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Abstract 
 

Lignocellulose is composed of lignin, hemicellulose, and cellulose. 

Lignocellulose waste is a sustainable and renewable resource available for use in 

biotechnological applications. Efficient enzyme production and enzymes with high 

catalytic activity are needed for the use of lignocellulose. The study of cellulases and 

xylanases that degrade cellulose and xylan into constituent monosaccharides is required 

to advance industrial application of these enzymes. The use of a traditional pure culture 

approach to discover and characterize cellulases and xylanases from novel actinomycete 

isolates and the use of metagenomics to uncover previously unidentified cellulase genes 

was undertaken. Actinomycetes were cultivated from soil samples and the isolate with 

the best cellulase and xylanase activity was subjected to strain improvement through 

protoplast fusion. Enhanced enzymatic activity was found in one fusant. Differential 

release of sugars from xylan was observed through gas chromatographic analysis 

between the parental and fusant cultures. Genome shuffling was observed in 16S rRNA 

genes after protoplast fusion. Finally, one putative endo-β-1,4-glucanase was discovered 

in a metagenomic library created from cellulose-enriched potting soil. 
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I. INTRODUCTION  

Bioethanol production from plant matter can be an alternative sustainable energy. 

Lignocellulose is the plant’s main structural component composed of three major 

polymers: lignin, hemicellulose and cellulose. Cellulose and xylan, the backbone of 

hemicellulose, make up the plant cell wall (Talmadge et al., 1973; Keegstra et al., 1973) 

and thus, are bountiful renewable resources. The degradation of the complex polymer, 

cellulose and xylan of lignocellulose, has an application in bioethanol production through 

fermentation of sugars such as xylose, or glucose formed as by-products through the 

hydrolysis of xylan and cellulose, respectively. One limitation of bioethanol production 

through this means is the expense involved in the production of enzymes such as 

xylanases and cellulases (Lynd et al., 1991). For bioethanol production to be 

commercially viable, the discovery of cellulases and xylanases with greater catalytic 

activity to degrade xylan and cellulose is necessary (Hill et al., 2006). Soil 

microorganisms produce enzymes that degrade lignocellulose for use as an energy source 

for survival. This thesis research focused on the identification of soil actinomycetes that 

produced potent cellulases and xylanases that degrade cellulose and xylan, respectively. 

To accomplish this and facilitate the discovery of these enzymes, the project was divided 

into two related research directions:  

1. Identification of actinomycete species cultivated from different soil types that 

degrade cellulose and xylan  

2. Mine the soil metagenome for cellulase genes.   

 

 



2 
 

I.1. Lignocellulose  

Lignocellulose is composed of three components: lignin, hemicellulose and 

cellulose. Lignin is a highly-branched random phenylpropanoid polymer formed by free-

radical condensation of aromatic alcohols (Bouxin et al., 2010; Brown, 1969; Gang et al., 

1999; Higuchi, 1990). Hemicellulose is covalently connected to lignin (Jung, 1989). The 

primary heteropolymers of hemicelluloses are xylan, mannan, galactan, and arabinan (Li 

et al., 2000). The primary sugar monomers of hemicelluloses that form these polymers 

are D-xylose, D-mannose, D-galactose, and L-arabinose (Li et al., 2000). Hemicellulose is 

connected to cellulose microfibrils through hydrogen bonding (Bauer et al., 1973). The 

interactions between recalcitrant lignin and the highly-ordered crystalline structure of 

cellulose and hemicellulose create a barrier protecting lignocellulose from degradation. 

The complexity of lignocellulose requires enzymes with various substrate specificities to 

completely degrade the recalcitrant lignocellulose to its monomers of which some are 

sugars that can be fermented to ethanol.  

I.2. Biofuels  

Alternative sustainable energy is sought after due to the high demand for energy 

and the limited amount of current energy sources. A continual increase in consumption of 

fossil fuels while resources are depleting has driven the demand for alternative fuel 

sources such as ethanol (Goldemberg, 2007). An advantage of using ethanol is a decrease 

in carbon dioxide emissions (Hill et al., 2006). Lignocellulose biomass can be used as a 

resource for the production of biofuels, such as bioethanol. Glucose from the degradation 

of cellulose can be fermented to produce ethanol (Delgenes et al., 1996). Likewise, 

pentoses from the degradation of xylan can also be fermented to ethanol (Hahn-Hägerdal 

et al., 1994).  
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Lignocellulose, the major structural component of plant material, can be a cheap, 

abundant and renewable energy source obtained from agricultural waste (Hill et al., 2006; 

Belkacemi et al., 2002), municipal solid waste (Chester & Martin, 2009; Li et al., 2007), 

as well as waste from forestry and pulp and paper industries (Lynd et al., 1991; 

Goldemberg, 2007). In Brazil and the United States of America (U.S.A.), fuel ethanol is 

already being produced from corn and sugar cane (Goldemberg, 2007). Presently, 

cornstarch has been used for the production of ethanol but this requires a large amount of 

agricultural land that is normally used for food production (Hill et al., 2006). The use of 

lignocellulose wastes is a more practical solution than corn crops, as it does not require 

the use of valuable land resources (Hill et al., 2006). Furthermore, lignocellulose residues 

resulting from crop harvesting are disposed of through burning (Levine, 2000; Crutzen & 

Andreae, 1990). However the burning causes air pollution and will damage the soil by 

reducing nitrogen and water retention (Levine, 2000; Crutzen & Andreae, 1990). To 

avoid this, the lignocellulose residues can be used for bioethanol production instead 

(Farrell et al., 2006).   

Ethanol production costs are high compared to fossil fuels and therefore it has not 

replaced fossil fuel usage (Goldemberg, 2007). The use of lignocellulosic biomass is 

impaired in bioethanol production because the enzymes and chemicals needed for this 

conversion are expensive (Lynd et al., 1991). Also, due to the recalcitrant nature of 

lignocellulose, xylanases that degrade xylan efficiently need to be discovered to allow 

cellulases access to cellulose so that it may be degraded into constituent sugars to 

increase the efficient use of lignocellulose for bioethanol production. Otherwise, ethanol 

will not be a cost effective sustainable alternative. Bioethanol production from abundant 
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and renewable lignocellulose can be a good alternative to fossil fuels with potentially 

lowered production costs.  

I.3. Hemicellulose 

Xylan is a plant cell wall polysaccharide that is a major component of 

hemicellulose. Hemicellulose is a highly branched heteropolymer containing sugar 

residues such as hexoses (D-galactose, L-galactose, D-mannose, L-rhamnose, L-fucose), 

pentoses (D-xylose, L-arabinose), and uronic acids (D-glucuronic acid) (Li et al., 2000). 

Xylan is found between lignin and cellulose and is thought to be important in fibre 

cohesion and for the integrity of the cell wall (Keegstra et al., 1973; Talmadge et al., 

1973; Iwamoto et al., 2008). Xylan helps to protect cellulose from degradation through its 

covalent interactions with lignin and non-covalent interactions with cellulose (Bauer et 

al., 1973). Xylan is formed by a xylose backbone linked by ß-1,4-xylosidic bonds with 

the constituents of arabinosyl, glucoronosyl and acetyl residues (Bauer et al., 1973; Li et 

al., 2000; Keegstra et al., 1973; Talmadge et al., 1973). The variability of xylan is due to 

the diversity of the number of neutral or uronic monosaccharide subunits or short 

oligosaccharide chains that are linked to a ß-1,4-linked D-xylopyranosyl backbone (Bauer 

et al., 1973). The composition of hemicellulose can vary depending on the plant resulting 

in complexity in the structure of hemicellulose.  

I.4. Hemicellulases 

Various xylanases with different substrate specificity are required to completely 

degrade xylan depending on the structure of hemicellulose. Hemicellulases can either be 

glycoside hydrolases or carbohydrate esterases, which hydrolyze the glycosidic bonds, 

and the ester linkages of acetate and ferulic acid respectively (Coutinho & Henrissat, 

1999; Henrissat & Bairoch, 1996). Hemicellulases that are glycoside hydrolases include: 
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β-1,4-endoxylanase (Biely et al., 1997), β-xylosidase (Deshpande et al., 1986), α-L-

arabinofuranosidase (Margolles & Reyes-Gavilán, 2003), α-D-glucuronidase (de Vries et 

al., 1998)  and β-mannanases (Stoll et al., 1999). Endo-1,4-β-xylanases randomly cleave 

the ß-1,4 backbone (Biely et al., 1997). β-xylosidase hydrolyzes xylobiose (Deshpande et 

al., 1986). Enzymes, such as α-L-arabinofuranosidase (Margolles & Reyes-Gavilán, 2003; 

Matte & Forsberg, 1992), α-glucuronidase (de Vries et al., 1998), and β-mannanases 

(Stoll et al., 1999) cleave the side groups attached to the backbone of xylan to allow β-

1,4-endoxylanases access to the backbone of xylan to completely degrade xylan  (Biely et 

al., 1997). The α-L-arabinofuranosyl groups of arabinans, arabinoxylans, and 

arabinogalactan present in xylan are terminally cleaved at the non-reducing end by α-L-

arabinofuranosidase (Margolles & Reyes-Gavilán, 2003; Matte & Forsberg, 1992). α-

glucuronidase cleaves the α-1,2-glycosidic linkages between xylose and D-glucuronic 

acid or the 4-O-methyl ether linkage (de Vries et al., 1998). β-mannanases release short 

β-1,4-manno-oligomers from mannan (Stoll et al., 1999).  

Hemicellulases that are carbohydrate esterases include: acetyl xylan esterase 

(Biely et al., 1986) and feruloyl esterases (Blum et al., 2000). Acetyl xylan esterase is 

required to completely liberate the acetic acids of glucuronoxylans (Biely et al., 1986). 

The ester bond between arabinose and ferulic acid is hydrolyzed by feruloyl esterases 

(Blum et al., 2000). To access the backbone of xylan, the side groups need to be removed 

to allow β-1,4-endoxylanase to degrade xylan to release xylose for fermentation to 

ethanol.  

I.5. Cellulose 

Cellulose is a structural polysaccharide found in plant cell walls and is composed 

of cellulose chains that form intramolecular and intermolecular hydrogen bonds to create 
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inflexible, insoluble microfibrils (Chanzy et al., 1979; Nishiyama et al., 2002). Cellobiose 

is two glucose subunits linked together through ß-1,4 bonds to form the repeating unit 

comprising cellulose chains (Kolpak & Blackwell, 1976) (Figure I.6.1.). The cellulose 

chains form organized microfibrils and run parallel to each other (Kolpak & Blackwell, 

1976). This linear polysaccharide is formed from repeating glucose units linked by ß-1,4-

glucosidic bonds containing crystalline regions and amorphous regions, where the 

microfibril chains are disordered compared to crystalline regions (Nieduszynski & 

Preston, 1970). The structural integrity of cellulose is created by the organized crystalline 

regions because they are more resistant to hydrolysis than the amorphous regions (Kolpak 

& Blackwell, 1976). Therefore, the more crystalline regions cellulose has, the more 

difficult it is to degrade. Microorganisms that produce cellulases to effectively degrade 

cellulose completely to glucose are required. The glucose can then be fermented to 

ethanol.  

O
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Figure I.6.1. Cellobiose and glucose (Adapted from Béguin and Aubert (1994)). 
 

I.6. Cellulases 

Cellulases exhibit three types of activity. The three known modes of action of 

cellulases include: endoglucanase, exoglucanase, and β-glucosidase (Davies & Henrissat, 

1995). Endoglucanases or endo-1,4-ß-glucanases hydrolytically cleave the intramolecular 

ß-1,4-glucosidic bonds of cellulose (Davies & Henrissat, 1995; Liu et al., 2009; Okazaki 
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& Moo-Young, 1978) (Figure I.7.1.). New chain ends are formed from this random 

cleavage and thus, allowing further degradation by subsequent cellulases (Okazaki & 

Moo-Young, 1978; Liu et al., 2009). Either cellobiose or glucose is formed from the 

cleavage of cellulose chains at the ends (reducing and non-reducing) by exoglucanases 

(Davies & Henrissat, 1995; Divne et al., 1998) (Figure I.7.1.). Lastly, β-glucosidases 

cleave cellobiose (Figure I.7.1.) into glucose residues and this prevents the accumulation 

of cellobiose (Davies & Henrissat, 1995; Parry et al., 2001; Umezurike, 1979). 

Accumulation of cellobiose leads to the inhibition of exoglucanases (Okazaki & Moo-

Young, 1978). Hydrolysis of cellulose is dependent on the rate-limiting step of the 

depolymerisation of cellulose by endoglucanases and exoglucanases. To completely 

degrade cellulose to obtain glucose for fermentation into ethanol, a concerted attack of 

cellulose by all three modes of action is required. 

 

Figure I.7.1. Cleavage sites of cellulose by cellulases: exoglucanse, endoglucanase, and 
β-glucosidase (Davies & Henrissat, 1995). 
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Part 1: Pure culture analysis of cellulose and xylan degradation 
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II. ABSTRACT 

For bioethanol production from lignocellulose to be economically viable, a 

decrease in enzyme cost is required (Lynd et al., 1991). Novel enzymes can be 

discovered from environmental isolates that are known to produce a diversity of 

enzymes. Actinomycete isolates were cultivated from potting soil, UOIT forest 

rhizosphere and bulk soil, and UOIT conservation area rhizosphere and bulk soils. Soil 

was used because soil contains lignocellulose-degrading actinomycetes. Isolates were 

screened for cellulase and xylanases activities and a list of isolates producing broad 

spectrum cellulase and xylanase activity was compiled. The top cultivated strain with the 

highest cellulase and xylanase activities was subjected to strain improvement through 

protoplast fusion. Greater than 30% of the fusants produced from three fusion events had 

improved cellulase and xylanase activities as determined by agar diffusion method. Xylan 

degradation products between a set of fusants and parents were analyzed by gas 

chromatography. Fusants and parents digested xylan differently resulting in 10-55 

nmol/mg of xylose present in the inoculated cultures over different time points. Less than 

3.4 nmol/mg of fucose was liberated from xylan by three fusants, FA1-14, FA9-13 and 

FA9-14. Trace amounts of glucose was observed in the inoculated samples and 

uninoculated controls between 48-192 and 432-576 hours. Rhamnose was only observed 

at 576 hours in the uninoculated control but was not observed at any other time point. 

Less than 3.5 nmol/mg of arabinose was observed in uninoculated controls, and 

inoculated cultures of FA1-14, FA2-4 and parental WBF90B. The 16S rRNA gene of one 

fusant was sequenced and appears to be a novel strain related to other Streptomyces spp. 

The sequenced fusant had a similar 16S rDNA restriction fragment length polymorphism 

(RFLP) banding pattern to one of its parents. Finally, the 16S rRNA genes of fusants 
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were compared to their parents by RFLP analysis to determine if any genome shuffling 

occurred in the conserved 16S rRNA gene. Genome shuffling was observed to occur in 

the 16S rRNA gene of one fusant.  
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III. INTRODUCTION 

III.1. Actinomycetes 

Actinomycetes are filamentous, Gram-positive bacteria of the order 

Actinomycetales that produce an array of primary and secondary metabolites (Embley & 

Stackebrandt, 1994; Fiedler et al., 2005; Fiedler, 1993). Extracellular hydrolytic enzymes 

are produced by these organisms, allowing them to compete for nutrients within their 

natural habitat (Ball & McCarthy, 1988; McCarthy et al., 1985). Actinomycetes can use 

lignocellulose to support growth as it is the most abundant soil carbon source (Trigo & 

Ball, 1994). Biomass degrading microorganisms, such as actinomycetes, can work 

synergistically with other organisms to produce different enzymes for a concerted 

enzymatic attack to degrade lignocellulose present in soil plant litter. Actinomycetes that 

produce enzymes to degrade lignocellulose can be cultivated from the soil and used to 

degrade xylan and cellulose into substituent sugars for bioethanol production as an 

alternative sustainable energy source.   

The genus Streptomyces are a group of soil-inhabiting, saprophytic and 

sporulating bacteria with a high G+C DNA (70%) content (Hopwood, 2006). They are 

able to colonize plant litter in the soil because of their hyphal growth and release 

extracellular enzymes to degrade lignocellulose for survival. Cultivated Streptomyces 

spp. have been shown to produce cellulases and xylanases; for instance, Streptomyces 

lividans (Hurtubise et al., 1995), Streptomyces viridosporus (Ramachandra et al., 1987) 

and Streptomyces thermoviolaceus produce xylanase (Garg et al., 1996). Secreted 

extracellular enzymes can be obtained from culture supernatants of cultured novel 

Streptomyces for industrial degradation of lignocellulose for bioethanol production. The 

degradative enzymes that degrade lignocellulose well can be further improved through 
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strain improvement techniques (Pettey & Crawford, 1984; Gokhale & Deobagkar, 1989) 

to meet the needs of the industrial process such as pH and temperature stability.  

Streptomyces are ideal candidates for the discovery of cellulases and xylanases 

and for genetic enhancement of these enzymes to increase their applicability in industrial 

processes such as bioethanol production. Streptomycetes are an attractive group of 

organisms for strain improvement and genetic manipulation, including cloning and 

mutagenesis, (Kieser et al., 2000) as the full genome has been sequenced for 

Streptomyces avermitilis MA-4680 (Ikeda et al., 2003) and S. coelicolor A3(2) (Bentley 

et al., 2002). Therefore there is vast knowledge on the genetics of Streptomycetes. A 

DNA cloning system for S. lividans has been established (Bibb et al., 1980; Kieser et al., 

1982) which makes S. lividans a suitable heterologous host (Katz et al., 1983; Martinez et 

al., 2004; Wang et al., 2000) for producing large amounts of extracellular proteins 

(Strickler et al., 1992). It is possible to clone and overproduce cellulase and xylanase 

genes from novel Streptomyces spp. in cultures of S. lividans.  

III.2. Strain Improvement: Protoplast fusion  

Microbial enzymes are biocatalysts used in industrial applications, for example in 

bioethanol production xylanases and cellulases are used. For industrial use, enzymes may 

have to be optimized to be suitable for use in industrial applications such as substrate 

specificity, temperature stability and catalytic activity to make these enzymes more 

effective in the process (May et al., 2000; Miyazaki et al., 2006; Song & Rhee, 2000; 

Hermes et al., 1990; Gokhale & Deobagkar, 1989). Strain improvement involves the 

modification of genes encoding a property of interest, such as enzymes, through 

mutagenesis or genome shuffling, and screening for improved properties; the process can 

be repeated with improved progeny for another round of strain improvement until the 
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desired outcome is generated for the industrial process (Hermes et al., 1990; Schaeffer et 

al., 1976; Zhang et al., 2002). 

Chemical mutagenesis, a classical strain improvement technique, involves 

introducing random point mutations with a mutagen. This strategy is tedious because 

multiple rounds of mutagenesis and selection are required until a desired phenotype is 

generated (Zhang et al., 2002). Through chemical mutagenesis, introduction of point 

mutations into different genes encoding lignocellulose degrading enzymes can occur but 

mutations may be silent, nonsense or point mutations where no improvement occurs. 

Also, chemical mutagenesis results in deleterious mutations and many mutants need to be 

screened before a mutant with improvement is found (Zhang et al., 2002). 

An alternative strain improvement technique is genome shuffling, or protoplast 

fusion. In this approach, protoplasts are created by the removal of the cell wall of bacteria 

then fused together for random homologous recombination of the genome to occur 

(Hopwood & Wright, 1978). Homologous recombination for multiple genes or operons 

can yield improved activity in several genes such as those encoding different cellulases or 

xylanases. Mutants created in this fashion are screened for improved phenotypic traits 

compared to original strains (Hopwood et al., 1977).  

Protoplast fusion has been successfully used to enhance degradation of 

lignocellulose. For example, cellulase and xylanase activity was improved compared to 

parental strains in studies where inter-strain genome shuffling between Cellulomonas 

spp. and Bacillus subtilis (Gokhale & Deobagkar, 1989), Penicillium echinulatum and 

Trichoderma harzianum (Dillon et al., 2008), and intra-strain improvement as in 

Trichoderma reesei (Prabavathy et al., 2006) and Trichoderma reesei QM 9414 fusions 
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(Sandhu & Bawa, 1992). Furthermore, endoglucanase activity was enhanced in the 

hybrid created either from protoplast fusant of Streptomyces viridosporus T7A to itself or 

S. setonii 75Vi2 (Ramachandra et al., 1987). Besides cellulase activity, lignin degradation 

was enhanced by protoplast fusion of two Streptomyces spp. (Pettey & Crawford, 1984). 

Genome shuffling is therefore effective in enhancing lignocellulose degrading enzymatic 

activity in various microorganisms. 

Besides strain improvement for degradative enzymes, genome shuffling improved 

thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae 

(Shi et al., 2009). Genome shuffling is useful in strain improvement for multiple factors 

and recursive recombination can be completed until a strain is created with the desired 

properties. A fusant able to degrade cellulose and ferment glucose into ethanol was 

created from the fusion of Trichoderma reesei and Saccharomyces cerevisiae (Srinivas et 

al., 1995). It is conceivable that a microorganism such as an actinomycete that degrades 

lignocellulose could be fused with a microorganism that can produce ethanol, like 

Saccharomyces cerevisiae, to make a designer strain capable of lignocellulose 

degradation and fermentation of constituent sugars to produce bioethanol.  

III.3. 16S rRNA Genes for Taxonomy 

The 16S ribosomal RNA (rRNA) creates the small subunit of the ribosome 

necessary for protein synthesis in cells. Due to their important role in protein synthesis, 

16S rRNA is universal, conserved and existed early on in evolution (Fox et al., 1977).   

16S rRNA genes are used as a molecular marker to taxonomically identify 

prokaryotes (Woese, 1987). 16S rRNA genes evolve at different rates compared to other 

genes forming conserved nucleotide regions and variable regions (Sogin et al., 1971; 

Woese et al., 1975). The conserved regions evolve slowly while the variable regions can 
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evolve much more rapidly. The small subunit (SSU) 16S rRNA gene is present in all cells 

and most gene variants can be amplified by degenerate primers because the 16S rRNA 

gene is large enough to contain significant differences in sequence to be used as a marker 

(Woese, 1987). The variable regions can be used to phylogenetically characterize 

microorganisms because the differences in the variable regions distinguish one bacterium 

from another, while the conserved regions are the same (Woese, 1987; Weisburg et al., 

1991). A ribosomal database has been created for phylogenetic studies (Olsen et al., 

1991; Larsen et al., 1993; Maidak et al., 1996; Cole et al., 2009) allowing 

characterization of novel microorganisms. Actinomycetes, like many other bacteria, have 

been characterized by their 16S rRNA gene sequences (Rheims et al., 1996; Niner et al., 

1996).  

III.4. Part 1 Overview 

There is a need to discover lignocellulolytic enzymes from novel isolates that will 

completely degrade lignocellulose into its constituents for bioethanol production. 

Cellulases and xylanases that completely degrade cellulose and xylan, respectively, 

without the need to increase concentrations of expensive enzymes, will make bioethanol 

production more feasible as an alternative energy source.  

Soil actinomycetes produce lignocellulose degrading enzymes for their survival in 

the environment and are therefore a potential source of industrially useful enzymes. In 

this thesis work, novel soil actinomycetes that degraded cellulose and xylan well were 

cultivated and subjected to strain improvement (Figure III.4.1.).  
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Figure III.4.1. Overview of pure culture analysis of actinomycetes that degrade cellulose 
and xylan   

Isolate actinomycetes from various soil types 

Screen actinomycetes for cellulase and xylanase activity 

Strain improvement of PSY159, the 
best xylan and cellulose degrader 

RFLP analysis of parents 
and fusants 

Gas chromatographic analysis 
of sugars released from xylan 
metabolism by parents and 
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IV. MATERIALS AND METHODS 

IV.1. Materials 

All materials, chemicals and antibiotics were purchased from Bioshop, 

Burlington, ON or Fisher Scientific, Fair Lawn, NJ unless otherwise stated. Garden Club 

All Purpose Potting Soil was purchased from Canadian Tire (purchased 2007). Potato 

dextrose agar (PDA) was purchased from Bioshop, Burlington, ON. Agar agar powder 

food additive was purchased from C.L.T. Intertrade Co. Limited, Bangkok, Thailand. 

Restriction enzymes were purchased from Fermentas, Burlington, ON and used according 

to manufacturer’s instructions. Congo red, cellulose, carboxymethyl cellulose and 

birchwood xylan were purchased from Sigma, St. Louis, MO. BeechNut oatmeal was 

purchased from BeechNut Nutrition Corp. Canajoharie, NY. GoTaq® Hot Start 

Polymerase and pGEM®-T Easy Vector Systems were purchased from Promega 

Corporation, Madison, WI. EZ-10 Spin Column Plasmid DNA Minipreps Kit, EZ-10 

Spin Column DNA Cleanup Kit and EZ-10 Spin Column PCR Products Purification Kit 

were purchased from Bio Basic Inc., Markham, ON. For gas chromatography, 2 mL 

Screw Top 9 mm Wide Opening Vials with 200 µL glass insert with polymer spring and 

FactorFour™ Column VF-23ms were purchased from Varian Associates Inc., Palo Alto, 

CA.  

IV.2. Bacterial strains  

Escherichia coli strain JM109 (recA1, endA1, gyrA96, thi, hsdR17 (rK–,mK+), 

relA1, supE44, Δ(lac-proAB), [F´, traD36, proAB, lacIqZΔM15]) was used for this study 

(Messing et al., 1981). Designation for environmental isolates cultivated from various 

soil samples and on various media is listed in Table IV.2.1. 
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Table IV.2.1. Soil isolate designations and isolation media  
Isolate Designation Isolation Medium 
PSY Potting soil on Yeast Dextrose Agar (YDA) 
PSP Potting soil on Potato Dextrose Agar (PDA) 
WRF Forest rhizosphere on Water Yeast Extract (WYE) 
WBF Bulk rhizosphere on WYE 
WCB Conservation bulk on WYE 
WCR Conservation rhizosphere on WYE 
PRF Forest rhizosphere on PDA 
PBF Bulk rhizosphere on PDA 
PCB Conservation bulk on PDA 
PCR Conservation rhizosphere on PDA 
YRF Forest rhizosphere on YDA 
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IV.2.1. Maintenance of Escherichia coli  

Escherichia coli strain JM109 was provided as frozen glycerol stocks (20% v/v) 

and maintained as such at -20°C. Recombinant E. coli were maintained as frozen glycerol 

stocks (20% v/v) with antibiotic selection at -20°C.  

IV.2.2. Maintenance of isolates  

All environmental isolates were maintained as frozen glycerol spore stocks (20% 

v/v) at -20°C. Fusants were maintained on YDA plates at 4°C.   

IV.3. Isolation of bacterial strains from potting soil  

Bacteria were isolated from soil as follows: 1.02 g of All Purpose Potting Soil 

was weighed out and placed in a sterile tube containing 9 mL of 0.85% saline solution. 

The tube was vortexed for approximately 7 minutes. Serial ten-fold dilutions were 

performed and 100 μL from each serial tenfold dilution was plated to obtain final dilution 

of 10-4, 10-5, and 10-6 onto triplicate onto three plates of Potato Dextrose Agar (PDA) 

(3.9% (w/v) of PDA) and Yeast Dextrose Agar (YDA) (0.1% (w/v) yeast extract, 0.3% 

(w/v) dextrose, 1.5% (w/v) agar). Plates were incubated at 30°C for 8 days while 

observations were taken daily to identify the type of microorganisms present. 

Actinomycete colonies were identified between 7-10 days and purified. Morphologically 

unique colonies characteristic of actinomycetes were observed as leathery colonies or 

with sporulated aerial mycelia but not mucoid like or fungi like (colonies over taking 

plate with large masses of mycelia and not leathery colonies). Pure cultures were 

maintained on PDA or YDA. The actinomycete colonies were phenotypically described 

for cultural and morphological characteristics such as size, elevation, margin, shape, 

surface appearance of colonies – colony shape, diffusible pigment production and colour, 
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and spore colour if applicable. Glycerol spore stocks were prepared for strains that 

sporulated.   

IV.4. Spore stock preparation 

Into microfuge tubes, 100 µL of 0.85% (w/v) saline solution was dispensed. A 

colony was excised and placed in the tube and a sterile pestle was used to homogenize the 

colony. An additional 100 µL of 0.85% saline solution was added and mixed thoroughly. 

To enhance sporulation, oatmeal agar (6% (w/v) oatmeal, 1.5% (w/v) agar) was used. On 

two oatmeal agar plates, 100 µL of the homogenate was plated. Plates were incubated at 

29°C until isolates were well-sporulated.   

Into sterile 15 mL screw-capped tubes, 5 mL of sterile water (18 MΩ) was 

dispensed aseptically. A sterile spatula was used to scrape spores from a sporulated lawn 

and was transferred into 15 mL screw-capped tubes with sterile deionized water. Spores 

were freed from mycelial fragments by vortexing vigorously for 5 minutes. The vortexed 

spore suspension was carefully poured into a filter unit (composed of cotton in a sterile 

15 mL screw-capped tube with a hole punctured at the tip) and allowed to filter by 

gravity. Sterile, deionized water (18 MΩ) was added to the filter unit to wash through 

spores. Filtered spores were centrifuged at 1801 g for 15 minutes at 4˚C in a Legend RT 

centrifuge (Sorvall). Supernatant was decanted and discarded. The spore pellet was 

resuspended in the remaining liquid. An equal volume of 40% (v/v) glycerol was added, 

vortexed well to mix, and stored at -20°C. These spore stocks were used as inoculum to 

screen isolates for cellulase and xylanase activity.  

IV.5. Degradation assays with actinomycete isolates 

To assess the potential of environmentally isolated actinomycetes to degrade 

cellulose and xylan, in vitro degradation assays were performed by culturing 
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actinomycete isolates on mineral salts agar containing, 0.05% (w/v) cellulose or 0.05% 

(w/v) carboxymethyl cellulose (CMC) and 0.005% (w/v) congo red (CR) dye. The 

concentration of xylan used was based on published values (Yang et al., 1995).  5 µL of 

spores of isolates were spotted onto cellulose-CR or CMC-CR agar plates. Congo red is a 

dye that binds to ß-1-4-glycosidic linkages of cellulose (Teather & Wood, 1982). As 

cellulose or CMC is degraded, a clear zone becomes visible around the growth of the 

isolate due to the release of the congo red dye. CMC congo red agar (0.05% (w/v) of 

carboxymethyl cellulose, 0.57 mM K2HPO4, 1.35 mM KCl, 0.20 mM MgSO4, 0.005% 

(w/v) yeast extract, 1.5% (w/v) agar) plates and cellulose congo red agar (0.05% (w/v) of 

cellulose, 0.57 mM K2HPO4, 1.35 mM KCl, 0.20 mM MgSO4, 0.005% (w/v) yeast 

extract, 1.5 % (w/v) agar) plates were used for screening actinomycetes for cellulase 

activity.  

Insoluble xylan from 1% birchwood was used to make defined xylan medium (5.7 

mM K2HPO4, 17.1 mM NaCl, 15.1 mM (NH4)2SO4, 1% (w/v) xylan from birchwood, 

20.0 mM CaCO3, 1.8% (w/v) agar) (Yang et al., 1995) to screen for xylanase activity. For 

this assay, spores were also spotted on xylan agar. Clearance zones indicating 

degradation were clearly visible on xylan containing media, therefore staining with a dye 

was unnecessary. Zones of degradation were measured to determine the amount of 

enzyme activity. Clearance zones were measured by subtracting the zone diameter from 

the diameter of isolate. Inoculated plates were incubated at 30°C for approximately 72 

hours and photos were taken every 24 hours using a FluorChem SP (Alpha Innotech) gel 

documentation system.  
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IV.6. Strain improvement through protoplast fusion 

Actinomycete isolates with the best cellulase and xylanase activity were 

cultivated and identified. The isolate with the largest clearance zones on cellulose, CMC 

and xylan agar was used for strain improvement with 3 other cellulase or xylanase 

producing isolates. Strain improvement was completed by protoplast fusion (genome 

shuffling) (Kieser et al., 2000) of two parental strains. The resulting progeny (fusants) 

were screened for improvement compared to parents for cellulase and xylanase activity 

by agar diffusion method.    

Spores were inoculated into 5 mL of YEME (Yeast Extract - Malt Extract 

Medium: 0.3% (w/v) yeast extract, 0.5% (w/v) Bacto-peptone, 0.3% (w/v) malt extract, 

1% (w/v) glucose, 34% (w/v) sucrose) supplemented with 2 mL/L MgCl2 (2.5 M), 25 

mL/L glycine (20%), 7.5 mL/L tiger’s milk (1% (w/v) L-arginine, 0.75% (w/v) L-cystine, 

0.75% (w/v) L-histidine, 0.75% (w/v) L-histidine, 0.75% (w/v) DL-homoserine, 0.75% 

(w/v) L-leucine, 0.75% (w/v) L-phenylalanine, 0.75% (w/v) L-proline, 0.15% (w/v) 

adenine, 0.15% (w/v)  uracil, 0.01% (w/v) nicotinamide) to make Super YEME and 

incubated at 30°C at 150 rpm in a C25 Incubated Floor Model Shaker (New Brunswick 

Scientific) for 3 days. Liquid culture was transferred to a 50 mL screw-capped tube and 

centrifuged at 1801 g for 15 minutes at 4°C to harvest the cells. Then, the supernatant 

was discarded and the pellet was resuspended with 15 mL of 10.3% (w/v) chilled sucrose 

and centrifuged again at 1801 g for 15 minutes. The supernatant was decanted and the 

mycelial pellet was resuspended in 1 mL of aqueous lysozyme solution (1 mg/mL). The 

suspension was incubated at 30°C for 15-60 minutes (strain dependent) and was 

monitored for protoplast formation via phase contrast microscopy. The mixture was 

triturated three times and further incubated for 15 minutes. Then, 5 mL of Protoplast (P) 
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buffer (10.3% (w/v) sucrose, 1.79 mM K2SO4, 26.52 mM MgCl2) was added. Prior to use 

the following components were added in order: 1.0 mL KH2PO4 (0.5%), 10 mL CaCl2 

(3.68%), 10 mL N-tris(hydroxymethyl) methyl-2-aminoethane-sulfonic acid (TES) buffer 

(5.73%, pH 7.2), 200 µL trace element solution (0.29 mM ZnCl2, 0.74 mM FeCl3, 0.06 

mM CuCl2, 0.05 mM MnCl2, 0.03 mM Na2B4O7, 0.01 mM (NH4)6Mo7O24)) was added 

and triturated thrice. Sterile cotton wool in 15 mL screw-capped tubes was used to filter 

protoplasts. The filtrate was centrifuged at 1801 g for 7 minutes at 4°C. Supernatant was 

discarded and the protoplasts were gently resuspended in 1.5 mL of P buffer. The 

turbidity of the parental strains was adjusted with P-buffer visually. For protoplast fusion 

to occur between the parental strains, 100 µL of each parent was transferred into a 

microfuge tube. The protoplasts were pelleted by centrifugation at 1801 g for 7 minutes 

at 4°C. Supernatant was discarded and the pellet was resuspended by gentle tapping and 

the addition of 0.8 mL of 50% (w/v) polyethylene glycol (PEG) 8000 molecular weight 

in P Buffer immediately and gently triturating once. The reaction tubes were stored at 

room temperature for 5 minutes. Protoplasts were gently plated onto R2YE for 

regeneration of cell walls (R2 medium: 12.88% (w/v) sucrose, 1.79 mM K2SO4, 132.86 

mM MgCl2, 1.25% (w/v) glucose, 0.0125% (w/v) casamino acids, 2.75% (w/v)  agar. 

R2YE:  R2 plus the following (after R2 was autoclaved): 10 mL KH2PO4 (0.5%), 80 mL 

CaCl2 (3.68%), 15 mL L-Proline (20%), 100 mL TES buffer (5.73%, pH 7.2), 2 mL trace 

element solution, 5 mL NaOH (1N), 40 mL yeast extract (10%), 6 mL tiger milk) with 

the following dilutions of 100,  10-1, 10-2, 10-3, 10-4 with P-buffer as diluent. The plates 

were incubated at 30°C for 5-7 days and the fusants were transferred to YDA when they 

were large enough to subculture.   
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IV.7. Degradation assays for fusants 

Fusants resulting from protoplast fusion events were patched and  screened on 

mineral salts agar containing, 0.05% (w/v) cellulose (same as above) or 0.05% (w/v) 

CMC (same as above) and 0.005% (w/v) congo red (CR) dye. Insoluble xylan from 1% 

(w/v) birchwood (same as above) was used to screen for xylanase activity. Inoculated 

plates were incubated at 30°C for approximately 27-40 hours. For the xylan assay, the 

plates were flooded with iodine after 27-40 hours. Iodine binds to xylan (Williams, 

1983). Clearance zones appear clear on a dark background. Photos of the plates were 

taken using FluorChem SP (Alpha Innotech) gel documentation system after 26-40 hours. 

IV.8. Comparison of sugars released from birchwood xylan by parents and 
putative fusants by gas chromatography 

Fusants with greater cellulose and xylan degradation zones when compared to the 

parental strains, as determined by agar diffusion method, were investigated for sugar 

release by the putative fusants and the parents during growth in liquid culture containing 

1% (w/v) birchwood xylan by the gas chromatography (GC) of alditol acetate derivatives 

(Blakeney et al., 1983). 

Mineral salts solution (0.02 M Na2HPO4, 0.01 M KH2PO4, 0.54 mM MgSO4, 2.28 

mM NaCl, 0.3 mM CaCl2) without the xylan was prepared and autoclaved. Then, 1% 

xylan medium was created after the 15 g of xylan was washed and added to the mineral 

salts solution. Since the birchwood xylan contained free xylose, five washes of xylan 

with water were performed to minimize free xylose present. Birchwood xylan (7.5 g) was 

added to two 50 mL screw-capped tubes for a total of 15 g of xylan. The xylan was 

autoclaved and then washed with sterile water, vortexed for 5 minutes and inverted 25 

times to mix. The xylan was pelleted by centrifugation for 15 minutes at 4°C at 1801 g 



25 
 

and the supernatant was discarded. This wash was repeated four times. In subsequent 

washes, the xylan pellet was compact; therefore a sterile spatula was used to resuspend 

the pellet.  

The washed xylan was transferred to mineral salts medium by obtaining two 

aliquots of 50 mL mineral salts solution in 50 mL screw-capped tubes from the 1.5 L 

mineral salts solution previously autoclaved for quantitative transfer. One aliquot of 

mineral salts was added to the washed xylan pellet and this pellet was resuspended by 

dislodging pellet with sterile spatula, vortexed for 1 minute and the tube was inverted 25 

times. The resuspended xylan was poured into the media bottle containing mineral salts 

solution. The screw-capped tube with washed xylan was rinsed with mineral salt solution 

from the other aliquot. The rinsate was transferred into the media bottle containing 

mineral salts solution. The tubes were rinsed once more to ensure all the xylan was 

transferred and poured into media bottle containing mineral salts solution. This was 

repeated for the transfer of xylan from the other screw-capped tube containing the other 

aliquot of approximately 7.5 g of xylan. 

Spore stock concentration of parents and fusants were quantified using a Petroff-

Hauser counting chamber to determine the volume of spores to inoculate into the 

birchwood xylan in mineral salts liquid cultures. Duplicate 100 mL of 1% birchwood 

xylan in 500 mL erlenmeyer flasks were inoculated with 106 spores/mL of parents, 

PSY159 and WBF90B, and fusants, FA1-14, FA2-4, FA9-13, FA9-14. Two 100 mL 

aliquots of uninoculated 1% washed birchwood xylan in mineral salts was used as 

control. Cultures were shaken at 150 rpm at 30°C. 
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Gas chromatographic analysis of sugars from the degradation of xylan by parents 

and fusants was analyzed based on the analysis method by Blakeney et al. (1983) for an 

alditol acetate derivitization of neutral sugars released during xylan degradation. Samples 

were obtained every 48 hours by removing a 200 μL aliquot aseptically from each culture 

into a microfuge tube. This was then centrifuged at 17 000 g for 15 minutes at room 

temperature in a microcentrifuge, accuSpin Micro 17 (Fisher Scientific). The supernatant 

was transferred to a new microfuge tube and the pellet was discarded.  

At 528 hours, the pellets obtained from uninoculated aliquots were saved and the 

pellet was hydrolyzed and derivatized to determine the sugars present in birchwood 

xylan. 1 0 0  μL of sterile water was ad ded  to the uninoculated culture pellets and the 

sugars present in the pellet were analyzed by the same analysis performed with the 

supernatants.  

The pH was measured using pH strips (Whatman). The standard mix contained 2 

mg/mL of the sugars generally found in the plant cell wall; rhamnose, fucose, ribose, 

inositol, xylose, arabinose, glucose, galactose and mannose, all of which are 

monosaccharides (Blakeney et al., 1983). 8 μg of the standard mix, containing the 

aforementioned sugars, was derivatized for each sample set. 

Glycosidic linkage between sugars of the polysaccharides present in the 

supernatant were hydrolyzed by the addition of 1M H2SO4, vortexed for a few seconds 

and incubated at 100°C for 1 hour in a heating block. The tubes were then cooled to room 

temperature. After cooling, 25 μL was aliquoted into three separate microfuge tubes. To 

each aliquot, the internal standard inositol 2 mg/mL was added to a final concentration of 

4 μg. Then, 10 µL of 9 M NH3 was added and vortexed for 3 seconds. 100 µL of 2% 
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(w/v) NaBH4 in dimethyl sulfoxide (DMSO) was added. The samples were vortexed for 3 

seconds. Samples were then incubated at 40°C for 90 minutes. 25 µL of acetic acid was 

added and vortexed for 3 seconds. 25 µL of 1-methylimidazole and 400 µL of acetic 

anhydride was added then vortexed. This was then incubated at room temperature for 10 

minutes. 800 µL of water (18 MΩ) was added and mixed by inversion until precipitate 

dissolved. Then, 200 µL dichloromethane (DCM) was added and mixed by inversion 30 

times. The tubes were placed at 4°C for 2 hours to overnight. The DCM phase (bottom 

layer) was collected into 2 mL Screw Top 9 mm Wide Opening Vials with 200 µL glass 

insert with polymer spring and used for gas chromatography analysis.  

Separation of the sugars was completed by gas chromatography-mass 

spectrometry (Varian 3900 Gas Chromatographer equipped with a flame ionization 

detector), with helium as a carrier gas (flow rate of 10.0 mL/minute) on a FactorFourTM 

Column VF-23ms (30 meters, 0.250 mm ID, 0.25 µm film thickness) capillary column.  

Injection (1.0 µL) was completed in split mode with a ratio of 20:13, utilizing a Varian 

CompiPal autosampler. The temperatures for the injector and detector were 240oC and 

300oC respectively. The oven temperature was ramped from 140oC to 180oC at 10oC per 

minute, and held for five minutes followed by an increase of 3oC per minute until a final 

temperature of 250oC, where the oven was held for 31.33 minutes. Identification was 

completed by retention time comparison between sample and standard. Galaxie 

workstation software (Varian) was used to identify and quantify the peaks of alditol 

acetates.  

In order to quantify the sugars present in the samples, an internal standard of 

inositol was incorporated into the samples. A response factor was calculated for the 
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standard for the sugars in the standard mix, in relation to the internal standard, inositol 

and the amount of sugar (nmol/mg of dry weight of xylan) was calculated: 

Response factor for each sugar in standard mix (Q) = area of the peak for standard 

sugar/internal standard  

Amount of sugar (nmol/mg of dry weight of xylan) = ([(peak area of 

sugar/Qsugar)/Area peakinternal standard*amount of internal standard in sample]/molecular 

weightsugar)/mg of dry weight of xylan   

The amount of sugar present in the uninoculated and inoculated samples for the 

six replicates was averaged and the standard error was calculated at each time point 

sampled. It was assumed there was 1% (w/v) of xylan present but this was inaccurate 

because birchwood xylan is not soluble.  

IV.9. Genomic DNA extraction 

Genomic DNA (gDNA) of actinomycete isolates was extracted for 16S rRNA 

gene amplification by PCR for taxonomic identification and to determine phylogenetic 

relatedness of cultivated actinomycete isolates. Due to difficulties in obtaining genomic 

DNA from the actinomycete isolates, several procedures were attempted as described 

below. 

IV.9.1. Salt-extraction of genomic DNA  

Genomic DNA extraction was performed as described in Aljanabi and Martinez    

(1997). For growth of actinomycetes in liquid culture, 5 µL of glycerol spore stock was 

inoculated into 5 mL of yeast dextrose broth (0.1% (w/v) yeast extract, 0.3% (w/v) 

dextrose), shaken at 150 rpm at 30°C for 1-3 days. Mycelia were harvested by 

centrifugation at 1801 g for 15 minutes. The supernatant was decanted and discarded. 

The mycelial pellet was washed in chilled 10.3% (w/v) sucrose by centrifugation. The 
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supernatant was discarded and the pellet was stored at -20°C or used immediately for 

DNA extraction.  

Salt homogenizing buffer (400 µL) (0.4 M NaCl, 10 mM Tris–HCl pH 8.0 and 2 

mM EDTA pH 8.0) was added to 750 µL of mycelia and resuspended by triturating. Then 

40 µL of 20% SDS and 8 µL of 20 mg/mL proteinase K were added, mixed well, and 

incubated at 55-65°C for 1 hour. Then, 300 µL of 6 M NaCl was added, vortexed for 30 

seconds and centrifuged for 30 minutes at 10 000 g. The supernatant was transferred to a 

fresh tube. An equal volume of isopropanol was added and incubated at -20°C for 1 hour. 

Samples were centrifuged for 20 minutes at 10 000 g at room temperature. The DNA 

pellet was washed with 70% ethanol, dried and finally resuspended in 300-500 µL sterile 

water.  

IV.9.2. Actinomycete colony Polymerase Chain Reaction (PCR) 

Actinomycete colony PCR was attempted for PCR amplification of 16S rDNA 

because salt extraction method did not yield any genomic DNA (gDNA) for WCB26. 

Single colonies were aseptically transferred from plates and placed in a microfuge tube. 

To the colonies, 200 μL of TE buffer pH 8.0 (10 mM Tris-Cl, pH 7.5, 1 mM EDTA) with 

1% triton X-100 and 2 mg/mL lysozyme was added and the colony was homogenized 

using a sterile pestle. The homogenate was incubated at 37°C for 30 minutes then 

incubated at 99°C for 15 minutes and cooled on ice for 2 minutes. The tube was 

centrifuged at 16 200 g for 5 minutes to remove cell debris. The resulting supernatant 

containing the DNA was used as template for 16S rRNA gene amplification by PCR (see 

section IV.10.) and stored at -20°C. 
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IV.9.3. DNAzol extraction of genomic DNA 

A 500 μL aliquot was obtained from the liquid culture of WCB26 grown in yeast 

dextrose broth (see above) for four days. To the aliquot, 1 mL of DNAzol (Invitrogen) 

was added, mixed and centrifuged at 10 000 g for 10 minutes at room temperature. The 

supernatant was transferred to a fresh microfuge tube and 100% cold ethanol was added. 

This was then mixed by inversion for five to eight times and stored at room temperature 

for 3 minutes; a cloudy precipitate of DNA formed. The DNA was collected by 

centrifugation at 10 000 g for 30 minutes at room temperature. The supernatant was 

decanted and 800 μL of ice cold 70% ethanol was added. The tube was inverted several 

times to mix and centrifuged at 17 000 g for 2 minutes at room temperature. The 

supernatant was decanted and the DNA pellet was washed once more. The DNA was air 

dried and resuspended in 300 μL of sterile water.  

IV.10. 16S rRNA gene amplification by Polymerase Chain Replication (PCR) 

To accomplish the taxonomic identification of the isolates with cellulase and 

xylanase activity, universal bacterial primers (Lane, 1991) were used to amplify the 

rRNA gene from genomic DNA of each isolate. The 16s rRNA primers that were used 

are: 27F (5' AGA GTT TGA TCM TGG CTC AG 3’), where M=C:A and 1492R (5' TAC 

GGY TAC CTT GTT ACG ACT T 3’), Y=C:T (Lane, 1991). The total reaction volume 

was 50 µL and the reaction conditions were: up to 250 ng DNA template, 1X Green 

GoTaq® Flexi Buffer (Promega), 0.2 mM dNTPs, 0.4 µM each of forward and reverse 

primers, 2 mM MgCl2 and 1.25 U of GoTaq® Hot Start Polymerase (Promega). Reaction 

conditions were denaturation at 95°C for 5 minutes, followed by 30 cycles at 94°C for 30 

seconds 55°C for 30 seconds, 72°C for 1 minute and finally 72°C for 5 minutes (Thermo 

Scientific Px2 Thermal Cycler). 
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To remove oligonucleotides and unincorporated dNTPs, the EZ-10 Spin Column 

DNA Cleanup Kit or EZ-10 Spin Column PCR Products Purification Kit was used and as 

per manufacturer’s protocol (Bio Basic Inc.). Purified amplicons were stored at -20°C. 

IV.11. Cloning of  Polymerase Chain Reaction (PCR) amplified 16S rRNA genes 
into pGEM®-T Easy Vector and transformation into E. coli 

PCR amplified 16S rRNA genes from select actinomycete isolates were cloned 

into pGEM®-T Easy Vector according to manufacturer’s protocol (Promega). The 

pGEM®-T Easy Vector system was used for the ligation of PCR amplicons to the vector 

and subsequent transformation into E. coli JM109.  

Cloning of 16S rRNA gene was performed through ligation of the PCR amplicons 

to pGEM®-T Easy Vector and then transformation into E. coli JM109. First, ligation of 

the PCR amplicons to pGEM®-T Easy Vector was performed as per manufacturer’s 

instructions. Frozen E. coli JM109 High Efficiency Competent Cells (Promega) were 

thawed on ice and a 25 μL aliquot of cells was added to a microfuge tube containing 2 μL 

of the ligation reaction. The transformation reactions were incubated on ice for 20 

minutes. The cells were heat-shocked for 45–50 seconds in a water bath at 42°C and then 

incubated on ice for 2 minutes. A 950 μL aliquot of Super Optimal broth – Catabolite 

repression (SOC) medium (2% (w/v) tryptone, 0.5 % (w/v) yeast extract, 0.01 M NaCl, 

0.0025 M KCl, 0.02 M Mg2+ stock, filter sterilized, 0.02 M glucose, filter-sterilized) was 

added. The cells were incubated for 1.5 hours at 37°C with shaking at approximately 150 

rpm in an orbital shaker. For each transformation culture, 100 μL was plated onto 

duplicate Luria Bertani (LB) (1.0% (w/v) tryptone, 0.5% (w/v) yeast extract, 85.5 mM 

NaCl, adjust pH to 7.0 with NaOH) containing 100 μg/mL ampicillin, 0.5 mM IPTG 
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(Isopropyl p-D-thiogalactopyranoside), 80 μg/mL X-Gal (5-bromo-4-chloro-3-indolyl-

beta-D-galactopyranoside) agar plates and incubated overnight at 37°C.  

IV.12. Plasmid Purification 

The alkaline lysis method (Sambrook & Russell, 2001) was used to determine if 

vectors containing inserts (PCR amplified 16S rRNA gene) were obtained. A single clone 

was inoculated into 3 mL of LB broth containing 0.1 mg/mL ampicillin and incubated 

overnight at 37°C and shaken at 250 rpm. Culture was harvested in 1.5 mL microfuge 

tube by centrifugation for 30 seconds at 17 000 g at room temperature. The supernatant 

was completely removed by aspiration to ensure the pellet was dry. The cell pellet was 

resuspended in 100 µL of ice-cold alkaline lysis solution I (50 mM glucose, 25 mM Tris-

Cl (pH 8.0), 10 mM EDTA (pH 8.0)) with vigorous vortexing. Then, 200 µL of alkaline 

lysis solution II (0.2 N NaOH (freshly diluted from a 10 N stock), 1% SDS) was added 

and quickly mixed by inversion five times and tubes were placed on ice for a minute. 

Next, 150 µL of alkaline lysis solution III (60 mL of 5 M potassium acetate, 11.5 mL of 

17 M glacial acetic acid, 28.5 mL of H2O) was added and mixed by inversion several 

times. The tubes were incubated on ice for 5 minutes. Tubes were centrifuged at 

maximum speed (17 000 g) for 5 minutes and supernatant was transferred to a fresh tube. 

An equal volume of phenol:chloroform:isoamyl alcohol pH 8.0 (25:24:1, v/v) was added 

and the mixture was vortexed. This suspension was centrifuged at room temperature at 17 

000 g for 2 minutes. The aqueous phase was transferred to a new tube and 2 volumes of 

room temperature absolute ethanol were added, mixed and the DNA was allowed to 

precipitate at room temperature for 2 minutes. The plasmid DNA was collected by 

centrifugation at 17 000 g for 5 minutes at room temperature. The supernatant was 

removed and the DNA was washed by addition of 1 mL of cold 70% ethanol and 
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centrifugation at 17 000 g for 2 minutes at room temperature. The supernatant was 

removed and the DNA was air-dried at room temperature, 5-10 minutes. The DNA was 

resuspended in 50 µL of TE pH 8.0 (10 mM Tris-Cl, pH 7.5, 1 mM EDTA) containing 

DNAse-free pancreatic RNAse (20 µg/mL). Plasmid DNA was stored at -20°C. 

For sequencing, plasmids were purified using EZ-10 Spin Column Plasmid DNA 

Minipreps Kit (Bio Basic Inc.) according to the manufacturer’s instructions. Plasmid 

DNA was stored at -20°C. 

IV.13. Cycle sequencing of fusant FA1-14  

The DNA sequence of the amplified 16S rRNA gene of the fusant FA1-14 was 

determined by cycle sequencing using 3130 Genetic Analyzer (Applied Biosystems). 

Cloned 16S rDNA was purified by alkaline lysis and was used as the template for 

sequencing. The concentration of DNA was determined to be 2.78 μg/μL. 4 μL of 3.1 

sequencing mix (Applied Biosystems),  2 μL of 5X sequencing buffer, 0.16 pmol/μL of 

27F and 1492R primers, 300 ng of DNA template to a final volume 20 μL were 

combined. The conditions for the sequencing reaction were as follows: denaturation at 

96°C for 3 minutes, then 25 cycles of: 96°C for 10 sec, 50°C for 5 sec, 60°C for 4 

minutes.  

Unincorporated dye terminators were removed by transferring reactions to a 1.5 

mL microfuge tube and adding: 20 μL of sterile distilled water and 60 μL of 100% 

isopropanol. This was vortexed and left to incubate in the dark for 15 minutes to allow 

precipitation of the extension products. This was then centrifuged at 17 000 g for 20 

minutes and the supernatant was discarded. To the pellet, 250 μL of 75% isopropanol was 

added then centrifuged at 17 000 g for 5 minutes. The supernatant was discarded and the 

samples were placed in a 90°C heating block for 1 minute to dry the samples. To the 
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dried samples, 15 μL of Hi-Di formamide (Applied Biosystems) was added and vortexed 

to mix. The tubes were then incubated at 95°C for 2 minutes and then chilled on ice for 

another 2 minutes. This was vortexed and briefly centrifuged for 1 minute at 17 000 g. 

The solution was kept on ice until it was to be loaded into the sequencer. The samples 

were loaded onto 3130 Genetic Analyzer (Applied Biosystems) for capillary 

electrophoresis. Sequences were viewed using ContigExpress software from (Vector NTI 

v10). Nearest relatives of the FA1-14 (1105 bp) were identified by comparison to 

submitted GenBank sequences through nucleotide-nucleotide Basic Local Alignment 

Search Tool (BLAST) (Altschul et al., 1990). Sequences with 98% identity from BLAST 

and FA1-14 sequence were aligned using ClustalW (Thompson et al., 1994). 

Phylogenetic analysis was performed using ClustalTree from San Diego Supercomputer 

Biology Workbench and neighbour joining method (Saitou & Nei, 1987). Bootstrap 

analysis (1000 replicates) with resampling two times was used to estimate node 

confidences of the phylogenetic tree which was viewed using njplot (http://pbil.univ-

lyon1.fr/software/njplot.html) and TreeView (Page, 1996). 

IV.14. Restriction Fragment Length Polymorphism analysis  

PCR amplified 16S rRNA genes of parents used for protoplast fusion and fusants 

were analyzed by Restriction Fragment Length Polymorphism (RFLP) to ascertain if 

there were any differences in banding pattern corresponding to genome shuffling in 16S 

rRNA genes during protoplast fusion. First, the 16S rDNA amplicons were digested with 

FastDigest® HaeIII or HhaI (Fermentas) by incubation at 37°C for 1 hour and 20 

minutes. The final reaction volume was 30 µL and 2 µL 10X FastDigest® buffer, 1 µL of 

enzyme, 10 µL (0.2 μg) of DNA were added.  

http://pbil.univ-lyon1.fr/software/njplot.html�
http://pbil.univ-lyon1.fr/software/njplot.html�
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The digested fragments were then separated by electrophoresis on a 3% (w/v) 

Tris-acetate-EDTA (TAE) agarose gel. 6X DNA loading dye (16% (w/v) sucrose, 100 

mM EDTA (pH 8), 0.000 625% (w/v) Bromophenol blue) was added to the digests for a 

final concentration of one times. The digests were electrophoresed on a 3% (w/v) TAE 

agarose gel at 100V for 1 hour. Molecular weight markers, 0.5 – 10 kb DNA ladder 

(Bioshop) or 100 bp ladder – 1 kb (New England Biolabs) were electrophoresed on the 

gel with the samples to determine which marker would allow better analysis. Agarose 

gels were stained in ethidium bromide (0.5 µg/mL) for 10 minutes and visualized on UV 

transilluminator and photographed using FluorChem SP gel documentation system 

(Alpha Innotech). 

IV.14.1. Polyacrylamide gels  

Polyacrylamide gels were used to obtain better resolution of digested 16S rDNA 

for RFLP analysis. DNA loading dye (1X) was added to the digested DNA prior to 

loading. Digested DNA were electrophoresed on 8% (5.9 mL water, 2 mL of 5X Tris-

borate-EDTA buffer (TBE), 2 mL 40% (19:1) acrylamide, 100 µL 10% Ammonium 

persulfate (APS), 10 µL N,N,N',N'-tetramethylethylenediamine (TEMED),  total volume 

10 mL), 4% (6.9 mL water, 2 mL of 5X TBE, 1 mL 40% (19:1) acrylamide, 100 µL 10% 

APS, 10 µL TEMED, total volume 10 mL) and 5% (6.65 mL water, 2 mL of 5X TBE, 

1.25 mL 40% (19:1) acrylamide, 100 µL 10% APS, 10 µL TEMED, total volume 10 

mL). 0.5X TBE was used as the running buffer and the gel ran for 1 hour at 100V. 

Molecular weight markers 0.5 – 10 kb DNA ladder or 100 bp ladder – 1 kb were loaded 

for a reference. Agarose gels were stained in ethidium bromide (0.5 µg/mL) for 10 

minutes and visualized on UV transilluminator and photographed using FluorChem SP 

gel documentation system (Alpha Innotech).  
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V. RESULTS  

V.1. Actinomycetes isolation from various soil samples 

 Over 800 actinomycete isolates have been previously isolated in the Strap lab 

from University of Ontario Institute of Technology (UOIT) forest rhizosphere soil, UOIT 

forest bulk soil, conservation area rhizosphere soil and bulk soil and potting soil types to 

comprise a laboratory culture collection of actinomycetes. As part of this investigation, 

186 isolates were isolated in pure culture from potting soil out of an original 280 

cultivated from this source. Out of these isolates, spore stocks were created for 143 

isolates. The remaining 41 were screened for cellulase activity on carboxymethyl 

cellulose (CMC) – congo red agar (CRA) (0.05%) but did not produce any cellulase or 

were not amenable to spore stock preparation; therefore no spore stocks were made for 

the 41 isolates and these cultures were discarded. 

V.2. Screen of pure culture isolates for cellulase and xylanase activity 

Actinomycete isolates cultivated from potting soil, UOIT forest bulk soil, UOIT 

forest rhizosphere soil, conservation area bulk soil and conservation area rhizosphere soil 

were screened for the production of extracellular cellulase and xylanase activities. Two 

forms of cellulose, insoluble cellulose and a soluble form of cellulose, carboxymethyl 

cellulose, were used to screen the isolates for cellulase activity. Degradation assays were 

performed by growing actinomycete isolates on mineral salts agar containing, cellulose 

(0.05%) or CMC (0.05%) and congo red (CR) dye (Figure V.2.1.A-B.). Congo red is a 

dye that binds to cellulose. Spores of each isolate were spotted onto cellulose-CR or 

CMC-CR agar plates. As cellulose or CMC is degraded, a clear zone becomes visible 

around the isolate due to the release of the congo red dye. Insoluble xylan from 

birchwood (1%) was used to screen for xylanase activity. After 3 days of growth, plates 
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were stained with iodine to visualize the degradation (clearance) zones which appear 

clear against a dark background (Figure V.2.1.C). Clearance zones were measured to 

determine the amount of enzyme activity.  
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Figure V.2.1. Example screen of isolates by agar diffusion method on A) cellulose congo red agar; B) CMC- congo red agar; and C) 
xylan stained with iodine. From top to bottom, left to right: PSP25, PSP31, PSP32i, PSP32ii, PSP46, PSP91a, PSY53b, PSY64, 
PSY66, PSY71, PSY72, PSY83, PSY93, WBF15aiii, WBF90B. 
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A total of 391 sporulating isolates were screened for cellulase and xylanase 

activity. The number of isolates screened from bulk soil was 138, 110 from rhizosphere, 

and 143 from potting soil. Actinomycetes isolated from potting soil had greater clearance 

zones in all the assays compared to rhizosphere or bulk isolates (Figure V.2.2-3.). For the 

cellulose assay, rhizosphere and bulk isolates were comparable with the isolates that 

degraded cellulose (Figure V.2.2.A.). For the CMC assay, rhizosphere isolates had larger 

clearance zones than bulk isolates overall (Figure V.2.2.B.). Finally, in the xylan assay, 

rhizosphere isolates had slightly greater zones on xylan agar than the bulk isolates 

(Figure V.2.2.C.). A total of 283 broad spectrum degrading strains were identified. Of 

these, 70% produced both xylanases and cellulases (Figure V.2.3.). Most of the potting 

soil isolates screened (>80%) produced cellulases that degraded cellulose and CMC and 

xylanases to degrade xylan, while greater than 60% of the rhizosphere isolates and bulk 

isolates displayed these activities (Figure V.2.3.).  

From the 391 total isolates assayed, 283 were found to have broad spectrum 

cellulase and xylanase activity. The isolates that had the largest clearance zones for all 

three assays are listed in Table V.2.1. Most of these isolates that exhibited multiple 

enzyme activities were cultivated from potting soil (PS). Four isolates from bulk soil, 

PBF57, PBF86, WBF3, and WCB26, and an isolate from rhizosphere forest soil, PRF42, 

were observed to have cellulase and xylanase activity as they had the largest clearance 

zones on cellulose, CMC and xylan agar (Table V.2.1.). PSY159 was the best isolate that 

produced the greatest clearance zones on cellulose, CMC and xylan (Table V.2.1.).
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Figure V.2.2.  Percentage of isolates from bulk, rhizosphere and potting soil with various clearance zone radii on A) cellulose, B) 
CMC, and C) xylan agar. n = 391: bulk – n = 138; rhizosphere – n = 110; potting soil – n = 143. Clearance zones were determined by 
taking into account the size of the spot. Clearance zone radius = (diameter of zone – diameter of spot)/2 
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Figure V.2.3. Comparison of the percentage of isolates screened from different soil 
environments that produced broad spectrum cellulase activity by degrading cellulose and 
CMC and xylanase activity from degrading xylan. n = 391: bulk , n = 138; rhizosphere, n 
= 110; potting soil, n = 143. 
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Table V.2.1. Best strains from 391 sporulating actinomycete isolates screened that exhibit 
broad spectrum cellulase and xylanase activity as observed by clearance zones at ~72 h 
incubated at 30°C on Cellulose-Congo Red Agar (CCRA), CMC-Congo Red Agar 
(CMC-CRA), and Xylan Agar plates 

Isolate CCRA (mm)* CMC-CRA (mm)* Xylan agar (mm)* 

PSY159 10 11 13 

PSY79 11 9 11 

PSY57 11 9 10 

PSP57 9 9 12 

PSY147 8 9 13 

PSP46 8 9 13 

PSY102 9 9 11 

PSY144 8 10 11 

PSY38 11 7 9 

PSY16 10 8 9 

PRF42 8 12 9 

PBF57 8 9 12 

PBF86 8 8 13 

WBF3 8 8 13 

WCB26 8 7 13 
*Clearance zones were determined by taking into account the size of the colony growth 
of the isolate. Clearance zone radius = (diameter of zone – diameter of spot)/2   
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V.3. Strain improvement of isolates 

Once screening of the actinomycete isolates for cellulase and xylanase activity 

was complete, isolate PSY159 was discovered to exhibit the best overall cellulase and 

xylanase activity. Strain improvement through protoplast fusion was performed to 

produce strains with even greater cellulase and xylanase activity than the best producer 

PSY159. Three fusion experiments were performed between four strains: A) PSY159 and 

WBF90B, B) PSY159 and PSP55, C) PSY159 and WCB26.  

These isolates were chosen as the parents for protoplast fusion for the following 

reasons: PSY159 had the greatest broad spectrum activity cellulase and xylanase activity 

(Figure V.3.1.). WBF90B had very clear cellulase clearance zones on CMC and cellulose 

but did not have very large diffusible zones (Figure V.3.1.). PSP55 was one of the best 

strains with broad spectrum cellulase and xylanase activity in the initial screening on 

cellulose, CMC and xylan agar (Figure V.3.1.) and it grew quickly in Super YEME liquid 

culture. WCB26 was one of the isolates with the best broad spectrum activity (Table 

V.2.1. and Figure V.3.1.) and was from conservation bulk soil compared to potting soil.  

From the three protoplast fusion events, a total of 501 fusants were screened for 

cellulase and xylanase activity (Figure V.3.2.). For protoplast fusion between PSY159 

and WBF90B (A), 162 fusants were screened, for fusion between PSY159 and PSP55 

(B), 141 fusants were screened, for fusion between PSY159 and WCB26 (C), 198 fusants 

were screened. Of the total number of fusants screened, there were six that showed 

overall improvement of broad spectrum cellulase and xylanase activity. Cellulase and 

xylanase activity was determined by measuring the clearance zone from the edge of the 

colony to the edge of the clearance zone and this was compared to the zones produced by 

the two parents from each fusion experiment (Table V.3.1.).  
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From each fusion experiment, the fusants that showed improvement in cellulase 

and xylanase activity were selected for further experimentation. The fusion between 

PSY159 and WBF90B had four fusants, FA1-14, FA2-4, FA9-13, and FA9-14, that 

demonstrated improved cellulase and xylanase activity compared to the parents. In the 

fusion between PSY159 and PSP55 and between PSY159 and WCB26B, there were not 

many fusants with improved cellulase and xylanase activity when compared to their 

respective parents. Subsequently, the fusant or fusants with improved cellulose and 

xylanase activity, when compared to the parents, were chosen from each of the fusion 

experiments, PSY159 & PSP55 and PSY159 & WCB26B. FB11-14 created from fusion 

PSY159 & PSP55, and FC17-4 created from PSY159 & WCB26 were the fusants that 

were selected for further study. 

The clearance zones on cellulose, CMC and xylan agar for each of the fusion 

experiments were reanalyzed to account for the growth of the strain because the number 

of cells and hence, colony size, will affect the amount of enzyme produced. Growth was 

determined by measuring the clearance zone from one edge of the zone to the opposite 

edge of the zone with the colony included. This re-analysis resulted in a different 

outcome compared to the data obtained for clearance zone measurements from the edge 

of strain to the edge of the clearance zone. Only two, FA9-13 and FA9-14, out of the six 

original best strains, FA1-14, FA2-4, FA9-13, FA9-14, FB11-14 and FC17-4, had larger 

clearance zones on cellulose, CMC and xylan when compared to both parents for the 

respective fusion experiments that generated these fusants (Table V.3.1.). Furthermore, 

only one isolate, FA9-15, out of all three protoplast fusion events (Table V.3.1.) exhibited 

clearance zones greater than 2 mm when compared to both parents on cellulose, CMC 
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and xylan. Also, the colour of the spores of the fusants were more similar to the spores of 

PSY159 (Figure V.3.2.). 

Protoplast fusion between the parents PSY159 and WBF90B had the largest 

number of fusants with improved cellulase or xylanase activity compared to when 

PSY159 was fused with PSP55 or WCB26 when improvement of fusants was compared 

to both parents (Figure V.3.2.A.). Fusion between PSY159 and WCB26 had the largest 

number of fusants with a decrease in cellulase and xylanase activity (Figure V.3.2.B.). 

Protoplast fusion between PSY159 and WBF90B was determined to be the best for strain 

improvement.  
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Figure V.3.1. Isolates used as parents in protoplast fusion experiments screened on 
cellulose congo red agar, CMC congo red agar and xylan agar displaying clearance zones 
indicating cellulase and xylanase activity, respectively. Arrows indicate clearance zones 
from one edge to the opposite edge. *No clearance zone observed. 
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Figure V.3.2. Example of screening A) fusants for cellulase and xylanase activity from fusion between parents PSY159 and WBF90B 
on B) C-CRA, C) CMC-CRA, D) xylan agar stained with iodine and E) xylan agar before staining with iodine. C-CRA, CMC-CRA 
and xylan agar plates were incubated for 40 hours at 30°C. A-E) Parents P1 – PSY159 and P2 – WBF90B are designated.   
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Table V.3.1. Fusants that showed improved broad spectrum cellulase and xylanase activity compared to parental strains as observed 
by clearance zones at ~27-40 hours incubated at 30°C on Cellulose-Congo Red Agar (C-CRA), CMC-Congo Red Agar (CMC-CRA), 
and xylan agar plates from each fusion experiment between parents: PSY159 & WBF90B, n=162; PSY159 & PSP55, n=141; and 
PSY159 & WCB26, n=198. Reanalysis of data to account for growthb showed only one fusant, FA9-15, with improved activity broad 
spectrum activity. 

   Clearance zone difference(mm)a Clearance zone difference(mm)b 
 Fusant ID Parent C-CRA CMC-CRA Xylan Agar C-CRA CMC-CRA Xylan Agar 
1 FA1-14 PSY159 1 1 1 3 -1c -1 
  WBF90B 4 5 5 4 3 3 
         
2 FA2-4 PSY159 1 3 1 -2 1 -1 
  WBF90B 6 4 4 3 3 3 
         
3 FA9-13 PSY159 3 4 3 4 3 2 
  WBF90B 5 6 3 6 5 2 
         
4 FA9-14 PSY159 4 3 3 4 3 1 
  WBF90B 6 5 3 6 5 1 
         
5 FB11-14 PSY159 3 3 1 3 2 -1 
  PSP55 3 5 3 3 4 1 
         
6 FC17-4 PSY159 3 0 0 1 1 -3 
  WCB26 5 3 1 3 2 -3 
         
7 FA9-15 PSY159 3 3 3 4 3 3 
  WBF90B 5 5 3 6 5 3 

a. Clearance zone difference measured from edge of strain to edge of clearance zone. 
b. Clearance zone difference measured from edge of strain to edge of clearance zone with growth accounted for. 
c. Clearance zone difference which is smaller for fusant compared to parent. 
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Figure V.3.3. Percentage of fusants that exhibit cellulase activity on Cellulose-Congo Red Agar (C-CRA), CMC-Congo Red Agar 
(CMC-CRA), and xylanase activity on xylan agar plates from each fusion experiment: between parents PSY159 & WBF90B, n=162; 
PSY159 & PSP55, n=141; PSY159 & WCB26, n=198 which showed A) improvement compared to both parents and showed B) 
decreased enzymatic activity compared to both parents. 
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V.4. Gas chromatographic analysis of sugars released from birchwood xylan by 
select fusants and their parents, PSY159 and WBF90B 

The degradation products generated by fusants with improved cellulase and 

xylanase activity were compared to their parents to confirm the improvement of cellulase 

and xylanase activity. The sugars released from xylan degradation between the four 

fusants, FA1-14, FA2-4, FA9-13, FA9-14, and their two parents, PSY159 and WBF90B, 

from protoplast fusion experiment A, were examined by gas chromatography to observe 

any difference in release of sugars from xylan between fusants and between fusants and 

parents. Fusants, FA1-14, FA2-4, FA9-13, FA9-14, showed improvement in cellulase and 

xylanase activity compared to both parents and so were chosen for further 

characterization. Neutral sugars released during xylan degradation by fusants and parents 

were analyzed to determine if fusants and parents degraded xylan in a similar manner. 

Each fusant and parent was grown in 1% liquid birchwood xylan and the supernatant of 

samples was sampled every 48 hours for a total of 576 hours for analysis of sugars 

present in the plants (Blakeney et al., 1983), rhamnose, fucose, ribose, arabinose, xylose, 

mannose, galactose and glucose, present. Supernatant from an uninoculated control was 

analyzed over the course of the experiment as well. Growth of microorganisms was 

apparent on the side of the flasks while there was some xylan residue adhering to the side 

of the flask as well, the growth of the microorganisms was a distinct colour compared to 

the xylan. Data was not obtained between 192-432 hours due to errors with the 

instrument. There were column problems where the column got clogged from adding 

some of the aqueous phase, injection septum needed to be changed and other gas tanks 

had to be changed. Samples were not re-run because most of the sample evaporated by 

the time the problems were resolved. The pH of each culture was measured at each time 
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point using pH strips and was found to be stable at pH 8 throughout the entire 

experiment.  

Sugars analyzed in this experiment were: rhamnose, fucose, ribose, arabinose, 

xylose, mannose, galactose and glucose because these are monosaccharides present in the 

plant (Blakeney et al., 1983). Trace amounts of rhamnose, galactose and glucose and 

large amounts of arabinose and xylose were present in the xylan starting material (Figure 

V.4.1.). Ribose, galactose and mannose were not observed at any time point in any of the 

supernatants even though rhamnose and galactose were observed in birchwood xylan. No 

data was obtained at 192 hours for PSY159 because the sample evaporated. Trace 

amounts of glucose were observed at most of the time points of the inoculated sample 

supernatants and were comparable to the amount in the uninoculated supernatants (Figure 

V.4.2.-V.4.7.). Less than 3.4 nmol/mg of fucose per milligram of xylan was present at 

various times points and only with fusants, FA1-14, FA9-13 and FA9-14 (Figure V.4.2.-

V.4.7.). In the culture inoculated with FA1-14 at 96 hours, there was 3.3 nmol/mg of 

fucose present (Figure V.4.4.). At 96 and 144 hours in FA9-13, 1.58 nmol/mg and 0.65 

nmol/mg of fucose was present, respectively (Figure V.4.6.). At 144 hours in FA9-14, 

0.61 nmol/mg of fucose was present (Figure V.4.7.). 1.21 nmol/mg of rhamnose was 

observed in uninoculated control at 576 hours and was not present at any other time point 

for uninoculated control or inoculated cultures (Figure V.4.2.-V.4.7.). At 96 hours, trace 

amounts of arabinose was observed: 3.14 nmol/mg in uninoculated control (Figure 

V.4.2.-V.4.7.), 1.51 nmol/mg in FA1-14 (Figure V.4.4.) and 1.15 nmol/mg in FA2-4 

(Figure V.4.5.). At 432 hour, WBF90B showed trace amounts, 0.09 nmol/mg, of 

arabinose (Figure V.4.3.).  
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For all time points in all of the inoculated and uninoculated controls, xylose was 

present (Figure V.4.2.-V.4.7.). For most time points, in all of the inoculated samples, the 

amount of xylose was less than the amount of xylose present in the uninoculated control 

(Figure V.4.2.-V.4.7.) indicating the possibility that the inoculated microorganism was 

consuming the xylose present. When the amount of uninoculated xylose was less than the 

amount in inoculated samples, xylanases were produced by the inoculated microorganism 

to degrade xylan. Therefore, an increase in the amount of xylose present was observed 

(Figure V.4.2.-V.4.7.).   
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Figure V.4.1. Alditol acetate derivitization of sugars present in birchwood xylan pellet 
from uninoculated control determined by gas chromatography. Error bars indicate 
standard error of six replicates.  
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Figure V.4.2. Alditol acetate derivitization of sugars, arabinose, 

 xylose and  glucose present in culture supernatant of uninoculated 
control and PSY159 respectively, grown in birchwood xylan determined by gas 
chromatography. Six replicates for each 48 hour time point from 48-192, 432-576 hours 
were performed. Error bars indicate standard error of six replicates.  
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Figure V.4.3. Alditol acetate derivitization of sugars, arabinose, 

 xylose and  glucose present in culture supernatant of uninoculated 
control and WBF90B respectively, grown in birchwood xylan determined by gas 
chromatography. Six replicates for each 48 hour time point from 48-192, 432-576 hours 
were performed. Error bars indicate standard error of six replicates.  
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Figure V.4.4. Alditol acetate derivitization of sugars, arabinose, 

 xylose and  glucose present in culture supernatant of uninoculated 
control and FA1-14 respectively, grown in birchwood xylan determined by gas 
chromatography. Six replicates for each 48 hour time point from 48-192, 432-576 hours 
were performed. Error bars indicate standard error of six replicates.  
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Figure V.4.5. Alditol acetate derivitization of sugars, arabinose, 

 xylose and  glucose present in culture supernatant of uninoculated 
control and FA2-4 respectively, grown in birchwood xylan determined by gas 
chromatography. Six replicates for each 48 hour time point from 48-192, 432-576 hours 
were performed. Error bars indicate standard error of six replicates.  
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Figure V.4.6. Alditol acetate derivitization of sugars, arabinose, 

 xylose and  glucose present in culture supernatant of uninoculated 
control and FA9-13 respectively, grown in birchwood xylan determined by gas 
chromatography. Six replicates for each 48 hour time point from 48-192, 432-576 hours 
were performed. Error bars indicate standard error of six replicates.  
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Figure V.4.7. Alditol acetate derivitization of sugars, arabinose, 

 xylose and  glucose present in culture supernatant of uninoculated 
control and FA9-14 respectively, grown in birchwood xylan determined by gas 
chromatography. Six replicates for each 48 hour time point from 48-192, 432-576 hours 
were performed. Error bars indicate standard error of six replicates.  
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V.5. 16S rRNA gene sequence analysis of fusant FA1-14 

Fusant FA1-14 showed improvement in cellulase and xylanase activity compared 

to parents PSY159 and WBF90B. The 16S rRNA gene of FA1-14 was amplified by PCR, 

cloned, sequenced and compared to previously described sequences by Basic Local 

Alignment Search Tool (BLAST) (Altschul et al., 1990) to determine the nearest relatives 

and if fusant FA1-14 is a novel strain compared to strains already described. The fusant 

FA1-14 was randomly selected for sequencing and the parental strains were not 

sequenced in this study.  

The 1105 bp PCR amplicon of the 16S rRNA gene sequence of FA1-14 had 98% 

identity to 16S ribosomal RNA genes of various Streptomyces spp. (Table V.5.1.). Fusant 

FA1-14 16S rRNA gene was also compared to 16S rRNA gene sequences of: Bacillus 

subtilis subsp. subtilis 168, Streptomyces avermitilis MA-4680, Streptomyces coelicolor 

A3(2), and Streptomyces viridosporus strain NRRL 2414T (Table V.5.2.). Bacillus 

subtilis subsp. subtilis 168 is a Gram positive bacterium with low G+C content that is not 

a streptomycete. Bacillus subtilis (Kunst et al., 1997) was used to root the tree because all 

other strains were Streptomyces sp. The complete genome sequence is known for 

Streptomyces avermitilis MA-4680 (Ikeda et al., 2003) and Streptomyces coelicolor 

A3(2) (Bentley et al., 2002), and were therefore used for comparison. Streptomyces 

viridosporus strain NRRL 2414T is a known lignocellulose degrader (Crawford et al., 

1983; Ramachandra et al., 1988) and was also selected for comparison. Phylogenetic 

analysis was performed using the neighbour joining method (Saitou & Nei, 1987) (Figure 

V.5.1.). Fusant FA1-14 is a novel strain compared to previously identified strains because 

it is present in its own clade (Figure V.5.1.).  
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Figure V.5.1. Neighbour-joining tree based on partial 16S rRNA gene sequences of 
fusant FA1-14 with its nearest phylogenetic relatives. The numbers at the nodes specify 
the level of bootstrap support based on 1000 re-sampled datasets. The scale bar represents 
0.1 nucleotide substitutions per site. The outgroup, Bacillus subtilis was used to root the 
tree. GenBank accession numbers are in the square brackets.  
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Table V.5.1. Comparison of fusant FA1-14 to GenBank matches with 98% identity 
Match GenBank accession number Identity* (%) 

Streptomyces sp. A356 Ydz-QZ  EU384278 1088/1105 (98%) 

Streptomyces aureus 3184  EF371429 1088/1105 (98%) 

Streptomyces sp. 3048  EF371425 1088/1105 (98%) 

Streptomyces sp. 349-2-2-199  EF371420 1088/1105 (98%) 

Streptomyces sp. JXNT-A-12  EF063489 1088/1105 (98%) 

Streptomyces sp. 3860  DQ663168 1088/1105 (98%) 

Streptomyces thermocarboxydus NBRC 
16323 

AB249926 1088/1105 (98%) 

Streptomyces thermocarboxydus  AB098079 1088/1105 (98%) 

Streptomyces thermocarboxydus NH50 AJ249627 1088/1105 (98%) 

Streptomyces sp. P3562  EF063493 1087/1105 (98%) 

Streptomyces sp. 2-1  EF063471 1087/1105 (98%) 

Streptomyces sp. 3039(1)  EF063463 1087/1105 (98%) 

Streptomyces sp. SXHM-A-13  EF063447 1087/1105 (98%) 

Streptomyces sp. JXNT-A-22  EF063446 1087/1105 (98%) 

Streptomyces sp. CH28  EF063444 1088/1106 (98%) 

Streptomyces sp. 3113  DQ673871 1087/1105 (98%) 

Streptomyces sp. 3150  DQ663190 1087/1105 (98%) 

Streptomyces sp. 3090  DQ663176 1087/1105 (98%) 

Streptomyces sp. EF-2  AF112165 1087/1105 (98%) 

Streptomyces thermocarboxydus AT37  NR_026072 1087/1105 (98%) 

Streptomyces althioticus 173997  EU593734 1088/1107 (98%) 

Streptomyces lusitanus NBRC 13464 AB184424 1086/1105 (98%) 

Streptomyces sp. HBUM 49474  EU158332 1086/1105 (98%) 

Streptomyces sp. 1A01649  EF012124 1085/1105 (98%) 

Streptomyces sp. C63  EU551708 1068/1086 (98%) 

*Nucleotides identical to the nearest GenBank relative/query 
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Table V.5.2. Comparison of fusant FA1-14 to other organisms 
Reference GenBank accession 

number 
Identity* (%) 

Bacillus subtilis subsp. subtilis 168 NC_000964 640/787 (81%) 

Streptomyces avermitilis MA-4680 NC_003155 1025/1074 (95%) 

Streptomyces coelicolor A3(2) NC_003888 1047/1080 (96%) 

Streptomyces viridosporus NRRL 2414T DQ442556 1034/1079 (95%) 

*Nucleotides identical to the nearest GenBank relative/query 
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V.6. Comparison of 16S rRNA genes between parents and fusants from 
protoplast fusion events  

Restriction fragment length polymorphism (RFLP) analysis was performed to 

compare the 16S rRNA gene of each fusant to its respective parents from the protoplast 

fusion events between PSY159 & WBF90B, PSY159 & PSP55, and PSY159 & WCB26. 

To our knowledge, no one has evaluated 16S rRNA genes after genome shuffling. Clones 

containing 1.5 kb PCR amplified 16S rRNA genes from select fusants, FA1-14, FA2-4, 

FA9-13, FA9-14, FB11-14 and FC17-4 and their respective parents were digested by 

HaeIII to compare the banding patterns. The digested DNA was electrophoresed on a 3% 

agarose gel and showed most fusants were more like parent PSY159 (Figure V.6.1.). 

FA1-14, FA2-4, FA9-13, and FA9-14 showed a 200 bp band absent in parent WBF90B 

but was present in PSY159. Fusion B fusant, FB11-14, showed a similar banding pattern 

as both parents, PSY159 and PSP55. WCB26, one of the parents for fusion C was 

missing a 200 bp band but was present in the other parent PSY159 and the fusant FC17-

4. Furthermore, the banding pattern of WCB26 was different than the others because 

there was a 312 bp band present. Therefore, FA1-14, FA2-4, FA9-13, FA9-14 and FC17-

4 had the same banding pattern as PSY159 while FB11-14 had the same banding pattern 

as both parents, PSY159 and PSP55. Since the resolution was poor on 3% agarose gel 

and HaeIII cuts into the vector multiple times, it was difficult to ascertain differences in 

16S rRNA gene sequences. Therefore, to obtain better resolution, polyacrylamide gels 

were used and only the PCR amplicons of 16S rRNA genes were digested to distinguish 

any differences present between parents and fusants.    
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Figure V.6.1. Cloned 16S rRNA genes of fusants and parents from fusion experiments 
between parents PSY159 & WBF90B, PSY159 & PSP5 and PSY159 & WCB26 digested 
with HaeIII and electrophoresed on a 3% agarose gel.  
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V.6.1. Comparison of 16S rRNA genes between parents and fusants using 
polyacrylamide gels  

The differences in restriction fragment length polymorphisms of 16S rRNA gene 

sequences of parents and fusants after genome shuffling was compared to determine if 

genome shuffling occurred within the 16S rRNA gene. Polyacrylamide gel 

concentrations of 8%, 4% and 5% were used to resolve HhaI digested 16S rRNA gene 

amplicons. An 8% polyacrylamide gel was used to obtain resolution between 6-400 bp. 

HhaI digested 16S rRNA gene amplicons are greater than 400 bp, therefore resolution 

was not obtained (Figure V.6.1.A-B.). HhaI digested 16S rRNA gene amplicons were 

separated with a 4% polyacrylamide gel (Figure V.6.1.C-D.). To obtain resolution 

between 80-500 bp, 5% polyacrylamide gel electrophoresis of 16S rRNA gene amplicons 

was performed (Figure V.6.1.E-F).  

The banding pattern of 16S rRNA digested amplicons of FA1-14, FA2-4, FA9-13, 

and FA9-14 were compared to parents PSY159 and WBF90B. The molecular weight of 

the bands could not be determined for the 4% polyacrylamide gel because there was 

unpolymerized polyacrylamide in the wells for the 4% polyacrylamide gel (Figure 

V.6.1.C.), thus only the banding patterns were considered. A band approximately 300 bp 

was missing in WBF90B but it was present in FA1-14, FA2-4, FA9-13, FA9-14 and 

PSY159 (Figure V.6.1.C.). The bands add up to approximately 1.5 kb for PSY159 and 

FA1-14, meaning the 16S rRNA gene of FA1-14 was the same as 16S rRNA gene of 

PSY159. The bands do not add up to 1.5 kb, the expected molecular weight for 16S 

rRNA amplified gene, for FA2-4, FA9-13, FA9-14 and WBF90B (Figure V.6.1.C.). 

Approximately 100 bp was missing for FA2-4, FA9-13, FA9-14 while WBF90B was 

missing 500 bp. The concentration of 16S rRNA gene amplicons for FA2-4, FA9-13, 
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FA9-14 was less concentrated than 16S rRNA gene amplicons of PSY159 or FA1-14. A 

faint 100 bp band was observed for more concentrated 16S rRNA gene amplicons of 

PSY159 and FA1-14. The 100 bp could be missing for FA2-4, FA9-13 and FA9-14 as a 

result of the concentration difference, resulting in very faint 100 bp bands or 100 bp had 

been digested into smaller fragments. Therefore, FA2-4, FA9-13, FA9-14 has the 

potential to be similar to PSY159. 

FB11-14 was the fusant created between protoplast fusion of PSY159 and PSP55. 

FB11-14 banding pattern was similar to both parents as observed on the 4% 

polyacrylamide gel (Figure V.6.1.D.). The 5% polyacrylamide gel showed a faint band 

less than 100 bp present in both parents but not the fusant (Figure V.6.1.F.). Also, fusant 

FB11-14 was missing a band that was approximately 100 bp when other bands for FB11-

14 were added but it did equal the theoretical size of the 1.5 kb amplified 16s rRNA gene 

(Figure V.6.1.F.). Likewise, through observation of the 8% (Figure V.6.1.B.) and 4% 

(Figure V.6.1.D.) polyacrylamide gels, the smallest band of the parents, PSY159 and 

PSP55, was present but this band was absent for FB11-14. The concentration of 

amplified 16S rRNA gene for FB11-14 was less than both parents. The 100 bp band 

could be present but it was too faint to be observed or it was digested into smaller 

fragments. The banding pattern between both parents PSY159 and PSP55 was the same, 

but FB11-14 did not have the 100 bp fragment, meaning FB11-14 was different than both 

parents. 

Fusant FC17-4 was derived by protoplast fusion between PSY159 and WCB26. 

The banding pattern between WCB26 and fusant FC17-4 was different and visualized 

more clearly on the 5% polyacrylamide gel (Figure V.6.1.F.). Fusant FC17-4 and parent 
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PSY159 contained a ~300 bp band which was not present in parent WCB26 (Figure 

V.6.1.D.). All the bands add up to 1.5 kb for PSY159 (Figure V.6.1.D.). WCB26 16S 

rRNA gene does not add up to 1.5 kb because about 400 bp was missing (Figure 

V.6.1.D). FC17-4 was missing about 250 bp of DNA in the 4% polyacrylamide gel 

(Figure V.6.1.D.). In Figure 6.1.1.F. there appeared to be a 150 bp present. Therefore, 

only 100 bp was missing for FC17-4. However, this missing 100 bp could be too faint to 

see because the concentration of DNA for FC17-4 was less than the parents. Thus, the 

banding pattern of FC17-4 was more like PSY159 if this unseen faint 100 bp was taken 

into account. 

In conclusion, the differences seen in the polyacrylamide gels were similar to the 

differences seen in the agarose gel wherein the 16S rRNA gene of most of the fusants, 

FA1-14, FA2-4, FA9-13, FA9-14 and FC17-4, most resembled PSY159. The 16S rRNA 

gene sequence of FB11-14 was not the same as both parents because it did not have the 

same banding pattern. Thus, 16S rRNA genes are not protected from genome wide 

shuffling.  
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Figure V.6.1.1. 16S rRNA genes digested with HhaI and electrophoresed on A, B) 8% polyacrylamide gel, C, D) 4% polyacrylamide 
gel, and E, F) 5% polyacrylamide gel. Digested 16S rRNA genes were amplified for fusants and parents from fusions between parents 
A, C, E) PSY159 & WBF90B, B, D, F) PSY159 & PSP55, and PSY159 & WCB26.     Indicates missing band.  
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VI. DISCUSSION 

VI.1. Screening of actinomycetes isolated from soil for cellulase and xylanase 
activity 

Several soil types were used to isolate environmental actinomycetes and these 

isolates were subsequently assayed for cellulase activity utilizing in vitro cellulose, CMC 

and xylan degradation assays. The soils used in this study were: University of Ontario 

Institute of Technology (UOIT) forest rhizosphere soil, UOIT forest bulk soil, 

conservation area rhizosphere soil, conservation area bulk soil and potting soil.  

Rhizosphere refers to the soil close to the plant root system (Marschner et al., 

2001). In contrast to rhizosphere soil, bulk soil is obtained away from the plant root 

system (Basil et al., 2004). The rhizosphere isolates had slightly larger clearance zones on 

CMC and xylan assays than bulk soil isolates (Figure V.2.2.B. & Figure V.2.2.C.). 

However, there was virtually no difference between the percentage of rhizosphere 

isolates that exhibited cellulase and xylanase (65%) activities compared to bulk isolates 

(63%) (Figure V.2.3.). A greater observed percentage of rhizosphere isolates able to 

degrade cellulose, CMC and xylan may be due to the greater diversity of actinomycetes 

generally found in rhizosphere soil compared to bulk soil (Basil et al., 2004). The 

observed difference in diversity is influenced by the root exudates released by the plants 

which affects the soil of the rhizosphere attracting microorganisms to the area (Smalla et 

al., 2001) which are able to degrade polymeric organic matter like lignocellulose (Lynch, 

1990). There would be less plant litter in the bulk soil because it is farther away from the 

plant. The less lignocellulose present, the less likely the inhabitants of the soil would 

need to produce the enzymes to degrade lignocellulose. Although, this may be true, the 
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enzymes produced by specific microorganisms found in bulk soil can be effective at 

degrading the scarce lignocellulose for use as a food source.  

Potting soil was chosen for cultivation of actinomycetes that may produce 

cellulases and xylanases because it is enriched with organic nutrients and is likely to 

house an abundant population of actinomycetes. Isolates from potting soil had a greater 

percentage of isolates with larger clearance zones screened on cellulose, CMC and xylan 

agar (Figure V.2.2.) compared to other rhizosphere or bulk soil isolates. A higher 

percentage (87%) of isolates with broad spectrum activity was isolated from potting soil 

compared to other cultivated isolates (Figure V.2.3.; Table V.2.1.). Actinomycetes 

isolated from potting soil dominated the list of isolates that produced large clearance 

zones on cellulose and xylan containing agar (Table V.2.1.). One possible explanation for 

this is potting soil was enriched with humus by the manufacturer. Humus is created from 

decaying biomatter such as plants and other dead organisms (Waksman, 1925; 

MacCarthy, 2001). Actinomycetes produce extracellular hydrolytic enzymes to degrade 

humus, enabling them to compete for nutrients and use it as a carbon source to grow 

(Dari et al., 1995).  

Environmental isolates were screened on cellulose, CMC and xylan agar plates by 

spotting 5 µL of spores onto agar plates containing each substrate. The concentrations of 

spores could have varied when isolates were screened because the concentrations of 

spores in the stock solutions were not quantified. This was a preliminary screen and 

therefore it would be difficult to determine the concentration of every spore stock for 

mass screening with equal inoculum. To ensure the best isolates are indeed the ones with 

the best cellulase and xylanase activity, the stock concentration for the best isolates could 
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be counted and used to re-screen each substrate with equal concentration of spores as 

inoculum. This re-screening process would allow verification that the isolates do indeed 

display the best cellulase and xylanase activities compared to other isolates.  

Another limitation to screening the strains for cellulase and xylanase activities is 

that the growth rate can differ between strains on any given substrate. As the growth rate 

and utilization of substrate for the previously uncharacterized environmental isolates is 

unknown, an equal inoculum would standardize the assays accounting for the possibility 

that each isolate produces enzymes with different degradative catalytic activities. Further 

investigation of the cellulase and xylanase activities of the environmental isolates 

screened in this study will determine which isolates are candidates for future applications.  

In conclusion, actinomycete isolates from potting soil isolates were able to 

produce cellulases and xylanases that degraded cellulose, CMC and xylan producing 

some of the largest clearance zones observed in the assays. 

VI.2. Strain improvement through protoplast fusion 

Strains isolated from potting soil, rhizosphere and bulk soil showed large 

clearance zones on cellulose, CMC and xylan. Strain PSY159 was the isolate best able to 

degrade cellulose, CMC and xylan and therefore, was chosen for strain improvement 

through protoplast fusion, a genome shuffling technique (Hopwood et al., 1977), in an 

attempt to enhance cellulase and xylanase activity.  

Fusants were produced from the protoplast fusion of PSY159 (parent) with 

strains: WBF90B, an isolate that degraded cellulose and CMC very thoroughly; and 

PSP55 and WCB26 which were shown to have cellulase and xylanase activities. Parents 

and fusants were patched onto cellulose congo red, CMC congo red and xylan agar to 

screen for cellulase and xylanase activities, respectively. The amount of activity was 
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determined by measuring the size of clearance zones created from the degradation of the 

substrate, from the edge of the colony to the edge of the clearance zone. Four fusants, 

FA1-14, FA2-4, FA9-13, and FA9-14 from the fusion between PSY159 and WBF90B 

had greater clearance zones on the assays compared to both parents (Table V.3.1.). For 

fusion between PSY159 and PSP55, only one fusant, FB11-14 had greater clearance 

zones on the assays compared to both parents (Table V.3.1.). The fusion between 

PSY159 and WCB26 yieled only one fusant, FC17-4 which was found to have improved 

cellulase and xylanase activities compared to both parents (Table V.3.1.).  

Two fusants, FA9-13 and FA9-14, with the largest clearance zones based on 

measuring from the edge of the growth streak to the edge of the clearance zone, when the 

growth was not considered, were incubated for 40 hours compared to others that were 

incubated for at least 26 hours to maximum of 40 hours. Longer incubation time could 

have contributed to larger clearance zones for FA9-13 and FA9-14 since these two 

fusants had greater clearance zones than most of the other fusants (Table V.3.1.).   

Six fusants, out of 501 screened, with the best broad spectrum activity, cellulase 

and xylanase activity, were identified out of the three fusion events (Table V.3.1.). These 

six fusants were identified by measuring the clearance zones from the fusant to the edge 

of the zone. The inoculum concentration was not controlled during the agar assay 

screening. Parent strains were used as an internal control to ensure that the fusants could 

be compared to parents on the agar assay plates. However, initially, the growth of the 

strain was not accounted for through this analysis method. The data was subsequently re-

analyzed to account for growth of the parents and the fusants by normalizing the data 

through subtraction of the growth of the organism from the clearance zones that they 
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produced. The normalization allowed for a better comparison of improvements in 

cellulose or xylan degradation between parents because the greater the streak of the strain 

on the agar plate, the more enzymes produced. Therefore, the colony growth should be 

accounted for, to remove error associated with large clearance zones arising from more 

biomass.  

In each of the agar plates, the sole carbon source was cellulose or xylan. If the 

strain could not utilize the available carbon source then it would not grow. Certain strains 

may be able to grow at a faster rate if they were more capable of utilizing cellulose or 

xylan.  An equal concentration of spores patched onto the assay plates would normalize 

the data to account for growth.  

Only one fusant, FA9-15, had a clearance zones greater than two millimetres 

larger compared to both parents on all three assays when the growth was also accounted 

for (Table V.3.1.). Also, only two, FA9-13 and FA9-14, of the original six fusants with 

the best cellulase and xylanase determined when the growth was not measured, had 

improved cellulase and xylanase activity when compared to both parents on all three 

substrates when the growth of the strain was analyzed (Table V.3.1.). Therefore, the 

growth has an effect on the clearance zones produced because the other four original 

strains, FA1-14, FA2-4, FB11-14 and FC17-4, did not have larger clearance zones than 

the parents when the growth was accounted for (Table V.3.1.). 

Protoplast fusion between PSY159 and WBF90B had the greatest percentage of 

fusants, 162 screened, that showed improvement over their parental strains and the lowest 

percentage of fusants with decreased activity in all three assays compared to both parents 

(Figure V.3.3.). PSY159 had large clearance zones on all three assays, cellulose, CMC 
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and xylan. WBF90B produced small zones on cellulose and CMC, but degraded the 

cellulose completely resulting in a clear but less diffusible zone observed and had no 

xylanase activity. The protoplast fusion event that produced the greatest percentage of 

isolates with improved cellulase and xylanase activity was between an isolate, PSY159, 

that produced a large clearance zone due to diffusible enzymatic activity and an isolate, 

WBF90B, that produced cellulase that degraded the cellulose completely, but the 

cellulase was either less diffusible in the agar, or secreted at low levels as evidenced by a 

smaller clearance zone.  

A greater percentage of improved cellulase and xylanase activity and a lower 

percentage of decreased enzymatic activity compared to both parents were observed from 

fusants between two potting soil isolates, PSY159 and PSP55, compared to fusants from 

PSY159 and WCB26, an isolate cultivated from conservation bulk soil (Figure V.3.3.). 

When WCB26 was initially screened on cellulose, CMC and xylan agar, WCB26 had 

greater cellulase and xylanase activity than PSP55. Genome shuffling is random 

(Hopwood & Wright, 1978; Sankoff & Goldstein, 1989) and therefore, the reason why 

one strain had a greater percentage of improvement than another strain cannot be 

controlled.  

The agar diffusion method was used as a preliminary screen to determine which 

fusants had improved cellulase and xylanase activities compared to parent strains. 

However, verification of the improvement by doing replicate assays on cellulose, CMC 

and xylan agar would validate these initial screens and allow for statistical analysis. 

Screening a large number of fusants on replicate assays would be time intensive because 

many agar plates would be required. Also, when streaking fusants on the assay plates, 
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spacing the streaks further apart would allow a more accurate measurement of the 

clearance zones because some of the clearance zones overlapped. For some plates, the 

clearance zones overlapped because the incubation time was longer than other plates. The 

plates where the clearance zones overlapped were the first batch of plates screened and 

the incubation time had not yet been determined. Subsequently, the incubation time was 

then decreased for other plates to prevent overlapping of clearance zones. When 

rescreening, incubating all the plates the same amount of time would allow clearance 

zones between fusants to be compared more accurately. Since an internal control, where 

parents were streaked onto the same plate as the fusants, was used, the difference in 

incubation time was not considered to affect the comparison between improvements of 

fusants and parents. 

Agar diffusion data presents a good method of screening but does not give any 

indication of the utilization of degradation products. Therefore, fusants, FA1-14, FA2-4, 

FA9-13, FA9-14, and their parents, PSY159 and WBF90B, were used in an analysis to 

compare the release of sugars from the degradation of 1% (w/v) birchwood xylan. 

PSY159 and WBF90B and their and fusants were used because these fusants had better 

cellulase activity than fusants from protoplast fusion between PSY159 and PSP55 or 

PSY159 and WCB26. The neutral sugars released from the degradation of xylan were 

analyzed by gas chromatography. In order to do so, the neutral sugars were derivatized 

into alditol acetates (Blakeney et al., 1983).  

The samples were derivatized and set up to be analyzed by the instrument every 

48 hours. Due to several technical problems with the gas chromatographer, no data was 
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collected between time points 192 hours and 432 hours as the samples prematurely 

evaporated. 

Xylan was washed several times before incorporation into the media, but free 

xylose remained in the liquid media. Therefore, different xylan sources other than 

birchwood xylan should be investigated. If birchwood xylan is used, xylan must be 

washed several more times to remove the free xylose and other free sugars that are 

present. An anthrone assay could be used to monitor the amount of free xylose released at 

each wash step. The uninoculated xylan-containing medium should be derivatized as a 

control to determine the amount of sugars present. The large amount of xylose and 

glucose present in the birchwood xylan, even after washing, skewed the results because 

in the uninoculated flasks a large amount of xylose was present (Figure V.4.2-7.). The 

increase in the concentration of free monosaccharides in the inoculated flasks would not 

be due to degradation of the xylan if monosaccharide continually leeches from the xylan.  

Each of the six strains was inoculated into duplicate flasks; samples were taken 

from each flask and aliquoted into three replicate tubes for derivatization. Therefore, for 

each sample there were six replicates. The uninoculated control flasks showed large 

variation between time points due to sugars leaching from the xylan over the course of 

the experiment. The use of more than two biological replicates and thoroughly washed 

xylan substrate would have given more representative data.  

In order to better quantify the level of strain improvement achieved in select 

fusants, growth of each parent and fusant should have been followed during the time 

course experiment. In doing so, the growth of the microorganism could have been related 

to the amount of degradation observed. Since these microorganisms grow on the substrate 
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by producing mycelia which penetrate the substrate and release degradative enzymes, a 

sample could be taken from the inoculated cultures and the cells pelleted from the 

supernatant by centrifugation. The microbial biomass could then be determined by 

subtracting the dry weight of the inoculated pellet from the dry weight of the pellet of the 

uninoculated control. The difference in the dry weight of the pellets would indicate the 

amount of biomass in the inoculated cultures. A growth curve of each microorganism 

could then be compared to the amount of xylose and other sugars released over time. 

Xylanase activity assays (Chen et al., 1997) could also have been performed for each 

time point so that the amount of xylose in the culture could be correlated to the growth of 

each microorganism to demonstrate xylanases were responsible for the monosaccharides 

present in the cultures.  

To further confirm degradation of xylan by extracellular xylanases produced by 

the microorganisms, the culture supernatant could be examined for the presence of 

xylanases released by each strain through zymogram analysis (Nakamura et al., 1993) 

using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). This 

would permit further characterization of the improved strains compared to the parental 

strains.  

The culture flasks used for the analysis of xylan degradation by gas 

chromatography did not contain exactly 1% birchwood xylan because birchwood xylan 

was insoluble and when the medium was dispensed into each flask, there was a 

possibility that each flask did not contain an equal amount of birchwood xylan. 

Therefore, due to the variability of xylan present in each culture flask, the amount of free 

sugars released during substrate degradation could not be accurately determined. To 
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alleviate this problem, washed xylan could be dried to constant weight and a known 

amount could be added into each flask prior to the addition of the liquid medium. 

The amount of sugars observed for each strain was different at different time 

points. Xylanases were produced by the microorganisms to degrade the xylan into xylose 

which was observed when the amount of xylose in the inoculated cultures was greater 

than the amount of xylose in the uninoculated controls. There was no fusant culture with 

a very large amount of xylose compared to the parents. Determination of the timing and 

quantity of xylose released in the culture would allow for the extraction of xylose for 

application of this sugar for fermentation into bioethanol. Therefore, utilization of xylan 

degradation products by a microorganism will impact its use in industrial processes. In 

conclusion, the xylan degradation profile was different for all strains analyzed. 

VI.3. Limitation to congo red assays to examine cellulose degradation 

In order to assess cellulose degradation, congo red dye was incorporated into 

cellulose agar. Congo red is a dye that binds to ß-1-4-glycosidic linkages of cellulose 

(Teather & Wood, 1982). A clearance zone is formed which is visible around the growth 

of the isolate due to the release of the congo red dye as cellulose or CMC is degraded. 

The possibility that the dye was decolourized by the microorganisms assessed in this 

assay can be ruled out because the clearance zones were opaque to translucent, indicating 

the ß-1-4-glycosidic linkages were broken and congo red could not bind to it.  

Instead of incorporating congo red into the media, the plates could be stained with 

congo red, destained with NaCl and stained with HCl using Teather and Wood’s (1982) 

method to view clearance zones. Staining with HCl gives a better contrast of zones 

because congo red is a pH dependent dye and turns blue under acidic conditions (Mera & 
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Davies, 1984). If the clearance zone is present after staining with HCl, then the zone was 

not created due to dye decolourization or a pH effect.  

VI.4. 16S rRNA gene sequence analysis of FA1-14 

In attempts to generate strains improved for degradation ability, protoplast fusion 

was performed. FA1-14 was created from the protoplast fusion between a strain 

cultivated from potting soil, PSY159 and a strain cultivated from UOIT forest bulk soil, 

WBF90B. PCR amplification of the 16S rRNA gene of fusant FA1-14 was performed 

and sequenced to compare previously identified 16S rRNA genes for taxonomic 

identification of FA1-14. FA1-14 was chosen to be sequenced because cellulase and 

xylanase activity was improved in comparison to both parental strains. Phylogenetic 

analysis of FA1-14 placed it in its own clade (Figure V.5.1.) indicating it is a novel 

isolate compared to previously described strains. The parental strains were not sequenced 

and FA1-14, may not be novel in comparison its parents. In fact, RFLP analysis showed 

that FA1-14 has the same gene banding pattern as PSY159 using the 16S rRNA gene.  

VI.5. Comparison of 16S rRNA gene sequences between parental strains and 
fusants through restriction fragment length polymorphism (RFLP) 

Since the 16S rRNA gene is often used as a molecular clock  (Woese, 1987), it 

was of interest to determine if protoplast fusion affected this gene because this has not 

been studied to our knowledge and gene shuffling involving conserved genes is rare 

(Conant & Wagner, 2005). The 16S rRNA genes of select fusants were compared to the 

16S rRNA gene of their parents through restriction fragment length polymorphism 

(RFLP). 

The 16S rRNA genes cloned into pGEM T-Easy vector were digested with HaeIII 

and electrophoresed on an agarose gel. The banding pattern of fusants from the fusion 
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between PSY159 and WBF90B and PSY159 and WCB26 seemed to be similar to 

PSY159 (Figure V.6.1.). Fusant FB11-14 had the same banding pattern as both parents. 

Analysis was difficult because HaeIII cuts pGEM T-Easy multiple times resulting in 

many bands present on the gel.  

In an attempt to increase the resolution of RFLP analysis, polyacrylamide gels 

were used to resolve the fragments generated by HhaI digested PCR-amplified 16S rRNA 

genes. Similar results were obtained between the agarose gel and the polyacrylamide 

gels: fusants from the two protoplast fusions between parents, PSY159 and WBF90B, 

and PSY159 and WCB26 had similar banding pattern as PSY159.  

FB11-14, a fusant from the fusion of PSY159 and PSP55, had the same banding 

pattern as both parents based on the agarose gel analysis (Figure V.6.1.). While the RFLP 

pattern of parental strains PSY159 and PSP55 were identical by both gel types, the RFLP 

pattern of fusant, FB11-14 differed when examined by polyacrylamide gel 

electrophoresis. Analysis of the 5% polyacrylamide gel showed FB11-14 was missing a 

100 bp band that was observed in the banding pattern of both parents (Figure V.6.1.F.). 

However, the addition of the band sizes for FB11-14 did not equal to 1.5 kb, the size of 

the PCR amplified 16S rRNA gene, and 100 bp was missing from the 1.5 kb (Figure 

V.6.1.F.). Similarly, a small band was absent for FB11-14 on 8% (Figure V.6.1.B.) and 

4% (Figure V.6.1.D.) polyacrylamide gels whereas the small band was present for both 

parents. Therefore, FB11-14 had a different banding pattern than both parents meaning 

the 16S rRNA gene sequence of the fusant was different than both parents. In conclusion, 

genome shuffling can occur in conserved 16S rRNA genes.  
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The restriction enzymes HaeIII and HhaI are tetracutters that recognize GC rich 

recognition sites (Fermentas, 2010). Actinomycetes are Gram-positive bacteria with a 

high GC content. HaeIII and HhaI have recognition sites in the 16S rRNA gene of Gram-

positive bacteria (Pukall et al., 1998). HaeIII has been used to differentiate actinomycetes 

such as Streptomyces (Steingrube et al., 1997). The use of restriction enzymes that 

recognize GC rich DNA sequences allowed for the analysis of different fragment patterns 

between parents and fusants by RFLP.  

The smaller bands on polyacrylamide gels were not clearly observed because the 

DNA concentration loaded onto the gel was higher for the parents than the DNA 

concentration of the fusant, FB11-14. Further analysis of fusant, FB11-14 and other 

fusants compared to parents with an equal concentration loaded on polyacrylamide gels 

will be necessary to verify genome shuffling in 16S rRNA genes.  

VI.6. Extraction of genomic DNA from strain WCB26 

One of the problems experienced during this project was in extraction of the 

genomic DNA using the method of Aljanabi and Martinez (1997) for environmental 

isolate WCB26, a parent used in protoplast fusion C along with PSY159. Several 

methods including colony PCR (Ishikawa et al., 2000), DNAzol extraction (Klein et al., 

1997), and a method to extract DNA from soils (Zhou et al., 1996) were used to extract 

the genomic DNA from this isolate. Colony PCR and DNAzol extraction failed. 

Ultimately, using the SDS-based DNA extraction method of Zhou et al. (1996), the 

WCB26 culture lysed and genomic DNA was successfully extracted for 16S rRNA gene 

amplification.  
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VI.7. Conclusion 

Soil isolates with cellulase and xylanase activity were identified and subjected to 

strain improvement through protoplast fusion which resulted in strains with better 

cellulase and xylanase activity than the cultivated soil isolates.  

Genome shuffling was shown to occur in the 16S rRNA gene of one of the fusants 

compared to parental strains through RFLP analysis. Further examination of the 16S 

rRNA gene of other fusants will verify if genome shuffling occurs in conserved 16S 

rRNA gene and implications in the taxonomic identification of microorganisms.  

VI.8. Future directions 

Restriction fragment length polymorphism analysis of a fusant generated during 

strain improvement by protoplast fusion indicated that 16S rRNA genes may not be 

protected from genome shuffling. It will be of interest to pursue this by generating 

multiple sets of fusants with different parental strains to replicate the phenomenon.  

The cellulase and xylanase enzymes produced by the isolates described in this 

thesis could be purified and characterized. Protein characterization could include the 

sequencing of the purified protein by mass spectrometry. The gene corresponding to the 

protein of interest could then be cloned using a reverse genetics approach and 

characterized. The biochemical and physical properties of each purified enzyme such as 

optimum temperature, pH stability and enzyme kinetics, Km , Vmax, and kcat by measuring 

the activity of purified enzyme could be determined (Chen et al., 1997; Lee et al., 2006). 

The applicability of degradative enzymes produced by the environmental isolates to 

industrial applications such as bioethanol production could then be determined with the 

knowledge of the parameters for the best optimal activity of the enzymes.  
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Part 2: Mining the soil metagenome for cellulases 
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VII. ABSTRACT 

A metagenomic library provides the opportunity to exploit microorganisms for 

their extensive range of metabolites without culturing them. This method can be used to 

discover novel biocatalysts from previously unstudied microorganisms.  

In this study, enrichment cultures with potting soil, UOIT forest rhizosphere and 

UOIT forest bulk soil inoculated in 1% cellulose and 1% CMC media were grown for 10 

months. Cells from potting soil enriched with 1% cellulose were used to create a 

functional metagenomic library which was used to screen for cellulase genes on 

carboxymethyl cellulose containing medium. One cellulase producing clone was 

identified out of 1,920 clones screened.   
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VIII. INTRODUCTION 

Metagenomics is a technique that can be used to discover novel cellulases. 

Metagenomics, also known as environmental genomics or community genomics, is the 

study of the total complement of DNA from an environmental source (Handelsman et al., 

1998). 

Presently, only a small portion of the estimated diversity in the microbial world 

has been uncovered. Many microorganisms are unculturable as pure cultures under 

standard laboratory conditions (Handelsman et al., 1998). It has been estimated that 99% 

of microorganisms have not been discovered due to these limitations (Amann et al., 

1995). In one gram of soil, it has been estimated that 3 000 to 10 000 unique genomes are 

present and this number is likely to be an underestimation because rare species were not 

taken into account (Ovreas & Torsvik, 1998; Torsvik et al., 1990). Metagenomics allows 

for the study of the genomes of these not-yet-cultured microorganisms. 

Microorganisms produce a variety of valuable primary and secondary metabolites 

with a wide range of activity which can be exploited to improve biotechnological 

processes and production. Mining the metagenomes of such microorganisms allows for 

the discovery of metabolites such as therapeutic compounds (MacNeil et al., 2001; 

Courtois et al., 2003; Seow et al., 1997), enzymes (Ferrer et al., 2005; Entcheva et al., 

2001; Elend et al., 2006; Knietsch et al., 2003; Rondon et al., 2000; Voget et al., 2003) 

but more importantly to this thesis study, cellulases (Healy et al., 1995; Voget et al., 

2006; Pang et al., 2009) and xylanases (Brennan et al., 2004; Lee et al., 2006; Hu et al., 

2008). It is likely that novel catalytic activities of cellulases and xylanases can be 

identified from uncultured microorganisms through metagenomics that suit different 
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industrial applications and may provide an efficient solution to the economical barrier for 

cellulose utilization.  

Metagenomics has already aided in the discovery of lignocellulolytic enzymes 

from various sources. For example, an enzyme with laccase-like activity was discovered, 

through functional-screening, in a metagenomic library of DNA obtained from bovine 

rumen microflora (Beloqui et al., 2006). The novel laccase was characterized and 

exhibited higher efficiency than previously studied laccases, displaying its potential in 

biotechnological applications. Functional screening allowed for the discovery of a novel 

xylanase gene which was then cloned, expressed and characterized biochemically from a 

metagenomic library created from soil (Hu et al., 2008). The product, XynH, exhibited 

different properties than other described xylanases, making it a better candidate for 

industrial application such as in bioethanol production (Hu et al., 2008). Moreover, 

cellulases and xylanases were shown to be present through metagenomic sequence 

analysis of the hindgut of termites by comparing catalytic domains homologous to 

glycoside-hydrolases (Warnecke et al., 2007). A cold active xylanase was cloned and 

characterized from manure wastewater metagenomic library (Lee et al., 2006) which has 

beneficial uses for lower temperature applications compared to enzymes that have 

maximum activity at higher temperatures. Xylanases with different substrate specificities 

which were phylogenetically distant compared to previously described xylanases, were 

discovered from a metagenomic library created from insect intestinal tracts of termites 

and moths (Brennan et al., 2004). Novel enzymes that evolved independently could be 

useful in combination with already described xylanases to optimize the degradation of 

xylan. Potential novel cellulases and xylanases with greater catalytic activity in different 
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reaction conditions than previously described enzymes can be discovered through the 

power of function-driven metagenomics. The cost-efficient enzymes can be used for 

feedstock processing in the production of bioethanol.  

VIII.1. Mining the metagenome  

Two approaches are used to analyze a metagenomic library: a sequence-driven 

approach where the library is screened for specific sequences or motifs of interest; or a 

function-driven approach, where expressed traits of interest are detected by screening. 

Using a function-driven approach, clones expressing a fully functional gene product can 

be identified for a number of specific functions (Seow et al., 1997; Courtois et al., 2003). 

Another advantage of function-driven approach is that it does not require prior sequence 

knowledge and novel genes not previously described are detected (Brennan et al., 2004). 

Drawbacks of the function-driven method include the dependence on expression of the 

genes in a foreign host and proper folding to yield the production of a functional gene 

product (Gabor et al., 2004). A function-driven approach allowed for the discovery of a 

putative novel cellulase in this thesis work. 

 Enrichment strategies have been used by others to successfully construct 

metagenomic libraries. Libraries constructed from cellulose-enriched samples and 

screened for cellulase activity had a greater number of positive clones, compared to 

studies without an enrichment step (Feng et al., 2007; Grant et al., 2004; Kim et al., 2008; 

Pang et al., 2009; Rees et al., 2003) (Table VIII.1.1.). Furthermore, a major limitation of 

metagenomics is the recovery of high quality or high molecular weight DNA (Zhou et al., 

1996). Enrichment cultures can be used in the lab to selectively enhance the isolation of 

genomic DNA with desired activities within environmental soil samples (Borneman, 

1999). Therefore, enrichment of soil samples with cellulose before construction of the 
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metagenomic library was used to decrease the number of clones that would need to be 

screened before a cellulase-positive clone was detected, in this thesis work (Figure 

VIII.2.1.).  
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Table VIII.1.1. Number of positive clones compared to number of clones screened for metagenomic libraries constructed with an 
enrichment step compared to metagenomic libraries constructed without an enrichment step  
No enrichment step vs 
enrichment step  

Type of metagenomic library  # positive clones/# 
clones screened  

Gene of 
interest  

Reference  

No enrichment  Soil  1/70 000  cellulase  Kim et al., 2008  

Compost soil  1/25 000  cellulase  Pang et al., 2009  

Lake Nakuru water  1/60 000  cellulase  Rees et al., 2003  

Soil  1/ 105 000  oxidoreductase  Knietsch et al., 
2003b 

With an enrichment step  Soil with glycerol and 1,2-propanediol for polyol-consuming 
microorganisms  

1/60 000  oxidoreductase  Knietsch et al., 
2003a  

Lake Nakuru water and CMC  1/15 000  cellulase  Rees et al., 2003  

Soil enriched for agarolytic activity  1/213  cellulase Voget et al., 
2006  

Thermophilic anaerobic digesters fed with dried Napiergrass and 
dried Bermudagrass  

1/1250  cellulase  Healy et al., 
1995  

Rabbit ceca fed with only grass  1/8125  cellulase  Feng et al., 2007  

Wadi el Natrun lake sediments enriched with cellulose  1/8750  cellulase  Grant et al., 
2004  

Wadi el Natrun soda soil enriched with cellulose  1/3083  cellulase  Grant et al., 
2004  
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Figure VIII.2.1. Overview of mining the soil metagenome for cellulases 
  

Enrich soil with 1% cellulose or 1% CMC 

Test for cellulase activity 

Isolate genomic DNA from enrichment cultures 

Purify metagenomic DNA 

Create metagenomic library  

Screen clones on Luria Bertani chloramphenicol 
carboxymethyl cellulose agar 
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IX. MATERIALS AND METHODS  

IX.1. Materials 

All materials, chemicals and antibiotics were purchased from Bioshop, 

Burlington, ON or Fisher Scientific, Fair Lawn, NJ unless otherwise stated. Agarase was 

purchased from Fermentas, Burlington, ON. All Purpose Potting Soil was purchased from 

Canadian Tire, in 2007. The CopyControl™ Fosmid Library Production Kit was 

purchased from EPICENTRE Biotechnologies, Madison, WI. 

IX.2.  Bacterial strain 

 EPI300™-T1R Phage T1-resistant Escherichia coli plating strain (F- mcrA ∆(mrr-

hsdRMS-mcrBC) φ80dlacZ∆M15 ∆lacX74 recA1 endA1 araD139 D(ara, leu)7697 

galU galK λ- rpsL nupG tonA) (Wild et al., 2002) was used for this study. 

IX.2.1. Maintenance of Escherichia coli  

EPI300™-T1R Phage T1-resistant E. coli plating strain was provided as frozen 

glycerol stocks and maintained as such. E. coli containing fosmids were maintained in 

Luria Bertani (LB)-Hogness (1X) (For 10X Hogness: 40% (w/v) glycerol, 0.036 M 

K2HPO4, 0.013 M KH2PO4, 0.02 M tri-sodium citrate, 0.01 M MgSO4 in deionized 

water)-Chloramphenicol (12.5 µg/mL) at -20°C and the archive of clones was stored at  

-80°C.   

IX.3. Soil enrichments  

Enrichment cultures containing soil and 1% (w/v) cellulose or 1% (w/v) 

caboxymethyl cellulose (CMC) were used to select for microorganisms that produced 

cellulases. Enrichment cultures of UOIT forest rhizosphere soil, UOIT forest bulk soil 

and potting soil contained one gram of soil and either insoluble 1% (w/v) cellulose or 1% 

(w/v) CMC, a soluble form of cellulose in mineral salts medium (37.33 mM Na2HPO4, 
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14.55 mM KH2PO4, 0.8 mM MgSO4, 3.42 mM NaCl, 0.45 mM CaCl2). The growth 

conditions of these enrichments were 30°C at 150 rpm on a C25 Incubated Floor Model 

Shaker (New Brunswick Scientific). The enrichment cultures were grown for 10 months 

at room temperature, either stationary or aerated at 150 rpm at 30°C. 

IX.4. Cellulase and xylanase activity screens of soil enrichments  

Activity screens of supernatants from soil enrichments were performed to 

determine if there was any cellulase or xylanase activity present. Activity screens were 

performed on 0.05% (w/v) cellulose (0.05% (w/v) of cellulose, 0.57 mM K2HPO4, 1.35 

mM KCl, 0.20 mM MgSO4, 0.005% (w/v) yeast extract, 1.5 % (w/v) agar) or 0.05% 

(w/v) CMC agar (0.05% (w/v) of carboxymethyl cellulose, 0.57 mM K2HPO4, 1.35 mM 

KCl, 0.20 mM MgSO4, 0.005% (w/v) yeast extract, 1.5% (w/v) agar) and 5 mL of 1% 

(w/v) congo red (CR) dye and 1% birchwood xylan agar plates (5.7 mM K2HPO4, 17.1 

mM NaCl, 15.1 mM (NH4)2SO4, 1% (w/v) xylan from birchwood, 20.0 mM CaCO3, 1.8% 

(w/v) agar) (Yang et al., 1995). The concentration of 0.05% cellulose allowed sufficient 

degradation to be seen in a shorter period of time than 0.5% of cellulose. The 

concentration of xylan used was based on published values (Yang et al., 1995). A leather 

punch was used to create holes in the agar and the resulting agar plug was aseptically 

removed. The supernatant from the enrichment was aseptically removed and 20 µL of 

supernatant was dispensed in the holes. 20 µL of water was added to one agar hole as a 

control. Plates were incubated at 30°C and photographed using a FluorChem SP (Alpha 

Innotech) gel documentation system after 72 hours. For the xylan degradation assay, the 

plates were flooded with iodine after 27-40 hours. Activity was determined by observing 

clearance zones around the holes in the agar.  
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IX.5. Separation of culture supernatant from cells 

Cells were harvested from enrichments for later metagenomic DNA extraction as 

follows. Enrichment cultures were quantitatively transferred into 50 mL screw-capped 

tubes. The tubes were centrifuged at 1801 g for 15 minutes at 4°C to pellet the cells. 

Supernatant was decanted into 50 mL screw-capped tubes. The cell pellets were stored at 

4°C until cells were used for metagenomic DNA extraction. 

IX.6. Metagenomic DNA Extraction 

Metagenomic DNA extraction was performed as described in Zhou et al. (1996). 

Metagenomic DNA was extracted from cells harvested from enrichments. 5 g of enriched 

soil samples were mixed with 13.5 mL of DNA extraction buffer (100 mM Tris-HCl [pH 

8.0], 100 mM sodium EDTA [pH 8.0], 100 mM sodium phosphate [pH 8.0], 1.5 M NaCl, 

1% (w/v) CTAB) and 100 μL of proteinase K (10 mg/mL) and horizontally shaken at 225 

rpm for 30 minutes at 37°C. Then 1.5 mL of 20% SDS was added to the sample and 

incubated at 65°C in a water bath for 2 hours with gentle end-over-end inversions every 

15 to 20 minutes. After incubation, the samples were centrifuged at 6000 g for 10 

minutes at room temperature. The supernatant was transferred to 50 mL Oak Ridge tubes. 

Samples were extracted twice more with 4.5 mL of the extraction buffer and 0.5 mL of 

20% SDS, vortexed for 10 seconds, incubated at 65°C for 10 minutes and centrifuged as 

before. All the supernatants were combined and an equal volume of chloroform:isoamyl 

alcohol (24:1, v/v) was added. The sample was centrifuged at 6000 g for 10 minutes and 

the aqueous phase was transferred to a new Oak Ridge tube. DNA was precipitated by 

adding 0.6 volume of room temperature 100% isopropanol and incubated at room 

temperature for 1 hour. Next, centrifugation at 16 000 g for 20 minutes at room 

temperature was done to pellet the DNA. The DNA was washed with cold 70% ethanol, 
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air-dried and resuspended in sterile distilled water for a final volume of 2 mL. DNA was 

stored at 4°C for a month. DNA was electrophoresed on a 0.85% (w/v) Tris-acetate-

EDTA (TAE) agarose gel to confirm quality and approximate quantity compared to 

mlolecular weight marker, λHindIII (Bioshop).  

IX.7. Purification of Metagenomic DNA from humic acids 

The extracted metagenomic DNA was brown in colour indicating the presence of 

humic acids. Humic acids interfere with cloning (Miller et al., 1999; Tebbe & Vahjen, 

1993). Therefore, removal of humic acids from the metagenomic DNA before cloning 

was required. Several methods were used to purify metagenomic DNA from humic acids: 

trough method (Harnpicharnchai et al., 2007); agarase (Fermentas) digestion of low 

melting point agarose; and Cetyltrimethylammonium Bromide (CTAB) (Zhou et al., 

1996). 

IX.7.1. Trough method 

A trough method (Harnpicharnchai et al., 2007) was used to separate genomic 

DNA from humic acids which co-purified with metagenomic DNA. A 0.85% (w/v) TAE 

agarose gel was prepared and the gel was loaded to separate genomic DNA from humic 

acids. Humic acids electrophorese through the gel faster than high molecular weight 

genomic DNA (Harnpicharnchai et al., 2007). The gel was electrophoresed for 30 

minutes at 100 V and stained with ethidium bromide (0.5 µg/mL) for 10 minutes. Since 

UV light nicks (Witkin, 1976) the DNA, a Darkreader Transilluminator (Clare Chemical 

Research) was used to visualize DNA on the gel. A small trough was cut below the 

metagenomic DNA band and trough buffer (15% (w/v) Polyethylene glycol (PEG) 8000, 

50% (v/v) 2X TAE was added to the trough. TAE buffer (40 mM Tris acetate and 1 mM 

Ethylenediaminetetra-acetic acid (EDTA)) was removed so the volume of the TAE buffer 
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only came up to half of the gel on both sides. The gel was electrophoresed until the 

metagenomic DNA ran into the trough. The trough buffer containing the DNA was then 

transferred to a screw-capped tube. The gel was viewed again on the Darkreader 

Transilluminator (Clare Chemical Research) to confirm all the metagenomic DNA had 

been collected. An equal volume of chloroform:isoamyl alcohol (24:1, v/v) was added to 

the screw-capped the containing the DNA and trough buffer. This was centrifuged at 17 

000 g for 10 minutes. The aqueous phase was transferred to a new microfuge tube and 

1/10 volume of 3 M sodium acetate and 0.6 volume of 100% room temperature 

isopropanol was added. This was allowed to stand at room temperature for 1 hour to 

precipitate the DNA. The DNA was pelleted by centrifugation at 3716 g for 20 minutes at 

room temperature and washed with cold 70% ethanol. DNA was resuspended with TE 

buffer pH 8.0 (10 mM Tris-Cl, pH 7.5, 1 mM EDTA). Genomic DNA was stored at 4°C. 

IX.7.2. Purification of DNA from Low Melting Point agarose  

Since the trough method gave a low yield of DNA, purification of DNA from 

humic acids was performed by extracting the DNA from low melting point agarose. A 

thin 1% (w/v) low melting point agarose gel was prepared. The gel was loaded and 

electrophoresed at 80V-90V for 30-45 minutes. The agarose gel was stained with 0.5 

µg/mL ethidium bromide and viewed on the Darkreader Transilluminator (Clare 

Chemical Research) to prevent nicking of DNA. Metagenomic DNA was cut from the gel 

and 200 mg pieces were transferred into microfuge tubes. The tubes were incubated for 

10 minutes at 70°C to ensure all of the gel melted. The tubes were then transferred to 

42°C to equilibrate for 5 minutes before adding 1 U of agarase per 100 mg of agarose.  

This was gently mixed and incubated for 30-60 minutes at 42°C. The enzyme was then 

inactivated at 70°C for 10 minutes then the tubes were chilled on ice for 5 minutes. The 
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undigested oligosaccharides were pelleted by centrifugation at room temperature at 17 

000 g for 10 minutes. The supernatant was transferred using cut tips to prevent shearing 

of DNA. DNA was precipitated by the addition of 1/10 volume of 3 M sodium acetate 

and 1 volume of room temperature isopropanol. This was mixed gently and incubated at  

-20°C overnight. The tubes were centrifuged at 17 000 g for 20 minutes at room 

temperature and the supernatants were decanted. The pellet was washed twice with cold 

70% ethanol and air dried for 10-15 minutes. DNA was resuspended in TE buffer pH 8.0.  

Purified metagenomic DNA was electrophoresed on a 0.85% TAE agarose gel to check 

for quality, stained with 0.5 µg/mL ethidium bromide for 10 minutes, visualized on a UV 

transilluminator and photographed using FluorChem SP (Alpha Innotech) gel 

documentation system.  

IX.7.3. Removal of humic acids with Cetyltrimethylammonium Bromide  

Removal of humic acids using Cetyltrimethylammonium Bromide (CTAB) was 

used (Zhou et al., 1996). An equal volume of phenol:chloroform:isoamyl alcohol pH 8.0 

(25:24:1, v/v) was added to potting soil metagenomic DNA and mixed by inversion. This 

was centrifuged at 17 000 g for 10 minutes at room temperature and the aqueous phase 

was transferred to a fresh microfuge tube. An equal volume of 

phenol:chloroform:isoamyl alcohol (25:24:1, v/v) pH 8 was added, mixed and 

centrifuged as previously described. The aqueous phase was transferred to a fresh 

microfuge tube and CTAB was added to a final concentration of 2.5% and mixed by 

inversion. This was centrifuged 17 000 g for 10 minutes at room temperature. Three 

layers were obtained, the pellet, a loose brown layer and the supernatant. The supernatant 

from previous centrifugation was transferred and an equal volume of chloroform:isoamyl 

alcohol (24:1, v/v) was added. This was centrifuged at 17 000 g for 5 minutes at room 
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temperature and 1/10 volume of 3M sodium acetate and an equal volume of 100% 

isopropanol at room temperature was added. To the loose brown layer, TE buffer pH 8.0 

was added and transferred to a new tube. Then, this loose brown layer was processed the 

same way as the supernatant. The DNA was precipitated by incubation on ice for a few 

minutes then transferred to -80°C for 10-15 minutes. The DNA was pelleted by 

centrifugation at 17 000 g for 20 minutes and washed with cold 70% ethanol and 

resuspended in TE buffer.  

Various CTAB concentrations were used to determine the optimal concentration 

necessary to purify DNA away from the humic acids. 500 µL aliquots of metagenomic 

DNA extracted from potting soil was transferred to a new microfuge tube. CTAB at final 

concentrations of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% were added. This was then mixed by 

inversion 10 times and centrifuged at 17 000 g for 10 minutes at room temperature. The 

supernatant was transferred to a new tube and an equal volume of chloroform:isoamyl 

alcohol (24:1, v/v) was added and mixed. This was centrifuged for 5 minutes at room 

temperature and 1/10 volume of 3M sodium acetate and an equal volume of 100% 

isopropanol at room temperature was added. This was incubated overnight at -20°C. The 

DNA was pelleted by centrifugation at 17 000 g for 20 minutes and washed with 70% 

ethanol and resuspended in TE buffer.  

IX.8. Construction of metagenomic library using CopyControl™ HTP Fosmid 
Library Production Kit 

Purified DNA was used to create a fosmid library using the CopyControl™ HTP 

Fosmid Library Production Kit (EPICENTRE) as per the manufacturer’s protocol. 

Purified metagenomic DNA was triturated 45 times to shear the DNA. The sheared DNA 

was end repaired to generate blunt-ended, 5'-phosphorylated DNA. The end repaired 
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DNA was size selected by electrophoresis on a 1% low melting point TAE agarose gel 

overnight at 30-35V (constant voltage) at room temperature with 100 ng of Fosmid 

Control DNA loaded as the size marker. The gel was stained with 0.5 µg/mL ethidium 

bromide and viewed on a Darkreader Transilluminator (Clare Chemical Research). The 

DNA that migrated with the 36 kb Fosmid Control DNA marker was excised. A known 

quantity of the gel slice was placed in microfuge tubes. One milligram of solidified 

agarose was assumed to equal 1 µL of molten agarose after melting. GELase 50X Buffer 

was warmed to 45°C and low melting point (LMP) agarose was melted by incubating the 

tube at 70°C for 10-15 minutes then transferring the tube to 45°C. Warmed GELase 50X 

Buffer was added to 1X final concentration and for 100 µL of melted agarose, 1 U of 

GELase Enzyme Preparation was added. The solution was gently mixed and incubated 

for 1 hour to overnight at 45°C. The enzyme was inactivated at 70°C for 10 minutes. The 

tubes were chilled for 5 minutes and centrifuged at 17 000 g for 20 minutes to pellet 

insoluble oligosaccharides. The supernatant was transferred to a new microfuge tube and 

the DNA was precipitated by the addition of 1/10 volume of 3 M sodium acetate (pH 7.0) 

and 0.6 volume of 100% isopropanol at room temperature and incubated at -20°C for one 

hour. The precipitated DNA was pelleted by centrifugation for 20 minutes at 17 000 g. 

The supernatant was removed and discarded. The DNA pellet was washed twice with ice 

cold 70% ethanol. The DNA pellet was air dried for 5-10 minutes with the tube inverted. 

The DNA pellet was resupended in TE buffer pH 8.0. The DNA concentration was 

quantified by electrophoresis of an aliquot of DNA with known concentrations (50 

ng/µL, 25 ng/µL, 12.5 ng/µL, 10 ng/µL, 5 ng/µL) of diluted Fosmid Control DNA on a 

0.85% (w/v) agarose gel for 20 minutes at 100V.  
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The following components were combined for the ligation of 40 kb metagenomic 

DNA with the vector in 10 µL total reaction volume: 1X Fast-Link Ligation Buffer, 1 

mM ATP, 0.5 µg/µL CopyControl pCC2FOS Vector, 0.25 µg of 40 kb concentrated 

insert DNA, 2U Fast-Link DNA Ligase. The ligation reaction was incubated at room 

temperature for 2 hours and the reaction was transferred to 70°C for 10 minutes to 

inactivate the Fast-Link DNA Ligase.  

The titer of packaged phage particles was determined with the equation:  

(# of colonies) (dilution factor) (1000 µL/mL)/(volume of phage plated [µL] 

The appropriate dilution (100) that gave 20-200 colonies was used to infect more cells. 

Infected cells were plated onto LB amended with 12.5 µg/mL chloramphenicol and 

grown overnight at 37°C. Clones were inoculated into 96 well microtiter plates 

containing 200 µL LB supplemented with 1X Hogness (For 10X Hogness: 40% (v/v) 

glycerol, 0.036 M K2HPO4, 0.013 M KH2PO4, 0.02 M tri-sodium citrate, 0.01 M MgSO4 

in deionized water) and 12.5 µg/mL of chloramphenicol and were grown overnight at 

37°C at 250 rpm. A replicate set of plates was inoculated to serve as an archive. The 

working set of plates was stored at -20°C while the archive set of plates was stored at 

-80°C. 

IX.9. Screening of the soil metagenomic library for cellulase activity  

The soil metagenomic library was screened for cellulase activity on LB 

supplemented with 0.1% CMC and 12.5 µg/mL of chloramphenicol at 26-37°C for 2-4 

days. Plates were then stained with 0.1% congo red for 15-20 minutes and destained with 

1 M NaCl for 15 minutes. Photos were taken of the plates using a digital camera. The 

plates were then flooded with 1 N HCl for 5 minutes to increase contrast of any clearance 
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zones. Congo Red is a pH dependent dye and is blue under acidic conditions (Mera & 

Davies, 1984).  

IX.10. Fosmid purification  

To confirm that the library consisted of appropriate-sized inserts, 16 clones were 

randomly chosen. Clones were inoculated into 5 mL of LB Hogness (1X) 12.5 µg/mL 

chloramphenicol and incubated overnight at 37°C at 250 rpm. A glycerol stock of each 

clone was created with 800 µL of culture and 200 µL of LB Hogness (1X) 12.5 µg/mL 

chloramphenicol. Fosmids were purifed by the alkaline lysis method (Sambrook & 

Russell, 2001). The fosmid DNA was resuspended in 50 µL of TE pH 8.0 containing 20 

µg/mL DNAse-free pancreatic RNAse. Fosmid DNA was stored at -20°C.  
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X. RESULTS  

X.1. Enrichment cultures using various soil types  

A functional soil metagenomic library was constructed from cellulose-enrichment 

cultures to screen for cellulases. Enrichment cultures containing potting soil, UOIT forest 

rhizosphere soil and UOIT forest bulk soil in 1% cellulose or 1% CMC liquid media were 

created. These enrichment cultures were inoculated for the selection of cellulase 

producing microorganisms. To increase the number of cells for extraction of DNA, 

subculturing of the enrichment cultures was performed.  

X.2. Cellulase and xylanase activity screens of soil enrichments  

Soil enrichments were initiated with the purpose of constructing a metagenomic 

library to discover cellulase genes and xylanase genes. Therefore, screening of cellulase 

and xylanase activity of enrichment cultures prior to library construction was performed. 

The enrichment cultures were screened for cellulase and xylanase activity present in the 

culture supernatant every few months for 10 months. Initially, activity screens of 

enrichment cultures supernatants were performed on 0.05% (w/v) CMC (Figure X.2.1.B.) 

and 1% (w/v) congo red (CR) dye. Then, assays with 0.05% (w/v) cellulose (Figure 

X.2.1.A.) and 1% (w/v) congo red (CR) dye, and 1% birchwood xylan agar plates (Figure 

X.2.1.C.) stained with iodine were used to screen for cellulase and xylanases as well. 

Cellulase and xylanase activities were observed in the enrichment cultures. 

Overall, potting soil enrichment supernatants showed greater xylanase activity 

than rhizosphere soil enrichment supernatants. Potting soil enrichment supernatants 

inoculated in cellulose containing medium had larger xylan clearance zones than when 

inoculated in CMC containing medium. On cellulose and CMC agar, CMC enriched 

rhizosphere forest soil supernatants had better cellulase and xylanase activity than potting 
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soil enrichment supernatants assayed on CMC. Supernatants of potting soil enrichment 

cultures containing cellulose had better cellulase and xylanase activity than supernatants 

of rhizosphere forest soil enriched with cellulose. Therefore, potting soil inoculated with 

cellulose and rhizosphere soil inoculated with CMC had better cellulase and xylanase 

activities than other enrichments. Furthermore, bulk soil supernatants had better cellulase 

activity on cellulose than on CMC. Supernatants from enrichment of bulk soil containing 

cellulose medium was better than rhizosphere soil cellulose enrichment supernatants. 

Better xylanase activity was observed in bulk soil supernatants than rhizosphere soil 

supernatants. Enrichment cultures without aeration had similar cellulase and xylanase 

activities as the aerated enrichment cultures. Therefore, enrichment cultures containing 

potting soil and cellulose or enrichment cultures of rhizosphere soil amended with CMC 

were optimal enrichments for cellulase activity selection. 

The results from the activity screens showed that potting soil enriched with 1% 

cellulose had greater cellulase activity compared to the other enrichments. Also, when 

screening actinomycete isolates purified from potting soil for cellulase activity, potting 

soil isolates were better at degrading cellulose compared to bulk or rhizosphere soil 

isolates. Therefore, cells from cellulose enrichments of potting soil were used for the 

construction of the metagenomic library.  
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Figure X.2.1. Cellulase activity exhibited by enrichment subcultures on A) C-CRA, B) CMC-CRA and C) xylan agar stained with 
iodine. 1. dH2O (control); 2-5: Supernatants from cultures incubated on shaker at 150 rpm at 30°C for 9 months; 2. 1% cellulose + 
potting soil; 3. 1% CMC + potting soil; 4. 1% cellulose + forest rhizosphere soil; 5. 1% CMC + forest rhizosphere soil; 6. 1% CMC + 
UOIT forest rhizosphere soil was incubated at room temperature and stationary on the bench. Clearance zones were measured after 72 
hours of incubating plates at 30°C, the size of the well was subtracted from the zone then the radii was calculated.  
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X.3. Screening of the metagenomic library  

The metagenomic library, designated PSC (Potting Soil Cellulose), was 

constructed from the enrichment cultures of potting soil and 1% cellulose. A total of 

1,920 clones were screened on CMC containing medium. Only one clone exhibited 

cellulase activity. This clone, PSC21-G6, produced a putative extracellular 

endoglucanase that could diffuse through the agar to create a faint but large clearance 

zone on CMC agar (Figure X.3.1.).  
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Figure X.3.1. PSC metagenomic library clones plated on LB agar supplemented with 
0.1% CMC and 12.5 µg/mL of chloramphenicol stained with congo red and destained 
with 1 M NaCl to examine cellulase production. A) clone B) a large clearance zone 
produced by clone PSC21-G6.  
 

A 

B 
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X.4. Purification of fosmids for analysis 

Sixteen clones were randomly selected for confirmation of insert. It was 

determined all 16 fosmid isolates contained inserts that were at least 40 kb (Figure 

X.4.1.). 
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Figure X.4.1. Purified, undigested fosmids from randomly selected clones 
electrophoresed on a 0.85% agarose gel. The fosmid vector, pCC2FOS, is 8181 bp. Lane 
1A and 2B) λHindIII; A) 2-10 purified fosmids and B) 2-8 purified fosmids.   

A 

B 

A 
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XI. DISCUSSION 

Enrichment cultures were created from potting soil, rhizosphere soil and bulk soil 

types in 1% carboxymethyl cellulose (CMC) and 1% cellulose liquid media and grown 

for 10 months. Initially, enrichment cultures were screened for cellulase activity on 

0.05% CMC agar. Later, 0.05% cellulose and 1% birchwood xylan agar were 

incorporated to screen for cellulase and xylanase activity, respectively. Cellulose and 

xylan were used to screen for cellulase and xylanase activity because these media types 

were used in the screening of actinomycete isolates cultured from soil.  

The potting soil cellulose enrichment culture was observed to have cellulase 

activity throughout the 10 months of enrichment. In order for the organisms to grow on 

the primary carbon source in the cellulose enrichment cultures, production of 

extracellular cellulases would be necessary for organisms to degrade cellulose into 

glucose. Therefore, a functional metagenomic library was constructed from DNA 

extracted from the enrichment culture of potting soil inoculated into 1% cellulose 

medium to increase the likelihood of obtaining cellulase positive clones. 

Xylanase activity was also observed in the cellulose enrichment cultures. This 

was probably because cellulase and xylanase activity have been shown to be linked in 

several microorganisms. For example, in the soil bacterium Thermobifida fusca, 

cellobiose not only induces cellulase expression but it induces xylanase production (Chen 

& Wilson, 2007). Moreover, cellulase has been shown to be able to degrade xylan to a 

certain extent because cellulose is associated with xylan in nature (Gilkes et al., 1988; 

Hall et al., 1988). In addition, cellulase and xylanase genes have been shown to be 

clustered in the fungal genus, Piromyces (Ali et al., 1995). Furthermore, two 

endoglucanases and three xylanases (endoxylanases B and C and β-xylosidase) are 
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regulated by a single transcriptional activator, XlnR in Aspergillus niger (van Peij et al., 

1998) indicating these enzymatic activities can be co-regulated.  

XI.1. Screening of the metagenomic library for cellulase activity 

 The metagenomic library of 1,920 clones constructed from organisms grown in 

enrichments of potting soil with 1% cellulose for 10 months resulted in one putative 

cellulase positive clone when screened on CMC agar stained with congo red dye. Congo 

red is a dye that binds to β-1-4-glucosidic linkages of cellulose (Teather & Wood, 1982). 

Endoglucanases will cleave the intramolecular β-1-4-glucosidic linkages randomly and 

the dye will be released. CMC is used for the screening of endoglucanases (Ghose, 1987). 

Therefore, this putative cellulase activity is likely to be an endo-β-1,4-glucanase because 

CMC was used to screen for cellulase activity and degradation of CMC was observed. 

Smaller clearance zones were observed around some of the clones in Figure X.3.1. This 

could indicate some cell associated cellulase activity because the cellulase did not diffuse 

out to degrade the cellulose. The cell-associated activity was not further investigated in 

this study.  

XI.2. Comparison of metagenomic libraries created with and without an 
enrichment step 

Metagenomic libraries from a variety of sources have been constructed by 

enrichment and non enrichment methods. It has been observed that libraries which were 

enriched and screened for a gene activity of interest had a greater number of positive 

clones, compared to studies which did not employ enrichment methods (Grant et al., 

2004; Feng et al., 2007; Kim et al., 2008; Pang et al., 2009; Rees et al., 2003) (Table 

XI.2.1.). Since cellulose enrichments were used to create the metagenomic library 



111 
 

described in this thesis, microorganisms that produce cellulase to degrade natural 

cellulose would have been selected for. 
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Table XI.2.1. Number of positive clones compared to number of clones screened for metagenomic libraries constructed with an 
enrichment step compared to metagenomic libraries constructed without an enrichment step  
No enrichment step vs 
enrichment step  

Type of metagenomic library  # positive clones/# 
clones screened  

Gene of 
interest  

Reference  

No enrichment  Soil  1/70 000  cellulase  Kim et al., 2008  

Compost soil  1/25 000  cellulase  Pang et al., 2009  

Lake Nakuru water  1/60 000  cellulase  Rees et al., 2003  

Soil  1/ 105 000  oxidoreductase  Knietsch et al., 
2003b 

With an enrichment step  Soil with glycerol and 1,2-propanediol for polyol-consuming 
microorganisms  

1/60 000  oxidoreductase  Knietsch et al., 
2003a  

Lake Nakuru water and CMC  1/15 000  cellulase  Rees et al., 2003  

Soil enriched for agarolytic activity  1/213  cellulase Voget et al., 
2006  

Thermophilic anaerobic digesters fed with dried Napiergrass and 
dried Bermudagrass  

1/1250  cellulase  Healy et al., 
1995  

Rabbit ceca fed with only grass  1/8125  cellulase  Feng et al., 2007  

Wadi el Natrun lake sediments enriched with cellulose  1/8750  cellulase  Grant et al., 
2004  

Wadi el Natrun soda soil enriched with cellulose  1/3083  cellulase  Grant et al., 
2004  
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XI.3. Assumptions and limitations to metagenomics 

There are assumptions and limitations to the metagenomic library that was 

constructed in this study. Enrichments do limit the diversity of the consortia because only 

organisms that can use the substrate, cellulose or the degradative products such as 

glucose, can survive. This however, does not limit the diversity of microorganisms within 

the enrichment that produce the specific activity of interest. A decrease in the biodiversity 

due to culture enrichment was not important in this study because biodiversity was not 

the aim of this study.  

In this study, only endo-β-1,4-glucanase activity was screened for using 

carboxymethyl cellulose (Ghose 1987) resulting in assay bias. Other assays can be used 

to screen for other cellulase activities. For example, β-glucosidase activity can be 

measured through a cellobiose assay (Ghose 1987). Exo-β-1,4-glucanase activity can be 

determined by either the Avicel assay (Ng et al., 1977) or filter paper assay (Mandels & 

Reese, 1965). 

The metagenome is composed of the DNA from organisms present in a given 

environment. The average genome size in an environment is difficult to determine 

because there are many uncultured microorganisms that have not been studied. The 

number of fosmid clones in a metagenomic library required to give an adequate 

representation of the metagenome can be determined by the equation N = ln (1-P) / ln (1-

f), where N is number of fosmid clones required; P is the desired probability; and f is the 

proportion of the genome contained in a single clone (Sambrook & Russell, 2001). If 

there are approximately 6,000 genomes present (Torsvik et al., 1990; Ovreas & Torsvik, 

1998) and the average genome size is assumed as 4 Mb (Raes et al., 2007), then that 

would equal 2.4 x 1010 bases. The number of clones needed to guarantee about 99% of 
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the DNA sequences to be contained within a fosmid library made with 40 kb insert size 

is: N = ln (1-0.99)/ln (1 – [4 x 104 bases/2.4 x 1010 bases]) = 2.7 x 106 clones. To ensure a 

good representation of organisms used as a source in the construction of the metagenomic 

library, more than 2.7 x 106 fosmid clones are necessary. In this study, only 1,920 clones 

were selected and screened. A more accurate representation of the genetic composition in 

potting soil would require more fosmid clones be screened.   

In addition to the assumption of the average genome size, during the construction 

of the library, only 25-40 kb fragments were used as inserts. The PSC library would 

therefore only represent about 48 Mb, with 25 kb insert, to maximum of 76.8 Mb, with a 

40 kb insert. A greater number of fosmid clones would be required to ensure a greater 

representation of the metagenome due to the insert size restriction. If 107 prokaryotic cells 

(Gans et al., 2005), with a range of 3,000 to 10,000 different prokaryotic genomes 

(Torsvik et al., 1990; Ovreas & Torsvik, 1998) and genome size ranging from 1.5 Mb – 8 

Mb (Raes et al., 2007) is estimated to be present in one gram of soil, a large amount of 

genetic information is present in one gram of soil. It has been estimated that 106 Bacterial 

Artificial Chromosomes (BAC) clones, with an insert size of 100 kb, must be screened 

for coverage of the all the distinct prokaryotic species in one gram of soil (Handelsman et 

al., 1998). 

Escherichia coli is a Gram-negative bacterium and was used as the host for the 

construction of the metagenomic library. A drawback of using E. coli or any foreign host 

is that expression of the gene and the gene product, cellulases in this case, is limited and 

dependent on the host because the heterologous host may not contain the cellular 

components required to express or secrete functional cellulases (Gabor et al., 2004). In 
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general, problems involved with the selection of the host that must be considered when 

undertaking metagenomic investigations include: poor transcription, translation, and 

excretion of product (Gabor et al., 2004). As well, improper protein folding may be 

problematic because the proper chaperones may not be present in the host to produce 

functional proteins (Ferrer et al., 2003; Ferrer et al., 2004; Gabor et al., 2004). 

Furthermore, improper production or incorporation of cofactors necessary for the 

function of the protein where expression of protein is present but the protein cannot 

function without required cofactors (Gabor et al., 2004). Lastly, codon usage can be 

different depending on the organisms (Sharp & Li, 1987). Codon bias is where organisms 

will preferentially use certain codons to code for an amino acid instead of using other 

synonymous codons (Sharp et al., 2005). This has the potential to contribute to low 

protein expression and therefore low observed activity because the protein cannot be 

expressed by the organism due to codon bias (Grote et al., 2005).  

Typically, the host that is used for propagating metagenomic libraries is E. coli 

(Handelsman et al., 1998). The reasons for this are that batch production, separation, and 

downstream processing methods used in the production of valuable products are already 

well-studied for E. coli (Daniel, 2004). Streptomyces and Pseudomonas strains have been 

used as a host to express soil prokaryotic genes (Ono et al., 2007; Martinez et al., 2004; 

Courtois et al., 2003). Pseudomonas and E. coli are both Gram-negative bacteria but 

Pseudomonas is naturally found in soil (Cho & Tiedje, 2000) whereas E. coli is found in 

fecal matter (Parveen et al., 1999). Streptomyces are Gram-positive bacteria. Advantages 

of using Streptomyces or other actinomycetes as the heterologous host are that they 

possess a greater number of complex promoters (Strohl, 1992), they can post-
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transcriptionally modify products that E. coli cannot (Gabor et al., 2004), they can 

express high G+C DNA content genes (Muto & Osawa, 1987) and actinomycetes are 

known to produce an array of metabolites so there is a greater chance that the 

biosynthetic machinery is present to express and produce these products (Wilkinson et 

al., 2002).  

Low copy number vectors are an advantage since certain sequences are subjected 

to modifications such as deletions and therefore are not clonable in Escherichia coli. The 

fosmid vector used in this study was a single copy vector to avoid the problems 

associated with over expression of certain gene products (Wang & Kushner, 1991; 

Renault et al., 1996), which has the potential to destroy the host. Fosmids are low copy 

number cosmids, plasmids with a cos site to allow the packaging of DNA into λ phages 

(Collins & Hohn, 1978), are more stable than multicopy cosmids (Kim et al., 1992).  

The organisms present in the enrichment culture of potting soil inoculated in 1% 

cellulose liquid medium was used as the source of DNA extraction to construct the 

functional metagenomic library. A direct lysis approach was used to extract DNA from 

the organisms without the separation of cells from the soil.  

First, not all cells lyse the same way during the DNA extraction process 

(Kauffmann et al., 2004). A limitation of direct lysis of organisms from soil is that the 

DNA recovered can contain contaminants, such as humic acids, which interfere with 

enzymatic reactions including ligases for cloning, restriction endonucleases for digesting 

DNA, and transformation of the DNA (Tebbe & Vahjen, 1993; Miller et al., 1999). In 

this study, direct lysis resulted in co-purification of DNA with humic acids. Therefore, 

the DNA had to be further purified from the humic acids (Figure XI.3.1.). Since humic 
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acids migrate faster than genomic DNA during electrophoresis (Harnpicharnchai et al., 

2007), gel purification can be used. Two gel electrophoresis methods were used to purify 

DNA from humic acids in this study. In both methods, it was difficult to visualize where 

the DNA migrated in the gel because DNA concentration was too dilute and a thick gel 

was used. Therefore to overcome these problems, concentrating the DNA and pouring a 

thin gel allowed visualization of where DNA migrated in the gel.  

To overcome the low yields obtained by gel electrophoresis methods, 

cetyltrimethylammonium bromide (CTAB) was used to purify humic acids from DNA 

because CTAB has been reported to reduce humic acid contamination by complexing 

with humic acids (Zhou et al., 1996) and precipitate anionic nucleic acids from solution 

(Sibatani, 1970; Jones, 1953). Despite the use of various concentrations of CTAB, humic 

acids co-purified with the DNA.  

 

Figure XI.3.1. Metagenomic DNA contaminated with humic acids 
 

XI.4. Conclusion 

Although the PSC metagenomic library was screened for cellulase activity, it can 

also be used to screen for other activities of interest such as xylanases because a large 

amount of DNA is contained in the library. The PSC library was successful in that one 

cellulase positive clone was discovered in 1,920 clones.  
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XI.5.  Future directions  

Several experiments should be completed to evaluate the metagenomic library. 

First, restriction fragment analysis of cloned insert DNA would ensure that cloning was 

random and that the metagenome was represented in the library. In addition, this would 

allow estimation of the average insert size in the library. Also, digestion of the cellulase 

positive clone, subsequent subcloning and re-screening would identify the gene 

responsible for the cellulase activity. There could be 7-15 genes in an insert of 40 kb 

because bacterial genes are about 1-2 kb in size (Xu et al., 2006).  

To determine the nucleotide sequence of cellulase genes present, in vitro 

transposon mutagenesis (Voget et al., 2006) can be used and sequencing from the ends of 

the transposon could be conducted to determine the sequence of the cellulase gene (Voget 

et al., 2006). The clone that exhibits cellulase activity could be sequenced and compared 

to known cellulase sequences present in the NCBI BLAST database (Altschul et al., 

1990). Using blastx and tblastx, the cellulase sequence from the clone can be compared to 

any possible sequences in the database so phylogenetic analysis of the translated protein 

sequence can be completed to compare the relationship of the protein to other identified 

proteins. The nucleotide sequence would be translated in all six reading frames and 

compared against blastx, a protein sequence database. Then, finally the six-frame 

translations of the nucleotide sequence would be compared to six-frame translations of a 

nucleotide sequence database, tblastx, to ensure the experimental protein is compared to 

any possible translated nucleotide sequences.  

The extracellular cellulase expressed by the positive clone could be purified for 

proteomic analysis. The biochemical and physical properties of the enzyme such as 
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optimum temperature, pH stability and enzyme kinetics (Lee et al., 2006; Hurtubise et al., 

1995; Feng et al., 2007) can be determined.  

With the construction of the metagenomic library, activity screens for other novel 

enzymes can be completed. The metagenomic library can be used for screening cellulases 

that degrade insoluble cellulose, and xylanases and peroxidases, both of which take part 

in lignocellulose degradation (Biely et al., 1986; Ramachandra et al., 1988). 
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