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Abstract 

This thesis addresses the problem of autonomous mapping of very large-scale un­

derground drift networks as found in mines, with the intent that the maps be used 

in a later localization technology. A method capable of handling such environments 

would be instrumental in the continued automation of mining activities, leading to 

advancements in productivity and, most importantly, safety. 

Previous work in this area has been successful in mapping environments of limited 

scale with high accuracy. While the previous work was limited to environments 

not containing additional installed infrastructure, the addition of inexpensive passive 

RFID devices to the mine environments as artificial landmarks in this thesis has led 

to significant advancements toward the goal of large-scale mapping. 

The central contribution of this thesis is the development of a new, landmark-

bounded mapping method which scales easily to extremely large environments. In 

this method, the graph-like structure of a tunnel environment containing unique land­

marks is exploited to provide a natural way of decomposing a large mapping problem 

into smaller sub-problems, and for reassembling the solutions of those into a solution 

of the original problem. Many additional benefits also result from this approach. 

The new method was validated experimentally in simulated environments and 

tested in real ones, including an underground mine. Quantitative and qualitative 

analyses of the results provide insights into its strengths and identify weaknesses and 

future directions of research. 
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Chapter 1 

Introduction 

Throughout the history of modern mining, the continuous trend of new technology 

adoption has driven the industry forward. A constant stream of improvements in 

safety and productivity continue to result from the mechanization and automation of 

once-laborious and dangerous tasks. One fundamental challenge in automation has 

long been that of localization and navigation for mining vehicles. In recent years the 

advent of satellite-based GPS has largely solved these related problems for mines on 

the surface, and has revolutionized the industry [1]. In underground mines where 

satellite communications are unavailable, no such system exists to take its place. 

One proposed method for solving the localization and navigation problems under­

ground takes a two-step approach: the first is to create an accurate and consistent 

metric map of the underground mine environment, and the second is to use relative 

measurements from a specially-equipped vehicle's onboard sensors in order to accu­

rately localize itself in the map. A hardware configuration based on scanning laser 

rangefinders for both mapping and localization is a commonly-cited way of achiev­

ing this goal. This is the approach taken by MDA Space Missions' research project 

named "UGPS", under which the work presented in this thesis was carried out. 

1 
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1.1 Motivat ion 

Aside from the desire for an underground navigation system, the development of 

the methods presented in this thesis was itself partially technology-driven. While 

the mobile robotics literature has long hailed the advantages of unique landmarks 

in mapping and navigation, the recent proliferation of radio frequency identification 

(RFID) technologies has made it cheap and easy to add unique landmarks wherever 

they are desired. Various methods of exploiting this have already appeared. Near 

the beginning of the work presented in this thesis, it was recognized that, by treating 

RFID beacons not as real objects (and thus becoming preoccupied with their exact 

physical location, as is the case in much of the published literature) but as virtual 

sources of a sort of sparse global information, it should be possible to do simultaneous 

localization and mapping (SLAM) of environments containing beacons without any 

prior knowledge of the environment or the beacons. This was indeed the case, and 

was a significant realization leading to the development of the autonomous methods 

presented in the following chapters. 

In this thesis, "landmarks" are taken to mean RFID beacons (stationary tags 

installed in an environment), though it is plausible that RFID could be supplanted 

by some other technology or method of recognizing unique places in space. 

1.2 Scope 

The scope of this thesis is limited to the mapping portion of the navigation problem 

described above, with the eventual goal of using the maps as a basis for later localiza­

tion efforts. Specifically the focus is on globally consistent two-dimensional mapping 

of large-scale passageway networks, the type of environments typically found in un­

derground mines. Allowed sensors are only those which are available and reliable 
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in underground mines. Significantly, this excludes any sensor relying on an outside 

satellite signal (i.e., GPS) or magnetic properties of the surroundings (i.e., a compass). 

1.2.1 Global Consistency 

All real maps contain error, which is the unintended deviation of the map's represen­

tation of an environment from what would be the "true" representation. To an extent 

this is acceptable. Consider the case of a metropolitan subway system, whose maps 

are commonly posted only as topological representations of the network. Though the 

map does not (metrically) resemble the real world, a rider has no problem localizing 

him or her-self relative to the landmarks in the map. Similarly for autonomous mine 

vehicles, mine maps need not provide a true representation of the space, provided they 

contain sufficient information for unambiguous localization within the map (small lo­

cal distortions, for example, do not pose a problem). There are a few conditions, 

however, that they do require. In this thesis, a globally consistent map is taken to 

mean one having all of the following properties: 

1. The map must be topologically correct, in that the relative locations of land­

marks and the connections between them are consistent with those in the real 

world. 

2. Local areas must be metrically consistent. If a globally-consistent map is divided 

into many pieces, each piece must (approximately, as error is always present) 

represent the true metric configuration of the corresponding real-world area. 

3. There should be a 1:1 relationship between map points and real world points. 

This global consistency is a strict requirement for unambiguous localization, and so 

the work presented in this thesis is concerned exclusively with producing maps that 

are as globally-consistent as possible. 



1.3 Goals 
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There are a number of requirements that any mapping scheme must meet in order to 

be of practical use for the application described above. As will become clear in the 

next chapter, no known existing methods are able to meet all of these requirements. 

The goal of this thesis, then, is to develop a prototype of a new method for globally-

consistent mapping with the following properties: 

1. The method should scale to very large, transient and noisy environments (in 

a mine, this can be taken to mean one containing many moving vehicles and 

personnel). 

2. The method should be tolerant of the environment changing or expanding over 

time as new drifts are constructed and old ones modified or closed. Specifically, 

modifying a small part of an environment should not necessitate re-mapping 

the entire environment. 

3. No prior knowledge of the environment should be needed, aside from the re­

quirement that it lies (approximately) in a two-dimensional plane. Manual 

surveying should not be required, and the building of maps should not require 

user intervention. 

4. The resulting maps should provide a natural basis for efficient localization. 

1.4 Overview 

In the next chapter, background topics which are frequently used and referred to are 

described briefly, with references providing more in-depth detail. Background topics 

cover the hardware sensors used as well as established methods developed by others, 

largely taken as they are and used to solve specific problems. A literature review of 
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SLAM methods is then presented, with special emphasis on globally-consistent pose 

estimation, large-scale problems, and the use of RFID to provide unique landmarks. 

Finally, some results of preliminary work done as part of an early stage of the UGPS 

project are presented. 

Chapter 3 covers the theory and algorithms developed over the course of this 

thesis in order to solve the problem defined above. Basic topics of pose and beacon 

(landmark) estimation are covered first, followed by a description of an early au­

tonomous method for global mapping which was not successful in meeting the goals 

defined above. Next, exploiting an observation that a passageway environment con­

taining landmarks inherently has the structure of an undirected metric graph, a new 

approach for mapping is developed. After many pieces are put in place, the chapter 

concludes with the summary of the new landmark-bounded method (LBM), a dis­

tributed "divide and conquer" type approach to graph-based mapping which is able 

to meet the goals laid out in Section 1.3. 

In Chapter 4, the environments and vehicles used for testing the new mapping 

method are described. Beyond a simulator, real environments consist of a large 

indoor tunnel network used for preliminary testing, and an out-of-production gold 

mine used as a demonstration that the method works in its intended setting. Both 

environments are considered "large-scale", and present real-world challenges which 

cannot be overcome with any previously existing mapping method. 

The results of the pose estimation and mapping experiments are presented in 

Chapter 5. Laboratory-scale experiments are described first, with an emphasis on 

comparing map results of the landmark-bounded method with those of previous 

methods and with ground-truth values. Next, results from experiments using the 

landmark-bounded method to map the two truly large-scale testing environments are 

shown and compared to existing manually-created maps. Effects of landmark place­

ment and the scaling properties of the landmark-bounded method are also discussed. 
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Finally, Chapter 6 provides summary and concluding remarks about the content 

of the thesis. A number of areas are identified as possible directions of future work. 



Chapter 2 

Background & Literature Review 

This chapter provides an overview of some of the previous work upon which the 

theory and algorithms developed in Chapter 3 are based. The chapter begins with 

an introduction to the types of sensors available for use in the underground mine 

environment described in Section 2.1. Next, a few basic topics which are used as 

essential building blocks are introduced in Section 2.2. These are largely taken as 

given and used to solve specific problems. A review of the published literature in 

simultaneous localization and mapping (SLAM) is then presented in Section 2.3, with 

a specific emphasis on techniques intended for large-scale use, and those incorporating 

RFID information. Two fundamental and widely-used approaches are described in 

detail, with derivative and special-application methods covered more briefly. Finally 

Section 2.4 on previous work in the UGPS project describes some important previous 

results and sets the stage for the work developed in this thesis. 

2.1 Sensors 

Robotic mapping and navigation in an underground mine environment is a uniquely 

challenging problem, largely due to the lack of sensor information available. Notably 

lacking is any type of global sensor information, forcing any attempt at mapping to 

7 
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rely only on relative measurements. In a similar large-scale problem under "normal" 

circumstances, the key problem of estimating the mapping robot's position and orien­

tation as it travels would be largely solved with the use of two sensors, each providing 

global information: a compass providing measurements of the robot's bearing with re­

spect to some reference "north", and a global positioning sensor (i.e. GPS) providing 

measurements of the robot's location on earth. 

In the target environment, neither of these (or similar) global sensors are avail­

able. Satellite-based GPS is not available below the surface due to the attenuation 

of all electromagnetic signals in the ground. Additionally, a magnetic compass does 

not provide any reliable information in an ore-bearing mine due to the magnetic 

properties of the surrounding materials. What are left are mainly sensors providing 

relative measurements (dead-reckoning sensors and local range measuring devices) 

and proximity-type measurements such as RFID. The following sections briefly intro­

duce the three basic sensors used in this thesis. 

2.1.1 Dead-Reckoning 

Odometry 

A simple and reliable form of dead-reckoning measurements can be obtained from 

odometry: that is, counting wheel rotations (and possibly other quantities) in order 

to estimate vehicle displacement. Typically after making some simplifying assump­

tions such as neglecting any wheel slip, a kinematic vehicle model is derived relating 

measured wheel rotations to vehicle position relative to some starting point. Given 

the vehicle model, measurements of wheel rotations can then provide a reasonable esti­

mate of the vehicle motion provided that the assumptions made in deriving the vehicle 

model were realistic. Of course, odometry measurements suffer from the same uncer­

tainty problem as all incremental estimation methods: measurement error compounds 
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and so the uncertainty in the displacement estimates grows without bound. This is 

not to say that odometry estimates cannot be useful: with high-precision hardware 

and possibly in combination with other estimation methods, odometry measurements 

can provide very good estimates over short ranges. 

Several diverse types of hardware sensors are available. One of the best-suited 

sensors for providing odometry measurements are absolute optical rotary encoders, 

which reliably provide measurements of a rotating shaft's angular position with high 

precision by optical means. The optical encoder typically contains a disc attached to 

the rotating shaft containing reflective and non-reflective sectors, arranged as cuts of 

concentric circles as illustrated in Figure 2.1. A fixed light source and detector pair is 

used to measure the reflectivity along a radius of a point on each concentric circle, and 

the resulting reflectivity information digitally represents the absolute angular position 

of the shaft. Figure 2.1 shows a simple encoder with a two-bit resolution (i.e. can dif­

ferentiate between 22 possible shaft positions), though commercially-available devices 

offer much higher resolution. Alternatively, incremental-type encoders measuring the 

relative motion between readings can be used for counting wheel rotations. 

Figure 2.1: Illustration of a two-bit digital absolute encoder disc. 
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In the experiments described in this thesis, the test vehicles were outfitted with 

two US Digital A2 absolute optical encoders, with specifications provided in Table 

2.1. The A2 encoders offer 12-bit resolution and were used to provide measurements 

of wheel rotations and the steering position. The test vehicles, including details of 

the kinematic model and encoder mounting can be found in Sections 4.2.2 and 4.2.3. 

Table 2.1: US Digital A2 absolute optical encoder technical specifications [2] 

Property 

Resolution 

Angular range 

Update rate 

Data interface 

Data rate 

Value 

12 bit 

360° 

250 Hz 

serial 

1.2-115.2 kbaud 

Inertial sensors 

A second, independent category of dead-reckoning sensors also available for use in 

underground mines is inertial measurement units1 (IMU). These systems typically 

combine 3-axis accelerometers with 3-axis rate gyroscopes to measure linear and an­

gular accelerations. The accelerations can then be integrated to produce displacement 

estimates, though it is generally accepted in robotics that accelerometers are not very 

useful [3] due to their noise characteristics. In this thesis, odometry measurements 

were preferred over inertial ones due to these noise properties: odometry is typi­

cally able to provide much more certain displacement estimates than inertial systems 

over similar distances. Due to the difficulty of installing and calibrating odometry 

systems, however, an attractive future direction might be to study the feasibility 

1Also commonly referred to as inertial navigation systems (INS). 
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of replacing the (custom) odometry system as used in the experiments here with a 

standard commercially-available inertial measurement unit. 

2.1.2 Scanning Laser Rangefinder 

In recent years, light detection and ranging (LIDAR) sensors, specifically scanning 

laser rangefinders, have become a very popular sensor in robotics applications, quickly 

displacing sound-based devices (SONAR) as the preferred sensor for proximity and 

range measurements. The laser's superior angular and range resolution have long 

made it the superior sensor despite its own shortcomings (such as complete laser 

absorption in some materials), with recent decreases in price fuelling widespread 

adoption. 

Scanning rangefinders typically employ a single infrared laser in combination with 

precise timing circuitry to provide distance measurements using a time of flight-based 

method: the time for the reflected laser ray to be received by a target near the source 

is measured, and the distance is calculated knowing the speed of light in air. The 

source-detector pair is combined with a rotating mirror system to provide distance 

measurements over a wide angular range. Since the laser's emitted light signal does 

not disperse with distance as a SONAR sensor's sound probe does (which disperses 

to resemble a cone), very high angular measurement precision is possible, even over 

long distances. Modern sensors are capable of providing measurements at an angular 

resolution between 0.25 and 1 degree over distances of tens of metres. 

In the experiements described in this thesis, a SICK model LMS 111 laser 

rangefinder was used. This model uses an infrared laser to provide range measure­

ments up to a maximum range of 20 m. A rotating mirror system as described above 

allows the LMS 111 to deliver scans of 541 range measurements over an angular range 

of 270 degrees at a rate of 50 Hz. The LMS 111 is shown in Figure 2.2 and detailed 

specifications are provided in Table 2.2. 
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Figure 2.2: SICK LMS 111 laser rangefinder [4]. 

Table 2.2: SICK LMS 111 laser rangefinder technical specifications [5]. 

Property 

Laser wavelength 

Max. range 

Scanning angle 

Angular resolution 

Scanning frequency 

Statistical range error (typical) 

Systematic range error (typical) 

Enclosure rating 

Data interface 

Value 

905 nm (infrared) 

20 m 

270° 

0.5° 

50 Hz 

12 mm 

30 mm 

IP67 

TCP/IP 
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2.1.3 Radio Frequency Identification 

Radio frequency identification (RFID) has become an increasingly prominent tech­

nology in recent years. The basic premise of RFID is that cheap and plentiful RFID 

"tags" are able to wirelessly transmit unique identification numbers to sensors or 

"readers" in the vicinity. The tags are commonly embedded or attached to items for 

tracking purposes, from benign applications such as efficiently managing inventory 

to others focused on tracking vehicles or humans for purposes of security. There are 

many related technologies classified as "RFID", which may be broadly classified into 

two main categories of active RFID and passive RFID. 

"Active" RFID refers to a class of RFID based on powered transmitters. Each 

transmitter (or "active" tag) carries its own power source and broadcasts its unique 

identifier at specified intervals by radio frequency. Nearby readers are able to sense the 

transmission and read the tag's identifier wirelessly. This class of RFID is character­

ized by long effective range of the tags and reliable detection, though at the expense of 

the complexity and cost associated with managing many battery-powered units: tags 

are expensive to produce initially, and must be replaced after the battery-dependent 

lifetime of the tag. 

"Passive" RFID is a type of RFID devices relying not on individual battery-

powered transmitters, but instead on a class of simple, excitable integrated circuits. 

A passive RFID tag contains no power source, but instead relies on energy received 

from the reader for its transmitting power. In this case, readers continually emit a 

radio signal at a known frequency. The integrated circuits of passive RFID tags are 

designed to absorb electromagnetic energy at this frequency, and re-emit a signal at a 

frequency unique to each tag. In this way the complexity of maintaining a collection of 

short-lived battery powered transmitters is avoided, at the cost of reduced range and 

reliability of detection. Readability of passive RFID also tends to be highly directional 
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[6], which may be either a benefit or a shortcoming of the system, depending on the 

application. 

The choice of one RFID technology over the other is dependent on the intended 

application, with both types having scenarios to which they are well-suited. Important 

criteria in choosing a system are usually cost, required range and maintainability, 

among others. Very high volume and single-use type applications are well suited 

to cheaper passive RFID systems, while those requiring a high degree of reliability 

and certain range characteristics are often better suited to the active systems. One 

application of active systems is for tracking individual vehicles as they enter and exit a 

highway system. In this case the system must operate over relatively long ranges (tens 

of metres), and the orientation of the tag with respect to the reader is unpredictable. 

This application necessitates the higher cost and complexity of the active system. A 

typical application of passive RFID is in tracking inventory of books and other items. 

The passive tags can be produced for a very low cost (a few cents at high volume), 

making them an ideal choice for inventory purposes. Furthermore, in this case the 

orientations of tags with respect to the reader can be more easily controlled, and the 

directionality of this type of system may even be preferred for practical reasons. 

(a) An Alien ALR-9650 passive RFID (b) Alien ALN-964X and ALN-9654 pas-
reader [7]. sive RFID tags. 

Figure 2.3: An Alien Technology passive RFID system. 

In the experiments described in this thesis, an Alien ALR-9650 RFID reader was 
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used in conjunction with Alien ALN-9654 and ALN-964X RFID tags, shown in Figure 

2.3. This system adheres to the EPC Class 1, Generation 2 standard [8] for passive 

RFID systems. The ALR-9650 is a compact, single-antenna system able to read 

passive RFID tags at ranges up to 10 m in ideal conditions. Technical specifications 

of the ALR-9650 are provided in Table 2.3. 

Table 2.3: Alien ALR-9650 RFID reader technical specifications [9]. 

Property 

Type 

Class 

Tag compatibility 

Nominal range 

Antenna 

RF transmitter 

Operating frequency 

Data interface 

Value 

Passive RFID 

EPC [8] Class 1, Generation 2 

Any EPC C1G2 

2-10 m 

1 internal 

< 30 dBm 

902.75-927.25 MHz 

TCP/IP 

2.2 Background Topics 

2.2.1 State Estimation 

Many problems in robotics involve state estimation. A system's state is any collection 

of variables which characterize it: the state of a mobile robot may be as simple as 

its (x, y, 9) pose (position and orientation) in some world coordinate frame, or may 

include more information, depending on the application. Typically the state is chosen 

to be the smallest set of variables which model the behaviour of interest. Since it is 

in general not possible to observe a system's state directly, it is necessary to estimate 



16 

the state based on properties which are observable. Various schemes are used to deal 

with these, which are almost always noisy. Two such schemes are used in this thesis 

to deal with the problem of state estimation: the Kalman filter (KF) is used when the 

estimation problem meets certain conditions (such as linearity of the state model), 

and a derivative known as the unscented Kalman filter (UKF) is used in other cases. 

In this thesis, the system to be estimated is described by a discrete-time state model 

xfc = /(xfc_i,ufe_i,wfc_i) (2.1) 

with measurements given by 

zk = h(xk)+vk, (2.2) 

where x^ is the system state at time k, uk are inputs, zk are measurements, and wfc 

and v/t are process and measurement noise. 

In the special case where the functions / and h are linear and time-invariant (LTI) 

and the noises w and v are white, Gaussian, and independent, with 

Wfc-A/^Qfc) (2.3) 

vk~Af(0,Rk) (2.4) 

the Kalman filter can be shown to be an optimal (minimum variance) solution to the 

estimation problem. In this case (2.1) can be written as 

xfc = Axfc_! + Bufc-i + wfc_i, (2.5) 

and (2.2) as 

zfc = Hxfc + vfe. (2.6) 

At each timestep k, the Kalman filter uses a two-step process to estimate the state 

Xfc and its covariance Pk, commonly known as the "prediction step" (a priori in 
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Bayesian terminology) and the "update step" (a posteriori). The prediction step 

uses the model (2.5) to compute the state as expected by compounding the recent 

inputs with the previous state estimate, while the update step uses the difference 

between the measurements z and their expected values to update the state estimate. 

The Kalman filter equations are derived in [10], with the basic algorithm presented 

in Algorithm 1. 

Input : System state estimate at time k -
model inputs at time k — 1 (uk-i, 
measurement at time k (zk, with 

Output : System state estimate at time k 

- 1 (xfc_i, with covariance Pfe-i), 
with covariance 

covariance ~R,k) 
Qfc-

(xfc, with covariance 

// Compute the a priori s t a t e estimate 
xfc = Axfc_i + Bufc_i 
P ^ = AP fc_!AT + Qfc_! 

/ / Compute the Kalman gain and the 

Kk = PfeHT ( H P - H T + Rk)~
1 

xfc = x^ + Kfc (zfc - Hx;:) 
P* = ( I - K f c H ) P r ; 

a posteriori 

i), system 

P*) 

estimate 

Algorithm 1: One step of a Kalman filter. 

For nonlinear / and h, the Kalman filter cannot be used to estimate x. For this 

case a number of alternate filters exist, one being the unscented Kalman filter (UKF). 

At the heart of the UKF is the unscented transformation, a way of representing a nor­

mal distribution as a number of sampled "sigma points", carefully chosen so that the 

distribution can later be recovered from them. In the UKF, then, instead of propagat­

ing the (still assumed) normally-distributed variables directly through the nonlinear 

functions f or h (which would result in a non-normal result), the sigma points are 

used instead, with new normally-distributed variables recovered from the resulting 

sigma points. Again the derivation is available in [11], and the basic algorithm is 

presented in Algorithm 2, where the state dimension is n and the subscript notation 

refers to matrix columns. 
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Input: System state estimate at time k — 1 (x^-i, with covariance Pfc-i), 
model inputs at time k — 1 (u^-i, with covariance Qfc_i), system 
measurement at time k [zk, with covariance Rfc) 

Output: System state estimate at time k (xfe, with covariance Vk) 

// Create sigma points for the prediction step (note: alternate 
choices for sigma points exist) 

for i = 1 —>• n do 

4 - i = Xfc-i + (vraPjfe-i), 
.(z+n) = . f c_ i _ ( v / ^ p ^ ^ 

end 

/ / Propagate sigma points through s t a t e model 
for i = 1 —> 2n do 

xfc - / ^xfc-nufc-iJ 
end 

// Combine sigma points into a priori estimate 

pfc- = i ££i (4l) - **) (4l) - xfc-)
T + Q^I 

// Create sigma points for correction step 
for i = 1 —> n do 

*l° = ** + (v^p7)t 

end 

// Propagate sigma points through measurement model 
for i = 1 —> 2n do 

4" =/»(4*') 
end 

/ / Combine sigma points into expected measurement 
s, - J_ v 2 n 7W 

zfc — 2n Z ^ i = l zfc 

P. = ^£^(4°-^) (4°-^)%^ 
p.x = ^E2i(*?)-*fc)(4°-zfc)

T 

/ / Compute the Kalman gain and the a posteriori estimate 
Kfc = PxzPj 
xfc = x^ + Kfe (zfc - zfc) 

Pfc = Pfc ~ KfcPzKfc 
Algorithm 2: One step of an unscented Kalman filter. 
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2.2.2 Scan Matching 

In the context of mobile robotics, "scan matching" is the process of aligning similar 

scans taken by a ranging device (here an in-plane laser rangefinder is assumed) in 

order to estimate the relative difference in position between the poses where the 

scans were taken. Scan matching thus provides an independent method of estimating 

motion. The goal of scan matching is to estimate the rotation and translation needed 

to transform a "current" scan into the frame of a "reference" scan taken at a different 

time. Due to noise in the measurements and scans which do not necessarily overlap 

completely, this necessarily involves finding the transformation resulting in the best 

fit of one scan with the other. This is illustrated conceptually in Figure 2.4. 

Many classes of scan matching algorithms exist and different variations use points, 

lines, or more general shapes as features for matching. Most modern methods take the 

more robust point-to-point approach, which does not assume a structured environ­

ment (e.g. containing lines) or predefined features. Point-to-point methods are able to 

estimate the best coordinate transformation relating the current and reference frames 

in one step, if the correct associations between the individual range measurements 

in each frame are known. Since the associations are usually unknown, a common 

technique is to choose associations according to some criteria and iterate the process, 

hoping to eventually converge on a good solution. One of the most popular of these 

methods is the iterative closest point (ICP) method for scan matching developed by 

Besl and McKay [12]. In ICP, a simple Euclidean distance measure is used to choose 

associations (i.e., the "closest point"), and the process is iterated. Similar variations 

abound, such as the iterative matching-range point (IMRP) method proposed by Lu 

and Milios [13], which uses a different criterion for point associations, and iterative 

dual correspondence (IDC), also by Lu and Milios, which is a hybrid of ICP and 

IMRP. 
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(a) Similar scans taken by the scanning laser rangefinder at different 
times. 
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(b) Aligned scans, with scan matching motion estimate Aq s m . 

Figure 2.4: Illustration of motion estimation by matching similar range scans. The 
rangefinder itself is located at the origin of each scan's polar coordinate system and 
is marked by an arrow. 
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Polar Scan Matching 

All of the above mentioned methods feature some variation of an (expensive) search for 

corresponding points in a Cartesian coordinate system. In some uses of scan matching 

this is unavoidable, but in the special case where the range data is sourced from a 

scanning laser rangefinder, it is possible to do better by exploiting the polar nature of 

the measurements produced by the sensor. For this case, polar scan matching (PSM) 

was developed by Diosi and Kleeman [14], an efficient algorithm making use of the 

polar coordinate system of the laser rangefinder. In PSM correspondence is done by 

associating current and reference scan points with matching bearings (9) instead of a 

search in Euclidean space. This simple trick results in a much more efficient algorithm: 

PSM's translation estimation is of order 0(n) complexity in the number of matched 

points versus ICP's 0(n2), with similar gains in rotation estimation [14]. Similarly 

to ICP and other methods, PSM is an iterative approach, estimating rotation and 

translation in turn, and the uncertainty in the match is computed commonly by 

heuristic means. Each step is described briefly below, with more detail available in 

the original publication [14]. 

Initially both the reference and current scans are preprocessed. First a median 

filter is applied, with a window of five laser rays. In this step, the middle range value 

of each five consecutive range readings is replaced by the median value of the five 

readings. This has the effect of drastically reducing outlying measurements result­

ing from the odd absorbed laser ray while preserving detail, making the following 

segmentation process much more reliable. Median filtering is a common technique 

in image processing and is widely used in that context for removing "salt & pepper 

noise" from images [15]. Next each scan is split into segments, based on a simple 

distance threshold between range measurements at neighboring bearings. In this step 

each two consecutive range measurements are compared, and if their difference is 
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larger than a threshold, they are assumed to be measurements of different objects in 

the environment, and segment indices are assigned accordingly. Segmentation of a 

sample scan is illustrated in Figure 2.5. 

Segment 2 t' ~ ~ - x 

>- >X 2^1 Segment 3 
' xxxxx x / W _ - ^ _ 

> - . — - l ^ x ^ - -

/ * 
I 

/ / 

Segment 1 

; £ / 

S 
X i 
x I 
x 

X ' 

Segment 4 

i « ' i X 
1 x i k i * • 
' x i T i ' 

Figure 2.5: Example of a laser scan split into segments based on a simple distance 
criterion between adjacent points. 

First, the current scan is projected into the frame of the reference scan using an 

initial guess of the motion. This is a two-step process: for each measurement in the 

current frame, first the transformed point is found in the reference frame using the 

assumed coordinate transformation. Next, an interpolation is performed to simulate 

the measurement had it been taken from the reference frame, with measurements 

at angular increments native to the rangefinder. In the notation of [14] where qc = 

(xc, yc, 9C) is the robot pose in the current frame, and q r the pose in the reference 

frame, the scan projection procedure is outlined in Algorithm 3. In the case where a 

projected range value is occluded by some object and not actually visible in the scan, 

the point is marked as "invisible" and excluded. 

After scan projection there is one projected measurement r"ci corresponding to 

each reference scan measurement r r j . An optimization problem is constructed to find 
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Input: A current laser scan zc, an estimate of the relative motion (xc, yc, 9C) 
Output: The projected scan zp 

II Project current scan into reference frame 
for each range measurement rcl at bearing (f)a in the current scan zc do 

/ / Compute new endpoint coordinates 
x = ra cos (6C + 0t) + xc 

y = ra sin (6C + <f>x) + yc 

II c 
r' = 

CI 

ompute projected range & bearing 

\/x2 + y2 

<//a = arctan (y/x) 
end 

/ / Interpolate to simulate measurements in the reference frame 
for each projected measurement r'a at bearing <p'ct do 

II Check criterion for occlusion as in [13] 
i f 0« > 0«-i then 

/ / Point i s v i s ib le 
°0 = </>a_i 

«1 = 4>'a 

00 = r ^ - i ^ i 
01 = L0'a^J 
r0 = ^ - i 

n = ra 
end 
else 

II Point i s occluded 
a 0 = (p'a 

O-l = fla-l 

00 = WJf\ 
0i = L^-i^J 
ro = r'a 

n = r«_i 
end 

/ / Compute interpolated ranges r"a 

while 0o < 0i do 
^ = ^ ( 0 O ! 8 o « o ) + r 0 

i f r < rcd>n
 t h e n 

rc0o
 _ r 

00 = 00 + 1 
end 

end 
end 

Algorithm 3: Project the current scan zc into the frame of the reference scan 
zr (assumes laser bearings spaced at 1° increments). 
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the best estimate of the coordinate translation in a weighted least-squares sense; that 

is, to find the (xc, yc) which minimizes the objective function 

Z = ^2wz( ll \ 2 
rri ~ rci) ) (2.7) 

where wl are weighting factors used to minimize the contribution of badly-matched 

points. Following [14], we define the Jacobian 

H = 

dxc dyc 

dr" dr" 
dxc dyc 

and the diagonal weighting matrix W which has weights wl on the diagonal and 

zeroes elsewhere. The weights w% are computed as per [16]: 

w,. = 1 d? 
d™ + cm' 

where m and c are constants. The solution to the least-squares problem is then [17] 

Axr 

&yc 

( H T W H ) _ 1 H T W ( r ; ' - r r ) (2.8) 

In the rangefinder's polar coordinate system, rotations are manifested as a left or 

right shift in the histogram of range measurements. Estimating the best-fit coordinate 

rotation, then, can be done as a simple search problem: define an objective function 

as the sum of the squared differences between the reference scan measurements and 

the shifted current scan measurements, and conduct a search for the angular shift 

minimizing the objective function. Since in general the rangefinder does not have a full 

360° view of the environment, it is not possible to estimate any arbitrary orientation 

difference due to lack of overlap of the scans at the extreme values. Instead a simple 
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search is done in a window about the "guess" value, using quadratic interpolation to 

estimate the best value. 

If correct point-to-point associations are assumed, it is possible to calculate the 

covariance C of the translation estimate, which is just the covariance for weighted 

least squares [14]: 

C = a ? ( H T W H ) _ 1 , 

where ar is the uncertainty in the range measurements. However, due to non-

overlapping scans and incorrect associations, a heuristic error estimate usually gives 

more realistic results [14]. The heuristic error estimation was implemented as per the 

recommendation of Diosi and Kleeman, with 

C = C o m a x ( Q j ] | A r A -S0,l), (2-9) 

where Co is a base covariance matrix and 5o is an experimental parameter. A 

histogram-type approach was used to classify the scans into either "featured" or 

"tunnel" areas to reflect the two main types of scenes normally encountered. To 

classify the scans, the orientation of the line segment drawn between each pair of 

contiguous measurements is computed. A threshold is then applied to the variance 

of the orientations: for areas with many features we expect a high variance in the 

line segment orientations, and for long, featureless tunnels we expect a low variance. 

Classically this approach suffers from a problem when there is significant random 

noise in the measurements, but it is found to be reliable in the test data after the 

median filter is applied to the scans. For areas with many features, a diagonal Co is 

used in (2.9), while for featureless tunnels C0 is chosen to be elongated and oriented 

in the direction of the tunnel, illustrated in Figure 2.6. 
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(a) An area with visible features: mo- (b) A tunnel-like area: mo­
tion estimate is equally certain in all tion estimate is more certain 
directions. in the transverse direction. 

Figure 2.6: Visual representation of scan matching uncertainty in two cases. Visual 
references available in featured areas allow for a small and nondirectional uncertainty, 
while in straight tunnels there is more uncertainty in the direction of the tunnel. 

2.2.3 Occupancy-Grid Mapping 

Assuming that the sequence of poses visited by a robot is known, many methods exist 

for using observed range data to create a map of the environment. For unstructured 

environments (not necessarily containing lines or discernable shapes), a simple and 

popular choice is mapping based on occupancy grids, first proposed by Elfes [18] and 

refined by many others since. In this method, the environment is divided into a 

grid of equally-sized cells, each containing a value in the range [0,1] representing the 

probability of that cell being occupied by an obstacle. In this scheme, a cell value of 

"0" indicates that the corresponding area in the environment is free and traversable 

by the vehicle, while a cell value of "1" indicates that the corresponding area in the 

environment is blocked by some obstacle and not traversable. 

Generating an occupancy grid map given a set of known robot poses and the 

observed range data is done using a simple ray-tracing method. For each pose, we 

have a number of range measurments from the rangefinder at fixed bearings. Knowing 
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Figure 2.7: Simplified illustration of occupancy-grid mapping. The environment is 
divided into cells, which are then assigned a probability of being "occupied" based 
on range and bearing measurements from the rangefinder. 
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the location and orientation of the vehicle and the bearing angle of a particular ray 

with respect to the vehicle, we sequentially visit each map cell along a straight line 

from the centre of the rangefinder to the endpoint of the ray, updating their occupancy 

values with "unoccupied" values. For a fixed distance about the endpoint of the ray, 

cells are updated with "occupied" values, taking into account the uncertainty of the 

range measurements, illustrated in Figure 2.7. The probabilistic cell update is done 

according to the recommendation of [19], rewritten to enable efficient computational 

implementation. The occupation probability Pitj in cell with indices (i,j) is updated 

as 

PjJ = 1 ~ T-^E-' (2-10) 
i + r 

with 

e x p ^ o g ^ ) - l o g ^ ) ) , for occupied cells 
rt = ^ (2.11) 

exp (log ( ^ r ) ~~ 1°S ( l ^ ) ) ' f°r unoccupied cells 

where h is the probability update value and u is the "unknown" probability value. 

The maps generated for this thesis used h = 0.6 and u = 0.5. Both cases of R are 

constants for given values of h and u, and can be precomputed and stored for efficient 

implementation. The occupancy grid mapping algorithm is given in Algorithm 4. For 

a more detailed description of this process, see [20]. 

2.3 Literature Review in SLAM 

Improving on open-loop pose estimation methods in the absence of global information 

is a challenging task. Consistent pose estimation is an important problem and an area 

of active research, particularly for the purpose of making maps where it is known as 

SLAM (simultaneous localization and mapping). Several distinct methods have been 
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Input: A set of robot poses q, a corresponding set of observed laser range 
data z 

Output: An occupancy grid map P 
for each robot pose q, = (xu yl,9l) do 

for each laser ray z3 = (r-,, 4>3) do 
/ / In i t i a l i ze the ray r to the measured range value 
r = r3 

1/ Compute bearing of z3 in the world frame 
a = 9X + <f>3 

while r > 0 do 
/ / Compute the end location of the ray 
xr = xt + r cos a 
yr = yi+r cos a 

II Choose whether to mark the ce l l as 
occupied/unoccupied 

if \r — r3\ < b then 
/ / Set R for 'occupied' using (2.11) 
i t • ' tocc 

end 
else 

/ / Set R for 'unoccupied' using (2.11) 
-'t - r t u n o c c 

end 

/ / Locate the nearest map ce l l by rounding 
(i,j) = round_to_cell(:rr,2/r) 

/ / Update the ce l l value using (2.10) 
PJJ = probability_update(Pjj, i?) 

/ / Decrement the ray by one range resolution 
Ur 

end 
end 

end 

Algorithm 4: Basic algorithm for occupancy-grid mapping. 
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devised to deal with this problem. Two independent "major" methods for closed-

loop pose registration are described in dedicated sections below, with derivative and 

special-application methods covered more briefly later. Particularly relevant is the 

linear least-squares approach of Lu and Milios, a method which was implemented and 

used for pose estimation in this thesis. 

2.3.1 Lu & Milios 

The least-squares approach to pose estimation as introduced by Lu and Milios [21] 

is a popular method used to create optimal closed-loop pose estimates. This method 

envisions the sequence of robot poses as nodes in a graph, with links between the 

nodes representing relative measurements between the poses. The poses themselves 

are free variables, estimated by a least-squares optimization process as the best fit to 

the set of measurements. For dead-reckoning measurements (that is, only containing 

measurements between contiguous pose pairs), equivalent optimal estimates can be 

produced using Bayesian filtering methods as introduced in Section 2.2.1, but by 

using the least-squares approach, the more general case containing both contiguous 

and non-contiguous links can be handled. Dead-reckoning measurements between 

contiguous nodes are termed weak links, with measurements from other sources (not 

necessarily linking contiguous nodes) called strong links. Mathematically they are 

identical, but the distinction can be useful. Weak links typically are obtained from 

odometry or inertial sensors, with strong links obtained by scan matching similar 

laser range scans as introduced in Section 2.2.2. 

The nodes are denoted by ql5 links AqtJ are measurements between q2 and q, with 

Aq y denoting a measurement of Aq tJ, and associated with each measurement Aq^ 

is a covariance Cl3. Considering the special case where Aq2J is the linear function 
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defined by 

Aq,j = qj - q l ; (2.12) 

the goal is to determine the links Aq y in such a way that the conditional joint 

probability of the derived Aq^ given their observations Aq y is maximized. The 

objective function to minimize is 

W = Y, (A% - A % ) T C.11 (A% - A%)> (2-13) 

where the summation is over all the measurements. Substituting the linear measure­

ment equation (2.12), (2.13) becomes 

W = Y, ( A % - OU - <h? Cv ( A % - q, - q,) • (2-14) 

In matrix form the measurement equations are 

A q = Hq, (2.15) 

where q is a concatenation of the q,j, A q is a concatenation of the links Aq y , and 

H is an incidence matrix with all entries 0, 1, or -1 . The objective function (2.14) 

can be represented in matrix form as 

W = ( A q - H q ) T C - 1 ( A q - H q ) , (2.16) 

where C is a block-diagonal matrix containing the covariances Cl3. The well-known 

solution for q minimizing W is given by 

q = ( I ^ C - 1 ! ! ) " 1 I ^ C ^ A q , (2.17) 

with covariance 

P = ( I ^ C ^ H ) " 1 . (2.18) 
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The result given by (2.17) and (2.18) is the best estimate of all of the relative node 

positions, given all of the measured information about connections between the nodes 

and their respective uncertainties. 

The linear case assumed in (2.12) is true for (x,y,9) poses when all nodes qt 

and measurements Aq y are expressed in a common global reference frame. Since in 

general the transformation bringing a pose q? into the global frame (conventionally 

defined by the first pose in the sequence, qn) is unknown, a common approach is 

to use the current best estimate of the transformation instead and iterate the entire 

process. 

2.3.2 Duckett, Marsland & Shapiro 

An alternative method for estimating closed-loop pose sets was introduced by Duck­

ett, Marsland and Shapiro [22]. It is an iterative approach, continually refining a 

set of poses using measured data until the set converges on what is shown to be a 

statistically optimal solution. Similar to the approach of Lu and Milios, the set of 

poses is represented as a graph whose nodes are free variables, where both "strong" 

and "weak" links can be defined. In this method, after initializing the node locations 

to some arbitrary values, each node is visited in turn and its position adjusted to 

satisfy the measurements linking the node to its neighbors. This can be described as 

moving each node to "where its neighbors think it should be", based on observations. 

Each adjustment introduces only an incremental improvement to the network, so the 

whole process is iterated until the sum of the squared differences between the links 

and their measured values reaches a minimum. 

With the node positions given by X? = [ x
y\ ], measurements between nodes i and 
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D7l = d •ji 
cos (A63%) 

sin (A0Jt) 

(2.19) 

with measurement covariance CJt, where d3l is the relative displacement between 

nodes i and j , and A9Jt is the difference in heading: 

d3l — 
\ 

E* t cos at + E5< s i 
smaj 

t 

A9n = arctan ( * ,. 
\2^t°tCosatJ 

(2.20) 

(2.21) 

Here we assume a case where there may be many measured "steps" per node, and the 

vehicle's heading can be measured directly (for example by using a compass). The 

measured displacement between each step is denoted St and the measured heading is 

at. For each node i, the goal is to minimize the objective function 

5 , = 2 ^ C - 1 ( X I - X ; - D JV' (2.22) 

where the sum is over all of the nodes j topologically connected to node i, and the 

maximum-likelihood solution minimizing (2.22) is 

x> = ( E c 7 n Ec ; . 1 (x;+D^)- (2-23) 

Each node in the set is updated using (2.23) in turn, and the whole process iterated 

until convergence. 

This method has an advantage over that of Lu and Milios in that the difficult 

(and possibly unstable) matrix inversion is avoided. In practice this means that 

as the number of nodes is increased, this method requires only an increase in time 

to solve the problem, as opposed to the previous method which requires additional 

memory and inevitably time as well. This is a nice scaling property for large-scale 
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problems, but since each node estimation problem is dependent on the most recent 

solutions of its neighbouring nodes, it does not scale "horizontally" (i.e. it cannot 

be parallelized). Additionally this method becomes much more difficult when node 

orientations must also be estimated from relative measurements instead of measured 

directly using an onboard compass. 

2.3.3 Others 

A number of other approaches to the SLAM problem have appeared for specific 

applications. Some of the most pertinent are described below. 

SLAM 

Thrun and Montemerlo [23] developed the GraphSLAM algorithm for large-scale 

mapping. This method uses a graph whose nodes represent both robot poses and 

observed landmarks, and whose edges represent relative measurements between them. 

The graph is reduced to an "information form" optimization problem, which is then 

solved by conventional methods. This method relies on global GPS measurements for 

"large-scale" problems. 

Leonard and Feder [24] introduced the DSM algorithm (decoupled static map­

ping) for mapping large areas. This is a feature-based approach employing multiple 

submaps to cover the desired area. While consistency between maps is ensured, this 

approach relies on a priori knowledge of the environment in order to size and place 

the static submap regions. 

Golfarelli, Maio and Rizzi [25] developed a method for pose registration by explic­

itly envisioning the graph of poses as a network of nodes and springs. Spring length 

represents relative distance measurements between nodes, and the stiffness of the 

springs are related to the measurement covariances. The minimum-energy solution is 
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then computed using a method similar to that of [22]. As in [22], this method also 

relies on a compass for direct measurement of the robot's heading. 

Konolige [26] introduced a method for closed-loop pose registration similar to 

that of [22], but employing a different relaxation algorithm. Though faster than that 

presented in [22], the requirement to directly measure heading with a compass is not 

avoided. 

Finally, Bosse et al. [27] developed an "atlas" based approach similar to that 

developed for this thesis. This atlas approach is based on local reference frames, 

each representing a node in a graph, with the edges representing the relative trans­

formations between the frames. Each node contains a map, and closed-loop pose 

registration is based on matching similar maps. Due to its distributed nature, it is 

able to scale to very large areas. The graph in this method, in contrast to that of the 

landmark-bounded method, is not fixed with respect to the physical environment, 

so alternate data collection runs of a given environment can result in very differ­

ent graphs. Because of this it is unclear whether this approach could allow later 

extension and modification of maps. Additionally it is unclear whether the required 

map-matching process would be applicable for the types of environments encountered 

in underground mines. 

SLAM + RFID 

Hahnel et al. [28] developed a method of localizing RFID tags by learning a sensor 

model from measurements. It was shown that the use of RFID information in the 

map allows very efficient localization. Their approach, however, requires a preexisting 

map of the environment. Milella et al. [29] and Joho et al. [30] have similar methods 

of localizing the tags given an existing map. 

Kleiner, Prediger and Nebel [31] developed an approach for search & rescue using a 

graph based on RFID tag locations, with odometry and scan matching measurements 
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used to estimate the relative displacement between the tags. In this method the 

mapping vehicles themselves distribute the RFID tags, and requires writing data to 

the tags as well as reading from them. 

Many others [28, 32, 33, 34] have developed methods for navigation based on 

maps containing RFID beacons at known locations. A popular approach is to build a 

topological graph of beacons, and navigate through the graph using the RFID beacons 

as "stepping stones" to reach some desired goal. 

Remarks 

As is, none of the work covered in this section is able to satisfy all of the requirements 

laid out in Section 1.3. A number claim large-scale applicability (goal #1), with map 

areas up to 108 square metres commonly cited. None are able to meet goal #2, the 

ability to adapt maps to changing environments, as all make the assumption that 

the environment is and will remain static. A physical alteration of any part of the 

environment requires a complete re-mapping in these methods. Most are able to 

meet goal #3 , that no a priori knowledge of the environment should be necessary, 

but significantly, none are able to meet both #2 and # 3 simultaneously. Techniques 

based on sub-maps require prior knowledge to either size and place the submaps, or, 

as with many of those based on RFID, to localize the RFID beacons. 

2.4 Previous Work 

The algorithms and ideas developed in this thesis are based on previous work by 

Artan, Marshall and Lavigne, research that was conducted, as was the content of this 

thesis, under OCE contract CA-IA-I50965-08 with partner MDA Space Missions as 

part of a feasibility study of the UGPS project. The earlier work was successful in 

its own right and a number of milestones were reached, including the development 
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of a set of algorithms which were successful in their goal of consistently mapping 

moderately-sized laboratory environments. 

This work primarily used laser-corrected odometry [20] for open-loop pose esti­

mation and the least-squares method of Lu and Milios [21] for closed-loop estimation, 

with experiments conducted using a Pioneer P3-DX mobile robot and SICK laser 

rangefinder. Due to significant error in the initial open-loop estimates, it was neces­

sary to make use of a human operator to guide the closed-loop process to convergence. 

This was done by selecting pairs of points which should be near each other from the 

open-loop plot and using them as initial "strong links" in the least-squares problem. 

Of course this requirement of manual intervention was undesirable, but it made clear 

that the extremely limited set of information used in the mapping process was not 

enough, and that some other type of information was needed to resolve ambiguity 

issues. Here the extra information was provided by a human operator, and it was rec­

ognized that adding one or more additional sensors to the vehicle in order to provide 

this information autonomously would be preferable. 

Figure 2.8 shows a typical progression of map results from these experiments. 

Figure 2.8(a) shows a map resulting from pose estimation considering only odometry 

measurements. In this case the scale of distance travelled by the robot is realistic, 

but the orientation estimates clearly have significant error (including an obvious sys­

tematic bias in this case). Figure 2.8(b) shows a map resulting from pose estimation 

by matching consecutive range scans. This method results in much better orientation 

estimates, but displacements tend to be underestimated, leading again to significant 

error. Figure 2.8(c) shows a map made using laser-corrected odometry for pose esti­

mation, the best available open-loop method. In this case estimates of both distance 

and orientation have low error, but over long distances (the environment here is an 

80 x 60 m rectangular shape) the accumulation of error is still significant enough that 

the resulting map is clearly not consistent. A knowledgeable operator has manually 



(a) Open-loop pose estimates from odom- (b) Open-loop pose estimates from scan 
etry measurements. matching measurements. 

(c) Open-loop pose estimates from laser- (d) Closed-loop pose estimates employ-
corrected-odometry measurements. ing laser-corrected odometry for "weak" 

links, and scan matching measurements 
for "strong" links. 

gure 2.8: A typical progression of mapping results from the UGPS feasibility study. 
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recognized that there are duplicate points in this map corresponding to single points 

in the real world (thus this is not "globally-consistent", by the definition in Section 

1.2). Using the links defined by these duplicate points, the least-squares process was 

able to produce a set of pose estimates that is consistent, with the map shown in 

Figure 2.8(d). This process is covered in more detail in [35]. 

One of the major realizations of this work was that the published and conventional 

methods for this type of job would not be sufficient to meet the goals of the UGPS 

project, and a scalable and efficient new mapping method was needed. In parallel 

with the work in mapping, research efforts at MDA demonstrated the feasibility of 

localization in these maps, but recognized a similar scaling issue that prevents it from 

being usable in very large environments. Besides providing a scientific basis, these 

results supplied the very necessity for the distributed approach to UGPS which is the 

basis of this thesis. 



Chapter 3 

Theory &; Algorithm Development 

This chapter details the development of theory and algorithms pertaining to the 

landmark-bounded method. First the fundamental issues of consistent pose estima­

tion and the use of RFID information are addressed in Sections 3.1 and 3.2. Next, in 

Section 3.3, an automated extension of the previous work described in Section 2.4 is 

presented. This represents the next logical step in the continuation of the previous 

work, and it is argued that the goals of Section 1.3 cannot be met by continuing 

this line of research. Next the underlying graph structure of an environment is de­

scribed in Section 3.4, defining the local reference frames of an atlas-based approach, 

and thus providing the basis for the landmark-bounded method. With the problem 

decomposed into many sub-problems, Section 3.5 describes how the smaller "edge 

problems" are solved, and Section 3.6 details how the solutions to the edge problems 

are assembled into a solution of the original problem. Section 3.7 covers network 

extension, and Section 3.8 shows how global maps are created. Finally, Section 3.9 

offers a summary of the steps taken to create a map using the landmark-bounded 

method. 

40 
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3.1.1 Open-Loop 

"Open-loop" pose estimation refers to that done using dead-reckoning methods, such 

as the odometry measurements discussed in Section 2.1.1. Despite the unbounded 

error growth inherent in all open-loop methods, they are useful over short ranges 

where the uncertainty remains small. The following sections detail the open-loop 

estimation methods used in this thesis. 

Odometry-Based Pose Estimation 

Introduced in Section 2.1.1, odometry measurements via calibrated encoders are a 

very reliable way of estimating motion. This method integrates measured wheel rota­

tions to compute displacement using a kinematic model of the vehicle. Working in the 

most general way possible, the pose estimation algorithms (and later, mapping) were 

developed using a general "unicycle" vehicle model, based on the simplest possible 

wheeled vehicle. Since data collected using any compatible vehicle (specifically, one 

whose kinematic model includes the same non-slip condition, detailed below) may 

be converted into equivalent unicycle data, this allows algorithms to be developed 

independently of any particular vehicle configuration. 

Consider the unicycle system as shown in Figure 3.1. The configuration of the 

unicycle is its pose q = (x,y,9): the centre coordinate of the vehicle in some world 

coordinate system, combined with its orientation. Making the assumption that the 

wheel cannot slip laterally and must always travel in a direction parallel to its current 
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y 

x 
Figure 3.1: Illustration of the "unicycle" kinematic vehicle model used as a basis for 
algorithm development. 

orientation results in the nonholonomic constraint (3.1): 

w(q)q = sin 9 cos 9 0 

x 

y = 0. (3.1) 

One solution incorporating (3.1) can be written as [36] 

q = 

cos# 0 

sin# 0 

0 1 
U 

(3.2) 

where u = [£] is a vector of inputs, v represents the forward velocity of the unicycle, 
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and u = 9 is the turning rate. The system is discretized as 

qfc = qk-i + T 

" 
cos#fc-i 0 

sin^fc_! 0 

0 1 

Vk-l 

Wfc-i 

(3.3) 

for implementation, where T is the time step, and k is the step index. 

For mapping purposes, the goal is to estimate the poses q with covariance P 

based on v and to obtained from odometry measurements. Since the model (3.3) is 

nonlinear, the Kalman filter as introduced in Section 2.2.1 cannot be used for this 

without linearization. By making simple assumptions about the noise properties on 

v and u, however, it becomes possible to use a method based on the UKF's unscented 

transformation (UT) [11]. Specifically by assuming that the noise on u is a Gaussian 

random variable with covariance Q, all of the criteria specified in Section 2.2.1 are 

met for the UKF, and thus for open-loop pose estimation based on the UT, which is 

analogous to the a priori prediction step of the UKF. The specific variant employed is 

an augmented UT [37], where the inputs q and u are concatenated into an augmented 

state r with dimension n = dim q + dim u, and likewise the covariances P and Q are 

used to construct a block-diagonal augmented covariance matrix R. For an initial 

pose given by qo where the uncertainty P 0 = 0 by definition1, this process is detailed 

in Algorithm 5. 

PSM-Based Pose Estimation 

With a full scan of laser range data collected at each timestep k, it is possible to 

do open-loop pose estimation by matching range scans. This method is based on 

scan matching as introduced in Section 2.2.2. As elsewhere in this thesis, the polar 

2In practice a diagonal matrix of arbitrarily small positive values is used instead for Po so that 
P is always positive-definite. 
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Input: A set of unicycle inputs u with uncertainties Q 
Output: A set of open-loop pose estimates q with uncertainty P 

/ / I n i t i a l i z e output with covariance, where e i s an a r b i t r a r i l y 
small pos i t ive value 

Qo 

for each timestep k do 
/ / Create the augmented s t a t e r^_i with covariance Rfc_i 

Pfc-i 0 

0 Qfe-i 

x0 

Vo 

A 
,Po = 

"e 0 0" 

0 e 0 

_0 0 e_ 

r jb-i = 
Qfe-i 

Ufe-l 
, Rfc_i — 

/ / Compute the augmented s t a t e dimension 
n — dimqfc_i + dimu^-i 

/ / Create sigma points 
f W = ( V ^ R ^ ) , , i = 1, 2 , . . . , 2n 

?<*+"> = - ( V ^ K ^ i ) , , i = l , 2 , . . . , 2n 
zi+n _ _+ 

L f c - 1 L fc- ! + f « 
II Propagate sigma points through an augmented (3.3) 

0 0 0 cos0fe_i 0 

0 0 0 sin0fc_i 0 

Gfc-i = 

rk
z) = (I + TGk^)vW 

0 0 0 

0 0 0 

0 0 0 

0 

0 

0 

1 

0 

0 

fc-1 

/ / Combine sigma points into the augmented s t a t e at time k 

f u - d- V 2 n fw 

Lk — 2 n Z^i=i Lk 

II Recover the s t a t e estimate with covariance for step k 
qk = ffc(l : 3,1) 
Pfc = R f c ( l : 3 , l : 3 ) 

end 

Algorithm 5: Unscented transformation-based algorithm estimating open-loop 
pose estimation from odometry measurements. 
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scan matching algorithm (PSM) was used for this purpose. The basic premise of 

open-loop scan matching-based pose estimation is similar to that of odometry: at 

each timestep k, a relative measurement of the motion between steps k — 1 and k 

is compounded with the pose estimate at step k — 1 to obtain the pose estimate at 

time k. For a relative measurement Aq^-i^ = [Ax,Ay,A9] in the frame of q^-i, 

the pose compounding operation yielding the new pose at step k is given by 

Qfc = qjfc-i + 

cos#fc_i —sm9k-i 0 

sin 9k-x cos 9k-i 0 Af\k-\}k- (3.4) 

0 0 1 

The nonlinear operation (3.4) does not allow a simple compounding of uncertainty, 

so again an augmented unscented transformation is used for compounding of poses. 

This process is outlined in Algorithm 6. 

Laser-Corrected Odometry 

In practice the above two open-loop methods are rarely used on their own, because 

a method combining them yields better pose estimates than either of the individual 

methods do in all known cases. While odometry-based estimation tends to give 

accurate measurements of distance travelled but accumulates error when the vehicle 

does not travel in a straight path (mostly due to unmodelled slip of the wheels), 

the scan matching-based method tends to produce superior orientation estimates but 

is not able to accurately measure distances when the range scans lack discernable 

features. It is due to these complimentary properties that the hybrid method (called 

"laser-corrected odometry", or just "laser correction") is superior. 

The independent motion estimates are combined using a simple Kalman filter, 

where the incremental odometry estimates provide the "prediction" step of the fil­

ter, and scan-matching measurements used as the "measurement" or "update" step. 
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Input: A set of measured laser range data z 
Output: A set of open-loop pose estimates q with uncertainty P 

/ / I n i t i a l i z e output with covariance, where e i s an a r b i t r a r i l y 
small pos i t ive value 

Qo 

x0 

yo 

A 
,Po = 

"e 0 0" 

0 e 0 

0 0 e_ 

k by scan matching 
for each timestep k do 

/ / Estimate the motion Aq from k — 1 
Aqk-i,k, APfc_1>fe = scan_match(zfc_i,Zfc) 

/ / Create the augmented s t a t e ffe_! with covariance Rfc_i 

Pfc-i 0 

0 APfc_life 

T f c - l 
Ofc-i 

Aqfc-i,fc 
R-fe - i 

/ / Compute the augmented s t a t e dimension 
n = dim qk-i + dim Aqfc_i;fc 

// Create sigma points 
f M = (^R^) t, i = 1, 2,..., 2n 
f (*+") = - (V^K^i),, i = l,2,...,2n 
Tk-1 ~ Lk-1 + I 

/ / Propagate sigma points through an augmented (3.4) 

0 0 0 cos#;t_i — sin(9/;_i 0 

Gfc-i — 

0 0 0 sin0fc_i 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

fW = (1 + ^ - 0 ^ 

/ / Combine sigma points in to the augmented s t a t e at time k 

cos 9k-\ 

0 

0 

0 

0 

0 

1 

0 

0 

0 

1 v-v^n 

rfc — 2^ Z^ i= l 
In ~(i) 

R* = £E£i (*?>-**) fa0-**)' 
/ / Recover the s t a t e estimate with covariance for step k 
qfe = ffc(l : 3,1) 
Pfc = R f c ( l : 3 , l : 3 ) 

end 

Algorithm 6: Unscented transformation-based algorithm estimating open-loop 
pose estimation from scan matching measurements. 
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The basic method is then almost identical to that presented in Algorithm 6. Given 

an odometry measurement Aq l̂"™ with covariance A P ^ ™ of the P o s e difference 

between time k — 1 and time k, and a scan-matching measurement Aq|™1 k with 

covariance AP|™X k of the same thing, a Kalman gain is computed [10] 

Kfc_! = APgft (APlXk + APf-iJ_1, (3-5) 

and the combined motion estimate Aqfc-i^ with covariance APfe-i^ is computed as 

Aqfe_life = Aq°fe
d_- + Kfc_, (AcT 1)fc - Aq°d_™) (3-6) 

AP*_lifc = (I - Kfe_!) A P £ ° £ . (3.7) 

The combined motion estimate Aq^-i^ and covariance AP^-i^ are then used directly 

in Algorithm 6, in place of those obtained purely from scan matching. 

3.1.2 Closed-Loop 

The poses used in mapping are estimated using a closed-loop method to ensure consis­

tency. Unlike the previously described open-loop methods where only measurements 

between consecutive timesteps k and k +1 are considered, the closed-loop method can 

also include relative measurements between non-consecutive timesteps. Given a set 

of these measurements or "links", the method of Lu and Milios described in Section 

2.3.1 is applied to generate a set of pose estimates. 

The first step in the process is to generate a set of vehicle poses from the input data 

using an open-loop method. Since the laser-corrected odometry method described in 

Section 3.1.1 is known to produce the best set of open-loop pose estimates given 

the input data, that is used for this task. The set of relative measurements Aq/f+1 

from the laser-correction process is also saved and used as the set of weak links for the 

closing-the-loop process2. Strong links are then added to the set of measurements. For 

2Performing the closed-loop estimation using only the weak links is guaranteed to result in the 
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Figure 3.2: Illustration of closed-loop pose estimation. Weak links are shown as solid 
lines connecting vehicle poses q, with strong links found by the distance and angular 
criteria shown as dashed lines. 

each pose ql in the pose set, strong link candidates are selected by searching for other 

poses q3 (where z ^ j ± 1) lying within a threshold radius Armax and with a similar 

heading (i.e. the difference in heading lies within some angular threshold A8max). 

To reduce the number of strong links, a minimum distance Armm and orientation 

difference A#mm are also applied. A scan-matching measurement is then attempted 

between poses qt and qj5 and if successful (a measurement is unsuccessful if the 

range scans are too dissimilar and the scan matching process diverges), the resulting 

measurement Aq^m is added to the set of strong links. The set of links is then 

solved for a set of closed-loop poses q as described above. A sample set of poses is 

illustrated in Figure 3.2, with solid lines between poses representing weak links and 

dashed lines representing strong links. Since the selection of strong links was based on 

a now-outdated set of pose estimates, this process is iterated, always using the most 

recent set of pose estimates for link selection, until the poses converge or a maximum 

number of iterations is reached. This process is summarized in the steps below. 

same set of pose estimates as the recursive estimation of the laser-correction method, since both 
methods are optimal for a given set of input data. 
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1. Generate a set of weak (sequential) links Aqweak with covariance Cweak using 

the laser-corrected method of Section 3.1.1. 

2. Using Aqweak and Cweak
 m Algorithm 6, generate an initial set of open-loop 

poses q with covariance P . 

3. Iterate the following steps until convergence: 

(a) Search q for similar pose pairs using the distance & angular criteria Armin, 

Armax, A6>min, and A0max. 

(b) Using scan matching measurements between the pose pairs identified in 

step 3a, generate a set of strong links Aqs t rong with covariances Cstrong. 

(c) Stack Aqweak and Aqs t rong into a measurement vector Aq, Cweak and 

Cstrong into a block-diagonal matrix C, and use the relative pose indices 

to construct the incidence matrix H. 

(d) Solve eqs. (2.17) and (2.18) for an updated set of poses q and covariances 

P . 

3.1.3 Subsampling 

Due to memory constraints in implementation, it is often desirable to reduce the 

number of poses used for mapping. One way of reducing the full pose set to a 

representative subset is by subsampling based on some criteria. The most complete 

maps are produced when the full pose set is used, but the computational load can 

be reduced significantly with only a slight perceptable decrease in map quality using 

this method. For a consistent quality map, a subset of poses is chosen using two 

criteria. Considering each time step k sequentially, the pose at this step is chosen to 

be included in the subset if either 
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1. The Euclidean distance between pose k — 1 and k is greater than a predefined 

threshold ArSUD; or 

2. The difference in orientation (heading) between pose k — 1 and k is greater than 

a predefined angular threshold A#sub. 

The maps shown in this thesis were generated from subsampled pose sets using 

Arsub = 1 m and A#sub = 10°. An example subset of poses is illustrated in Fig­

ure 3.3. 

t 

t 

\ 

\ 

t 
t 

- ~ ~ - ~~y 

Figure 3.3: Illustration of subsampled vehicle poses. Original data points (shown as 
a dotted line) are spaced evenly in time, while subsampled poses are chosen based on 
either distance or angular difference criteria between sequential poses. This results in 
a good tradeoff between map quality and the number of poses (i.e. computing time). 

3.2 RFID Beacon Estimation 

The major significance of RFID in mobile robotics is that unique landmarks can be 

easily and cheaply added to an environment wherever they are useful. Used this way 

they provide a sparse kind of information: unreliable measurements indicating only 
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whether a given tag is nearby or not. The measurements are unreliable in that a 

tag may not respond to a reader even when it is nearby, leading to an unpredictable 

fraction of false negative readings, and complicating matters is the fact that "nearby" 

is not well-defined either. Indeed the intended application of the EPC standard for 

passive RFID [8] (inventory) has very different requirements than that of a navigation 

system intended for mobile robots. 

In order to use measurements derived from RFID sources, some model is required 

which encompasses the "expected" behaviour, so that meaningful information may 

be derived from raw measurements. The following sections detail the experiments 

used in attempt to characterize this interaction, and the resulting beacon model used 

as a basis for the algorithms developed in this thesis. 

3.2.1 Experiments 

A few simple experiments were conducted in order to characterize the "readability" 

properties of some common tags, so that a realistic model of the interaction between 

tags and reader could be developed. The experiments aimed to test the readability 

of the tags as they were moved laterally at a fixed distance, and also with varying 

distance. The experimental setup is illustrated in Figure 3.4. The Alien ALR-9650 

reader was oriented so that the antenna of the reader was facing a cinder block wall. 

The distance between the reader and the wall was denoted h, the point on the wall 

directly opposite the reader was defined as point "0", and distances r were measured 

and marked horizontally in increments of 10 cm. 

A tag was attached to the wall at point 0 and a run of data was taken using a data 

acquisition system3 (DAQ). After each run, r was increased in 10 cm increments and 

the process was repeated, holding h constant. Later, the effect of h was investigated 

by varying it in 10 cm increments while holding r constant. This data collection 

3See Section 4.2.1 on RTLog. 
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Figure 3.4: Schematic diagram of the first RFID experiment used to characterize the 
interaction between tag and reader. 

procedure was done for two tag models (Alien 9654, Alien 964X), each in two ori­

entations (parallel or perpendicular to the direction of movement). In these runs, 

RFID measurements were recorded at a frequency of 25 Hz4 and were approximately 

35 seconds long, resulting in about 875 measurements per run. For each run, each 

of the approximately 875 data points was counted as either a "measurement" or a 

"non-measurement", indicating whether the tag was correctly detected. For each run 

this was reduced to a read probability, the fraction of the total number of attempted 

measurements where a response from the tag was successfully received. After this 

was done, the read probabilities were plotted as functions of r and h for each tag 

orientation. Plots of varying r are shown in Figures 3.5(a) and 3.5(b) for both tags, 

and a plot showing the results of varying h is shown in Figure 3.6. 

From Figures 3.5(a) and 3.5(b), it is apparent that for both tags there is a large, 

approximately constant read probability at small r (call it the saturated read prob­

ability, Pmax), which generally drops off with increasing r. Both tags have slightly 

4Other experiments (not described here) found the read probability to be invariant of the sampling 
frequency 
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Figure 3.5: Read probability plots for two tags, varying r with h = 139 cm. 
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Figure 3.6: Read probability for Alien 9654, varying h with r = 0 cm. 

different read properties in the parallel and perpendicular directions. It is apparent 

that the 9654 tag is the most readable (measured by the area under the plots), but 

less predictably so than the 964X. The 9654 is a strangely shaped tag with a much 

larger antenna area than the 964X, and so one can speculate that external factors 

affecting the tags' readability (discussed below) are more pronounced in the larger 

tag. 

From Figure 3.6 it is apparent that the read probability behaves in a similar 

way as h is varied. There is an approximately constant read probability out to 

some maximum range, where the probability drops off sharply. In this plot there are 

additional factors influencing the readability in apparently similarly unpredictable 

ways as is evident in Figure 3.5(a). It is worth the time to consider some of the 

external factors which may influence the readability. 

1. RF Harmonics: Harmonics occuring in the radio interrogation signal may have 

a significant impact on the tag readability. The hypothesis is that there should 
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be maxima in the detection probability where the distance between the tag and 

reader is an integral multiple of the RF wavelength. That is, there should be a 

maximum where 

Vr2 + h2 = n\, (3.8) 

where A is the wavelength of the reader's interrogation signal and n is an inte­

ger node number. The EPC C1G2 RFID standard has a median frequency of 

915 MHz [8], which translates to a wavelength A of 0.327 m. This suggests a 

step-like beacon model with higher-probability "fringes" on the outside may be 

appropriate, where the fringe locations can be calculated by equation (3.8). 

Aside from a few outlying measurements, most of the previously unexplainable 

spikes in probability outside of the constant-probability range can be explained 

by this. For example, in Figure 3.5 with h = 1.39 m, we should expect high 

detection probability for nodes 5 and 6 at 1.3 m and 1.8 m, and both of these 

are seen in the plot for the 9654, but the 965X is too far out of range at that 

point. There are also other features which can't be explained by this, and what 

is seen in the results is undoubtedly a combination of several effects. 

2. Nearby objects: Since constructive and destructive RF interference was shown 

to be a significant factor in the tag readability, it is reasonable to assume that 

there are other significant sources of interference also. A number of large steel 

objects nearby during the course of the experiments likely had an effect on 

the results, though the extent of this in the experiment is not known. This 

provides another piece of insight: since each installed tag will be uniquely and 

unpredictably affected by its surroundings, any beacon model used will not be 

able to fully account for tag behaviour. This raises the question of whether a 

detailed beacon model is worth developing and using at all, when it will perform 

equally as badly in the real world as the most simple model. 
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3. Materials: Similarly to the previous point, nearby materials, and especially that 

on which the RFID tag is mounted, have a significant impact on the readability 

of the tags. It is found that the tags are usually completely unreadable when 

attached to "hard" surface materials such as metal, concrete, and rock, and are 

generally readable when attached to "softer" surfaces such as wood, drywall, 

plastic, and glass. 

3.2.2 Beacon Model 

Given the findings in Section 3.2.1, and realizing that modelling complex beacon 

behaviour will likely result in real-world performance equally as bad as that from 

the most simple model, some assumptions were made to develop a simple model of 

beacon interaction that is "good enough". Of interest is where an RFID beacon is 

detectable and not in where the physical tag is actually located. To avoid the need 

to estimate range between the reader and the actual beacon, the harmonic effect is 

neglected. Recognizing that from sparse measurements it will not be practical to es­

timate the tag's orientation, the slight directional properties of the tag are neglected 

also. Since this study as well as others [38] have concluded that it is impossible to 

model all sources of radio interference, each installed tag is expected to be uniquely 

and unpredictably affected by its surroundings, and the effective detectable range is 

allowed to be an unknown property of each beacon. This leads to a simple radial 

beacon model, where the tag is assumed to be readable with a constant probability 

everywhere within some nominal range of its "centre", and with zero probability out­

side it. Since each tag's readability is influenced by its surroundings, each beacon's 

detectable range must be estimated from measurements. A beacon b = (x, y, r, N) 

can then be represented in a map using four coordinates: its globally-unique identifi­

cation number N, the (x, y) location of its centre, and its effective detectable range r. 

"Clouds" of RFID measurements with constant ID number N are observed whenever 
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the reader-equipped vehicle passes a stationary beacon, and are recognized as a series 

of measurements isolated by a minimum number of non-measurements which precede 

and succeed it. Each cloud reduces to a beacon estimate b: the median index of 

the cloud is designated as the beacon centre, and the detectable range r is estimated 

from the spatial spread of the measurements in the cloud. The "hat" notation is 

adopted for beacons: b^ represents a beacon installed in an environment, and b^ is 

an estimate of it derived from observations. The process of producing these beacon 

estimates is outlined in Algorithm 7. 

Input: Raw observations R of beacon IDs read at each timestep k 
Output: A set of beacon estimates {6} 
for each RFID cloud with index range kmm —>• kmax do 

/ / Locate the index at the centre 
c = median(fcmjn, Kmin + 1, Kmin + 2 , . . . , kmax) 

/ / Store the global coordinates of the centre 
(x, y) = (cb,c, qy,c) 

/ / Estimate beacon range 
r = 2 II V^fcmax; Qy,fcmax) _ V^^mm ' Qj/^min ) II 

II Store the beacon ID (raw measurement) 
N = RC 

end 

Algori thm 7: Process for estimating RFID beacon location and range from 
observed data. 

In estimating the beacon centre (x, y) and range r, this process implicitly makes 

the assumption that the vehicle path travels straight through the centre (full radius) 

of the beacon. If this is not true, as depicted in Figure 3.7, the resulting beacon 

estimate b has both a centre which is not at the true centre of the detectable area, 

and a range estimate which is less than the "true" range. This is an inherent result 

of the sparse measurements obtained by simply passing through some part of the 

beacon's range: without a full sampling of the area it is not possible to produce an 

estimate closer to the "true" beacon. Furthermore, there is no information which 
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might indicate how "good" or "bad" the estimate is. The beacon locations estimated 

from measurements should be as close as possible to the "true" detectable locations, 

and this can be influenced to some extent by driving the vehicle accordingly (i.e. 

having the vehicle driver know the beacon location and intentionally steer to pass 

close to the detectable centre), or, even better, to choose beacon placements such 

that the vehicle is forced to pass near the centre of the beacon. Beacon placement is 

discussed further in Section 3.2.3. 

Pathi 

Path j 

' xr—• " ^ / 

Figure 3.7: Illustration showing the true location and range of a beacon (b, shown in 
black) with two possible estimates of this beacon b* and b-7 resulting from observations 
of b along different paths. Neither estimate is a perfect measurement of b, but their 
error is bounded. 

3.2.3 Tag Installation 

Since sparse RFID measurements result in a beacon location estimate that is depen­

dent on the vehicle path, and since there is no way of estimating the uncertainty of 

the estimate (discussed in Section 3.2.2), it is possible for the resulting beacon posi­

tion estimate to be at any point inside the real beacon's range (illustrated in Figure 

3.7). Since we are strictly interested in the effective detectable beacon location, this 

is generally a non-issue, except in cases where a beacon is observed multiple times. 
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In this case it is desirable for the resulting beacon estimates to be as consistent as 

possible. In practical usage there are a few options to encourage this: 

1. Choose a tag/reader combination so that the effective detectable range is as 

small as possible. Since all estimated beacon locations must be within the 

real beacon range, this ensures consistent position estimates. Because of the 

variation in readability, however, this option is not always practical. 

2. Intentionally drive the mapping vehicle in a consistent path. This can be done 

by adopting a driving policy for consistency: always driving in the same direc­

tion through a given drift, closely following the right-hand wall, for example. 

This results in consistent estimated beacon locations given that the policy is 

followed. Depending on the complexity of the environment this option may not 

be practical, and inherent human error limits its effectiveness. 

3. Force the mapping vehicle to pass a beacon along a consistent trajectory by 

placing beacons in narrow or constricted areas. 

The preferred option is #3 , to force the mapping vehicle to pass through nearly 

the same trajectory near a beacon. Additionally, since scan matching must be done 

between points on different paths near the beacon location, beacons are not usually 

placed near an intersection where there may be more than one prevailing direction 

of vehicle traffic. Both of these ideas are revisited in Section 3.6. It is important to 

note that this is a drawback of a particular (though common) sensor configuration: 

with a full 360° rangefinder view, it should be possible to match scans regardless of 

the orientation difference between them, in which case it may even be preferable to 

place tags near intersections. 
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3.3 An Autonomous Extension of Global Mapping 

Previous work in mapping unstructured environments (covered in detail in [20]) were 

able to produce satisfying results in that the resulting maps were globally-consistent, 

but they were not built autonomously. As part of that work it was found that that the 

simple combination of odometry (or inertial navigation) and laser rangefinder sensors 

did not provide enough information to resolve ambiguities, and additional information 

was needed in most cases in order to produce a consistent map. This additional 

information was provided by a human operator familiar with the environment, who 

provided pose pairs used in initial "strong links" to begin the process of closed-

loop pose estimation. Using this additional information the closed-loop estimation 

process was able to arrive at a set of consistent pose estimates, and thus generate a 

consistent map. While functional, the requirement of a skilled operator to provide 

input is not elegant, nor is it practical if the environment is large or unfamiliar. It 

is desirable to automate this process, and with the addition of RFID beacons in the 

environment and RFID hardware on the vehicle it becomes possible to do this in a 

simple way. As is known from previous work [35, 39], the key to globally-consistent 

mapping given such limited sensor information lies in the ability to recognize when the 

mapping vehicle returns to a previously-visited area. This is precisely the information 

provided by the human operator, and with the addition of RFID landmarks which 

are assumed to remain stationary, this is possible. The basic premise of this method 

is almost identical to the manually-assisted one described above, with the manual 

input replaced by similar input derived from observations of RFID tags. 

The ability to use RFID beacons as landmarks suitable for closing the loop stems 

from the realization that they indirectly provide a sparse type of absolute measure­

ment (the other available measurements all being relative). Exploiting this, an ap­

proach for automating the process of closing the loop is chosen that depends only on 
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the assumptions that (i) the beacons are stationary; and, (ii) are uniquely identifiable. 

A key feature is that no a priori knowledge of the beacon location or its detection 

properties is needed. The beacon model developed in Section 3.2.2 is used to provide 

estimates of the beacon locations with respect to the path travelled by the mapping 

vehicle. Since a beacon estimate is produced each time the mapping vehicle passes a 

physical beacon, more than one estimate can correspond to a single real-world beacon. 

After calculating a beacon centre for each passing, the set of estimated beacons b is 

searched for duplicate IDs N. Scan matching is used to estimate the pose difference 

between the centres of beacon estimates with matching IDs and this information is 

added to the graph as non-contiguous measurements. 

This method was implemented and shown (unsurprisingly) to produce globally-

consistent maps of similar quality to those made using the manually-assisted method 

[40]. Though it solves one of the problems encountered in the manually-assisted 

method, due to their similarity, other issues first identified during the course of the 

original work are still present. One is that the method assumes a completely static 

environment, which is not a practical assumption for the target environment (un­

derground mines). These environments change significantly over time as new drifts 

(tunnels) are added to the network and others closed. With this "global" approach, 

maps cannot be altered once built and so the entire environment must be remapped 

after any change, which is clearly not efficient. 

The most significant issue, however, is one which arises when scaling the process 

to ever larger environments. The closed-loop pose estimation solution (2.17) relies 

on multiplication and inversion of matrices increasing in size with the number of 

links, making it at least an 0(n2 3 7 6) problem5 in the number of links n. If the 

goal of this work is to be useful beyond a laboratory setting and in truly large-

scale environments, this is a serious problem. An additional consideration is for 

5Assuming the Coppersmith-Winograd algorithm is used for the inversion, see [41]. 
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localization, which similarly becomes increasingly difficult as the map size increases. 

In order to meet the goals of large-scale mapping (and later, localization), then, it 

is necessary to take a significantly different approach to the problem. The remainder 

of this chapter lays out one such approach, detailing a new method capable of solving 

these problems. 

3.4 Graph Structure of the Environment 

The scaling issue introduced in Section 3.3 is a major obstacle if the goal is truly 

"large-scale" mapping. For unstructured environments, there seem to be few options 

for avoiding this problem. If the scope of the problem is restricted, however, there 

are insights to be gained which lead to more efficient methods. Considering only 

environments resembling a network of interconnected tunnels (which, in practice, is 

the target environment), the problem is no longer purely two-dimensional, where a 

vehicle is free to move anywhere in the plane. In this case, though the network may 

be planar, the vehicle is constrained to move only through the tunnels. With the 

addition of unique landmarks (e.g. RFID beacons), there exists an underlying graph 

structure to the environment, where the RFID beacons form nodes in the graph, 

and the traversable paths between them are the graph edges, illustrated in Figure 

3.8. Nodes are denoted bt and edges E y , where i and j are node indices. Since the 

nodes represent real, fixed points in the real world, not only is the graph topology 

significant, but also the relative distances between the nodes in the plane. This is 

known in the literature as an undirected planar straight-line graph [42], a subtype of 

metric graphs which is embedded in the Euclidean plane. 

For mapping, the main significance of the graph structure is that it provides a 

natural and well-defined way of breaking the problem of mapping a large environment 

into pieces. Furthermore, since the beacons can (presumably) be placed anywhere in 
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Figure 3.8: Illustration showing the underlying graph structure of a simple tunnel 
environment containing stationary RFID tags. Tags themselves form the nodes of 
the graph, while traversable paths between them form the edges. 
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the environment, it is possible to choose the size of the pieces as to be appropriate for 

any particular task, so the scaling problem introduced in Section 3.3 can be avoided. 

Given that the problem can be decomposed in this way into a number of small sub-

problems, the task is then to solve each of the sub-problems (mapping a small area), 

and assemble the solutions of these sub-problems to solve the original one. At this 

point we must abandon the notion of simply creating "a map" of an environment, 

and instead recognize that all of the desired information is contained in the graph 

structure of the environment, which is denoted G. The structure G is a container 

object encapsulating all measured and derived information about the environment, 

and is more precisely defined in Section 3.4.2. Like a simple map, G is a representation 

of the environment, and should be used as a basis for later localization efforts. From 

G it is also trivial to obtain a single occupancy grid map of the entire environment, as 

shown later in Section 3.8. The following sections detail this process of constructing 

it from observed data. 

3.4.1 Reference Frames 

In the mapping methods presented thus far, the data have all been expressed in an 

arbitrary "world" coordinate frame, which by convention is usually defined by the 

pose of the mapping vehicle at its first timestep. All of the pose estimation and map 

building processes were done in this single frame. If the goal is to break the problem 

into pieces as described above, then first two things are required: 

1. A reference coordinate frame is needed for each sub-map; and 

2. The position and orientation (the pose) of each of these frames must be known 

with respect to each other, in some "global" world frame. 

Knowing that the environment has a metric graph structure as introduced above, both 

requirements can be met by using local coordinate frames attached to the graph. 
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Though it seems natural at first to use some system of frames based on the graph 

nodes (perhaps because the RFID tags physically exist), that is not an option for 

representing vehicle poses due to the nature of the tags. From the results of the 

experiments described in Section 3.2.1, it is not practically possible to associate an 

orientation with a tag from measurements. Though the physical tag itself may have 

an orientation, and it may be possible to recognize directionality in the tag's field 

from dense measurements, this cannot be expected to be in any way reliable outside 

of a laboratory setting. For the same reasons, the beacon model developed in Section 

3.2.2 describes only a beacon's location and radius. Since an orientation reference 

is needed to represent vehicle poses, this means that beacons themselves cannot be 

used to define reference frames. 

The graph edges, however, do have orientation. Each edge naturally defines its 

own coordinate frame. One of the two beacons defining the edge is arbitrarily chosen 

as the origin (by convention, the lower-numbered tag is chosen), and a straight line 

from that beacon to the other defines the frame's x-axis, with the ?/-axis defined using 

the familiar right-hand rule. This frame is termed the edge frame and is used as the 

base reference frame for all pose estimation and mapping. 

Splitting Collected Data 

With the local edge frames defined, the collected data must be expressed with respect 

to them. The approach taken is to use the estimated beacons as "cutoff points", 

expressing all of the data collected between a pair of beacons in the frame defined by 

them. Any data points not bounded by two beacons (such as at the beginning or end 

of a run) cannot be used, as they are not local to any frame. For a given data run, 

an open-loop estimate of the poses are generated using the laser corrected method 

developed in Section 3.1.1, and the beacon locations are estimated from observed data 

using the method developed in Section 3.2.2. The result is a set of poses and a set 
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of estimated beacons expressed in some global frame, illustrated in Figure 3.9. The 

beacon locations are used as cutting points, with the collected data between beacons 

bj and b3 (referring again to Figure 3.9) defined by those beacons, and likewise for 

beacons b3 and b^. With the input data now associated with local frames, the open 

loop pose set in the global frame is no longer needed, and is discarded. 

Y 

X 
Figure 3.9: Illustration of an open-loop data path (shown as a dotted line) in some 
global coordinate frame. Beacon location estimates always lie on the path by virtue 
of the beacon estimation process of Section 3.2.2. 

3.4.2 Data Structures 

Splitting the input data by edge and associating it with the graph results in a natural 

hierarchical data structure with the graph itself as its root, conventionally called G. 

The graph itself is composed of a set of nodes (the beacons b, each a 4-dimensional 

point as defined in Section 3.2.2) and a set of edges (with each edge E^ defined by 

the pair of beacons br and b^ bounding it). Associated with each edge is now one or 

more sets of input data {u} with covariance {Q}, and one or more sets of laser range 

data {z}. Since each edge may be visited multiple times by the mapping vehicle, 
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there is at least one set of collected data {u, Q, z} per edge, and possibly more. This 

tree data structure will "grow" as each edge is solved, with a set of pose estimates 

{q} with uncertainty {P} and a map Nll3 being added to each edge. For the example 

data run shown in Figure 3.9, the tree data structure is represented in Figure 3.10. 

Figure 3.10: A graphical representation of the hierarchical graph data structure G 
for the simple graph of Figure 3.9, containing three nodes and two edges. 

3.5 Mapping in the Edge Frame 

With the edge frame defined (see Section 3.4.1), pose estimation and mapping are 

done with respect to it. These topics are detailed in the following sections. 

3.5.1 Pose Estimation 

Pose estimation in the edge frame follows the same procedure as it would in any 

arbitrary reference frame. For each path (data sequence) in the edge, an open-loop 

set of pose estimates is first constructed using the laser-corrected approach introduced 
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in Section 3.1.1. Each path is allowed to begin at the origin of some arbitrary frame, 

with the first pose (x0, y0, 90) = (0,0,0). This is illustrated for an example case with 

two paths in Figure 3.11(a). The laser-corrected odometry measurements are saved 

as the set of weak links to be used in the closed-loop estimation process. The set 

of poses is then searched for pose pairs meeting the distance and angular criteria 

detailed in Section 3.1.2, and scan matching measurements are made between them. 

These measurements are then added to the problem as strong links, and the resulting 

set of combined strong and weak links are then solved using the least-squares pose 

estimation process of Section 2.3.1 for the most likely set of poses. This process is 

iterated, with new strong links added and old ones removed at each iteration until 

convergence on an optimal set of closed-loop poses, illustrated in Figure 3.11(b). 

The pose set is then transferred into the edge frame. Since the first pose qstart is 

necessarily located at the origin, this transformation can be interpreted as a simple 

rotation of the entire pose set about the origin until the last pose in the set, qend, 

is also coincident with the x-axis. This forces both RFID beacons of the edge to be 

in place: one is at the origin of the coordinate frame and the other is some distance 

away on the x-axis, which is how the edge frame is defined. Taking the last pose 

of the path to be qend = [xend, yend> #end] , the current orientation of the edge in the 

frame is computed as 

9SPt = arctan fy end\ 
\ -^end / 

and a rotation matrix Rset through this angle is defined: 

R-set — 

cos(-(9set) -sm(-6>set) 0 

sin(-0 se t) cos(-6>set) 0 
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(a) Initial open-loop estimates of two paths, showing strong links found 
using distance and angular criteria. 

Y 

-*• A 

X 

(b) Consistent closed-loop estimates of the two pose sets. 

Y 

X 

(c) The closed-loop pose estimates, rotated into the edge frame. 

Figure 3.11: Illustration of the pose estimation process in an edge containing two 
paths. Open-loop poses are used as an intermediate step for closed-loop pose estima­
tion, and finally the closed-loop estimates are transformed into the edge frame. 



70 

Each pose q^ is then rotated through the angle 9set, forcing the edge and the horizontal 

axis to be coincident, using 

Qfe = Rset I q* - 0 0 A** ' (3-9) 

with pose covariances Pk transformed similarly using 

P'k = RsetPfc. (3.10) 

With poses defined in the edge frame (illustrated in Figure 3.11(c)), the sets {q} and 

{P} for the current edge are added to G. 

3.5.2 Mapping 

Given a consistent set of poses {q} in the edge frame, creating a map M of the edge 

is a simple matter of applying the occupancy-grid mapping technique described in 

Section 2.2.3 to the edge's stored pose and laser data. The map itself (represented 

as a large matrix of probability values) is then itself stored in the data tree G under 

the appropriate edge. 

3.6 Graph Estimation 

The second major step in the landmark-bounded method after solving the edges is 

to estimate the relative positions of the RFID beacons in the environment. This step 

is called "graph estimation" or "graph construction", and the result is an estimate 

of the metric graph configuration introduced in Section 3.4. This has the effect of 

determining the relative positions of the edge frames. A first attempt at solving the 

graph estimation problem was based on directly estimating the locations of the graph 

nodes, using a process similar to that of the pose estimation routine described in 

Section 2.3.1. While successful in some cases, it was recognized that this method was 
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not capable of meeting the goals laid out in Section 1.3. This attempt was abandoned 

and is not described here. 

Another possible approach to the graph estimation process as an alternative to 

the "node-based" approach is one based on the edges themselves. Since the edges 

themselves do not physically exist in the real world, this approach is less intuitive at 

first, but turns out to be simpler while simultaneously solving many of the problems 

encountered with the earlier method. Where the goal of the node-based approach 

was to estimate the relative (x, y) locations of the beacons directly, the edge-based 

method instead aims to estimate only the orientation O of each edge. Since the 

graph topology is known and each edge has a fixed length (found as part of the pose 

estimation process as described in Section 3.5.1), solving for the orientation of each 

edge also allows the graph to be unambiguously constructed. This method works 

by taking relative angular measurements between each pair of connected edges, then 

finding the set of edge orientations optimally fitting both the measurements and the 

constraints imposed by the graph topology. Each step is described in a section below. 

3.6.1 Relative Edge Measurements 

Similar to the related process of pose estimation (section 3.1), in order to estimate 

the set of edge orientations, relative orientation measurements between connected 

edges are required. Since the graph edges are an invented construct, there is no way 

to directly measure the relative orientations, but the measurements are possible to 

approximate using collected robot data. 

Consider a pair of connected edges El3 and Eijk and a continuous data path (i.e., 

one collected by driving from beacon i, then to j , then to k) as illustrated in Figure 

3.12. Since the path is continuous, the last pose in edge E y (call it qj^*) and the 

first in edge Ejk (q?fcSt) are in reality consecutive poses in the same path, so the 

difference between them should be small, but they are expressed in different frames. 
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Figure 3.12: Illustration showing how the relative edge measurement AO is con­
structed between two edges E tJ and E ^ . The orientation component of the last pose 
in E y is a, that of the first pose in the edge E,^ is /3, and the angular measurement 
between those two poses is S. 

From these it is possible to derive a measurement of the relative orientation of their 

frames E tJ and E f̂c. With the problem defined, it is actually a simple matter to 

solve. Let the relative orientation between edges E y and Ejk be AQlJjk. Let the 

orientation component (^-component) of q ^ be a and the ^-component of q?£st be 

/3. Since q^8* and q^* are continuous poses, their difference in orientation 5 should 

be near zero, but not necessarily zero. It is possible to obtain a measurement of S 

by taking a scan matching measurement between q^8* and q^jst, and again picking 

out the ^-component. By simple inspection of Figure 3.12, it is clear that the desired 

quantity A®i:jjk can be computed as 

AO^jk = f3 + 5 - a. (3.11) 

This method makes the basic assumption that path data between consecutive 

edges is continuous, which is usually true, but there are exceptions. A convention is 

followed during data collection to ensure that the exceptional cases approximate the 

common one, so that error introduced by the special cases is minimized. This is best 

illustrated using an example, shown in Figure 3.13. This shows a simple environment 

containing four beacons and four edges. A sequence of poses visited by the mapping 
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vehicle is shown as a dotted line. In contructing relative measurements between edges 

here using the pose data, the path connecting edge Ej, with edge ~Ejk is continuous, 

so the assumption above is satisfied. Similarly, the edge measurements Ejk — Eki 

and EM — E/i also satisfy the assumption. The special case arises in the connection 

between edge E;j with edge Ev, where the data paths used to construct the edges are 

not continuous. For this case we must ensure that conditions are right so that the 

overlapping path sections around bz approximate a continuous path. This currently 

must be done as part of a pre-mapping planning process, the major component of 

which is choosing appropriate locations for the beacons. In this example bt should 

be placed in a constricted area, so that the mapping vehicle is forced to always 

pass it along a similar trajectory, with similar orientation. For this reason we should 

explicitly avoid placing bz near an intersection or other location where it is possible to 

approach from many different directions, and prefer to place it in a narrow, restricting 

passage. Luckily, since the target environment is underground tunnel environments 

(which are naturally narrow and restricting movement), this is not difficult. To ease 

the planning and mapping process, it is usual to simply place all of the beacons in 

similarly constricted locations. 

3.6.2 Edge Placement 

With relative angular measurements between the edges, the orientations of the edges 

must be set in a way which best fits the set of measurements. Since the measurements 

are noisy, the "best fit" must be defined in a least-squares sense, a situation similar to 

the closed-loop pose estimation problem of Section 2.3.1. At first glance it is tempting 

to simply stack the edge measurements AO into a measurement vector AG, construct 

an incidence matrix H, and solve the estimation problem for a set of orientations 0 

using a construction similar to the closed loop solution (2.17). This, however, results 

in an inconsistent solution because the problem is fundamentally different and is not 
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Figure 3.13: A simple example of an environment with four nodes and four edges. A 
continuous path is available for the angular measurement between edges at three of 
the four nodes, but node b% must use non-continuous paths, introducing error. 

fully described by the formulation for closed-loop poses. Where the poses in the 

closed-loop formulation were free variables and allowed to move with respect to each 

other, the graph has a fixed topology, and significantly, the edges have fixed lengths. 

This is analogous to a two-dimensional kinematic chain comprised of many rigid links, 

connected with rotational joints as shown in Figure 3.14. Similar to the kinematic 

linkage problem, it is relatively straightforward to find the best placement of edges 

when the graph does not contain cycles. A graph topology containing cycles results 

in an overdetermined problem which is much harder to solve, as is the case with a 

closed kinematic chain [43]. 

The solution is to formulate the edge placement as a general constrained opti­

mization problem and use some available tools to solve it. The best placement of the 

edges can be defined in a least-squares sense, where the objective is to minimize the 

sum of the squared differences between orientation differences in the graph A 0 and 

their measured values AO. The objective function w to be minimized is defined is 

w = Y(^%,3k-AS^k)
2, (3.12) 
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Figure 3.14: Illustration of the edge placement problem. Computing the best-fit set 
of edge orientations @ given relative measurements A© is difficult when the graph 
contains cycles, analogous to a closed kinematic chain linkage. 

where the summation is over all the measurements AQlJ<)k. To ensure a consistent 

solution, the minimization must be constrained so that each edge retains the length 

that was computed during the pose estimation process in that edge (section 3.5.1). 

Denoting the length of edge E y as Lv, the constraints have the form 

11-X.j — Xj| | = Ly, (3.13) 

where X2 denotes the (x, y) location of beacon bz in the plane. There is one con­

straint equation of the form (3.13) for each edge in the graph. The problem is then 

defined: the measurements A@yjjt are obtained from the process described above, 

the edge lengths Ll3 are known as a byproduct of the edge-frame pose estimation, the 

orientation differences A@VJfc are computed by simple trigonometry from the node 

location estimates X, = [ %\ ] as 

= arctan ( Vk ~ Vj ) - arctan ( Vj ~ Vt ] , (3.14) 

and the node locations X, are free variables. 
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Actually minimizing the objective function (3.12) subject to many nonlinear equal­

ity constraints (3.13) is a challenging task. Initial node locations X are computed 

by simply "stacking" the edges together according to the measurements AO. The 

first edge E v is placed at the origin of some coordinate frame so that O y = 0. The 

remaining edges are then positioned relative to Ej, in an open-loop way: E ^ , which 

shares a node with edge E y is placed relative to it so that A O ^ ^ = A©^^ , a n d the 

process is continued until all of the edges are placed. For graphs not containing cycles 

(open chains), this results in the optimal placement of edges: since AQ^k = A O ^ ^ , 

the objective function (3.12) sums to 0. For graphs with cycles (closed chains), how­

ever, this is in general not the optimal solution. In this case it is necessary to actually 

solve the nonlinear optimization problem defined above. With the problem formally 

defined in eqs. (3.12) and (3.13), there is a wide variety of nonlinear solution tech­

niques available to solve the problem. For the graphs generated in this thesis, the 

interior point method of Byrd, Hribar and Nocedal [44] was used for this purpose. 

3.7 Extending Networks 

One of the primary goals for a distributed, large-scale mapping process as defined in 

Section 1.3 was to enable maps to be modified and extended once built. Previous 

methods required re-mapping of an entire environment to incorporate any change 

or addition, which is only a minor annoyance for small networks but for large and 

complex ones may not even be possible. In the graph framework of the landmark-

bounded method, both modification and extension of a network is natural and elegant. 

The general procedure for both is to create a new edge set as described in Section 

3.4.2 from new data, then to simply replace existing edges in the graph (to modify 

a map) or add new ones (to extend a map). After adding or modifying edges it is 

necessary to re-estimate the graph structure (section 3.6). 
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(a) Original environ- (b) Only the modified (c) New edge map replaces 
ment map. edge is re-mapped. the original. 

Figure 3.15: Illustration of how changes in the physical environment are handled. 
Only the edge(s) corresponding to the altered sections need to be re-mapped, then 
simply replace the originals. Revisiting the entire environment is not required. 

When part of an environment is modified (in a mine this might be by widening 

existing drifts or adding permanent structures), the required modification of the map 

is well-defined due to the graph structure. Specifically the affected edges must be 

re-mapped, and all others can be left in place. Figure 3.15 shows a simple example 

of a case with four beacons bj, bj, b*,, and bj, and three edges. Figure 3.15(a) shows 

the original map of the area. If, at some later time, the area contained in one of 

the edges (in this case E^) is physically modified, only re-mapping of that edge is 

required, shown in Figure 3.15(b). The new edge ~Ejk then replaces the original in 

the map, with the updated map shown in Figure 3.15(c). 

Adding an extension to a map is similarly simple. First, the mapping vehicle is 

used to collect a new run of data covering the "new" area, which also overlaps at 

least one beacon in the existing map. An edge set is created from the new data run, 

and is "merged" with the existing edge set contained in the map's graph structure 

by copying edges from the new set into the existing one. The structure of the (now 

larger) graph is then re-estimated as described in Section 3.6. The requirement of 
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overlapping data runs is due to the fact that it is not possible to estimate the structure 

of a disjoint graph. In this case it is possible to construct each of the disjoint "pieces" 

individually, but there is no relative information indicating how the graphs should 

be positioned relative to each other. Graphs to be merged thus require at least one 

common beacon. This situation is illustrated in Figure 3.16. 

(a) Two independent runs have produced (b) One additional run provides the over-
disjoint graphs which cannot be merged, lap needed to merge the graphs. 

Figure 3.16: Illustration of a map generated from multiple data runs. In order to 
merge two graphs into a single one, at least one common beacon must be observed in 
both runs. 

The ability to easily merge graphs has an additional inherent benefit in that it is 

no longer necessary to collect all map data in a single run. For complex environments, 

this makes the mapping process significantly easier, as the mapping vehicle can be 

started and stopped many times instead of requiring one long, continuous run. 

3.8 M a p Assembly 

Once the data structure introduced in Section 3.4.2 is complete with pose sets and 

maps, and the graph structure is known, the map is considered "finished". In some 

cases though, particularly to help in visualizing the full environment, it is desirable 
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to have a large single map. Since each edge has an associated map, and the relative 

positions of the edges are known, it is possible to construct one. The method is 

straightforward, and detailed in Algorithm 8. 

3.9 Summary of Steps for the Landmark-Bounded 

Method 

With all of the pieces of the landmark-bounded method in place, this section provides 

an overview of the steps used to construct a graph structure G (and thus, a map) 

from observed data in one or more runs. 

1. For each data run k: 

(a) Apply a median filter to the laser range data {z}k, described in Section 

2.2.2. 

(b) Generate a set of beacon estimates {b}k as described in Section 3.2.2. 

(c) Split the input data {u, Q,z}*. into segments defined by the beacons, de­

scribed in Section 3.4.1. 

(d) Initialize an edge set {E}fc for this run using the split input data. The 

edge set is a hierarchical data structure first defined in Section 3.4.2. 

2. Merge all of the edge sets {E}fc created in step 1 into a single edge set {E}, as 

described in Section 3.7. 

3. For each edge E in the merged edge set {E}: 

(a) Generate a set of closed-loop poses {q} with uncertainty {P} for this edge 

as described in Section 3.5.1, and add them to the edge set. 
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Input: A graph structure G, containing maps and beacon locations 
Output: A global environment map M 

/ / I n i t i a l i z e a large occupancy gr id M with ' 'unknown'' 
p robabi l i ty values in each ce l l 

M = . . . 0.5 . 

// Place each edge map in the global map 
for each edge E,j do 

// Locate the coordinates of beacons i and j defining the edge 

x. = [£] 
x, = [g] 

// Compute the displacement and rotation of the edge map M.ZJ 

0„ = arctan (^^-\ 
\x3 ~xi J 

9lJ) - s i n ( - 0 y ) r i j j — 
cos I 
sin(-0y) cos(-0y) 

/ / Update the probabi l i ty value in each ce l l 
for each cell in the edge map My with coordinates (xiocai,yiocai) do 

/ / Compute the corresponding global coordinates 

*£ global 

2/global 
= R 

13 

*^local 

yiocal 
+ r: »j 

/ / Update the probabi l i ty of the global map ce l l with the 
ce l l value from the edge map according to (2.10) 

M(xgi0bai,2/giobai) = probability_update(Mu(a:iocai,2/iocai)) 
end 

end 

Algorithm 8: Process used for stitching edge maps in G into a single global 
map M. 
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(b) Generate a map M for this edge as described in Section 3.5.2, and add it 

to the edge set. 

4. Estimate the graph configuration using the method of Section 3.6, and solve for 

the set of node positions. 

5. Place both the node set and the edge set into a single graph data structure G 

as defined in Section 3.4.2. 

The graph structure G is the end product of the landmark-bounded method, which 

may be thought of as a consistent "atlas" of the environment, where the edge maps 

are the atlas pages and the graph defines how the pages fit together. A global map 

may be constructed as in Section 3.8 if desired. Environments and experiments used 

for testing are described in Chapter 4, with results presented in Chapter 5. 



Chapter 4 

Testing 

This chapter describes the environments and vehicles used for testing of the algo­

rithms developed in Chapter 3. First, a mobile robot simulator used for validation 

is described in Section 4.1. Next, the basic hardware platform used for "real" exper­

iments with hardware is introduced in Section 4.2, with its data-collection software 

introduced in Section 4.2.1. Next the two vehicles and their associated kinematic 

models used for hardware experiments are described: a custom electric service vehi­

cle for indoor experiments is described in Section 4.2.2, and a modified utility trailer 

used for mine testing is covered in Section 4.2.3. In Section 4.3, the environments used 

for testing are described, consisting of the Carleton University underground tunnel 

network in Section 4.3.1 and the CANMET Experimental Mine in Section 4.3.2. 

4.1 Simulator 

A simulator implemented in MATLAB/Simulink ("MobotSim"), originally written by 

Joshua Marshall and Jurriaan d'Engelbronner and extensively updated for this thesis 

was used for pre-testing of algorithms. MobotSim features a vehicle with a number 

of onboard sensors (providing simulated odometry, laser scans and RFID measure­

ments) in a linemap-based environment drawn by the user. Since the measurements 
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from MobotSim are noise-free (simulated noise can be added later), its true value is 

that maps made using noisy measurements (as are expected in the real world) can 

be compared to those made from noise-free measurements and to the "ground-truth" 

linemap. In any real experiment (such as those discussed in Sections 4.2.2 and 4.2.3), 

ground truth can only be approximated by precise surveying by conventional meth­

ods (an expensive and time-consuming task), and noise-free measurements are not 

available at all. MobotSim is thus a valuble tool for algorithm validation. 

The environment used for validation in MobotSim is a true-scale representation of 

the "quad loop" area of the Carleton University underground tunnel network. This 

simulated environment was developed from CAD drawings of the network as part of 

the first (feasibility) stage of UGPS and is shown in Figure 4.1 with a number of 

simulated RFID beacons. 

Figure 4.1: Screenshot of the mobile robot simulator used for algorithm validation. 
The environment shown is a representation of the "quad loop" area of the Carleton 
University tunnel system, with six installed RFID beacons whose position and range 
are represented by circles. 
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4.2 Hardware Sensor Platform 

A custom hardware sensor platform was developed and built to enable hardware 

experiments in a variety of environments. Recognizing that it is not practical to use 

a single vehicle for data collection in all environments (including both the Carleton 

University underground tunnel network and a real mine), the platform was designed 

to be as portable as possible, in order to be installed on a vehicle appropriate for its 

environment. The sensor platform is contained in a custom box enclosure shown in 

Figure 4.2 and supports the following sensors: 

• Two SICK LMS 111 laser rangefinders: a "primary" rearward-facing laser scan­

ning in a plane parallel to the ground, and an "auxiliary" laser scanning in 

a plane perpendicular to the direction of travel. Of these only the primary is 

needed for 2D mapping, with the auxiliary unit capturing additional data which 

may be used for creating 3D environment models (not covered in this thesis). 

Technical specifications are given in Table 2.2. 

• Two US Digital A2 absolute optical encoders, mounted in one of two possible 

configurations on the vehicle. The mounting configurations are discussed in 

Sections 4.2.2 and 4.2.3, with technical specifications found in Table 2.1. 

• An Alien ALR-9650 RFID reader, mounted with the antenna facing upward. 

Technical specifications are available in Table 2.3. 

• An Aims inertial measurement unit, containing 3-axis accelerometers and rate 

gyroscopes. The data from this IMU was not used in this thesis. 

4.2.1 Real Time Data Acquisition 

A custom realtime data acquisition system (DAQ) named "RTLog" was developed to 

collect the data from the various sensors. RTLog was designed using a client/server 
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Laser 
rangefinders 

IMU 

RFID 
reader 

Embedded 
computer 

Power 
converters 

Figure 4.2: Inside view of the custom hardware enclosure showing sensors. Not shown 
are the wheel encoders, which are installed on the robotic vehicle itself. 

model as illustrated in Figure 4.3, where the RTLog server runs on an embedded 

board inside the sensor enclosure (shown in Figure 4.2) and the client runs on an 

operator's vehicle-mounted laptop. 

control inputs sensois 
SICK LMS 111 (2) 

US Digital A2 (2) 

Alien ALR-9650 

Aims IMU 

RTLog server 

RTLog client 

SQL database 

Figure 4.3: Block diagram showing the architecture of the custom realtime data 
acquisition system (DAQ). Sensor data is managed by the RTLog server, which is 
then saved and simultaneously displayed to the operator via the client. 

The system was implemented in Python and C and uses the Linux kernel's 

CONFIG_PREEMPT_RT extension [45] to provide sensor measurements at precisely-timed 

intervals of T = 0.1 s. A formatted copy of the sensor data is sent to a database where 

it is stored for later analysis, and another copy is sent to the RTLog client. The oper­

ator interacts with RTLog by providing input to the client to manage the data runs, 
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which are then relayed to the server as control signals. Each data run is automati­

cally assigned a unique identifier ("RunID") so the runs may be identified later. The 

operator is also able to monitor the live data feed via the client, as shown in Figure 

4.4. 

4.2.2 Electric Vehicle 

For indoor testing in the Carleton University tunnel network (section 4.3.1), a cus­

tomized electric service vehicle was used for data collection. The vehicle is based on a 

Taylor-Dunn model SS-534 and shown in Figure 4.5, and allows data to be collected 

while driving at speeds up to 20 km/h by a human operator. The sensor platform 

introduced in Section 4.2 was mounted on the back of the vehicle, and two US Digital 

A2 encoders were installed to measure the wheel rotations and steering angle. The 

SS-534 is a three-wheeled vehicle, with two rear drive wheels and a single wheel in 

front for steering, with the steering column inclined at an angle a of approximately 

10°. 

Kinematic Model 

In order to use the odometry information collected by the encoders, a kinematic 

vehicle model is required. A schematic diagram of the vehicle as used in the derivation 

is shown in Figure 4.6. The model is derived in two steps: first by assuming that 

the vehicle is a two-wheeled "motorcycle", where the two rear wheels have been 

combined into a single wheel at the vehicle frame origin, and the steering column 

rake is neglected1. The second step is to apply corrections to the resulting model in 

order to obtain the true model of the vehicle. For the simplified vehicle, the state 

1This configuration is commonly known as a body-centred axis model. 
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Figure 4.4: Screenshot showing the graphical user interface (GUI) of the custom data 
acquisition system. A live feed of all sensor data is invaluable for fast and efficient 
troubleshooting. 
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Figure 4.5: Customized Taylor-Dunn SS-534 electric vehicle. Visible is the custom 
sensor platform (section 4.2) at the rear and operator laptop at the front, not visible 
are encoders measuring wheel rotations and steering angle. 

(and configuration) q is 

x y 9 

where x and y are the Cartesian coordinates of the vehicle (measured as indicated 

in Figure 4.6), 9 is the orientation of the vehicle, and 0 is the steering angle. It is 

assumed that each wheel cannot slip laterally, imposing a non-holonomic constraint 

on the model. For the front wheel described by q/ = [xf yj 9f] , we have 

sin 9f — cos 9f 0 

xf 

Vf 

9 

= 0, 
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Y 

X 
Figure 4.6: Simplified representation of the Taylor-Dunn SS-534. Quantities used in 
the derivation of the vehicle's kinematic model are shown. 



where 

and so 

Xf = x + l cos 9 

yf = y + I sin 9 

9f = 8 + <p 

In the vehicle frame, 

if = x — 19 sin 9 

yf = y + l8 cos 9 

9f = 9 + <p. 

sin 9f — cos 9f 0 

x — 10 sin # 

y + 19 cos # 

0 + 

= 0 

reduces to2 

sin (9 + 4>) — cos (9 + 4>) —I cos (f> 0 <Z = 0 . 

Repeat for the rear wheel, which is fixed ((f) = 0) and get 

sinfl -cos/9 0 0 q = 0. 

Then 

AT(q) = 
sm(9 + (p) —cos(9 + (j)) —Icoscf) 0 

sin# — cos# 0 0 

2Using the identity cos (j) = sin 0 sin (6 + <f>) - cos 9 cos (8 + <f>). 
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and ATq = 0. Now find g\ and g2 where ATgn = 0. The trivial solution is 
- iT 

Si 0 0 0 1 

and the other solution (algebra not shown) is 

92 

- i T 

cos 9 sin 9 j tan (f> 0 

Letting UJP be the effective in-plane steering rate (up = <j)), the model for the simplified 

vehicle is 

q = 

cos (9 

sin# 

- tan0 

0 

0 

0 

0 

1 

V 

OJp 

If (p is taken to be the corrected, effective in-plane steering angle, ip to be the 

steering input angle (as measured by the encoder), and a to be the angle of incli­

nation of the steering column (measured from the vertical), then there is a simple 

transformation [46] that maps input angles if) to effective steering angles (f>, expressed 

as 

= arctan (cos a tan ip). (4.1) 

Using (4.1), the corrected vehicle model is 

q = 

cosfl 0 

sin0 0 

s a tan if) 0 

0 1 

V 

U) 

(4.2) 



and the discretized version of (4.2) is 
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Qfe = qfc-i + T 

cos9k-i 0 

sin#fc_i 0 

jcosatan^fc-i 0 

Vk 

OJk 

where T is the sampling time. 

(4.3) 

Implementation 

For implementation, (4.3) was modified slightly to take advantage of the quantities 

directly measured by the vehicle's installed encoders. The wheel encoder naturally 

measures (after calibration) the distance travelled by the vehicle since the encoders 

were reset. The incremental distance is denoted Adk, which is the distance travelled 

from step k — 1 to step k. Note that Adk = Tvk. The steering encoder naturally 

measures the absolute steering angle ipk directly. Modifying (4.3) to take these into 

account, the "as-implemented" kinematic model is written as 

Qfc + 

cos 9k_i 

sin 9k-X 

satanipk^i 

0 

0 

0 

0 

1 

Adk 

*Pk 

(4.4) 

Xk-l 

Vk-i 

9k-i 

0 

For use in the algorithms developed in Chapter 3, it is noted that the (xk,yk,9k) 

component of q^ is compatible with that of the unicycle model defined in Section 

3.1.1. 
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4.2.3 Trailer 

The electric vehicle described in Section 4.2.2 is not robust enough to be used in an 

underground mine, so for this purpose another vehicle was developed. This vehicle 

is based on a utility trailer and is shown in Figure 4.7, including a standard trailer 

hitch so that it can be towed behind a variety of mine-capable vehicles. The sensor 

platform of Section 4.2 was mounted in the trailer along with deep-cycle batteries for 

power, and two US Digital A2 encoders were installed to measure the rotations of 

each wheel. 

Figure 4.7: Customized utility trailer used for underground mine testing. Inside the 
trailer bed are the custom sensor platform (section 4.2) and battery compartments. 
One external wheel encoder is visible inside its plastic shielding. 

Again, in order for the odometry information collected by the installed encoders 

to be used, a kinematic model of the trailer is required. A schematic diagram of the 

trailer as used in the derivation is shown in Figure 4.8. 
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Y 

X 
Figure 4.8: Simplified representation of the trailer, showing quantities used in the 
derivation of the trailer's kinematic model. 
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Kinematic Model 

A simplified model of the trailer is shown in Figure 4.8, where the vehicle centre is 

located at point (x,y), the trailer orientation is 9, the distance between the wheels 

(the track) is I, and the radius of the wheels r is assumed to be constant. The trailer 

model is derived similarly to that of the electric vehicle in Section 4.2.2, and in this 

case is equivalent to the well-known solution for a differential drive vehicle. If the 

vehicle state q is given by 

-l T 

q = x y 9 

then the continuous-time kinematic model is given by 

| cos 9 | cos 9 

^ sin 8 | sin 9 (4.5) 

where UJR and ou^ are the rotational rates of the right and left wheels. The system 

(4.5) is discretized as 

qfc = cik-i + T 

cos9k-i 5cos#fc_i 

sinflfc-i ^sinflfc-i 
^R,k-l 

^L,k-1 

(4.6) 

where T is the sampling time. 

Implementation 

A modified form of the discretized model (4.6) was again derived in order to reflect 

the quantities actually measured by the encoders, which in this case are distances 
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travelled d by each wheel since the encoders were reset. The incremental distances 

are denoted Ad, with 

AdR:k = rTu)Rtk, 

and 

AdL,k = rTujLtk, 

for the right and left wheel respectively, resulting in the "as-implemented" model 

Qfc = qjfc-i + T 

\cos9k_i |cos(9fc_i 

\svn9k_x \sm9k-i 

AdR,k-i 

Adrk-1 

(4.7) 

4.3 Test Environments 

4.3.1 Carleton University Tunnel Network 

The Carleton University campus in Ottawa, Ontario is a unique testing environment 

as it contains a large network of underground tunnels linking the buildings. The 

tunnel network is superficially similar to an underground mine: its basic structure is 

a connected set of tunnels (drifts) containing many diverse local areas. Figure 4.9(a) 

shows a long, straight tunnel section, an excellent example of the "worst-case" scenario 

for scan matching (section 2.2.2). Figure 4.9(b) shows a more "featured" area where 

scan matching works well, but also typically contains much pedestrian and service 

vehicle traffic. Figure 4.9(c) shows a major intersection in the network, and also 

serves to illustrate that the real network contains ramps and inclined tunnel sections, 

and is not a perfect 2D network, though in the algorithms developed in Chapter 3 it 

is treated as one. All of these examples highlight scenarios similar to those which may 

file:///svn9k_x
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be encountered in an underground mine. The quad loop as mentioned in Section 4.1 

is a subset of this network. The customized Taylor-Dunn electric vehicle introduced 

in Section 4.2.2 was the mapping vehicle of choice for this environment. 

(a) A long, straight tunnel section. (b) A high-traffic area with many fea­
tures. 

(c) An intersection in the network. (d) Ceiling light-mounted RFID beacon. 

Figure 4.9: A few areas of the Carleton University underground tunnel network in 
Ottawa, Ontario. Many diverse types of scenes are encountered here which are similar 
to an underground mine. 

RFID Infrastructure 

A number of RFID beacons were installed in the Carleton University underground 

tunnel network. Both Alien ALN-9654 and ALN-964X tag models were used for 

this purpose. The tags physically resemble adhesive stickers, and are easily installed 

by simply sticking them to any surface. Through experiments, however (discussed in 
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detail in Section 3.2.1), it was found that tags attached to the most common and con­

venient materials in the network (mainly concrete walls and ceilings and low-hanging 

metal pipes) usually proved unreadable due to RF interference or absorption. Tags 

attached to the ceiling lights, however, proved to have good readability properties. 

The vast majority of the beacons installed in the tunnel network were therefore at­

tached to the ceiling light fixtures as shown in Figure 4.9(d). Figure A.l in Appendix 

A shows the layout of the CU tunnel network, with markings indicating the locations 

of installed RFID beacons. 

4.3.2 CANMET Experimental Mine 

The CANMET Experimental Mine is a research facility operated by Natural Re­

sources Canada in Val-d'Or, Quebec. This facility features a multilevel underground 

gold mine, out of production since 1991 and now used exclusively for research. The 

experimental mine contains 2400 m of drifts in five levels, two of which were selected 

(referred to as the "70 m level" and "130 m level") for testing based on their size and 

the ability to drive in closed loops. Similar to the Carleton tunnel network, though 

the underground mine consists almost exclusively of a set of intersecting tunnels, a 

variety of distinct areas are present. Figure 4.10(a) shows an example of a long, 

straight drift, similar to those found in many parts of the mine. This photo also 

shows the uneven and often wet conditions of the mine floor, an excellent testing 

environment for the odometry-dependent algorithms developed in Chapter 3. Figure 

4.10(b) shows a cross cut area, and Figure 4.10(c) shows an intersection of the type 

that is common throughout the mine. The customized utility trailer introduced in 

Section 4.2.3 towed behind a "mine mule" 4 x 4 was the mapping vehicle of choice for 

this environment. Manually-surveyed maps of the 70 m and 130 m levels are shown 

in Appendix B on pages 147-148. 
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(a) A long, straight tunnel section. (b) A central area with many features. 

(c) A typical intersection of tunnels. (d) Temporary RFID beacon mounting. 

Figure 4.10: A few areas of the CANMET Experimental Mine in Val-d'Or, Quebec. 
Notable is the uneven driving surface which presents a challenge for odometry-based 
measurements. 
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RFID Infrastructure 

Similar to the CU tunnel network, a number of RFID beacons were installed in the 

CANMET mine. In this case, experiments revealed that the most readable type of 

installation for the tags in the mine was attached to strips of duct tape strung between 

overhead pipes, cables, or other structures. In a production environment this would 

likely not be a robust enough method of installation, but it met the less demanding 

requirements of the prototype experiments described here. The layout of tunnels and 

locations of installed tags are shown in Figure B.l for the 70 m level, and Figure B.2 

for the 130 m level in Appendix B. 



Chapter 5 

Results &; Analysis 

This chapter presents results from experiments carried out using the environments 

and vehicles described in Chapter 4. Experiments were used to evaluate the landmark-

bounded method by comparing it to earlier methods, investigating its properties in 

various scenarios, and to test its ability to scale beyond the limitations of earlier 

approaches. 

Section 5.1 presents results obtained from simulated data. First, "conventional" 

methods are used to make maps using both noise-free (ground truth) and noisy input 

data. A comparison of the open-loop methods described in Section 3.1.1 is done 

against the ground truth values. The landmark-bounded method is then applied to 

the simulator data, and the resulting maps are compared to the previous methods 

and to the ground truth. Again using the simulator, the effects of the number and 

locations of beacons are investigated. Section 5.2 presents mapping results using real 

data obtained from the Carleton University quad loop. Again, open-loop methods 

are compared with results from the landmark-bounded method, though no ground 

truth values are available in this case. Section 5.3 presents results of mapping the 

entire Carleton University tunnel network. In this case conventional methods are 

not available for comparison because the size of the network is too large. Section 

5.4 presents mapping results from the CANMET Experimental Mine. As in the 
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previous section, the scale of the environment means that conventional methods are 

not available for comparison. Finally, in Section 5.5, analysis of the scaling properties 

of the landmark-bounded method is done. 

5.1 Simulator 

The "MobotSim" simulator introduced in Section 4.1 is a valuable tool for validation, 

due to its ability to provide both noise-free and (simulated) noisy measurements. This 

allows maps to be compared against ground truth maps, and pose estimates to be 

compared with their true values. In this section, a single collected dataset is used to 

compute open-loop pose estimates using each of the methods introduced in Section 

3.1.1. The resulting estimates are then compared using the ground truth values to 

compute error. Finally, the landmark-bounded method is used with the same dataset 

to generate maps for comparison using both noise-free and noisy inputs. 

5.1.1 Ground Truth 

Six RFID beacons were added to the basic simulator quad loop environment and a 

run of data was collected using the simulator. Noise-free odometry data from this 

run was used to compute a ground truth set of pose estimates qtrue- Figure 5.1 shows 

a map of the simulated quad loop made using the noise-free poses qtrue, a n d serves as 

the "ground truth" map of the environment. The dashed line shows the path driven 

by the simulated mapping vehicle, and circles represent observed RFID beacons. This 

represents the most accurate possible map of the simulated quad loop environment, 

and qtrUe can be used as a basis for comparison of all other pose estimates. 
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Figure 5.1: "True" map of simulated quad loop environment made using noise-free 
odometry measurements for pose estimation. This represents the best possible map 
of the simulator environment, given the driven path. 
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5.1.2 Open-Loop Pose Estimation 

With the ground truth set of poses qtrue available, it is possible to compare the poses 

computed using the various open-loop methods introduced in Section 3.1.1 against 

their true values and quantify the error. Defining the first pose (timestep k = 0) in 

each pose set to be a reference point (x, y, 9) = (0,0, 0), the error is computed at each 

timestep in two ways. The error in range er at step k is defined as 

er,k = rk- ffc, (5.1) 

with 

rk = \[xl + yk 

h = \jx\ + y\ 

where (xk,yk) denote the ground truth location coordinates at step k, and (xk,i)k) 

are the estimated values. The error in orientation eg at each step k is computed as 

ee,k = 9k- 9k, (5.2) 

where again 9k represents the ground truth orientation and 9k the estimated value. 

The mean squared error of er and eg provide a convenient method of comparing 

the accuracy of one set of poses to another. Using these as an error metric, the lower 

the mean squared errors e2 and eg for a given pose set, the closer the poses are to 

their true values. The mean squared errors are computed as 

Z=l-Y<k (5-3) 
ft 

fc=l 

4 = \t,4» (5-4) 
fe=i 

where n is the number of poses in the set. 
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Simulated zero-mean, white Gaussian noise with covariance 

Q 
(0.2 m)2 0 

0 (2 o\2 

was added to the set of collected simulator input data (recall eq. (2.3)) and the three 

open-loop pose estimation methods were compared. Error plots are shown in Figure 

5.2 and mean squared errors tabulated in Table 5.1. The results of each method are 

discussed briefly below. 

Table 5.1: Mean squared error for comparison of open-loop pose estimation methods 

Method 

Odometry 

Scan Matching 

Laser Correction 

e2 [m2] 

4.84 x 104 

3.56 x 105 

7.23 x 103 

e'g [rad2] 

3.04 x 101 

3.55 

3.55 

Odometry 

The map resulting from pose estimation using noisy odometry measurements is shown 

in Figure 5.3(a). The results for odometry are as expected, with the sense of distance 

driven being fairly accurate while estimates of orientation are generally off. This type 

of map which is locally consistent over short ranges but globally inconsistent and 

generally appearing to be curled in on itself in loops is characteristic of odometry-

based estimation, with an earlier example being shown in Figure 2.8(a). 

Scan Matching 

Using scan matching for relative pose estimation results in a map shown in Figure 

5.3(b), where the sense of distance seems wildly incorrect (which the scale of the 
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(b) Orientation error ee, defined by (5.2) (Scan Matching & Laser Correction plots overlapping). 

Figure 5.2: Error plots comparing various open-loop pose estimation schemes to 
ground-truth values. The laser correction method clearly offers the lowest overall 
error. 
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(a) Odometry. 

10 20 30 40 50 60 70 

(b) Scan Matching. 

100 

-20 0 20 40 60 80 

(c) Laser Correction. 
100 

Figure 5.3: Map results using simulated data from the model quad loop environment. 
Three open-loop pose estimation methods were used for comparison. All maps are 
inconsistent, with the laser correction method producing the most correct result. 
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map confirms) but orientation estimates are generally better than odometry. In this 

map, corners of the loop are near 90° as they are in the true map, and corridors 

which should be parallel are close to being so. In an environment with few observable 

features this makes sense: the simulated quad loop consists of mainly straight walls 

with few unambiguous features available for scan matching. As mentioned in Section 

2.2.2, displacement estimates in this situation are uncertain in the direction parallel to 

the walls, which is generally the direction of travel. Orientation estimation, however, 

does not suffer from this problem and is accurate in this case. This analysis by 

inspection is supported by the mean squared errors in Table 5.1, which shows that 

the scan matching-based method has a higher e2 and a lower e2, than odometry. 

Laser Correction 

The laser correction method produces the best map results, shown in Figure 5.3(c). 

What is basically a combination of the above two estimation methods has the effect of 

combining the best features of each, with the accurate distance estimation of odometry 

combined with the accurate orientation estimation of the scan matching approach. 

While still not a globally consistent map, Figure 5.3(c) is visually the closest to the 

true map in Figure 5.1, which is confirmed by the mean squared error results in Table 

5.1, where laser correction has the lowest e2 and is tied for the lowest eg. 

5.1.3 Landmark-Bounded Method 

The landmark-bounded method was used to construct a map of the simulator quad 

using the same data run as above. As is detailed in Section 3.9, the dataset was first 

deconstructed into six local "edges" which were then mapped independently. The 

structure of the graph was then estimated, and the edges assembled according to the 

graph estimate. As in Section 3.8, a global map of the environment was then created 

by stitching together the edge maps as prescribed by the graph. 
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(a) Map resulting from noise-free input data (compare to the ground-
truth Figure 5.1). 

-20 0 20 40 60 80 100 

(b) Map resulting from input data with simulated Gaussian noise. 

Figure 5.4: Landmark-bounded method map results using simulated data in the model 
quad loop environment. Maps were constructed from simulated input data with and 
without added noise. Significantly, the noisy map is a consistent representation of 
the environment, which the open-loop methods were unable to achieve (Figure 5.3). 
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Figure 5.4(a) shows the stitched map made from the noise-free input data as used 

to create Figure 5.1. The estimated graph structure is shown as an overlay on the 

map. The result is a near-perfect representation of the environment, a promising sign 

that the new method works as intended. 

Figure 5.4(b) shows the map made by the landmark-bounded method using the 

noisy input data. One noticeable feature of this map are the slight "kinks" visible 

in the tunnel walls near some of the beacons. This phenomenon results from an 

accumulation of orientation error in the edge maps (which is expected) which may 

not even be visible over the length of the edge but becomes apparent near the graph 

nodes. As in Figure 5.3(c), the laser correction method used for pose estimation has 

produced edges bent slightly inward around the loop. In this case, however, since the 

loop is forced to be closed, the kinks are evident as the gradual accumulation of error 

is suddenly corrected at the graph nodes. Since this error correction results from 

the closed-loop nature of this graph (the graph topology forcing two non-consecutive 

poses to be coincident), kinks never occur in graphs without cycles. While clearly 

not a "perfect" map, it is globally consistent by the definition in Section 1.3 and is 

suitable for localization. 

5.1.4 Effects of Beacon Densi ty 

The simulator was used in a second experiment investigating the effect of the density 

of beacons in the environment on the resulting map. Twenty-two beacons were placed 

throughout the simulated quad loop, and a new data run was collected by driving the 

simulator vehicle once around the loop. The landmark-bounded method was used to 

create a map using the noisy data, then a subset of the beacons were ignored (effec­

tively removing them) and the environment re-mapped. This process was repeated 

until only two beacons, the minimum required for the landmark-bounded method 
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remained1, with the results shown in Figure 5.5. 

As Figure 5.5 illustrates, there is no requirement on the number of beacons beyond 

a minimum (two), but the density of beacons does have an effect on the resulting map. 

As might be expected, the most apparent result of varying the number of beacons 

used is in the kinks in the resulting map. With an increasing number of beacons, 

the kinks seem to disappear. Understanding from the above section that the kinks 

result from the sudden correction of the map error which builds up gradually along 

the length of the edges, this makes sense. Given that the same distance was driven 

in each case (the same data run was used), the error accumulated over the whole 

run should be the same. This means, then, that there is no less error in the case of 

many edges in Figure 5.5(a) than in the case of one (Figure 5.5(f)), but instead the 

same amount of overall error is distributed throughout many map kinks instead of 

one. Though the total sum of error (the sum of the kink "angles" can be taken as a 

measure of the orientation error when travelling in a closed loop) remains constant 

with any number of beacons, the sum of the squared error decreases as it is spread 

evenly throughout the map. By this measure, then, using more beacons does produce 

better results. 

Additionally, as the number of edges increases, the time required to compute the 

vehicle poses decreases (see Section 5.5 for an explanation), and the time required to 

solve the graph estimation problem (section 3.6) increases. In the extreme case where 

the number of vehicle poses and the number of beacons are equal, the edge mapping 

process is trivial (with one pose per edge), and the full burden of mapping falls onto 

the inefficient nonlinear graph estimation process. As seems to always be the case, the 

landmark-bounded method results in a tradeoff between speed and accuracy, where 

here the tradeoff point is defined by the density of beacons. 

In a strictly open chain (i.e., the graph does not contain cycles), increasing the 

xThe method requires at least one edge, which in turn requires two beacons. 
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(a) 22 Beacons (b) 12 Beacons. 

80 100 

(c) 8 Beacons. (d) 5 Beacons. 

(e) 3 Beacons. 

0 20 40 60 80 100 

(f) 2 Beacons. 

Figure 5.5: Maps made using noisy simulated data with varying numbers of RFID 
beacons. Map quality generally increases with increasing density of beacons, at the 
cost of increased complexity in the graph estimation process. 



113 

number of beacons gives no increase in accuracy since the error correction results from 

closed loops. The total time taken to solve the edges decreases (again, see Section 

5.5), but the time required to estimate the graph structure does not increase, since 

the time-consuming nonlinear process is not required2. For this special case, then, 

increasing the number of beacons in the environment speeds up the mapping process 

but does not have an effect on the accuracy of the final result. 

5.2 Quad Loop 

The quad loop area of the Carleton tunnel network was used for preliminary testing 

of the algorithms using real hardware. The electric vehicle described in Section 4.2.2 

was used to collect odometry, laser and RFID data by driving once around the quad 

loop, which contained six RFID beacons. Similarly to the above section, three open-

loop pose estimation methods were compared and, finally, the landmark-bounded 

method was used to map the area. In this case the analysis is only qualitative since 

no ground truth is available for comparison, but it is useful to compare these results 

against earlier ones using the same environment before moving on to larger, previously 

un-mappable areas. 

5.2.1 Open-Loop Pose Estimation 

The collected data run was used to map the quad loop environment using each of three 

open-loop pose estimation methods. Qualitative analysis again shows the laser cor­

rection method to produce the best results. The results of each method are described 

briefly below. 

2The nonlinear step is not required because the initial "guess" used in the graph estimation 
process is always optimal for this special case (see Section 3.6 for details). 
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(a) Odometry. (b) Scan Matching. 

-60 -40 -20 0 20 

(c) Laser Correction. 

Figure 5.6: Map results using real data from the Carleton University quad loop 
environment. Three open-loop pose estimation methods were used for comparison. 
All maps are inconsistent, with the laser correction method again producing the most 
correct result. 
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Odometry 

The map made using only odometry measurements for pose estimation is shown in 

Figure 5.6(a). Similar to Figure 5.3(a) for simulated data, this map exhibits the 

characteristics expected of odometry estimates. The map is inconsistent, largely 

due to the accumulation of orientation error from unmodelled wheel slip and other 

sources. The odometry method is generally good at measuring distance, however, 

which is reflected in the scale of the map, where the rectangular shape of the quad 

loop is (in reality) approximately 80 m x 60 m. 

Scan Matching 

Figure 5.6(b) shows a map using the scan matching-based method for pose estimation. 

Again, the results are as expected and similar to those shown in Figure 5.3(b) for 

the simulated data. Corridors in this map appear straighter and corners closer to 

their true values (90°) than in Figure 5.6(a), but the scale is distorted. Again this 

reflects the fact that scan matching is able to accurately estimate orientation in almost 

all areas, but displacement estimates are uncertain where there are few observable 

features. 

Laser Correction 

The map made using pose estimation by the laser correction method is shown in 

Figure 5.6(c). Again, while inconsistent, this is a better representation of the envi­

ronment than that resulting from either of the previous approaches to pose estimation. 

This map comes closest to accurately portraying both the scale and angles of the true 

environment. 
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5.2.2 Landmark-Bounded Method 

The same dataset used above was used to map the quad loop using the landmark-

bounded method. The six edges present in this environment were mapped indepen­

dently and reconstructed using an estimate of the environment's graph structure, 

shown in Figure 5.7(a). Again the edge maps were stitched together for visualization, 

with the resulting global map shown in Figure 5.7(b). Similar to the case for the 

noisy simulator data in Figure 5.4(b), this map is globally-consistent and useful for 

localization. In addition, "kinks" are again visible around the graph nodes, where 

the edge maps are joined, resulting from the sudden correction of the error which is 

gradually accumulated along the lengths of the edges. The edge maps are shown in 

detail in Figure 5.8, where the edge numbers are indicated on the graph in Figure 

5.7(a). 

5.3 Carleton University Tunnel Network 

A number of data runs were collected using the electric vehicle in the Carleton Uni­

versity undergound tunnel network. Data was collected at times of low pedestrian 

traffic in order to fully capture the environment and reduce the number of potential 

sources of unaccountable error. A set of 19 of the data runs covering the entire tunnel 

network was selected, and the landmark-bounded method was used to create a map. 

For this large environment, no maps from other methods are available as they are not 

able to handle the scale. With 41 RFID beacons installed in the tunnel network, the 

resulting graph as shown in Figure 5.9 has 41 nodes and 42 edges, and contains two 

nested loops. Again the edge maps were stitched together as a visualization of the 

resulting map and shown in Figure 5.10. The quad loop area used for preliminary 

testing in Section 5.2 can be recognized as the small rectangular loop near the lower 

left hand corner. Figure 5.11 shows a few of the edges in the network in greater detail. 
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(a) Estimate of the quad loop's underlying graph structure, showing 
edge numbers. 

-20 0 20 40 60 80 
(b) Edge maps assembled to form a global map of the environment. 

Figure 5.7: Assembled landmark-bounded method map of the Carleton University 
quad loop environment. Again, the result is globally-consistent representation of the 
real environment, which could not be achieved using the open-loop methods (Figure 
5.6). 
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(a) Edge 1. 
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(b) Edge 2. 
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(c) Edge 3. (d) Edge 4. 
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(e) Edge 5. 
0 5 10 15 20 

(f) Edge 6. 

Figure 5.8: Edge maps of the six edges in the Carleton University quad loop. Edge 
numbers correspond to those shown in Figure 5.7(a). 
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Figure 5.9: Estimated graph structure of the Carleton University underground tunnel 
network, containing 42 edges. Graph was constructed from a set of 19 data runs 
covering the network. 
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Figure 5.10: Assembled map of the Carleton University underground tunnel network. 
The corresponding graph is shown separately in Figure 5.9. 
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(a) Edge 4. (b) Edge 27. 
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(c) Edge 22. (d) Edge 21. 
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(e) Edge 29. (f) Edge 33. 

Figure 5.11: A few of the 42 edge maps covering the Carleton University underground 
tunnel network. Edge numbers correspond to those shown on the graph in Figure 
5.9. 
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At one point in Figure 5.10 (the three-way intersection at the centre, shown in 

detail in Figure 5.12(a)) it can be noted that the stitched map is not a consistent 

representation of the environment, in that there are multiple points in the map rep­

resenting the same real-world point. This occurs here due to a confluence of two 

factors: 

1. There are two edges at this point with a significant amount of overlap: the same 

section of the physical environment is represented independently in two edges; 

and 

2. In the real world, one of the edges contains a significantly inclined tunnel sec­

tion (that in the lower right of Figure 5.12(a)) which distorts the odometry 

measurements in that edge. 

This phenomenon does not occur if either of the two conditions above are not met. 

Figure 5.12(b) shows an intersection containing significant overlap between edges in 

an area where the real environment floor is flat, and the map is consistent at this point. 

Changes in tunnel inclination where there is no overlap between edges simply result 

in a distorted distance scale (as odometry measures the length of path travelled), but 

the map remains consistent. 

At its root this failure is due to the fact that the current formulation of the 

landmark-bounded method makes the assumption that the environment lies in a two-

dimensional plane, while the real test environment does not. In most cases this does 

not result in much trouble: significant tunnel inclines are handled gracefully in many 

areas where the change in inclination happens entirely within an edge. At certain 

points, however, where there is no choice of beacon locations allowing the sudden 

change in inclination to occur within a single edge (as is the case here, at a three-

way intersection), the result is often inconsistency about a single point in the map. 

This problem cannot apparently be resolved without relaxing the two-dimensional 
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(a) A rapid change in elevation causes distorted odometry measurements 
in one of the overlapping edges, violating the two-dimensional assump­
tion. 

(b) A flat-ground case where the two-dimensional assumption is valid, 
resulting in a consistent map. 

Figure 5.12: Two examples of overlapping edge maps in the Carleton University 
underground tunnel network. The inconsistent case occurs as a result of a violation 
of the two-dimensional assumption at a point of overlapping edges. 
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assumption and reformulating the landmark-bounded method, a significant task. Its 

effects can be minimized, however, with careful placement of beacons: the three nodes 

shown in Figure 5.12(a) could, for example, be moved closer to the intersection in 

order to reduce the area subject to inconsistency. 

5.4 CANMET Experimental Mine 

The trailer platform described in Section 4.2.3 in conjunction with a Mine Mule 

vehicle was used to collect a number of data runs from the 70 m and 130 m levels 

of the CANMET Experimental Mine described in Section 4.3.2. For each level, a 

set of runs covering the environment fully was chosen and used to construct a map 

using the landmark-bounded method. Three data runs were used to map the 70 m 

level, and two for the 130 m level. Again the edge maps were stitched together for 

visualization, with the resulting global maps shown in Figures 5.13 and 5.14 with 

the graph structures overlaid. Equivalent manually-surveyed maps of these areas are 

shown in Appendix B on pages 147-148. A few edges from each level are shown in 

detail in Figures 5.15 and 5.16. 

Due to the uneven ground surface, odometry measurements are significantly worse 

in this case than in the Carleton tunnel network. At two three-way intersections in the 

70 m level, the same case of inconsistency where the edges overlap as seen in the results 

of the Carleton network (section 4.3.1) is evident. Similar to the case in the Carleton 

tunnels, the two-dimensional assumption is violated by the extremely uneven ground 

surface causing unpredictably-distorted odometry estimates in the area of overlap. 

Again this effect could be minimized by moving the beacons surrounding the three-

way intersections closer to the intersection itself. In the 130 m level there is no such 

issue, and the landmark-bounded method works as expected. 
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100 

Figure 5.13: Assembled map of the CANMET Experimental Mine's 70 m level, with 
the estimate of the graph structure overlaid. Inconsistency is evident at some intersec­
tions, again due to violation of the two-dimensional assumption. A manually-surveyed 
map of the same area is shown in Appendix B on page 147. 
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Figure 5.14: Assembled map of the CANMET Experimental Mine's 130 m level, with 
the estimate of the graph structure overlaid. A manually-surveyed map of the same 
area is shown in Appendix B on page 148. 

5.5 Scaling the Landmark-Bounded Method to 

Large Pose Sets 

Defined in Section 1.3 as a primary goal, the ability to scale to very large environments 

is an important property of the landmark-bounded method. Tests in the Carleton 

University underground tunnel network and the CANMET Experimental Mine have 

demonstrated the ability of this method to handle environments far beyond the limi­

tations of earlier methods. Using some simple assumptions, it is possible to do some 

rudimentary analysis of the scaling properties of the landmark-bounded method, as 

compared to a Lu & Milios-style estimation of all poses at once as in the earlier meth­

ods. Given a set of input data with n timesteps, the two methods can be compared in 

the time taken to complete the task of generating a set of closed-loop pose estimates. 

Assume, as in Section 3.3, that the time required to estimate n poses is proportional 
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Figure 5.15: A few edge maps from the CANMET Experimental Mine's 70 m level. 
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(a) Edge 1. 

Figure 5.16: A few edge maps from the CANMET Experimental Mine's 130 m level. 
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to n2376, written as 0(ra2376). The time required for the Lu & Milios method is then 

simply 

TL&M(n) = 0(n2 3 7 6) . (5.5) 

In the landmark-bounded method, poses are computed in a number of smaller 

sub-problems whose solutions are then reassembled. For simplicity, assume that the 

problem of solving n poses is divided into k equally-sized sub-problems, each contain­

ing n/k poses. Each sub-problem is then of order 

o((«A)2376) 

= (j5W)°("2376)-

If these sub-problems are solved serially, then the total time taken for the 

landmark-bounded method is k times the sub-problem time: 

= (5lW)0(»23'6)- (5-6) 

Since the sub-problems are independent, it is also possible to solve them in parallel. 

Assuming the resources are present for a parallel solution, the parallel solution time 

for the landmark-bounded method is the same as that for a single sub-problem: 

T L B M , p ( n ) = ( ^ a ) 0 ( n 2 3 7 6 ) . (5.7) 

From (5.5), the landmark-bounded method is faster than the simple Lu & Milios 

method by a constant factor depending on k. We can define the "speedup" as the 

number of times faster that the landmark-bounded method can solve a problem of 

order n than the simpler method can. For the parallelized landmark-bounded method, 

the speedup, from (5.7), is A;2376, and for the serialized version, from (5.6), is k1 376. It 

is noted that the speedup, tabulated for a few values of k in Table 5.2, is significant. 
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Table 5.2: Speedup in landmark-bounded method pose estimation with the number 
of edges k. 

k 

2 

5 

10 

20 

Serial LBM 

2.6 

9.2 

23.8 

61.7 

Parallel LBM 

5.2 

45.8 

237.7 

1233.8 

The landmark-bounded method also requires the solution of the graph estimation 

problem (section 3.6) in addition to the solution of each edge. In this simple analysis 

it has been assumed that this problem (of order k) is much smaller than the edge 

problems (each of order n/k) and has been neglected. This is a reasonable assumption 

for open chains, but for closed ones (i.e., the graph contains cycles), the time required 

to solve the graph estimation problem is itself significant. Since it is non-deterministic, 

the analysis of the time required by the graph estimation process is beyond the scope 

of this thesis. 



Chapter 6 

Conclusion 

The goal of the research described in this thesis was to investigate the options for 

large-scale underground mapping, including the possibilities of using RFID as unique 

landmarks in order to meet the requirements specified in Section 1.3. The goals 

were largely met with the development of the landmark-bounded method, based on 

the graph structure of a tunnel environment containing stationary RFID landmarks. 

Validation of the new method was done using both simulated data and real hard­

ware experiments in a number of environments. The environments used were of a 

large enough scale to be (computationally) far out of reach of earlier methods and, 

importantly, included a real underground mine. The resulting maps of this method 

are naturally produced as a type of atlas: a set of local maps each covering a small 

portion of the total area, combined with relative information describing how the lo­

cal maps fit together to form a global one. This format leads to not only scalable 

mapping but also to efficient localization schemes taking advantage of it. 

6.1 Summary of Contributions 

In this thesis a new method for mapping very large-scale underground environments 

has been developed and validated via experiments. It is able to provide, using a 
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minimum of inexpensive and easily-installed RFID infrastructure, globally consistent 

atlas-type maps of very large areas far beyond the capabilities of earlier methods. The 

resulting maps will provide a natural basis for efficient localization efforts later, and 

could be used to replace expensive and time-consuming manual surveying techniques 

almost immediately. In summary, this thesis has provided advancements to this area 

of research in the following areas: 

1. The experimental investigation of passive RFID tag/reader interaction and de­

velopment of a simple new model for the interaction between them. The model 

allows the estimation of the virtual properties of the tag (range and location) 

from sparse measurements and allows tags to be used as landmarks for SLAM 

without any prior knowledge of their existence or location. 

2. The development, implementation, and experimental validation of the 

landmark-bounded method for mapping underground passageway environ­

ments. This method treats the environment containing RFID landmarks as 

an undirected graph, and uses the graph to solve the mapping problem in a 

distributed way. The resulting atlas-type maps are globally-consistent (except 

about certain points in exceptional cases), naturally allow later extension and 

modification, and provide a basis for efficient localization. The method scales 

to easily map environments far larger than previously possible, and was exper­

imentally validated in its intended setting (a real underground mine). Aside 

from localization applications, it may be possible to use the produced maps to 

replace expensive and time-consuming manual surveys. 

3. The development and construction of a modular and portable hardware sen­

sor platform supporting wheel encoders, scanning laser rangefinders, an RFID 
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reader and an inertial measurement unit. An accompanying realtime data ac­

quisition system was designed and implemented to collect data from a network-

attached laptop. In conjunction with one of two vehicles, the system was tested 

and used for all data collection tasks required over the course of this thesis, and 

continues to be used as a research tool by others. 

4. The creation of high-quality and reusable software implementations of many 

common tools such as Diosi and Kleeman's polar scan matching, and improve­

ment of existing ones for occupancy grid map generation and mobile robot 

simulation. 

5. Effective collaboration with and technical support of industry partner MDA 

Space Missions' experiments in robotic localization in both the Carleton Uni­

versity tunnel network and the CANMET Experimental Mine. 

6.2 Future Work 

A number of issues or ideas arose during the course of this thesis which could not be 

properly investigated due to time constraints. A few of them are listed below. 

6.2.1 Landmark-Bounded Method 

Being new and at somewhat of a prototype stage, there are many possible future 

directions for work on the landmark-bounded method. 

The most significant issue with the method in its current form is the inconsistency 

seen in global maps in certain cases where edges overlap, illustrated in the case of 

Figure 5.12. This is almost certainly caused by violations of the assumption that the 

environment will always lie in a two-dimensional plane, which in reality it does not. 

Relaxing this assumption and reformulating the problem for environments containing 
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inclined tunnels would be a large task, but could nevertheless be done. This would 

necessarily involve more hardware sensors for such measurements, an example being 

the use of an inertial measurement unit to locate the gravity vector and thus measure 

the roll and pitch of the mapping vehicle. As is, though technically not meeting the 

requirements defined in Section 1.2.1, the slight inconsistency around the graph nodes 

does not preclude methods of localization as discussed below. 

The addition of a three-axis rate gyroscope (or a three-axis IMU) to the set of 

sensors would allow other advancements. While not a serious problem, the "kinks" 

occuring in closed graphs like those apparent in Figure 5.4(b) are bothersome. Since 

they result from the sudden correction of accumulated orientation error, they could 

be mitigated with improved orientation estimates by making use of the gyroscope 

measurements. One immediately apparent way to do this would be an approach very 

similar to that used by the laser correction method for combining odometry or scan 

matching motion estimates with rotation estimates from the in-plane gyro. If the 

landmark-bounded method were extended for non-planar environments as described 

above, the other two gyroscopes would be useful in a similar way. 

Related to the above points, a full three-dimensional extension of the landmark-

bounded method would be an exciting future research direction. This extension would 

require the use of a 3D-capable laser rangefinder, or the addition of a second planar 

rangefinder in a transverse plane. This second option is already built into the sensor 

platform (with the two rangefinders visible in Figure 4.2), though the collected data 

from the second laser was not used in this thesis. Optionally, a 3D-capable method of 

matching scans could be used to improve scan matching measurements. The extension 

to non-planar environments discussed above in conjunction with a three-dimensional 

extension to occupancy-grid mapping would allow all levels of a mine (including ramps 

between levels) to be included in a single, three-dimensional, multilevel map. Such a 

map would be a useful tool for visualization, but its value in real mine applications 
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(specifically localization) remains to be seen. 

Though issues were not experimentally encountered during the course of this the­

sis, the method of estimating relative edge orientations (section 3.6.1) is potentially 

problematic. Since orientation estimates between edges are based on a single scan 

matching measurement (except in the case of multiple paths per edge), gains in the 

form of reduced error could be achieved by basing this not on one scan matching mea­

surement alone, but from the combination of multiple measurements. This could be 

done by intentionally including fixed-length overlapping path segments in adjoining 

edges (using each overlapping pose pair to provide an independent estimate), or, in 

the extreme case, re-basing the landmark-bounded method on edges each defined by 

two bounding beacons and containing one fully within it, and using entire half-edge 

overlaps. 

Finally, by using a sensor platform providing a full 360-degree rangefinder view 

(likely by using two back-to-back SICK lasers), a full 360-degree region of convergence 

for scan matching could be achieved, allowing scan-matching measurements between 

any pair of sufficiently close poses (in a Euclidean sense). This would increase the 

number of data points available for scan matching and relax restrictions on driving 

of the mapping vehicle (section 2.2.2). 

6.2.2 Localization 

Introduced in the first chapter of this thesis and barely mentioned since then, localiza­

tion is the second part of the two-step approach to the underground navigation. Most 

state-of-the-art methods for localization make heavy use of particle filtering: intro­

ducing a large number of randomly initialized possible robot poses ("particles") into 

a map of the environment, and redistributing particles to more likely poses as mea­

surements become available. While effective, this is basically a "brute force" method 

of estimation and is wildly inefficient as map sizes increase and more particles must 
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be used. 

As briefly mentioned above, the atlas-type graphs produced by the landmark-

bounded method provide a natural basis for much more efficient localization. In a 

similar way to that which using bounding landmarks makes the mapping process 

efficient, similar gains are possible for the particle filtering localization method as the 

search area for the vehicle is bounded. 

In one example scheme, the vehicle to be localized maintains a memory of the last 

RFID beacon it has encountered. With high certainty the vehicle is then located inside 

one of the edges adjoining the graph node corresponding to that beacon. The particle 

filtering approach is then applied to those edges simultaneously, allowing the particles 

to migrate between the edge maps. After a few observations, the vast majority of 

the particles should converge to one of the edge maps, in a position corresponding to 

the location of the vehicle within that map. Since the edge maps are small compared 

to the full size of the environment, particle filtering only within the connected edge 

maps makes this process efficient. Additionally, the number of edge maps that must 

be considered simultaneously is itself bounded by the maximum degree of the graph. 
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Appendix A 

Carleton University Tunnel Network 

Figure A.l shows a schematic map of the Carleton University underground tunnel 

network. Tunnels are represented as solid lines, with circular marks denoting the cur­

rent placement of RFID beacons. Area designations (for example, the East Campus 

area consists of areas "eel", "ec2", and "ec3") were used for route planning: data 

runs typically covered only one area each, with the resulting graphs merged to form 

a global map. 
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Figure A.l: Schematic map of the Carleton University underground tunnel network 



Appendix B 

C A N M E T Experimental Mine 

Figures B.l and B.2 show schematic maps of the two levels used for testing. Solid 

lines represent traversable tunnels, with installed RFID beacons denoted by circular 

marks. Both levels are large drift networks containing many visible features and very 

uneven driving surfaces. In the 70 m level (Figure B.l) a section of railway track 

inaccessible to mine vehicles necessitated detaching the sensor platform's trailer from 

the vehicle and pulling it manually while collecting data. Figures B.3 and B.4 show 

manually-surveyed maps of the two levels. 
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Figure B.l: Schematic map of the CANMET Experimental Mine's 70 m level 
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Figure B.2: Schematic map of the CANMET Experimental Mine's 130 m level 
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