Mars rover Opportunity 

rover in 2010 [25]. The authors recognized the necessity of increased autonomy for 

planetary rovers due to the increase in range and data collection surpassing the avail­

able data transfer bandwidth. Their work focussed on detecting and classifying the 

geological attributes of Mars analogue terrain, with particular emphasis on detection. 

This was done primarily using image processing, although the possibility of expand­

ing the algorithm with spectroscopy or other sensors was noted. Their algorithm 

can qualitatively be divided into three sequential parts: segmentation, detection and 

classification. The goal of the system was to simply gather and classify data (i.e., the 

processed data did not affect the behaviour of the rover). Below is a description of 

the parts of the system followed by conclusions that were drawn through field testing. 

Segmentation 

The purpose of the segmentation algorithm is to isolate potential scientific areas 

in captured images. It does not isolate individual targets (detection), but simply 

separates the image into distinct homogenous regions. This was performed using an 

iterative "shatter and unite" method. Before segmenting the image, a simple Gaussian 

blur operation is applied to each colour channel. The "shatter" step decomposes 

the image in a grid of 5 x 5 pixel regions. The mean pixel value of each region is 

calculated and regions whose value falls within the threshold of a neighbouring region 

are merged (the "unite" step). The image continues to be shattered and united until 

the unification of neighouring regions ceases to occur. Afterwards, regions outside 

some defined window size are filtered out (e.g., the sky or benign terrain) leaving 

only segmented regions that may contain a rock (or other features sufficiently different 

from the background). 



42 

Detection 

The regions of the image that were highlighted during segmentation are then assessed 

for their validity as a science target. Detection extracts an attribute vector from each 

segmented region, and using a BN, labels it as one of five possible classes: rocks, 

uniform patch of soil, sky, shadows, or "everything else". A BN was selected due 

to its ability to handle missing data and its computational efficiency compared to 

non-parametric classifiers. The nodes of the BN for detection included: perimeter 

(the ratio of a region's perimeter to its pixel area), relative colour (the difference 

in mean pixel hue, saturation and intensity between a region and the background), 

relative colour variance (the difference in pixel variance between a region and the 

background), height (above the ground plane), texture (the surface roughness of a 

region calculated using a fractal dimension measure of a binary intensity map), and 

the intensity gradient (the magnitude of the intensity gradient over the pixel surface 

of a region). 

Classification 

Once regions were assigned to one of the five classes via detection, geological clas­

sification is performed. In particular, the regions that were detected as rocks are 

classified geologically with a BN. The nodes of this BN are similar to those used for 

detection; however, as the properties of a target are generally not related to their 

differences from the background, nodes that exercise this comparison are omitted. 

In addition, the absolute intensity, saturation and hue of the rock are added to the 

attribute vector. The geological classifier evaluates each rock and assigns it a class 

that can be either predefined or autonomously generated. The predefined geologi­

cal types are selected by an expert, while the autonomously generated types depend 

on the data. Essentially, the autonomous method creates its own geological types 
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by classifying rocks with similar attributes together into groups. This method has 

the advantage of autonomously identifying outliers (i.e., rocks whose attributes are 

notably different from their neighbours) or selecting the best representative rock of 

a class. However, allowing the autonomous creation of classes hinders human inter­

pretation by not classifying rocks in categories familiar to experts. To improve the 

compatibility of the autonomous science algorithm with planetary scientists, a qual­

itative study was performed which employed the use of a science priority language 

[26]. 

Testing and Results 

Field testing was performed in the Atacama desert in Chile due to is resemblance to 

Mars terrain. The "Zoe" test rover from the Carnegie Mellon Robotics Institute was 

fitted with a 30 cm baseline stereo camera on a pan-tilt unit two metres above the 

ground, which could capture 1280 x 960 full colour images. The primary goal of the 

tests was to evaluate the segmentation and detection algorithms. It was found that 

small rocks and rocks in the far-field were much more difficult to detect (rocks over 75 

pixels in size had a median detection rate of 100 %). It was suggested that expanding 

the attribute set to include more sophisticated textures and angularity (sharpness) 

would help improve the detection algorithm. Additionally, it was noted that boosting 

the minimum pixel size of potential science targets would greatly improve accuracy. 

Also, including stereo disparity data in the segmentation process was speculated to 

possibly improve merging appropriate regions together. 
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2.5.2 R. Castano, Estlin, Anderson, Gaines, A. Castano, 

Bornstein, Chouinard and Judd [27] 

There has been substantial effort by R. Castano et al. at JPL in developing an au­

tonomous science system for future rovers. This exertion has resulted in the On­

board Autonomous Science Investigation System (OASIS), used to evaluate and au­

tonomously act upon science data gathered by planetary rovers. Although extend­

able to other sensors and other target types, the primary focus of OASIS is analysing 

gray-scale images from monoscopic cameras, identifying rocks of interest, retasking 

the rover to take additional images of a selected target, and continuing with the 

original mission. The algorithm has been tested in simulation and in the field. The 

sections below describe how science data is segmented, extracted and evaluated from 

the images, and incorporated into the mission plan of the rover. The results and 

conclusions from field testing are also discussed. 

Segmentation and Detection 

Single grayscale images are used in the segmentation and detection processes. It was 

acknowledged that there is pertinent value in using stereo images; however, using 

monoscopic imagery allows for the use of a larger number of cameras (e.g., the Mars 

Exploration Rovers have several cameras, many of which are not stereo-cameras). 

Two segmentation modules are used to segregate the image into homogenous regions: 

a sky detector and a rock detector. The sky detector finds the horizon with an 

edge detector, then grows homogeneous regions above the horizon (shatter and unite) 

until the sky is fully described. The second segmentation module ignores the sky and 

begins by normalizing the image and filtering it with an edge preserving smoother. 

Edges are enhanced using unmask sharpening and then detected with both Sobel and 

Canny edge detectors. Closed shapes from these detected edges are found using an 
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edgewalker, and then the results from both detectors are combined to produce a list 

of potential rocks. The algorithm was tested on 65 MER images, resulting in 92 % of 

regions identified as rocks correctly being rocks. The algorithm was found to have a 

low false alarm rate but a high miss rate. 

Extraction 

Using OASIS, information can be extracted from three types of features: clouds, dust 

devils and rocks. This review focuses on the extraction of scientific data from rocks. 

The rock extraction algorithm estimates four properties: albedo, texture, size and 

shape. Albedo is measured by computing the average gray-scale value of the pix­

els describing a rock. This measurement gives information about the mineralogical 

composition of the rock, but can be affected by shadows and the sun angle. Visual 

texture is estimated by applying a Gabor filter, which can also help determine miner­

alogical composition as well as geological history. The size and shape parameters are 

measured by modelling an ellipse (if no range data is available) or an ellipsoid (with 

range data) on the shape of a rock. The eccentricity of the ellipse (or ellipsoid) as well 

as the coverage error can indicate the angularity and ruggedness of the rock, a help­

ful indicator of its past environmental conditions. In addition to extracting science 

information from individual rocks, it was noted that identifying geologic boundaries 

and transitions of a larger region would also be valuable to help describe the context 

of particular features. However, this type of extraction was not implemented to date. 

Science Evaluation 

Ranking rocks based on extracted science data is performed in three ways: attribute-

based, example-based or novelty-based evaluation. Attribute-based evaluation allows 

scientists to directly set the importance of different attributes, and rocks are ranked 
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on the extent that these attributes appear. For example, if elongated rocks are desir­

able, features with highly eccentric ellipses are given higher priority. Example-based 

evaluation is performed by selecting a rock with interesting properties from the ex­

tracted set and ranking rocks based on their resemblance to the selected rock. Finally, 

novelty-based evaluation is used to identify rocks with outlying features (either glob­

ally or in a defined region). Methods used to determine the novelty of a rock include 

A;-means clustering, a Gaussian mixture model, and feature clouds. Feature clouds 

are £>-dimensional plots (D is the number of attributes extracted from each rock) of 

all the rocks in a region, where rocks falling outside a specified cloud boundary are 

considered novel. 

Re-planning 

The re-planner describes how the rover will behave in the event that it detects a novel 

rock during a traverse (a "science alert"). A basic reaction is simply the rover halting 

execution of its current plan and waiting for operator input. More advanced reactions 

are autonomously collecting more data of the novel feature (e.g., additional images) or 

altering the path of the rover to get closer for additional measurements. After a science 

alert and a new science goal is formed, it is passed to the re-planner to see if it can be 

accommodated. The re-planner must consider a number of things when attempting 

to form a new science-integrated plan. This includes resource (such as power) and 

temporal constraints, as well as feasibility from a navigation standpoint. OASIS uses 

the previously developed Continuous Activity Scheduling, Planning, Execution and 

Re-planning (CASPER) planner to handle this task. Plans are assigned optimization 

scores based on the science value and constraints, and the plan with the highest 

optimization score is executed. 
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Testing and Results 

Testing was performed at JPL's Mars yard with the Field Integrated Design and 

Operations (FIDO) rover (all-steering, all-driven, six-wheeled rover). The goal of 

the test was to detect rocks with relatively high albedo (white in colour) that were 

scattered among a variety of low albedo (dark) rocks, using only single grayscale 

images. OASIS was paired with navigation, locomotion and stereo-vision modules 

for traversal on the terrain. Ten runs were performed, each with a different rock 

density and number of white rocks. Of the 40 white rocks that entered the vision of 

the rover over the ten tests, 36 were detected with no false positives. It was noted 

that the likelihood of positively detecting a high albedo rock increased substantially 

if it appeared in multiple images. Also, the difficulty in matching observed rocks 

with those that were previously seen (data association) was slated as a necessary 

improvement in future work. 

2.5.3 Woods, Shaw, Barnes, Price, Long and Pullan [28, 29] 

The autonomous science concept developed by Woods et al. recognizes that it would 

be favourable that a rover emulated a geologist when exploring previously unseen 

terrain, specifically due to the bottleneck in bandwidth between a rover and its oper­

ators. The overall objective was demonstrating that a rover could travel to a target 

destination and detect and/or respond to scientifically interesting targets it identified 

along the way. If a geologist were to perform this task, he or she would select the 

most promising areas visually and then iteratively focus on smaller areas until the 

best feature is identified based on its physical attributes. The authors attempted 

to emulate this behaviour by capturing wide-angle images, identifying a part of the 

image with potential for high scientific value, capturing a high-resolution image of the 

selected area, and finally commanding the placement of a robotic arm on the most 
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promising target. This method recognizes the importance of iteration in observations, 

as closer inspection of targets are likely to change their assessment. This review will 

focus on the methods the authors used for scientific assessment of features and not 

the robotic arm placement. 

Segmentation and Detection 

The segmentation and detection algorithms were not the focus of the study and 

image processing algorithms from previous work were employed. In general, the 

image was first smoothed using a morphological and Gaussian smoothing algorithm. 

A "shatter and unite" segmentation algorithm was used to distinguish rocks from 

the surrounding soil. The results from this algorithm were combined with a double 

differential detection algorithm applied to gray-scaled versions of the original images 

to enhance the detection of potential targets, i.e., 

lF = f(fi£i\ + f(£± £A (213) 
'•> f {dxt'dyy + / \dxy' dyxj ' [ 6) 

Scientific Evaluation 

Although the value using machine learning techniques for geological classification 

was noted (and even suggested as future work), scientific evaluation was performed by 

assigning value to attributes rather than minerals. For example, the extent of bedding 

on a target was assigned a score rather than estimating the type of rock based on its 

attributes, and assigning scores based on the rock types. The "basic ingredients" for 

interpretation were defined to be the structure, texture and composition of a rock. 

Although many criteria could be used to qualitatively describe these ingredients, this 

study focused on observing particular attributes: the type and extent of bedding for 

structure, the presence and density of granules for texture, and albedo and reflectivity 

for composition. Scores are assigned based on the value given to attributes by experts 
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as. 

svs= (y2As+^2At+^2Ac+Ax) -Q-B- (2-14) 
The science value score (SVS) is calculated based on the following: As, At, and 

Ac are the overall structural, textural and compositional attribute scores, Ax is the 

composite score (applied when combinations of particular attributes are observed), Q 

is the quality factor that adjusts the score based on the quality of the measurements, 

illumination, etc., and finally B is the bias score that adjusts the score based on 

the context of the observations (e.g., a large B might occur if the rock is an outlier 

compared to its neighbours). For example, the presence of extensive large bedding 

on a rock surrounding by dissimilar rocks may be assigned a high structural (As) and 

bias (B) scores, resulting in a high SVS. 

Re-planning 

A sufficiently large SVS should autonomously influence the behaviour of the rover 

to ensure no important science discoveries are overlooked. The authors discussed 

incorporating science data on the software level of the rover's planning agent. In 

particular, a study was performed on how science discoveries could be inserted into 

the European Space Agency's (ESA) software package Time Line Validation and 

Control (TVCR). An example scenario was presented to discuss how the re-planner 

might handle possible outcomes of a mission. For example, if the rover was given a 

sub-goal and three waypoints along the way to look for science candidates, possible 

outcomes and how the re-planner should handle them are as follows: 

• A minor discovery is made at a waypoint. The rover captures and stores the 

data and continues to the next waypoint. 

• A major discovery is made at the final waypoint. The rover stops and waits for 
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• A major discovery is made at the first or second waypoint. The rover continues 

to the next waypoint(s) and then travels to and waits at the waypoint with the 

highest SVS. 

Testing and Results 

A "half-scale" rover equipped with a wide-angle camera was tested in an indoor 

Mars analogue environment (sand with some rock coverage) to assess the effectiveness 

of the scoring system and the re-planner. The rover was given a final goal and 

three waypoints at which it was to capture wide-angle images (much like the scenario 

described in Section 2.5.3). No obstacles were placed between the rover and the 

goal (i.e., the rover drove in a straight line and took images of rocks on its left). 

The rocks were placed such that low SVS specimens were installed at the first two 

waypoints and high SVS specimens were installed at the third waypoint. In the tests, 

the rover correctly assigned low scores to the rocks at the first two waypoints, and 

the re-planner correctly requested a higher-resolution image of the rocks at the third 

waypoint. Much of the remaining results dealt with the accuracy of placing a robotic 

arm on the most desirable target at the third waypoint (not the focus of this review). 

Overall, it was found that the lighting direction and intensity can greatly affect the 

uncertainty of attributes extracted from vision algorithms. It was suggested that 

geological identification and classification could be greatly improved using disparity 

information from the stereo camera, which would allow for easier extraction of granule 

sizes and variations in depth of bedding structure. It was concluded that further 

developments of a similar autonomous science system can and should be developed 

for a mission such as ExoMars. 
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Later Work 

The work described above has recently evolved and is now known as the Autonomous 

Science Target Identification and Acquisition (ASTIA) architecture [30]. In this ar­

chitecture, science target identification is improved through a new knowledge-based 

approach, which uses rule-based fuzzy logic to classify structure, texture and compo­

sition. 

2.5.4 Other Work in Autonomous Science 

Complete autonomous science systems rely on advancements in the many individual 

algorithms that comprise the full system. As such, the three major efforts described 

above, as well as the system presented in this thesis, owe much to this previous work. 

Machine learning is a valuable aspect of autonomous science. Although not a 

full autonomous science system, a rule-based expert system was used with spectrom­

eter measurements to successfully identify carbonates in the Marsokhod field tests 

[31]. A well known application of using Bayesian networks for target classification 

is the Nomad robot field tests in Antarctica [32]. The purpose of these experiments 

was to classify targets into pre-defined classes such as igneous, metamorphic, sed­

imentary, extraterrestrial, or "other". Although only a partial implementation of 

an autonomous science system, this experiment demonstrated the utility of machine 

learning for mineral classification. 

Arvidson et al. [33] identified the effectiveness of combining data from different 

sensors and different viewpoints in generating an overall map of geological trends that 

can be used to improve rover-based planning. By using simulated orbital and descent 

images, the geologic setting and regional context of an area could be established which 

improved the effectiveness of rovers searching for science targets. Pedersen [34] also 

recognized the utility of identifying geological context of local areas. The possibility 
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of augmenting the ability of a Bayesian network classification algorithm by exploiting 

the fact that clusters of objects may be correlated is discussed. It was found that 

any prior knowledge of mineral distribution as opposed to the assumption of uniform 

distribution can greatly improve classification. 

Roush et al. [35] also recognized the usefulness of machine learning and provided 

important context on how such algorithms could be used. The use of BNs is contrasted 

against using expert systems for mineral identification. Several key components of 

using BNs for this purpose are outlined, including the steps that are required for 

training a BN for mineral identification, a process which was used in this thesis. 

2.5.5 Remarks 

None of the systems described in Section 2.5 fully satisfy all of the goals outlined in 

Section 1.3. Specifically, the only system that employed a machine learning technique 

that partially satisfied goals (i) and (ii) was the work of Thompson et al. (attributes 

rather than objects were identified); however, this system did not satisfy goals (iii) and 

(iv) as it did not use the knowledge gained from its BN into its guidance, navigation 

or control algorithms. The other systems did not use machine learning techniques to 

identify or classify features. Instead of assigning value to types of rocks (i.e., using 

the observed attributes to identify the type of rock), the attributes themselves are 

given value (e.g., finding bedding on a rock is given some value). Some of the systems 

integrated the discovery of important rocks into existing planners, allowing the rover 

to autonomously re-plan its current mission. However, little detail is given about 

mapping identified features, specifically whether these maps are accurate enough to 

satisfy goals (iii) and (iv). 



Chapter 3 

Algorithm Development 

This chapter provides a detailed overview of the algorithms that were developed in 

order to achieve the goals outlined in Section 1.3. In Section 3.1, an overall high-

level description of the system is presented to explain the autonomous science system 

that was developed for this thesis as a whole. The subsequent sections provide greater 

detail for each part of the algorithm. Section 3.2 describes how the position of features 

was estimated such that a map of identified features could be produced. To provide 

a graph-based terrain map to the path-planner, Section 3.3 outlines how the feature 

map is discretized. The methods used to extract attributes and identify features is 

detailed in Section 3.4, including a description of the Bayesian network (BN) model 

that was used. Once identified, the features are evaluated and filtered using the 

methods outlined in Section 3.5. 

3.1 Algorithm Overview 

The autonomous science system is used in two different scenarios for comparison: 

prime rover solo, and prime/scout rover pairing. The prime rover solo is assumed to 

have a stereo camera, the autonomous science software, as well as a sensor/tool that 

performs up-close observations of features (e.g., a robotic arm that requires the rover 
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to be relative close to a feature). The scout rover is assumed to have a stereo camera 

but does not have the tools/sensors to perform up-close observations of features. It 

gathers data about the features and transmits this information back to the prime 

rover. The two scenarios use the same core algorithms that are described in this 

chapter. However, the order and frequency that the algorithms are used differ in the 

two scenarios. The following sections describe these differences. 

3.1.1 Prime Rover Solo 

A block diagram describing the prime rover solo scenario is shown in Figure 3.1. In 

this scenario, the prime rover is travelling to a distant goal (e.g., a crater 300 m 

away). The rover drives towards this goal autonomously and periodically maps and 

identifies features within the range of its camera using its machine vision and machine 

learning algorithms for obstacle avoidance and autonomous science. If a suitable 

science feature is identified (using the criteria described in Section 3.5), the rover 

travels to that feature for up-close observation and then continues to its goal. For 

simplification, this thesis assumes the final goal is relatively close (e.g., 10 m) and 

the rover visits at most one science feature that has passed through all the filters 

described in Section 3.5.2. In general, the goal of the rover is the final goal unless a 

suitable science feature exists or a science feature has already been visited. 
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3.1.2 Prime/scout Rover Pairing 

A block diagram describing the prime/scout rover pairing scenario is presented in 

Figure 3.2. In this scenario, the goals of the rover are the same as the prime rover solo 

scenario; i.e., travel to a distant goal and visit at most one science feature for up-close 

observation along the way. However, in this scenario, the goals are achieved differently. 

The scout rover autonomously travels to the distant goal, periodically mapping and 

identifying features along the way using its camera and its machine vision and machine 

learning algorithms. It then sends the global feature map and the science information 

it extracted from the features back to the prime rover. Effective data transmission 

between two robotic elements on the Martian surface (the Sojourner rover and the 

Pathfinder lander) at a rate of 2.4 kbps has been successfully demonstrated [36]. 

Included in transmitted data is the location of the highest ranking science feature (in 

terms of the method described in Section 3.5.2). The prime rover then plans a path 

to that feature and from the feature to the goal. It then executes this path, updating 

the global feature map as features are re-observed and updating the path if necessary. 
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3.2 Feature Position Estimation 

It is important that the rover maintains a map of features that it has observed in 

global coordinates. This map is important for two key reasons: to ensure the rover 

can avoid features that present themselves as obstacles, and to be able to find fea­

tures that present themselves as scientific points of interest. This section details how 

measurements of the location of features relative to the rover are transformed into a 

global map, including the propagation of the uncertainty in these measurements. 

3.2.1 Feature and Measurement Model 

Consider the rover model shown in Figure 3.3. The configuration of the rover is 

described by its pose pk = (Xr,Yr,9r) in the global reference frame (X,Y). As was 

discussed in Section 1.2, it is assumed that the pose is always known. Not known, 

however, are the positions of features within the range of the rover's stereo camera. 

The state of a feature q = (Xf, Yf) is estimated by the measurement y = (d, <j>), where 

d is the unsigned distance between (Xr, Yr) and (Xf, Yf) and cf) the bearing of the 

feature in the rover reference frame (x,y). Hence, the model describing the latest 

estimated position of the stationary feature based on its estimated location at time 

k is simply 

qk+x = i(qk, wk) = qk + wk, (3.1) 

where the process noise wk — ["„] ~ N(0,Q). It is assumed that the process noise 

can be modelled as a Gaussian random variable with covariance Q = diag([cr^,<7^]). 

The measurement model is simply derived from the variable definitions in Figure 3.3 

as 

yk = h(qk,vk) = 
\J(Xf,k — ^r,fc)2 + (Yf,k — Yr,k)2 

atan2 [(Yf}k - Yr,k), (XLk - Xr^k)] - dr^k 

+ vk, (3.2) 
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Figure 3.3 - The output of the stereo triangulation algorithm is the estimated distance 
(d) and angle (</>) to a feature in the rover reference frame, and the associated noise in 
these measurements (nrange and nangie, respectively). The pose of the rover and the 
position of the feature are shown in the global reference frame (X, Y). 
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where the function atan2(y, x) is equivalent to t an - 1 f — J except it restricts solutions 

to be in the range (—n, ir}. The measurement noise vk = [nj] ~ N(0,Rk), where 

Rk = diag([cr^A,,a|fe]) and depends on the location of the feature in the captured 

image. This relationship is described in Figure 3.4. The estimation of range and 

bearing of a feature is restricted by the pixel size in area of the image where the 

feature appears. As such, the measurement noise was approximated to be Gaussian 

but with a dynamic standard deviation. The standard deviation of rid was taken to 

be the average radial pixel size around the actual centroid of the feature, and the 

standard deviation of n^ was taken to be \4>i — 021^ where the bearing of the feature's 

centroid would be </>i if it was moved to the nearest pixel centre, and c/>2 if it was 

moved to a circumferentially adjacent pixel centre. In general, features closer to the 

rover have smaller variances. 

3.2.2 Position Estimation with an EKF 

To maintain an up-to-date estimate of the state of a feature (qk), an EKF is used 

to update the position estimate each time a new measurement is recorded. This 

method provides a good way to propagate the uncertainty in the feature states. A 

general description of the EKF is provided in Section 2.4.2. Note that the feature and 

measurement models described in Section 3.2.1 allow for some simplification of the 

EKF because most of the Jacobian matrices1 are the identity matrix. The Jacobian 

1A Jacobian matrix is the first-order partial derivatives of a vector with respect to another vector. 
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rover. 

Pixel boundaries 

# Actual centroid 

O Possible centroid 

estimates (pixel 

centres) 

(b) The measurement noise is approximated as a Gaussian random vari­
able, whose variance is a function of the pixel size at the estimated 
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matrices required for the position estimation updates that are constant are 

Fk 

Lk -

Mk 

Sf 
Sq 

= 5J_ 
5w 

Sh 
5v 

= h 
(<7fc,0) 

= h, 
(Qkfi) 

= h. 

(3.3a) 

(3.3b) 

(3.3c) 
(<2fc,0) 

This greatly simplifies some steps in the EKF, particularly the calculation of the 

covariance of the state in the a priori estimate (Equation 3.4a) and the calculation 

of the Kalman gain (Equation 3.4b) used in the a posteriori estimate, 

n+i = n+Q, 

Kk+1 = Pk~+1Hk+1(Hk+1Pk~+lHk+1 + Rk)~ , 

(3.4a) 

(3.4b) 

where H is the Jacobian of the measurement model with respect to the state. This 

matrix is not constant as the measurement model is a function of the state (yk = 

h(qk,vk)). The Jacobian H is 

Hk = 
Sh 

Sq (<Zfc,0) 

Xk,—Xr Yf-—Yr 

Yr ~~Jfc Xk—Xr 

fi1 /32 

(3.5) 

where /3 = y/(Xk — Xr)
2 + (Yk — Yr)

2, the unsigned distance between the rover and 

the feature. 

The rover maintains a list of features it has observed with their estimated states 

and covariances. Features found with a new measurement fall into two categories: 

previously observed and previously unobserved. As discussed in Section 1.2.1, data 

association is assumed, so previously observed features simply have their estimated 
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state and covariance updated with the new measurement. Conversely, previously 

unobserved features must have their state and covariance initialized. The initial state 

is simply taken as the measurement. The initial covariance is borrowed from a method 

used in FastSLAM [37]; i.e., 

Pk = (HT
kRk

lHk)-\ (3.6) 

In practice, any diagonal matrix whose entries are positive (a diagonal positive definite 

matrix) can be used for the initial covariance. The overall update process after each 

new measurement is shown in Algorithm 4. 

3.3 Terrain Discretization and Mapping 

As was discussed in Section 2.1, it is necessary to discretize the terrain such that 

a graph-based path-planner can be used. In this implementation, the map created 

via discretization is an occupancy grid. An occupancy grid is the simplest version of 

the cost maps described in Section 2.1.1, where vertices are either occupied (infinite 

cost) or unoccupied (no cost). Path-planning on this type of map now attempts to 

minimize the distance travelled rather than minimize the cost of travel. Vertices are 

occupied if they reside within the area of influence (A3) of a feature j observed by the 

stereo camera. The following sections describe how the occupancy grid is populated 

and how vertices are selected to be scientific points of interest. 

3.3.1 Occupancy Grid Mapping 

At any given time, the rover maintains a list of features it has observed with their es­

timated positions and covariances (as described in Section 3.2). The area of influence 
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Input: Current estimated states and covariances of the n features that have 
been observed (qljk, Pltk for i = 1,2, ...,n), the process covariance (Q), 
the latest measurement of the m features currently captured by the 
camera (yhk for j = 1, 2,..., m). 

Output: Updated states and covariances of the m measured features (qhk+\, 
P3,k+i for j = 1,2, ...,m) 

l for j = 1 —> m do 
// If j is a previously unobserved feature, initialize its 

state and covariance. 
if qJtk — NULL then 

// The initial state is the first measurement transformed 
to global coordinates. 

10 

n 
12 

13 

Qo,k 
COS 6rtk 

sin 9r k 

- sin 6rtk 

cos 9r k 
+ 

Xr 

Yr 

d cos <j)Jtk 

d sin 4>Jtk 

// Calculate the Jacobian of the measurement model with 
respect to the current state. 

Yr-Y, iA 

. P Hj,k = 

P2 £2" 

// Calculate the initial covariance. 
P3,k = (HJ,kR]~lH3,k)~1 

else 
// Calculate the a priori estimate. 

n+ • 

p
3,k+i — P],k + <2; 

// Calculate the Jacobian of the measurement model with 
respect to the a priori state estimate. 

H. j,fc+i — 

vj,fc+i" 
§ 

Yr-Yn 3,fc+l 

Y3,k+l Yr 

X
3,k+l~Xr 

P2 P2 

// Calculate the Kalman gain and the a posteriori estimate. 

Kj,k+1 = Pj~k+lHj,k+l-(H3<k+lP3~k+lHJ,k+l + R3t)~ '•> 

&,fc+i = q~k+1 + KJik+i(yJik - h(q~k+1, 0)); 
Po+,k+\ = (J* - Khk+iHhk+i)P~k+l 

end 
14 e n d 

Algorithm 4: Updating the estimated position of newly measured features with 
an EKF. 
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of feature j is an ellipse whose semi-major (a3) and semi-minor (b3) axes are 

h 
2 : 

b3=r3+ 3aQ,3 + o ' 

a3 ~~ r3 + ^Cpj + o ' (3.7a) 

(3.7b) 

where p — x and g = y if o^^ > cry ;J, or p = y and g = x if aXJ < aVtJ. The estimated 

radius of the feature (r3) is conservatively selected as the half of its estimated largest 

dimension. As was shown in Figure 2.2, the axes are expanded by half the maximum 

dimension of the rover's footprint (h) to facilitate path-planning. An illustration 

showing how the occupancy status of vertices is determined is shown in Figure 3.5. 

All vertices that fall within or are touched by the boundary of the area of influence A3 

of a feature are considered occupied. It should be noted that A3 is dynamic, as r3, aPt3 
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Figure 3.5 - The area of influence of a feature is a function of the feature's radius (r), 
the uncertainty in its position (ax,ay) and largest dimension of the rover (h). 

and o~qj from Equation 3.7 depend on the current state of the feature. This leads to a 
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notable effect on path-planning. When features are observed from a greater distance, 

the covariance of their state tends to be larger, leading to a larger area of influence. 

As a result, paths planned tend to be more conservative around features with high 

uncertainty in their state. As more and better measurements of a feature are taken, 

there is a reduction in its covariance, and by extension, its area of influence. This 

can alter the original planned path to have a more direct route if previously occupied 

vertices become unoccupied. An example of this process is shown in Figure 3.6. 

3.3.2 Science Vertices 

The purpose of the machine vision algorithms is to segment, detect and estimate the 

position of features. It is often desirable to perform "up-close" observations of the 

most scientifically valuable features, whether this be with a short-range, narrow field-

of-view sensor like a spectrometer, or physically retrieving a sample with a robotic 

arm. These observations require the rover to travel closer to the feature, to within 

the range of the sensor(s). Therefore, vertices in the occupancy grid that are both 

unoccupied and within the sensor radius (rsen) are labelled as "science vertices" for 

that particular feature. Science vertices are the only vertices that the rover can occupy 

to perform up-close observations on a feature. Note that the centre of the feature 

does not need to be within rsen, as reaching the edge of the feature is often sufficient. 

To ensure reachability for non-round features, the feature's radius (r) is selected as 

the half of its estimated smallest dimension. The science radius (rsci) of a feature is 

defined as 

fsd = T ' Tseni V"*"J 

where unoccupied vertices within this radius are considered science vertices. This 

concept is illustrated in Figure 3.7. The set of n science vertices for feature q is 

described as {sg,i, sg>2,..., SI.JJ}-
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Estimated position 
of obstacle 

I ; Position uncertainty 

') Area of influence 

Planned path 

(a) High uncertainty initially causes conservative path-planning. 

of obstacle 

i ) Position uncertainty 

; Area of influence 

. — Planned path 

(b) As uncertainty decreases due to closer observations, more efficient path-planning is pos­
sible. 

Figure 3.6 - An example of how the uncertainty in the estimate of feature positions 
by the stereo camera can affect path-planning. 
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Figure 3.7 - Vertices at which the rover can perform science are all unoccupied vertices 
from which the science instrument can reach the feature. 

3.4 Feature Identification 

The purpose of the feature identification algorithm is to estimate the probabilities of 

the mineralogies of observed features. This allows features to be evaluated and score 

based on their mineralogy. The algorithm has two key parts to perform identification: 

object modelling and the softening of evidence using fuzzy logic, and mineralogy 

estimation using BNs. 

3.4.1 Bayesian Network Model 

A generalized model of the BN used in this thesis is shown in Figure 3.8. Note 

the causality of the directed acyclic graph; the N minerals cause the states of the 

M attributes. Every mineral has M child nodes and every attribute has N parent 

nodes. Minerals have two states (true or false) and attributes A,B,C,..., M have 

mA,mB,mc, •••,mM states, where m, depends on the data set used to initialize the 

fuzzy membership functions for that attribute. 
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Figure 3.8 - A generalized model of the BN used in this thesis. 

3.4.2 Initializing the Fuzzy Membership Functions 

The fuzzy membership functions (MFs) are initialized using data sets (as described in 

Section 2.3.2). Depending on whether the BN will be used to classify real or simulated 

objects, a data set either consists of images of objects that will be classified (real 

data set) or set of virtual objects (simulated data set). In both cases, a continuous 

measurement of each attribute is extracted. For example, if one of the attributes is 

size, the width of each object in the data set may be extracted. An example of the 

results of this exercise is shown in Figure 2.8. Depending on the distribution and 

density of the histogram formed by these measurements, MFs are initialized through 

observation (one for each possible state). 

3.4.3 Training the Bayesian Network 

Now that there are MFs for each state of each attribute, a training set that consists 

of continuous measurements for each attribute can be used to train the discrete BN. 

This is an extension of the training method described in Section 2.2.5. For example, 

suppose the BN consisted of two minerals (A and B) and two attributes (Size S and 

Intensity I). The states of the attributes are S € {small, medium, large} and / G 

{low, medium, high}. Using the MFs for each state of each attribute, the continuous 

measurements of in the data set are converted to truth values, the results of which 
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are shown in Table 3.1. Using this data the conditional probability tables (CPTs) of 

each node can be initialized. For example, the conditional probability that a feature 

is large if it is mineral A is 

„ , „ , , „ N 0.8535 + 0.9950 + 0.9612 + 0.8980 + 0.8129 + 0.3234 n nnnn Pr(S = large|,4) = = 0.8073. 

(3.9) 

Similarly, the conditional probability that a feature has medium intensity if it is 

mineral B is 

r w r i. . m 0.1247 + 0.5384 + 0.0191 + 0.6509 _ 0 1 Pr(J = medium|S) = = 0.1481. (3.10) 
9 

Note that the truth values for the states of each attribute do not necessarily add up 

to one (i.e., they are not sum normal). This means there is probability remaining that 

is reserved for the entries in the CPTs that are not represented in this data set. More 

specifically, these entries are when the parent nodes of an attribute (the minerals) 

are multiple minerals or none of the minerals. For example, since it is impractical to 

suggest that a feature is both mineral A and mineral B, only the latter is used (the 

feature is neither mineral A nor B). As a result, outlying features that do not match 

the profiles specified by the data set can be identified as unknown minerals. 



Table 3.1 - A data set used to train the Bayesian network. The continuous measurement of each attribute is converted to 
truth values using the membership functions for each state. 

Size Measurements Intensity Measurements 

Measurement Continuous Small Medium Large Continuous Low Medium High Mineral A Mineral B 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

63.8832 

52.0255 

78.6621 

38.3270 

75.1238 

45.0342 

26.1814 

46.3256 

77.7883 

74.0312 

46.0942 

77.5497 

42.2234 

79.6769 

91.9144 

0.0000 

0.0000 

0.0000 

0.4669 

0.0000 

0.1986 

0.9527 

0.1470 

0.0000 

0.0000 

0.1562 

0.0000 

0.3111 

0.0000 

0.0000 

0.4447 

0.9190 

0.0000 

0.5331 

0.0000 

0.8014 

0.0473 

0.8530 

0.0000 

0.0388 

0.8438 

0.0000 

0.6889 

0.0000 

0.0000 

0.5553 

0.0810 

0.8535 

0.0000 

0.9950 

0.0000 

0.0000 

0.0000 

0.8885 

0.9612 

0.0000 

0.8980 

0.0000 

0.8129 

0.3234 

71.8828 

90.1478 

80.8464 

88.9974 

53.6171 

81.7232 

61.5406 

74.5228 

58.7263 

50.0064 

90.2456 

62.3718 

76.5069 

46.0325 

47.5292 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.1587 

0.0988 

0.1247 

0.0000 

0.0000 

0.0000 

0.8553 

0.0000 

0.5384 

0.0191 

0.6509 

0.9997 

0.0000 

0.5051 

0.0000 

0.8413 

0.9012 

0.8753 

0.3941 

0.7661 

0.4401 

0.1447 

0.7311 

0.4616 

0.9809 

0.3491 

0.0003 

0.3902 

0.4949 

0.9397 

0.0000 

0.0000 

false 

false 

true 

false 

true 

false 

false 

false 

false 

true 

false 

true 

false 

true 

true 

true 

true 

false 

true 

false 

true 

true 

true 

true 

false 

true 

false 

true 

false 

false 

-J 
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3.4.4 Entering Evidence 

Not unlike the data set, measurements entered as evidence must be converted to 

truth values (soft evidence) using the MFs for the attribute being measured. This 

soft evidence is used to update the probability all of possible worlds, which can 

be used to infer the probability that the observed feature is a particular mineral. 

This process was described in Section 2.2.4. For example, there are nine worlds 

with non-zero probability where mineral B is true for the BN described in Section 

3.4.3. These worlds are shown in Table 3.2. The probability of each world was 

calculated using (2.5). The total probability that the feature is mineral B is the 

sum of the probabilities of these worlds (Pr(B) = 0.2694). Now suppose an intensity 

measurement i" = 59.8621 was taken from a feature. The truth values that make up 

the soft evidence are calculated using (2.12) giving evidence of {0, 0.6055,0.3945} for 

low, medium and high intensities, respectively. The probabilities of the worlds are 

now updated using (2.9) to yield the new probabilities, shown in the last column of 

Table 3.2. The new probability that the feature is mineral B is now simply the sum 

of the new world probabilities (Pr'(B) = 0.9236). 

Table 3.2 - The a priori and a posteriori world probabilities with B = true after the 
evidence / = 59.8621 is introduced. 

World S I A B Pr(World) Pr'(World) 

Wi small low false true 

w2 small medium false true 

w3 small high false true 

it>4 m e d i u m low false true 

w5 medium medium false true 

We medium high false true 

w-j large low false true 

wg large medium false true 

w9 large high false true 

0.0000 

0.0128 

0.0319 

0.0000 

0.0055 

0.1942 

0.0000 

0.0110 

0.0140 

0.0000 

0.2645 

0.0524 

0.0000 

0.0373 

0.3191 

0.0000 

0.2273 

0.0230 
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3.5 Feature Evaluation 

The probabilities provided by the BN provide some basis on which science-influenced 

decisions can be autonomously made by the rover. By quantifying the relative scien­

tific value of features based on their mineralogy, the most important features can be 

identified and queued for close-up investigation. This is the foundation of autonomous 

science and is critical in achieving the objectives described in Section 1.3. 

3.5.1 Benefit Bias Equation 

A benefit score (S0) is assigned to each feature using the benefit bias equation (BBE), 

which is tuned by the operator before a mission to assign higher scores to features 

whose mineralogies are estimated to match a desirable profile. The BBE takes the 

form 

Sb = K • P • E • [aPv(A) + bPv(B) + ... + nPv(N)], (3.11) 

where K is the scale constant, P is the apparent size (also known as angular diame­

ter) of the feature, E is the normalized standard deviation of the probabilities, and 

a,b,..., n are the importance weights for minerals A,B, ...,N. The scale constant K 

simply scales scores to be in an appropriate scale. It does not affect the relative scores 

of different features. The apparent size P of a feature is 

P = 2tan"1 ( ^ ) , (3.12) 

where r and d are the estimated radius and distance to the feature, respectively. The 

apparent size is measured in radians. It reduces the score of features that have had 

only a small number of pixels analyzed compared to features with larger numbers 

of pixels. Another purpose of P is it determines if Sb is updated. Each time a 

feature is observed, Sb is updated if P is larger than any previous observation. In 
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general, this means that Sb represents the benefit score calculated when the most 

visual information was available about that feature. 

The normalized standard deviation E adjusts Sb based on the standard deviation 

of the probabilities Pr(A), ...Pr(J5), ...Pv(N). When there is not a lot of reliable 

information about a feature, the probabilities that it is one mineral versus another 

are very similar, as it can not be distinguished. As better observations are made, 

some mineralogies are ruled out as the probabilities of others increase. Eventually, 

as Pr(A) —y 1, Pr(B), Pr(C), ...Pr(A^) —>• 0. The purpose of E is to raise the score of 

features whose probabilities are more distinct and have been narrowed down to one 

or two minerals; i.e., 

StDev{Pr(A), Pr(ff),..., Pr(AQ} 

StP)ev{ii,i2, ...,IN} 

The denominator of (3.13) simply normalizes the standard deviation of the probabil­

ities. 

The importance weights a, b,..., n for minerals A,B,...,N adjust the benefit score 

based on the current mission of the rover. For example, if mineral A was highly 

desirable, importance weight a would be given a high value. Conversely, if mineral 

B was undesirable, b would be given a smaller value relative to a. Note that b could 

be assigned a negative value if finding mineral B detracts the rover from visiting an 

area, while assigning b a value of zero would ignore this type of mineral all together. 

BBE Example 

An example of an application of the BBE illustrating the importance of its variables 

is as follows. Suppose three minerals (A, B, and C) and their respective importance 

weights (a = 2, b = 0.5 and c = —1) have been defined. After capturing an image, two 

1 ifA;<f, 

0 ififc>f. 
(3.13) 



75 

features are observed (a and /3). Assuming a scale factor of K = 500, example data 

extracted from the BN and information calculated using the BBE is shown in Table 

3.3. In this example observation, the two features appear to have similar attributes. 

Table 3.3 - The results of the observation of features a and j3. 

Feature 

a 

Pr(A) 

0.28 

0.27 

Pv(B) 

0.21 

0.23 

Pr(C) 

0.16 

0.15 

P 

0.0497 

0.0523 

E 

0.104 

0.106 

Sb 

1.31 

1.40 

The mineral probabilities are almost identical, as is the normalized standard devia­

tion. However, feature j3 has a greater apparent size, meaning it occupied more pixels 

in the image. This resulted in a slightly higher benefit score as more information was 

available for the analysis. However, in general the benefit scores of both features are 

low because the normalized standard deviations indicate that there is little consensus 

in the mineral probabilities. Now, suppose a second observation is later taken of the 

same two features, resulting in the data shown in 3.4. Interestingly, both features had 

Table 3.4 - The results of the second observation of features a and /3. 

Feature 

a 

Pr(A) 

0.55 

0.55 

Pv(B) 

0.08 

0.31 

Pr(C) 

0.05 

0.24 

P 

0.0528 

0.0528 

E 

0.486 

0.282 

Sb 

13.53 

7.30 

the same apparent size, meaning their benefit scores were based purely on the results 

of the BN. In this example, both features had identical probabilities of being mineral 

A; however, there remains a much higher probability that feature f3 is mineral B or 

C compared to feature a. This indicates greater uncertainty in the true composition 

of feature /3, which is reflected in the normalized standard deviations, and hence the 

benefit scores. 
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It should be noted that the effect of the normalized standard deviation on the 

benefit score is diluted as the number of possible minerals is increased. However, in 

the case of a high number of mineral possibilities, it is unlikely that every mineral 

would always maintain a significant probability. Therefore, not including minerals 

whose probabilities are below some defined threshold in the calculation of E in (3.13) 

may remedy this issue. 

3.5.2 Filtering and Selecting Features 

It is necessary to filter features that have been detected and evaluated such that the 

most scientifically valuable features can be identified based on their benefit scores, 

their location, and the current mission of the rover. A few filters are employed to 

perform this task. A benefit score filter segregates features based on their benefit 

score, a detour filter evaluates the reachability of features in terms of their location 

relative to the rover, and a feature selector determines the best feature that passed 

through the first two filters. 

Benefit Score Filter 

The purpose of the benefit score filter is to ignore features with low benefit scores. 

This could be performed using one of two methods: a static or a dynamic threshold. 

A static threshold is used by setting a constant benefit score that a feature must 

exceed to not be ignored by the rover. The advantage of using this method is that it 

is known with certainty that all features passing through this filter will have a known 

minimum score. However, as the number of observed features increases, the number 

of features passing through the filter can increase unbounded. A dynamic threshold is 

used allowing the benefit score threshold to change depending on the current feature 

list. For example, the threshold could be set at the mean benefit score, or at one 

standard deviation above the mean. The advantage of using this method is that the 
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number of features passing the filter can be controlled as a greater number of features 

are observed. However, it is possible that a number a features with unacceptably low 

benefit scores can pass the filter if few high scoring features are observed. 

The method employed in this thesis attempts to combine the benefits of both 

static and dynamic benefit score filters. A static threshold is used if the mean benefit 

is too low, otherwise a dynamic filter is used; i.e., 

{<S&,stat if TTljofJ' < Sb,sta,ti 

(3.14) 
mDfj, if mD\i > S^stat, 

where Sb,min is the threshold benefit score that features must exceed to pass through 

the filter, <S6)Stat is the static threshold, // is the mean benefit score of the feature set, 

and mr> is an operator-selected multiplier. For example, if a threshold of one standard 

deviation (a) above the mean was desired, the multiplier would be mp = . 
/i 

Detour Filter 

The purpose of the detour filter is to ignore features that would require an excessive 

detour from the current path/mission of the rover to perform an up-close observation. 

In this scenario, it is assumed the rover has a location it is driving towards, and has 

limited time or energy to execute its path. Therefore, when features are observed, 

it is necessary to estimate the cost of altering the path to include a feature as a 

waypoint to the final goal. This is then compared to a maximum detour allowance 

set autonomously or by the operator, and features whose detour exceed this allowance 

are ignored. 

All path-planning is performed using Theta* (Section 2.1.3), using binary occu­

pancy grids as cost maps (Section 3.3.1). Calculating the path length of a detour 
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requires calculating the path length to every science vertex (Section 3.3.2) of a fea­

ture and from every science vertex to the goal. This allows for the selection of the 

science vertex that yields the shortest detour path length. Selecting an incorrect sci­

ence vertex can moderately increase the detour path length as shown in Figure 3.9. 

The selected science vertex Sg)SCi for feature q is the science vertex that satisfies 

mm [LSstart^Sq,t + LSq^Sgoal] , for i = 1, 2,..., n (3.15) 

where LSa^.Sb is the path length from vertex sa to Sb. Features passing through the 

Unoccupied Vertex ^fr Feature 

Occupied Vertex — ^ ^ Smaller Detour 

^ f Science Vertex — — — Larger Detour 

Figure 3.9 - The detour filter requires that the path lengths to all science vertices of 
a feature are calculated to ensure that the shortest detour is selected. 

detour filter must satisfy the inequality 

£sstort->s,,scl + LSqsci^Sgoal < DLSstart_>Sgoal, for D > 1 (3.16) 

where D is the detour coefficient. The detour coefficient could be selected using 

several different methods. For example, a dynamic D could change depending on the 
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current energy available to the rover and temporal constraints on reaching the goal. 

In this thesis, a simpler approach is taken. A static D is selected by the operator, 

which ensures that all detours do not exceed a specified proportion of the most direct 

path. 

Feature Selection 

Features that have passed through both the benefit score filter and the detour filter 

are now ranked by their score-to-detour ratio [ -— ); i.e., 
\LD)' 

T- = I TZ ' (317) 

which specifies the the amount of science value the rover will get per unit distance 
c 

travelled. The feature with the greatest -j— is selected as the best target for up-close 
LD 

observation. 



Chapter 4 

Test Environments 

This chapter describes the two environments that were used to test the autonomous 

science algorithm described in Chapter 3. First, a MATLAB simulation environment 

was created to test the autonomous science algorithm in its entirety. The simulated 

rover model, test environment, Bayesian network (BN) and machine vision for this test 

environment are described in Section 4.1. Next, a "real" laboratory test environment 

was used to validate using a BN for object identification. The hardware, test features, 

BN and test scenarios that were used in this validation are detailed in Section 4.2. 

4.1 MATLAB Simulator 

A simulation environment was created in MATLAB to test the autonomous science 

algorithm. The goal of this simulation was to compare the two test scenarios discussed 

in Section 3.1. A simulated rover modelled after a differential drive vehicle was 

driven through a randomly created rock field with rock size and density approximating 

Martian terrain. Each time the simulation was run, a simulated data set of features 

was created that was used to train a BN. Machine vision data was emulated to provide 

the rover with estimated feature positions and to provide the BN with attribute 

measurements. The results of the simulator tests are presented in Section 5.1. 

80 
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4.1.1 Rover Model 

The simulated rover was modelled as a 50 x 50 cm differential drive vehicle. It is 

important to note that the same rover was used to represent both the prime rover 

and the scout rover in the prime/scout rover pairing scenario. In reality, these rovers 

should be modelled separately to match the physical and kinematic constraints of true 

rovers (this point is expanded in Section 5.1.4). The pose of the simulated rover at 

time k is pk = (Xr, Yr,9r), which is illustrated in Figure 3.3. The inputs provided by 

the controller have the form uk — (vk,wk), where the forward and angular velocities 

of the vehicle are vk and wk, respectively. It is assumed there is no lateral slip on the 

rover's wheels, which can be modelled as the non-holonomic constraint 

cos 9r — sin 9r 0 p = 0. (4.1) 

w(p) 

Therefore, the rover model consists of all vectors perpendicular to w(p), namely 

p = 

cos 9r 0 

sin 9r 0 

0 1 

u. (4.2) 

As a result, the discrete time model of the pose of the rover is described by 

Xr,k+i 

*r,fc+l 

#r,fc+l 

= 

xr,k 

*r,k 

9r,k 

+T 

COS 9rtk 0 

sin 9r>k 0 

0 1 

uk, (4.3) 

Pk+i Pk 

at each time step of length T. 
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4.1.2 Environment 

The MATLAB simulated environment that was used to test the autonomous science 

algorithm was a simplified analog of Martian terrain. A ten-by-ten metre rock field 

was randomly created for each test run, with a rock size and density distribution 

modelled after a proposed ExoMars landing site (the Meridiani landing ellipse) [38]. 

Due to the nature of the cost maps that were used (occupancy grids), small rocks 

(< 10 cm diameter) were not included in the simulated environment and all other 

rocks were modelled as insurmountable obstacles (i.e., the rover could drive around 

but not over them). An example of a typical randomly generated rock field is shown 

in Figure 4.1. In addition to a location and diameter, each rock was assigned a type 

of mineral. This mineral type influenced the output of the simulated machine vision 

algorithm described in Section 4.1.4. 

4.1.3 Bayesian Network 

A BN was used to identify four different minerals (A, B, C, and D) using evidence 

of four different attributes (a, (3, 7, 8). The BN used a DAG of the generalized 

form illustrated in Figure 3.8. Each attribute had three possible states (a>i, OL-I, a3, 

etc.). Each mineral was randomly given a mineral description, which is a set of states 

that nominally describe the physical appearance of the mineral (e.g., mineral A could 

be given a mineral description of {af2,/?3,7i, 53}). The fuzzy membership functions 

for each of these states were triangles with trapezoidal parameters {0, 25, 25, 50}, 

{25, 50, 50, 75}, and {50, 75, 75,100} for the first, second and third states, respectively 

(see Section 2.3.1 for more information on trapezoidal parameters). 

The BN was trained using a simulated data set of 300 features. Each feature in this 

set was first randomly assigned one of the four minerals. Using the mineral description 

of the assigned mineral as a bias, the feature was assigned a random (continuous) 
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Figure 4.1 - An example of the randomly generated rock fields used in the simulator. 
The simulated rover is shown at (0,0). 
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measurement for each of the four attributes (e.g., if the mineral description of the 

feature for attribute a was cti, the randomly assigned a measurement would have a 

mean of 25). Once the full set of measured features was created, the BN was trained 

using the method described in Section 3.4.3. 

4.1.4 Machine Vision 

Machine vision was simulated to supply the data required for the autonomous science 

algorithm. A brief overview of the algorithms this process attempted to emulate is 

provided in Section 2.4.1. The machine algorithm provides two pieces of information: 

an estimate of the ranges and angles to features within the camera's range and field-of-

view, and continuous measurements of each of the attributes in the BN. For position 

and ranges, the features were modelled and updated using the technique described 

in Section 3.2. For the continuous attribute measurements, the technique that was 

used to simulate measurements for the training data set described in Section 4.1.3 

was used. The attribute measurement of a mineral was its true state (the peak of 

triangle of its fuzzy membership function) plus some noise. The range and field of 

view of the camera of the simulated camera were 5 m and 66°, respectively, based on 

the specifications of the stereo camera described in Section 4.2.1 (although the usable 

range depends on the image processing algorithms that are used). 

4.1.5 Test Scenarios 

Two different test scenarios were simulated for comparison. The first (prime rover 

solo) is described in Section 3.1.1 and is illustrated by the block diagram in Figure 3.1. 

The second (prime/scout rover pairing) is described in Section 3.1.2 and is illustrated 

by the block diagram in Figure 3.2. The parameters used for the simulations are listed 

in Appendix A. Thirty trials were performed. A single trial consisted of running each 
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of the two scenarios using the same randomly generated feature map and the same 

BN and BBE parameters. 

4.2 Laboratory 

Laboratory testing was performed to assess the performance of the Bayesian approach 

of identifying objects. The focus of this test was the identification segment (Section 

3.4) of the autonomous science algorithm, which involves first using a training data 

set to initialize the BN, and then using the BN to identify features from a series of 

tests. A stereo camera was used to capture images and the machine vision methods 

described in Section 2.4.1 were used to segment objects and measure their attributes. 

The results of the laboratory tests are presented in Section 5.2. 

4.2.1 Hardware 

The exteroceptive sensor used for the laboratory tests was a stereo camera. As 

was discussed in Section 2.5, cameras are currently the most commonly used device 

to capture data to be used for autonomous science. Stereo cameras improve this 

capability by allowing for the use of stereo vision to estimate the 3D position of 

features captured in an image. This information is required to allow features to be 

mapped and eventually used for path-planning, which is critical in achieving the goals 

outlined in Section 1.3. 

The laboratory testing employed the use of a Point Grey Bumblebee XB3 CCD 

Camera, shown in Figure 4.2. This is a triclops (three lens) camera system, although 

only the two outer lenses were used as a stereo pair. This model has a field-of-view of 

66°, a resolution of 1280 x 960 pixels and a baseline of 24 cm. Images were captured 

in colour but converted to grayscale before being processed. Detailed specifications 

of the Bumblebee XB3 are provided in Table 4.1. 
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Figure 4.2 - Point Grey Bumblebee XB3 CCD Camera [39]. 

Table 4.1 - Point Grey Bumblebee XB3 CCD Camera technical specifications [39]. 

Property Value 

Baseline 

Resolution 

Focal length 

Aperture 

Field-of-view 

24 cm 

1280 x 960 

3.8 mm 

f/2.0 

66° 

Signal-to-noise ratio 54 dB 

Data interface IEEE-1394b (Firewire) 
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The stereo camera was mounted on a Pioneer 3-AT mobile robot on a static mast 

at a height of 1.17 m from the ground, tilted downward at an angle of 30°. Features 

were measured with respect to the left camera. The mobile robot simply acted as 

a "mobile tripod". No data was used from its sensors and it was driven with a 

joystick. Localizing the robot (and hence, the camera) in the global reference frame 

was performed via manual measurements each time an image was captured. The 

stereo camera mounted on the mobile robot is shown in Figure 4.3. 

(a) The front of the rover showing the (b) The rear of the rover showing the joy-
static mast and the tilted camera. stick and the laptop used to store the im­

ages. 

Figure 4.3 - Point Grey Bumblebee XB3 CCD Camera mounted on the Pioneer 3-AT 
mobile robot. 



88 

4.2.2 Features 

Thirteen different objects were selected to represent features for the laboratory test­

ing. Included in Appendix B are images of these objects and their identifiers. Al­

though artificial objects were used in place of natural features for the initial validation 

of the system presented in this thesis, it was attempted to select objects that shared 

some similar attributes (shape, size, texture, etc.) with each other. Note that images 

were converted to grayscale before being processed, so colour could not be used to 

distinguish between objects. Although using colour would have greatly facilitated 

classification, the stark differences in colour among the objects does not reflect the 

spectrum one might expect on a planetary mission. Additionally, as one mineral can 

often vary in colour, colour is used with caution for mineral identification. 

4.2.3 Bayesian Network 

A BN was used to identify 13 different objects: pink volleyball (PVB), white vol­

leyball (WVB), small soccer ball (SSB), large soccer ball (LSB), bowl (BWL), small 

football (SFB), large football (LFB), white plastic ball (WPB), yellow plastic ball 

(YPB), small green pot (SGP), small brown pot (SBP), medium pot (MPT), and 

large pot (LPT). Evidence from six different attributes (size, intensity, contrast, en­

ergy, entropy, IDM) was used. Colour was not used for identification for the reasons 

stated in Section 4.2.2. The BN used a DAG of the generalized form illustrated in 

Figure 3.8. 

To condition the BN for objects detected in different parts of an image, a training 

grid with 30 different possible object positions was used to create a training set. This 

training grid is illustrated in Figure 4.4 and an example of one of the training images 

is shown in Figure 4.5. Each of the 13 objects was cycled through each of the 30 

possible positions, which were at five different headings (—30°, —15°, 0°, 15°, and 
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30°) and six different ranges (1, 2, 3, 4, 5, and 6 m). A continuous measurement of 

each of the six attributes was taken for every object that was identified. This data set 

was used to train the BN using the method described in Section 3.4.3. The attribute 

states and fuzzy membership functions were determined by creating histograms of 

the training set, as was discussed in Section 2.3.2. 
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Figure 4.4 - The training grid used for the laboratory training set. 

4.2.4 Test Trials 

The trained BN was used to identify features in four test trials. In each of these 

trials, the rover was driven approximately ten metres through a field of 30 features, 

capturing 9-15 images along the way. The 30 features were comprised of six small 
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Figure 4.5 - One of the 30 images used to generate the training set for the Bayesian 
network. 

brown pots, six small green pots, three white plastic balls, three yellow plastic balls, 

four bowls, and one of each of the remaining eight objects specified in Section 4.2.3. 

Objects were randomly placed in 30 different static feature locations before each trial. 

An illustration of the 30 feature locations is shown in Figure 4.6. The rover began 

at the origin in each trial. The machine vision algorithms detected and measured 

a varying number of features in each image. The mineral type of each feature was 

estimated using the BN and scored using the benefit bias equation (Section 3.5.1). 

The scale constant was set to K = 10 and the importance weights that were used are 

shown in Table 4.2. The importance weights were selected such that some objects 

were valued higher than others, and undesirable objects were given negative weights. 

This was meant to reflect how one might weigh mineral types differently based on the 

goals of the rover. 
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x[m] 

Figure 4.6 - The 30 feature locations in the laboratory tests. 

Table 4.2 - The importance weights used in the laboratory tests. 

Object 

Pink volleyball 

White volleyball 

Small soccer ball 

Large soccer ball 

Bowl 

Small football 

Large football 

White plastic ball 

Yellow plastic ball 

Small green pot 

Small brown pot 

Medium pot 

Large pot 

Importance weight 

- 1 

+1 
- 1 

+3 

- 3 

- 1 

- 1 

+3 

- 1 

+1 

+1 
- 3 

- 1 

4 -

3 -

2 -

1 -

I o-

- 1 -

- 2 -

- 3 -

- 4 -



Chapter 5 

Results and Analysis 

This chapter outlines the results of the two types of testing that were performed to 

evaluate the autonomous science algorithm: the simulator and the laboratory tests. 

The environments and important parameters used in these tests are outlined in Chap­

ter 4. In Section 5.1, the results from the simulator are presented and analyzed, with 

a focus on comparing the scenarios outlined in Section 3.1. Additional notes about 

improvements to the algorithm that could be implemented based on these results 

are also included. In Section 5.2, the results of the laboratory tests are described in 

detail. This section is focused on the performance of the feature identification and 

feature evaluation algorithms presented in Sections 3.4 and 3.5, respectively. Once 

again, possible algorithmic improvements are also discussed. 

5.1 Simulator 

The environment and parameters that were used in the simulated tests are described 

in Section 4.1. The purpose of the simulator was to assess and compare the per­

formance of the autonomous science algorithm in two different scenarios: the prime 

rover solo and the prime/scout rover pairing. Observations of the behaviour of the 

each of the two scenarios are outlined in Sections 5.1.1 and 5.1.2. Results comparing 
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the performance of the two scenarios are presented and discussed in Section 5.1.3. 

Finally, improvements to the autonomous science algorithm based on the results of 

the simulator are discussed in Section 5.1.4. 

5.1.1 Pr ime Rover Solo 

The prime rover solo scenario is illustrated in Figure 3.1. The rover created and 

updated a feature map during its traverse. Features whose identities were estimated 

by a BN were evaluated at each update step. The goal of the rover was to visit the 

feature with the highest score-to-detour ratio without violating the filters described in 

Section 3.5.2. After visiting the feature for up-close observation, the rover continued 

to the final goal. An example of resulting feature map and path travelled by the rover 

in this scenario is shown in Figure 5.1. In this example, the rover visited the feature 

in the dashed circle before continuing to the goal located at (10, 0) m. 

A number of observations were made concerning the behaviour of the prime rover 

solo scenario over the course of the thirty trials that were performed. One common 

issue was the appearance of kinks in the path executed by the rover. An example 

of a kink is shown in Figure 5.2. Kinks were found to occur due to one of two 

reasons: indecisiveness in the feature selection or closures in the occupancy grid. 

Occasionally, the feature with the highest score-to-detour ratio would not maintain 

this status upon having its mineral probabilities updated after a new observation. As 

a result, the rover would drive towards this feature for a short time before selecting 

a new feature in a new direction, producing the kink in the executed path. In other 

cases, the rover would detect a new feature that surpassed the current best feature 

and would therefore plan a new path. However, previously unseen obstacles would 

be observed that immediately obstructed the newly planned path, causing the rover 

to suddenly require a deviation from its current trajectory. In addition, if this new 

detour surpassed the maximum allowable detour, the feature now violated the detour 
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Figure 5.1 - An example of a path travelled by the prime rover solo. The feature 
visited for up-close observation is labelled with a dashed circle. 
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filter and a new feature had to be selected, possibly worsening the kink. One method 

that could be employed to prevent kinks is to penalize turns during path planning, 

perhaps adding cost as a function of the severity of the turn. 

E 0 o o O 

o 
o O 
o ° 

© 

0 

oO 

0 O 

o 

x[m] 

Figure 5.2 - An example of a kink in the path of the prime rover solo is shown in the 
dashed circle. 

The disadvantage of having no a priori information about the features was appar­

ent in some of the prime rover solo trials. One of these disadvantages is the possibility 

of backtracking being required to reach the final goal. An example where backtrack­

ing occurred is shown in Figure 5.5. In this trial, after travelling to the top feature, 

the rover discovered previously unobserved obstacles that blocked its path. The path 

planner calculated that shortest path to the final goal required the rover to back­

track. The importance of backtracking (or other unforeseen detours) is that it can 

cause the violation of the constraint specified by the detour coefficient. If the detour 
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coefficient was selected based on the power available to the rover at the beginning of 

the traverse, the rover may not be able to reach the final goal if the detour violation 

is too large. 
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Figure 5.3 - An example of backtracking by the prime rover solo is shown in the 
dashed circle. 

Another disadvantage that afflicted the prime rover solo scenario was the occur­

rence of premature feature selection. As the rover had no information about the 

features closer to the goal and no guarantee that these features would have high ben­

efit scores, the rover was often forced to visit a feature early in its traverse only to 

find high-scoring features later. An example of premature feature selection is shown 

in Figure 5.4. It is conceivable that if the "one feature maximum" constraint that 

was specified in this thesis was lifted, future high-scoring features could be visited. 

However, if a large portion of the detour allowance is used to visit the first feature, 
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high-scoring future features may need to be bypassed to ensure the final goal can be 

reached. 
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Figure 5.4 - An example of premature feature selection by the prime rover solo. Benefit 
scores are shown above the estimated locations of the observed features (each labelled 
with an "x"). The selected feature is in the dashed circle while three possibly better 
choices are shown in the dash-dotted circles. 

5.1.2 Prime/Scout Rover Pairing 

The prime/scout rover pairing scenario is illustrated in Figure 3.2. This scenario 

consisted of two parts: the scout traverse and the prime traverse. During the scout 

traverse, the scout rover travels to the final goal while performing feature localization, 
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feature identification, and feature evaluation. The information gained from this tra­

verse is given to the prime rover for the prime traverse, which uses it to visit a single 

feature for up-close observation along the way to the final goal. An example of the 

results of a scout rover traverse outlining the information that is relayed back to the 

prime rover is shown in Figure 5.5. This information includes the estimated location 

of all observed features, their mineral probabilities and their benefit scores. Also in­

cluded is the feature with the greatest score-to-detour ratio and a recommended path 

(i.e., the path that was used in the detour calculation) for visiting that feature. 

One of the issues that negatively affected the prime rover solo scenario was back­

tracking. Although backtracking is often not avoidable during the scout traverse 

(an example is shown in Figure 5.6), the prime rover can avoid this unnecessary de­

tour using the information provided to it. The importance of this distinction was 

touched upon when discussing the motivation of using a scout rover in Section 1.1. 

Scout rovers are envisioned to be small, rugged, inexpensive and possibly expend­

able. As a result, they are designed to investigate dangerous areas, such as those 

where backtracking may be required to escape. By using a scout rover, sending the 

large, expensive prime rover into a dangerous area can be avoided while information 

about the scientific value and the dangers of that area can still be investigated. 

In recommending the best feature to visit, the information provided to the prime 

rover by the scout rover has already considered the required detour to visit that 

feature. However, there can be cases where the recommended path is found to be 

unsuitable due to new observations by the prime rover. During execution of the rec­

ommended path, if the prime rover encounters obstacles previously unobserved by the 

scout rover, the path must be appropriately adjusted. An example of this situation 

is illustrated in Figure 5.7. Note that "positive" adjustments are also possible if im­

proved estimates of feature locations open up a shorter path than what was previously 

possible. Either way, these adjustments were not accounted for in the original feature 
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(a) Feature map. 

(b) Occupancy grid. 

Figure 5.5 - Examples of paths, feature selection and an occupancy grid generated by 
the scout rover. In (a), the solid line is the scout path and the dashed line is selected 
detour path. The highest ranking feature is labelled by a dash-dotted circle. In (b), 
the start and goal vertices are labelled by dashed circles and the selected science vertex 
is labelled with an arrow. The empty vertices considered during feature selection are 
shaded gray. 
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Figure 5.6 - The path executed by the scout rover (solid line) prevented backtracking 
in the suggested path for the prime rover (dashed line). 
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selection, which may negatively affect the score-to-detour ratio. One possible solution 

to this issue is setting boundaries on the areas of the map in which the original path 

can be planned, preventing a path to simply be planned "around" all the obstacles, 

when in fact it is just traversing through an unexplored area. 
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Figure 5.7 - The path executed by the prime rover (solid line) significantly deviating 
from the recommended path provided by the scout rover (dashed line) due to the 
previously unobserved obstructions in the original path (shown in the dashed circles). 

5.1.3 Scenario Comparison 

In each of the thirty trials, the total distance travelled by the prime rover, the benefit 

score of the feature observed up-close, the score-to-detour ratio and the percentage of 

features that were observed was recorded for both scenarios. The results for all the 

trials are provided in Appendix D. A quantitative comparison of the performance of 

the two scenarios requires the results of each individual trial to be compared, as the 
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random feature properties, feature distribution and importance weights changed in 

each trial. This meant the absolute highest possible score and the absolute shortest 

possible path was different in each trial. Therefore, score, distance and observed fea­

tures comparisons were based on percent difference from the prime rover solo results; 

i.e., 

L ^ p r i me-{-scout -^primeSolo ^, i n n (Y7 / r i \ 

^compare = £ ~ X 100 % , (5.1a) 
•'-'prime Solo 

Sbcompm = "prime+Jut ~ 6primeSo'° x 100 %, (5.1b) 
OprimeSolo 

(—) ~ (—) 
" 6 \ V D / pnme+scout \ D / primeSolo i n n 0/ (z. 1 "\ 

^D J compare \ L ) 
V D / primeSolo 

(%FO) ime, scout - (%FO) . 
(%FO)compare = ^ — ; p 7 ^ ; ° " ; v — ^ ^ x ioo %, (s.id) 

where the detour length (Lp), benefit scores (Sb) and percentage of randomly gener­

ated features that were observed (%FO) comparisons are used to quantify the results. 

A histogram illustrating the distribution of the results is provided in Figure 5.8 and 

a summary of the results is presented in Table 5.1. 

Table 5.1 - A quantitative comparison of the two test scenarios over the course of 30 
trials. 

Result Mean Median St. dev. Minimum Maximum 

LfleompBe -2.30% -0.48% 13.15% -41.27% 44.76% 

<S&compare 78.38 % 22.23 % 162.87 % -88.62 % 662.82 % 

(-^-) 84.47 % 22.66 % 164.07 % -88.57 % 663.01 % 
V D J compare 

(%FO)compare 7.20% 8.33% 19.34% -34.09% 43.75% 'o 

Although not the case in every trial, the mean values suggest that the prime 

rover performed better when information from a scout rover was available. The most 
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Figure 5.8 - Histograms illustrating the distribution of the simulator results. 
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important result, I -— j (as this was the parameter the autonomous science 
\ D / compare 

algorithm was attempting to maximize), has the greatest mean and median improve­

ment for the prime/scout rover pairing compared to the other results. The source 

of this advantage is apparent—the improvement in benefit score (SbcompSite) was much 

greater than the improvement in detour distance travelled (Lr)compare). This result 

indicates that the trials where the prime rover solo scenario was impaired by prema­

ture feature selection (e.g., Figure 5.4) were more common or had a greater impact 

than distance-based handicaps such as kinks or backtracking. The median (and maxi­

mum) results indicate the mean performance of the prime/scout rover pairing scenario 

was greatly influenced by trials where improvements over the prime rover solo were 

substantial. Once again, the improvement in these extreme trials was due to an ex­

orbitant increase in benefit score, not in a reduction of detour distance. However, 

benefit score improvements must be taken with caution, as benefit scores are gener­

ated by the autonomous science algorithm itself (e.g., poor identification by the BN 

can lead to misleading benefit scores; this situation was observed in the laboratory 

tests in Section 5.2.3). However, assuming sound identification, the improvement in 

benefit score from using a scout rover can be considerable. 

One of most noticeable results in Table 5.1 are the wide ranges of the result pa­

rameters as indicated by the standard deviation and the minimum and maximum 

values. Observations of the paths and feature maps produced by the two scenarios 

over the course of the 30 trials provides some insight on the causes of this result. 

Explanations of the handicaps endured by the prime rover solo scenario (e.g., kinks, 

backtracking and premature feature selection) have explained possibilities why its 

performance suffered in some trials (see Section 5.1.1). In these trials, the results 

tended towards the extreme, favouring the prime/scout rover pairing scenario. Con­

versely, problems with the prime/scout rover pairing scenario (e.g., deviations from 

the recommended path) often resulted in the opposite extreme, favouring the prime 
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rover solo. However, also common was the nominal case, where the two scenarios 

performed similarly. This case occurred most often when the most direct path to the 

final had only minimal obstructions, and a high-scoring feature was discovered close 

enough to the start position that premature feature selection by the prime rover solo 

was avoided. An example of such a case is shown in Figure 5.9. Histograms of the re­

sults (Figure 5.8) show that the nominal case was the most common, and the extreme 

cases that favoured the prime/scout rover pairing scenario occurred more frequently 

than those that favoured by the prime rover solo scenario. The distribution of the 

two extreme cases and the nominal case likely caused the wide range of results. 
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Figure 5.9 - An example of the nominal case where the result from the two scenarios 
is similar. The path of prime rover solo (solid line) and of the prime rover with scout 
information (dashed line) have only small deviations. 
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5.1.4 Possible Improvements 

Observations of the behaviour of the autonomous science algorithm in the two dif­

ferent scenarios provide insight into how the algorithm could possibly be improved. 

Some improvements can be made to address the individual weaknesses of each sce­

nario and others can improve the system overall. The following points specify some 

possible improvements: 

Link path-planning and to realistic vehicle models 

Kinks in the path often formed in the prime rover solo scenario due to inde-

cisiveness in feature selection. The rover would make sudden turns if features 

with better score-to-detour ratios were found. However, the calculated detours 

considered only the path length, not the original configuration of the rover or 

the number/sharpness of turns. By linking the path-planning and the vehicle 

model, paths could be planned that consider the cost of executing the path 

based on the abilities of the rover. Furthermore, as the physical attributes and 

kinematic constraints of the scout and prime rover will likely be different, they 

should be modelled separately to improve realism. 

Allow multiple up-close observations 

The primary reason why the number of up-close observations is restricted to one 

in this thesis is computational requirements. To calculate the detour length, 

(3.15) requires that the lengths of two paths are calculated for every science 

vertex on the map (from the rover to the science vertex and from the science 

vertex to the final goal). However, if there is the possibility of visiting more than 

one science vertex, the number of paths that must be planned increases sub­

stantially. For example, if two features have ten science vertices each, 600 paths 

would need to be planned to account for all the possible routes the rover could 

take (compared to 40 if only one feature was visited). However, it is possible 
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that multiple up-close observations could be accommodated without substan­

tially increasing the computational requirements. Paths could be planned that 

continue to only consider one feature, but once that feature is visited, the al­

gorithm is free to visit additional features as long as no constraints are broken. 

If sufficient detour allowance remains after the first feature is investigated, the 

rover could continue to another. This could augment the science return in both 

scenarios, and would particularly help trials with premature feature selection in 

the rover prime solo scenario. 

Constrain size of occupancy grid during feature selection 

When performing feature selection, the rover calculates the necessary detour 

required to visit each science vertex. However, it is possible that some of these 

detour paths include vertices that have never been observed (which are con­

sidered empty until observations suggest that they are not). As a result, the 

calculated detour path length is erroneous if future observations reveal obsta­

cles obstructing the path. One solution to this problem would be constraining 

the size of the occupancy grid during feature selection to only include observed 

vertices. However, this solution is not entirely suitable because a path to the 

final goal must be planned, even if the location of the goal has not yet been 

observed. One way to partially implement the observed vertices solution would 

be to apply this constraint only on the paths to the science vertices, but not on 

the paths from the science vertices to the goal. 

5.2 Laboratory 

The methods and equipment used in the laboratory tests are described in Section 4.2. 

The purpose of these tests were to assess the effectiveness the feature identification and 

evaluation algorithms in a more realistic scenario. Results concerning identification 
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are presented and discussed for the training process in Section 5.2.1 and for the four 

test trials in Section 5.2.2. The results and discussion concerning the effectiveness of 

the evaluation algorithm is provided in Section 5.2.3. Finally, some discussion about 

possible general improvements to the developed algorithms based on the results is 

included in Section 5.2.4. 

5.2.1 Training 

The BN was trained using the data set that was collected in the method described 

in Section 4.2.3. However, not every object was properly segmented and detected by 

the machine vision algorithms in every image. Overall, 171 objects were identified 

over the 30 images. Histograms of the continuous measurements for each attribute 

were used to specify the trapezoidal parameters of the fuzzy membership functions, 

using the process outlined in Section 2.3.2. The trapezoidal parameters for each state 

of each attribute are provided in Appendix C. As was indicated in Section 2.3.1, the 

resulting parameters are not sum normal, allowing for outlying measurements to be 

considered an "unknown" object. 

The resulting attribute states memberships of each of the 13 objects after the 

training process are shown in Table E.l in Appendix E. Similarities in the mem­

bership values among some of the objects provide insight into possible difficulties in 

differentiating objects during the test trials. If state memberships are too similar 

for most or all the attributes between two objects, the BN may split the probabil­

ity between the similar objects. This is especially true if attributes that form the 

primary differences between two objects are not measured or are measured poorly. 

Objects that shared similar characteristics and were at risk of difficult differentiation 

are compared in Figure 5.10. 

The omission of colour as an attribute (see Section 4.2.2 for explanation) can cause 

objects similar in size and texture have similar state memberships. Obvious objects 
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Figure 5.10 - A comparison of the training results for groups of objects that shared 
similar characteristics. Note that the "mild" state only exists for intensity and IDM. 
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where this could be in issue were the small green pot and the small brown pot, the 

white plastic ball and the yellow plastic ball, and the four large balls—the pink vol­

leyball, the white volleyball, large soccer ball and the large football (Figures 5.10(a), 

5.10(b), and 5.10(c) respectively). The differences between the two small pots were 

minute for all six attributes. This leads to the prediction that upon observing either 

of these objects during the test trials, it will be impossible for the BN to differentiate 

between them and a split in probability is most likely. If differentiating these objects 

were critical, it is likely that at least one additional attribute is required (with colour 

being an obvious choice). The similarities between the two plastic balls were less pro­

found. Although their size is nearly identical, the remaining five attributes have some 

stark differences. There is significant variation between the two objects in intensity, 

entropy and IDM. It is speculated that the reason for these differences is rooted in 

the performance of machine vision algorithms. Segmentation of the white plastic ball 

was much more reliable due to its contrast compared to the background, as seen in 

Figure 5.11. It is possible poor segmentation led to some of the differences in the state 

memberships. A comparison between the pink and white volleyballs shows similari­

ties approaching the level of the two small pots. Interestingly, however, was that the 

greatest difference detected between these two balls was their size. In reality, their 

diameters are nearly equal. Once again, image segmentation was the likely source for 

this discrepancy. The pink volleyball had relatively poorer contrast compared to the 

background, and it's possible some of its figure was not segmented, resulting in its 

smaller perceived size. The texture of the large soccer ball differs somewhat from the 

two volleyballs, and its surface is more reflective. These differences were sufficient to 

be reflected in most of the attributes. However, there are some notable similarities 

between the large soccer ball and large football, particularly in size and energy. 

A comparison of the training results for the large and medium pot yields some 

interesting results (Figure 5.10(d)). Perhaps the most interesting result is that the 
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Figure 5.11 - A comparison of the white (far left) and yellow (far right) plastic balls 
as captured by the camera. 

medium pot was perceived to be larger than the large pot. Although this is obviously 

an error, it is not an error in the sense that it will not necessarily negatively affect 

the identification algorithm. What is more important is consistency. If the large pot 

is consistently measured to be within the size membership values calculated during 

the training process, correct identification is still possible. Therefore, unsurprisingly, 

size is one of the prime attributes that will be used to differentiate between the two 

pots (along with intensity). However, surprisingly, a smaller size measurement will 

be indicative that the feature is the larger pot. 

Finally, although not at the same level of similarity as some of the objects dis­

cussed above, there are some unexpected similarities between two seemingly unrelated 

objects: the large football and the small brown pot (Figure 5.10(e)). Obviously, a 

precise size measurement will vastly aide their differentiation; however, the state 

memberships for the remaining attributes are very similar. The colour-dependence 

of some of the attributes (colour in the grayscale sense) is likely to be the root of 

some of the similarities, as the true colour of the two objects is extremely similar. 

These observations, in conjunction to those made in the comparisons above, outline 

the importance of including attributes that are measurements of sufficiently differ­

ent physical characteristics. It also highlights the importance of pursuing additional 

sensors alongside the stereo camera that can detect attributes not possible through 
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machine vision. For example, an infrared camera could be used to measure the spe­

cific heat capacity of rocks. Rocks that visually appear similar may have significantly 

different specific heat capacities depending on their composition [40]. 

5.2.2 Feature Identification Performance 

Over the course of the four test trials, 194 features were detected with machine vision 

and identified using the trained BN. It should be noted that false positives detected 

by the machine vision algorithm (e.g., an empty patch on the floor) are not included 

in this total. The purpose for this omission is that differentiation between features 

and benign terrain is primarily the responsibility of machine vision, which is outside 

the scope of this thesis. Theoretically, the BN could be also be used for this purpose 

by including non-features (e.g., sky, shadows, sand, etc.) in the training process. 

Because the fuzzy membership functions used in this thesis are not sum normal, 

false positives were often identified as "unknown", but were also falsely identified as 

features if some of their attributes partially matched objects that the BN was trained 

to identify. Adding non-features to the training process would aide the detection 

process and add robustness to the system, but was not performed in this thesis. 

Detailed identification results of all 13 objects are shown in Figure F.l in Appendix 

F. Abbreviated identification results, showing only the two highest match percentages 

for each object, are shown in Figure 5.12. Overall, the BN identified the correct object 

as the most probable match in 9 of 13 cases. In two of the four mismatches, the second 

most probable match was the correct object. Among the best identified objects were 

the white volleyball, large football and white plastic ball (Figures 5.12(b), 5.12(g), 

and 5.12(h), respectively). Two factors that aide in the correct identification of 

objects are consistency and uniqueness. For consistency, the measured attributes of 

an object must be similar over several measurements and in different environments. 

This means test measurements will be more likely to resemble measurements taken 
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during the tuning process. Consistency is primarily a function of the quality of the 

sensors and algorithms used to determine attribute measurements. The measurements 

of the white volleyball and white plastic ball were quite consistent due to the ease 

of segmentation, as was discussed in Section 5.2.1. Inconsistencies can occur when 

objects are improperly segmented causing only part of the object to be measured, 

or a patch of the background is segmented as part of the object. Because these two 

objects were easily segmented due to their contrast compared to the background, the 

full object itself was usually detected and yielded consistent attribute measurements. 

For uniqueness, the state membership functions that describe an object must not 

closely resemble other objects. This reduces ambiguity between objects and allows 

for high probability matches. Although the large football had some similarities to the 

small brown pot (shown in Figure 5.10(e)), these were relatively weak similarities. The 

large football had the advantage of both consistency and uniqueness that contributed 

to its high identification probability (as shown in Table E.l(b), the intensity of the 

large football was particularly unique). 

Among the poorest performing objects were the small football and the yellow 

plastic ball (Figures 5.12(f) and 5.12(i), respectively). The top two most probable 

matches were incorrect for both of these objects. In both cases, there were issues 

with consistency between the training data and the test data. To illustrate these 

inconsistencies, the training results are compared to the test results for a well iden­

tified object (the white volleyball) and a poorly identified object (the yellow plastic 

ball) in Figure 5.13. For the white volleyball, the training data and test data were 

fairly consistent; the same states were represented in every attribute. Conversely, 

there were some notable inconsistencies with the yellow plastic ball. Size, intensity, 

entropy and IDM all have states that occur in the training data but not the test data, 

or vice-versa. 

As was predicted when analyzing the training results (Section 5.2.1), there were 
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Figure 5.12 - The average match percentage by the Bayesian network for each of the 
13 objects used in the laboratory tests. Results are abbreviated to show only the top 
two matches. 
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difficulties in distinguishing objects that had similar attribute state memberships 

(particularly the two small pots and the two volleyballs). As is shown in Figures 

5.12(j) and 5.12(k), the small green pot and small brown pot were more-or-less not 

differentiable. In both cases, the average match probability of the small green pot was 

slightly higher than the small brown pot. A similar result occurred when identifying 

the pink volleyball and white volleyball (Figures 5.12(a) and 5.12(a), respectively). 

In this case, identifying the pink volleyball resulted in a near even match probability 

between the two. However, the white volleyball was correctly identified with an 

extremely high match percentage, with the pink volleyball making up the remainder. 

This was likely due to the exceptional consistency of the attribute measurements for 

the white volleyball, as was discussed above and illustrated in Figure 5.13(a). 

Overall, it was found that uniqueness in attribute state membership and consis­

tency of attribute measurements had a profound influence on the effectiveness of iden­

tifying objects with the BN. Uniqueness could be improved by using more attributes 

that describe additional physical characteristics of an object. This improvement may 

require additional sensors, such as cameras that can capture images outside of the 

visible spectrum. Consistency could be improved by enhancing the detection capa­

bilities of the machine vision algorithms or using sensors that offer more repeatable 

measurements. 

5.2.3 Feature Evaluation Performance 

The results of the four test trials are shown in Figures 5.14 to 5.17. The poses 

of the rover from which images were captured are the arrowed boxes labelled in 

alphabetical order. Circles represents the locations features, with the name of the 

object that occupied each feature location printed above. Objects that were detected 

by the machine vision algorithm are marked with an "X" and have their benefit bias 

scores printed below. As it is outside the scope of this thesis, data association was 
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performed manually. When a feature was observed multiple times, the score it was 

assigned when its apparent size was greatest was used. This represented the occasion 

when the most visual information about the feature was available. The benefit bias 

equation that was used to calculate benefits scores used the general form reported in 

(3.11) using the importance weights outlined in Table 4.2. The purpose of this test 

was to evaluate the effectiveness of the benefit bias equation in determining the science 

value of observed features. As was indicated by the importance weights, the large 

soccer ball and white plastic ball had the greatest value. Moderate value was given 

to the white volleyball, small green pot and small brown pot. The pink volleyball, 

small soccer ball, small football, large football, yellow plastic ball and large pot were 

given moderately negative value, while the bowl and medium pot were considered the 

least valuable. 

Trial 1 

The results of the first trial are illustrated in Figure 5.14. The highest benefit score 

(3.78) was assigned to a large soccer ball, one of the most valued objects. The lowest 

benefit score (—5.36) was assigned to a small brown pot, which was assigned moder­

ately positive value by the BBE. A detailed look at the top two and bottom two scored 

features is shown in Table 5.2. In this trial, the top scoring features correctly reflected 

objects assigned the highest importance weights. In addition, match percentages were 

exceptional, which in turn leads to a high normalized standard deviation. A concern 

is that the apparent size for the top scoring feature was relatively low, especially as 

it was one of the larger objects (large soccer ball). This either meant no up-close im­

ages were captured of the object or the feature was improperly segmented. However, 

the latter explanation is unlikely as a poor size measurement would have negatively 

affected the match percentage. 
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Table 5.2 - The top two and bottom two scored features from the first laboratory test 
trial. 

Top two matches 

Score True object P E First Second 

3.78 LSB 0.061 0.865 LSB (97.5 %) LFB (2.5 %) 

1.58 WPB 0.136 0.962 WPB (99.9 %) WVB (0.1 %) 

-1.49 LPT 0.157 0.978 PVB (98.5 %) WVB (1.5 %) 

-5.36 SBP 0.516 0.503 MPT (53.2 %) LFB (46.8 %) 

It is interesting to note that both of the bottom two scoring features were misiden-

tified. There were constant difficulties in identifying the large pot (as shown by the 

sporadic match percentage distribution in Figure F.l(m) in Appendix F), but the 

misidentification of the small brown pot was somewhat surprising. The generous 

match percentage assigned to the large football was speculated to be possible from 

the training results (a comparison is shown in Figure 5.10(e)). However, according 

to the accumulated average match percentages for all the test trials (Figure F.l(k)), 

this result was somewhat an anomaly. 
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Trial 2 

The results of the second trial are illustrated in Figure 5.15. The highest benefit 

score (3.29) was once again assigned to a large soccer ball, one of the most valued 

objects. The lowest benefit score (—5.93) was assigned to a medium pot, which was 

considered one of the least valuable objects by the BBE. A detailed look at the top 

two and bottom two scored features is shown in Table 5.3. Much like the first trial, 

Table 5.3 - The top two and bottom two scored features from the second laboratory 
test trial. 

Top two matches 

Score True object P S First Second 

3.29 LSB 0.122 0.946 LSB (96.3 %) LFB (3.7 %) 

1.06 SGP 0.181 0.585 SGP (67.5 %) SBP (32.5 %) 

-4.26 YPB 0.318 0.530 BWL (77.3 %) YPB (15.4 %) 

-5.93 MPT 0.618 0.571 LFB (65.9 %) MPT (34.1 %) 

the top scoring feature was a highly-valued object and was assigned a high match 

percentage. The second best feature was a moderately-valued small green pot. It is 

interesting to note that this score was achieved despite a relatively low normalized 

standard deviation. As was shown in Figure 5.10(a), it would be difficult for the BN 

to distinguish between the two small pots, which was the case here. However, as 

both small pots were given moderate importance weights in the BBE, the inherently 

lower normalized standard deviation is the only handicap caused by their difficult 

differentiation. If they had drastically different importance weights, their assigned 

scores would be unreliable. 

There were no surprises for lowest two scoring features, which both had the lowest 

importance weights. In both cases, the true object was assigned the second highest 

match percentage. However, the yellow plastic ball has potential to cause problems 
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with the scoring algorithm. As was discovered during the training process (Section 

5.2.1), improper segmentation may negatively affect measuring its attributes. Its 

average match percentages all the tests were inconsistent (F.l(i)), which reflects this 

hypothesis. It is possible that a high match percentage for a valued object could 

cause a high score to be falsely assigned. 
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Trial 3 

The results of the third trial are illustrated in Figure 5.16. The highest benefit score 

(16.63) was a medium pot, one of the least-valued objects. The lowest benefit score 

(—2.59) was assigned to a bowl, which was also one of the least valuable objects 

according to the BBE. A detailed look at the top two and bottom two scored features 

is shown in Table 5.4. The exceptionally high benefit score given to one of the lowest 

Table 5.4 - The top two and bottom two scored features from the third laboratory 
test trial. 

Top two matches 

Score True object P E First Second 

16.63 MPT 0.627 0.937 LSB (95.8 %) LFB (4.2 %) 

4.04 WVB 0.483 0.928 WVB (95.1 %) PVB (4.9 %) 

-2.53 SBP 0.243 0.503 MPT (53.3 %) LFB (46.7 %) 

-2.59 BWL 0.222 0.591 MPT (77.2 %) LSB (14.1 %) 

valued objects was caused by a number of factors. First, it was observed to have a 

relatively high apparent size and the match probabilities calculated by the BN yielded 

a relatively high normalized standard deviation. Next, an exceptionally high match 

percentage was assigned to a highly-valued object, the large soccer ball. This result 

underlines the importance of consistency, which was discussed in Section 5.2.2. This 

is especially relevant when an inconsistently measured object can be mistaken for an 

object with a drastically different importance weight. As a result, improvements to 

both the machine vision algorithms and the BN are required to improve consistency. 

The latter could possibly be improved via optimization, which is discussed in Section 

5.2.4. 

The bottom two scoring features were both misidentified. It is possible that the 

relatively low apparent sizes made if difficult for identification, as less information 
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was available to the machine vision algorithms. It should also be noted that these 

minimum scores were higher than the minimum scores from the other trials. This 

means that no low-valued object was observed up-close and positively identified, as 

the apparent size and normalized standard deviation tends to move benefit scores to 

zero. 
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Figure 5.16 - Path and scoring results for the third laboratory trial. 
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Trial 4 

The results of the fourth trial are illustrated in Figure 5.17. The highest benefit 

score (4.74) was a white plastic ball, one of the highest-valued objects. The lowest 

benefit score (—8.80) was assigned to a medium pot, one of the least valuable objects 

according to the BBE. A detailed look at the top two and bottom two scored features 

is shown in Table 5.5. The highest scoring feature was correctly identified with an 

Table 5.5 - The top two and bottom two scored features from the fourth laboratory 
test trial. 

Top two matches 

Score True object P E First Second 

4.74 WPB 0.222 0.771 WPB (95.5 %) BWL (2.4 %) 

4.01 LFB 0.142 0.967 LSB (97.8 %) LFB (2.2 %) 

-5.16 SGP 0.513 0.500 MPT (50.7 %) LFB (49.3 %) 

-8.80 MPT 0.752 0.576 MPT (75.9 %) LSB (12.2 %) 

exceptional match percentage. The second best feature was misidentified. A very 

low apparent size likely influenced this misidentification, much like the bottom two 

features in the third trial. It should be noted that the large football and large soccer 

ball were commonly misidentified as each other, as was shown in Figures 5.12(d) and 

5.12(g). Similarities in some of their attribute state memberships are notable in the 

training results in Figure 5.10(c). However, unlike the two small pots, two significantly 

different importance weights were assigned to these objects, causing their assigned 

scores to be less reliable. 

The lowest scoring feature provides a good example of a well-identified but low-

valued object, in this case resulting in the lowest score of the four trials. The sec­

ond lowest scoring feature was a common misidentification of a small pot; a similar 

misidentification occurred in the first and third trials. In all these cases, the highest 
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matching object was the medium pot, one of the lowest-valued objects. 
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5.2.4 Possible Improvements 

By considering both the training and test results, some overall observations can be 

made concerning the effectiveness of using a BN for object identification and the 

validity of the scoring system. Although improvements are possible by simply im­

proving the quality and consistency of the data provided to the BN by the sensors, 

there are changes to the methods and algorithms used in this thesis that may improve 

the results. The following points address these possible improvements: 

Optimize the directed acyclic graph 

Rather than using a directed acyclic graph (DAG) specified by the operator 

to represent causality (as was done in this thesis), such a graph can be gener­

ated with empirical evidence. The utility of such an approach becomes apparent 

once the number of nodes and relationships increase and become more complex. 

Methods have been developed to autonomously determine the causal relation­

ships between variables using data sets [41]. Applying such an algorithm may 

reveal unforeseen relationships between variables thought to be independent. It 

is possible that additional causal relationships among the variables used in this 

thesis may improve the DAG that was used, and in turn, improve identification 

results. 

Optimize the fuzzy state membership functions 

As was outlined in Section 3.4.2, the fuzzy state membership functions were de­

termined manually through observation of histograms of the results of the train­

ing data. A variety of methods have been shown to improve the performance 

of fuzzy logic through optimization of the membership function parameters. 

Simon improved sum normal membership functions through parameter opti­

mization with a Kalman filter [21]. Figueiredo and Gomide achieved a similar 

result using neural networks [42]. A sensitivity study describing the magnitude 
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of influence changing the fuzzy parameters would have on the overall system 

may reveal the necessity for an optimization technique. 

Improve the training procedure 

At the time of data collection, it was unknown how effective the machine vision 

algorithms would be at detecting the test objects. As a result, many objects 

were left undetected in many of the training images, resulting in a smaller 

training set than anticipated. This also led to an uneven distribution as to the 

number of times each object was detected. Therefore, difficulties in identifying 

some objects were compounded by the fact that training data for that object 

was sparse. To remedy this issue, a larger training set could be used or detection 

could be performed manually. 

Improve the benefit bias equation 

The results of the test trials revealed some weaknesses of the current form of the 

benefit bias equation (BBE). In the third trial, a misidentification led to a high 

score being assigned to a lowly-valued object. A similar result occurred in the 

fourth trial. One thing that was common in these two cases was that the feature 

had a small apparent size. In the current form of the BBE, a linear relationship 

between apparent size and benefit score is used. However, it is unknown whether 

a non-linear relationship would be more effective in adjusting the score based 

on apparent size. A study could be performed on the relationship between 

apparent size and identification performance (which may be object dependent) 

to optimize the BBE. 

5.2.5 Transitioning to Natural Features 

The laboratory experiments used artificial objects to validate the identification and 

evaluation algorithms presented in Sections 3.4 and 3.5, respectively. However, for 
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true validation for use in an autonomous science system, natural features (especially 

those that are analogous to Martian rocks) must be used. The success of such a vali­

dation depends greatly on the selection of the attributes to be measured. The texture-

based attributes used in the laboratory experiments would likely remain valuable in 

natural feature identification. Size, however, would be much less valuable as rocks of 

the same mineral type can sometimes drastically differ in size from one rock to the 

next. It is recommended that additional or more diverse texture measurements are 

included in the attribute set for natural feature detection. Additionally, measuring 

additional attributes such as albedo and shape (as was included by Castano et al in 

Section 2.5.2) would likely enhance the accuracy of identification. 



Chapter 6 

Conclusion 

The over-arching goal of this thesis was to develop and test an autonomous science 

system. The development was broken down into four smaller goals, whose current 

statuses are discussed in Section 6.1. Achievements and contributions that were made 

in the field of study as a result of the work performed for this thesis are presented 

in Section 6.2. Finally, as the development of an autonomous science system is an 

ambitious undertaking that requires inputs from several fields, temporal constraints 

prevented some work from being performed. As a result, Section 6.3 provides sugges­

tions for the direction of future research and development. 

6.1 Status of Goals 

In the onset of the research and development of work presented in this thesis, four 

goals were outlined which are presented in Section 1.3. In this section, the status of 

these goals is discussed; namely, the extent in which they were or were not achieved. 

"The rover should be capable of identifying (i.e., not just sorting) several 

different objects via the machine vision, image processing and machine 

learning techniques." 

136 
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There is an important distinction between identifying objects and identifying at­

tributes. Identifying objects implies that attributes have been identified and mea­

sured, and that information is further used to identify an object based on the at­

tributes. The purpose of this goal was to perform identification with a machine 

learning technique. To an extent, the results in Section 5.2 achieved this result. Is­

sues with the identification algorithm were identified and improvements that address 

these issues were suggested. 

"The machine learning technique should be expandable and tuneable to 

include new feature types." 

The nature of the Bayesian network training process that was used for the laboratory 

tests in this thesis (Section 3.4.3) allows for expansion to include additional features. 

If the identification of new features is desired, a data set of the attributes of that 

feature can be used to train the identification algorithm. 

"A map of identified features should be built with sufficient accuracy that a 

rover can safely plan efficient paths from one point in the map to another." 

The framework necessary to achieve this goal was either developed (e.g., feature local­

ization) or identified (e.g., SLAM). Successful mapping of the features was performed 

in simulation, but assumptions were made concerning localization of the rover. As a 

result, this goal was only partially fulfilled and the work required for total fulfilment 

is outlined in Section 6.3. 

"The rover should be able to identify features, plan paths, and drive to 

goals without any intervention from an operator." 

Identifying features (Section 3.4), path-planning (Section 2.1) and driving to goals 

(Section 2.4.3) were integrated into a single autonomous system and successfully 

demonstrated in simulation. Additionally, identifying features was performed in the 
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laboratory tests. Achieving the full autonomous system outside of simulation would 

require SLAM and integration of the implemented controller on a real robotic plat­

form. 

6.2 Achievements and Contributions 

Autonomous science is a relatively new, but active, field of study. A literature re­

view of the most recent developments (Section 2.5) revealed that there remains many 

undeveloped or underdeveloped methods left for investigation. Some of these areas 

are examined in this thesis. The autonomous science algorithm that was developed 

is rooted in using machine learning for the identification and evaluation of objects 

rather than classification by attributes alone. Although using probabilistic classifica­

tion to evaluate observations is not novel, the evaluation algorithm used in this thesis 

also considered the quality of the observation and the certainty of the classification. 

Also, feature evaluations were tied directly into the path-planning of the rover, allow­

ing for detour considerations when determining the scientific value of a feature. To 

summarize, this work performed for this thesis has made the following achievements 

or contributions: 

(i) The development, implementation and experimental validation of an object 

identification technique combining machine vision and machine learning in the 

form of a BN. The specific combination of the attributes derived through im­

age processing and the identification of objects with a BN has shown to be 

effective in identifying objects and providing a quantitative confidence in this 

identification. 

(ii) An investigation into the effectiveness of using a scout rover to enhance the 

capabilities of a prime rover using autonomous science. The utility of using a 
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scout rover to provide a priori information to a better-equipped prime rover 

was found to positively effect the science return per unit distance travelled in 

simulation. To date, no known previous efforts have combined the prospect of 

performing autonomous science with a scout rover. The framework was estab­

lished to continue this research with field tests. 

(iii) A novel feature evaluation approach that combines the probabilistic identifica­

tion of a feature with the quality of observations, the certainty of identification, 

and the reachability of the feature. Possible improvements to this technique 

were outlined to further enhance its effectiveness. 

(iv) The creation of a modular, generalized simulation platform to test autonomous 

science. The simulator facilitates modularity of many of the algorithms re­

quired for autonomous science such as: rover localization, feature localization, 

path-planning, and rover control. In addition, the structure of BNs is easily 

configurable, as is the training process from real or simulated data. 

6.3 Future Work 

This section outlines some possible directions for future work that could extend the 

usability of the existing architecture. Specific algorithmic improvements are summa­

rized based on the results of the simulator (Section 5.1.4) and the laboratory tests 

(Section 5.2.4). As a result, this section focuses on the work required to transform 

the current algorithms into a full-fledged autonomous science system. The following 

steps are suggested: 

(i) The path-planning algorithm used in this thesis employed occupancy grids—a 

simplification of cost maps. Rather than simply determining the occupancy of 

vertices, assigning the connections between vertices a traversal cost would add 
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detail that can be used by the path-planner to create better paths. For example, 

costs could be functions of the height of rocks, the depth of crevasses, or the 

grade of slopes. As was described in Section 2.1, most graph-based path-planners 

are already equipped to handle this enhancement. In an unrelated project, a 

graph-based path-planning algorithm was tested in a laboratory environment 

that constructed a cost map using a laser scanner. Although not essential, laser 

scanners can provide accurate raw measurements of the local environment of the 

rover and an investigation their usefulness as part of the autonomous science 

system is recommended. 

(ii) As was noted in Section 1.2.1, rover localization was assumed throughout this 

thesis. Obviously, a true implementation of an autonomous science system would 

require accurate rover localization to create and plan paths in feature maps. 

The feature localization that is performed in this thesis forms one half of SLAM, 

which includes rover localization. It is recommended that a full SLAM algorithm 

is used as part of the autonomous science algorithm. Another requirement is 

data association, which ensures repeated measurements of a common feature can 

be identified and combined. Traditionally, data association uses the estimated 

location of a feature and compares it to a set of measurements. However, as 

the autonomous science algorithm provides much more information about many 

of the observed features, it is conceivable that an augmented science-influenced 

data association could be developed. This algorithm could use the output of 

the autonomous science algorithm to aide in the association of features. 

(iii) A collection of artificial objects were used as the feature set in the laboratory 

tests for this thesis. If the final goal of the autonomous science system is to 

be useful for a planetary mission, natural features should be used, particularly 

those whose physical characteristics are not unique to Earth. Natural features 
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(e.g., rocks) are likely a greater challenge to detect and identify, as they have 

fewer visually distinguishing characteristics and the same rock types are less 

consistent from rock to rock. Additionally, there is the possibility that dust or 

other effects of the environment will make identification more difficult. Here, 

the importance of measuring a wide array of attributes (possibly with multiple 

sensors) becomes more important such that uniqueness among different rock 

types can be established. 
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Appendix A 

Simulation Parameters 

The simulation parameters are outlined in Table A.l. These parameters were kept 

constant for each trial of the simulated tests. One exception is the importance weights, 

which were each assigned a random value in the uniform distribution U(—l,l). 
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Table A.l - The simulation parameters. 

Parameter Value Section 

Camera field-of-view 

Camera range 

Desired forward velocity 

Detour coefficient (D) 

Distance between waypoints 

Dynamic benefit score threshold mulitplier (m_>) 

Importance weights (a, b, c, d) 

Maximum dimension of rover footprint (h) 

Maximum rover angular velocity 

Maximum rover forward velocity 

Minimum rover angular velocity 

Minimum rover forward velocity 

Occupancy grid resolution 

Scale constant (K) 

Science sensor radius (rsen) 

Static benefit score threshold (Sb,stat) 

Time step (T) 

66° 
5 m 

2.2 c m / s 

1.5 

0.25 m 
H + cr 

u(-iX 
0.5 m 

3.63 % 

2.2 c m / s 

-3.63 % 

0 c m / s 

0.15 m 

100 

0.50 m 

0 

0.25 s 

(80 

I 

(80 

mA) 

m / h ) 

3.2.2 
3.2.2 

2.4.3 

3.5.2 

3.1 

3.5.2 

3.5.1 

3.3.1 

2.4.3 

2.4.3 

2.4.3 

2.4.3 

3.3.1 

3.5.1 

3.3.2 

3.5.2 

4.1.1 



Appendix B 

Laboratory Test Features 

Figure B.l shows the 13 unique objects that were used in the laboratory tests. Note 

that the white plastic ball and the yellow plastic ball (Figures B.l(h) and B.l(i), 

respectively) differ only in colour, as do the small green pot and small brown pot 

(Figures B.l(j) and B.l(k), respectively). The standard die in the figures has an edge 

length of 16 mm. 

(a) Pink volleyball. (b) White volleyball. (c) Small soccer ball. 
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(d) Large soccer ball. (e) Bowl. (f) Small football. 

fcLi* • . ' 

r: 
'•. • • . •••&: »•:'- •" -a 

r?:4 

(g) Large football. (h) White plastic ball. (i) Yellow plastic ball. 

*• V > • 

(j) Small green pot. (k) Small brown pot. 

•4 

(1) Medium pot. 

(m) Large pot. 

Figure B . l - The objects used for the laboratory tests. 



Appendix C 

Laboratory Attribute Parameters 

The name and trapezoidal parameters of the states of each of the six attributes is 

shown in Table C.l. These parameters were selected via observation of the training 

data histograms for each attribute, as was described in Section 3.4.2. 
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Table C. l - The trapezoidal parameters and the names of the states of the attributes 
for the laboratory tests. 

Attribute 

Size 

Intensity 

Contrast 

Energy 

Entropy 

IDM 

State 

Small 

Medium 

Moderate 

Large 

Low 

Mild 

Medium 

Moderate 

High 

Low 

Medium 

Moderate 

High 

Low 

Medium 

Moderate 

High 

Low 

Medium 

Moderate 

High 

Low 

Mild 

Medium 

Moderate 

High 

Trapezoidal Parameters 

{20.0,48.8,63.8,73.9} 

{63.8,78.9,88.9,98.9} 

{93.9,134.0,169.0,194.0} 

{184.0,224.0,239.0,300.0} 

{0.0,49.9,67.9,81.5} 

{72.5,82.0,109.0,136.0} 

{118.0,136.0,149.0,158.0} 

{149.0,172.0,181.0,212.0} 

{194.0,230.0,275.0,300.0} 

{0.000,0.024,0.071,0.119} 

{0.071,0.119,0.221,0.261} 

{0.238,0.356,0.689,0.760} 

{0.713,0.832,1.160,1.400} 

{0.000,0.130,0.241,0.315} 

{0.223,0.352,0.426,0.556} 

{0.482,0.519,0.556,0.722} 

{0.648,0.815,0.852,1.000} 

{0.00,0.10,0.52,0.70} 

{0.58,0.82,1.05,1.22} 

{1.11,1.28,1.50,1.80} 

{1.71,2.00,2.63,3.00} 

{0.000,0.008,0.024,0.048} 

{0.032,0.089,0.121,0.153} 

{0.121,0.140,0.170,0.198} 

{0.177,0.213,0.265,0.290} 

{0.273,0.298,0.330,0.450} 



Appendix D 

Simulation Test Results 

The full detailed results of the simulation tests are shown in Table D.l. Each trial 

used the same map and simulation parameters for the two scenarios. Listed are the 

number of features that were observed during the trial, the detour distance (LD), the 

benefit score of the feature that was visited for up-close observation (Sb), and the 

score-to-detour ratio for that trial I -— J). 
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Table D . l - The full detailed results of the simulations tests comparing the prime 
rover solo (P) to the prime/scout rover pairing (P+S). 

Feat, found 

Trial 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

P 

35 

22 

11 

21 

34 

25 

23 

15 

44 

15 

28 

13 

15 

12 

16 

39 

18 

12 

16 

39 

15 

20 

15 

23 

26 

12 

15 

34 

16 

17 

P+S 

27 

24 

13 

24 

38 

25 

25 

18 

29 

21 

29 

13 

18 

9 

23 

38 

19 

13 

21 

32 

15 

20 

19 

27 

27 

13 

14 

41 

22 

13 

LD [m] 

p 

11.09 

10.62 

10.00 

11.46 

14.02 

11.07 

11.47 

10.74 

19.31 

10.87 

12.09 

10.23 

11.51 

9.89 

12.22 

14.34 

10.03 

10.17 

10.29 

14.70 

9.97 

11.86 

10.19 

11.02 

10.07 

10.15 

10.09 

12.96 

11.47 

10.57 

P+S 

10.75 

10.37 

9.92 

10.53 

13.95 

10.78 

11.59 

10.78 

11.34 

10.91 

13.88 

10.24 

10.66 

9.85 

11.39 

12.25 

10.02 

10.16 

9.96 

10.84 

9.99 

10.48 

10.15 

11.15 

10.02 

10.08 

9.95 

18.77 

11.47 

10.63 

P 

3.93 

30.73 

3.41 

17.65 

19.64 

2.70 

6.07 

10.45 

11.85 

18.23 

6.11 

8.21 

24.42 

23.45 

4.17 

21.81 

16.65 

1.77 

21.42 

3.96 

27.06 

23.01 

5.74 

6.25 

8.04 

21.47 

3.93 

19.38 

15.49 

21.81 

sb 

P+S 

4.42 

22.68 

7.85 

39.30 

15.80 

6.39 

14.27 

12.47 

15.78 

16.36 

9.75 

16.68 

9.60 

2.67 

15.32 

22.94 

11.73 

13.53 

15.02 

5.79 

33.15 

24.35 

2.80 

35.03 

7.52 

27.10 

17.75 

23.64 

20.69 

25.79 

P 

0.35 

2.89 

0.34 

1.54 

1.40 

0.24 

0.53 

0.97 

0.61 

1.68 

0.51 

0.80 

2.12 

2.37 

0.34 

1.52 

1.66 

0.17 

2.08 

0.27 

2.72 

1.94 

0.56 

0.57 

0.80 

2.11 

0.39 

1.50 

1.35 

2.06 

P+S 

0.41 

2.19 

0.79 

3.73 

1.13 

0.59 

1.23 

1.16 

1.39 

1.50 

0.70 

1.63 

0.90 

0.27 

1.35 

1.87 

1.17 

1.33 

1.51 

0.53 

3.32 

2.32 

0.28 

3.14 

0.75 

2.69 

1.78 

1.26 

1.80 

2.43 



Appendix E 

Laboratory Training Results 

The training results for each of the six attributes are shown in Table E.l. These 

results were obtained using the Bayesian network training technique described in 

Section 3.4.3. 
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Table E. l - The Bayesian network training results for the six attributes in the labo­
ratory tests. 

(a) Size 

Size 

Object 

Pink volleyball 

White volleyball 

Small soccer ball 

Large soccer ball 

Bowl 

Small football 

Large football 

White plastic ball 

Yellow plastic ball 

Small green pot 

Small brown pot 

Medium pot 

Large pot 

Small 

0 

0 

0.6836 

0 

0.9192 

0.6113 

0 

0.8806 

0.9299 

0.3313 

0.3606 

0 

0.1418 

Medium 

0 

0 

0 

0 

0.0137 

0 

0 

0.0213 

0 

0.5640 

0.5849 

0 

0.4119 

Moderate 

0.8701 

0.0593 

0 

0.0761 

0 

0 

0.3040 

0 

0 

0 

0 

0.8705 

0.1225 

Large 

0.0173 

0.6670 

0 

0.6696 

0 

0 

0.4653 

0 

0 

0 

0 

0 

0 



(b) Intensity 

Object 

Pink volleyball 

White volleyball 

Small soccer ball 

Large soccer ball 

Bowl 

Small football 

Large football 

White plastic ball 

Yellow plastic ball 

Small green pot 

Small brown pot 

Medium pot 

Large pot 

Small 

0 

0 

0 

0 

0 

0 

0.6621 

0 

0 

0.5116 

0.4682 

0.1163 

0 

Mild 

0 

0 

0 

0.9304 

0.2727 

0 

0.2374 

0 

0.0601 

0.3652 

0.3969 

0.8162 

0.2049 

Intensity 

Medium 

0 

0 

0 

0 

0.4545 

0.0877 

0 

0 

0.2667 

0.0380 

0.0417 

0.0142 

0.2916 

Moderate 

0.0890 

0.1556 

0.1456 

0 

0.1727 

0.1396 

0.0392 

0.0720 

0.5848 

0 

0 

0 

0.2843 

Large 

0.8743 

0.8021 

0.7310 

0 

0.0445 

0.7077 

0 

0.9090 

0 

0 

0.0240 

0 

0.0126 

(c) Contrast 

Object 

Contrast 

Small Medium Moderate Large 

Pinkvolleyball 0.8779 0.0602 0 0 

Whitevolleyball 0.5729 0.1325 0 0 

Small soccer ball 0.0395 0.2462 0.7069 0 

Large soccer ball 0.1060 0.7803 0.0367 0 

Bowl 0.1981 0.7110 0.0272 0 

Small football 0 0.5000 0.4107 0 

Large football 0.1258 0.4823 0.2716 0 

White plastic ball 0.4302 0.5698 0 0 

Yellow plastic ball 0.1022 0.6861 0.0526 0 

Small green pot 0.0224 0.3811 0.2246 0.2124 

Small brown pot 0.0663 0.3702 0.2456 0.2135 

Medium pot 0.1139 0.4992 0.2678 0 

Large pot 0.1144 0.7466 0.0369 0 



(d) Energy 

Object 

Pink volleyball 

White volleyball 

Small soccer ball 

Large soccer ball 

Bowl 

Small football 

Large football 

White plastic ball 

Yellow plastic ball 

Small green pot 

Small brown pot 

Medium pot 

Large pot 

Small 

0 

0 

0.2341 

0.0425 

0.0330 

0.3750 

0.2269 

0 

0 

0.3777 

0.3077 

0.1400 

0.1248 

Energy 

Medium 

0.0647 

0.0023 

0.4602 

0.7392 

0.7223 

0.3654 

0.4255 

0.1003 

0.8494 

0.2888 

0.3248 

0.6178 

0.7897 

Moderate 

0.1765 

0.1896 

0.0093 

0.1667 

0.1711 

0.1455 

0.2477 

0.1436 

0 

0.2015 

0.0622 

0.1228 

0 

Large 

0.4705 

0.2190 

0.1969 

0 

0 

0 

0.0047 

0.6908 

0.0431 

0.0026 

0.0685 

0.0130 

0 

(e) Entropy 

Object 

Pink volleyball 

White volleyball 

Small soccer ball 

Large soccer ball 

Bowl 

Small football 

Large football 

White plastic ball 

Yellow plastic ball 

Small green pot 

Small brown pot 

Medium pot 

Large pot 

Small 

0.6825 

0.6900 

0.2532 

0 

0 

0 

0 

0.7336 

0.1429 

0 

0.0417 

0 

0 

Entropy 

Medium 

0.2854 

0.2000 

0 

0.1673 

0.2669 

0.4652 

0.3127 

0.1691 

0 

0.1604 

0.2169 

0.2528 

0.3081 

Moderate 

0 

0 

0.3865 

0.6119 

0.6542 

0.1250 

0.2836 

0.0515 

0.8571 

0.2769 

0.2411 

0.4447 

0.5428 

Large 

0 

0 

0.2390 

0.0100 

0 

0.3214 

0.2341 

0 

0 

0.3541 

0.3121 

0.0907 

0 
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Object 

Pink volleyball 

White volleyball 

Small soccer ball 

Large soccer ball 

Bowl 

Small football 

Large football 

White plastic ball 

Yellow plastic ball 

Small green pot 

Small brown pot 

Medium pot 

Large pot 

(f) IDM 

IDM 

Small Mild Medium 

4342 

7748 

0 

0 
0 

0 

0 
1136 

1429 

0 

0417 

0 

0 

0.2885 

0.1939 

0.2356 

0.3721 

0.3302 

0.1002 

0.5134 

0.4557 

0.0198 

0.3342 

0.3025 

0.4965 

0.4280 

0 
0 

0.2744 

0.6526 

0.4922 

0.3625 

0.2765 

0 
0.1482 

0.2093 

0.2927 

0.3719 

0.4107 

Moderate Large 

0 
0 

0.3712 

0.0029 

0.1169 

0.1212 

0.1388 

0 

0.5210 

0.1441 

0.0820 

0.0828 

0.1428 

0 
0 

0 

0 

0 
0.3259 

0 
0 

0 
0.2872 

0.2587 

0 

0 



Appendix F 

Laboratory Identification Results 

Detailed identification results from the laboratory tests are shown in Figure F.l. The 

subfigures illustrate the average match percentages for each of the 13 objects. 
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(a) Pink volleyball (4 detections). 
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(b) White volleyball (3 detections). 
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(d) Large soccer ball (11 detections). 
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(f) Small football (4 detections). 
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(g) Large football (5 detections). 
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(h) White plastic ball (9 detections). 
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(i) Yellow plastic ball (7 detections). 
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(j) Small green pot (51 detections). 
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(1) Medium pot (12 detections). 
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Figure F . l - The average match percentage by the Bayesian network for each of the 

13 objects used in the laboratory tests. 


