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Abstract

Stamplecoskie, Jennifer Krista. M.A.Sc. Royal Military College of Canada, April,
2009. Data Compression Of Blainville’s Beaked Whale Vocalizations. Supervised by
Dr. Donald R. McGaughey, Dr. Michael J. Korenberg.

Defence Research and Development Canada Atlantic uses autonomous underwater
vehicles and sonobuoys to capture recordings of nearby marine mammal activity. The
data are then transmitted via a low bandwidth satellite link. Timely transmission of
these data is critical in achieving compliance with the Naval directive to check marine
mammal activity within the vicinity of training exercises before their commencement.
Currently, the data are not compressed, and timely transmission is not being achieved.

This thesis uses the signal processing technique called the fast orthogonal search
to achieve data compression. The fast orthogonal search algorithm has previously
been shown capable of providing model expansion representation of both time and
frequency domain signals. Furthermore, irregular sampling and domain transforma-
tion have been successfully used for data reconstruction. The proposed algorithm,
patented by Korenberg et al [1], has previously been used for interferometric spec-
trometer data.

Two separate versions of the algorithm were used, one for use with sonobuoys,
which have more processing capabilities, and one more suitable for autonomous un-
derwater vehicles which have limited on-board processing capability. These data
compression techniques allow for a significant reduction in transmission time of the

marine activity data while retaining the information necessary for detection.

il



Resumé

Stamplecoskie, Jennifer Krista. M.Sc.A. College militaire royal du Canada, Avril,
2009. La Compression De Vocalizations De Baleine d Bec de Blainville. These dirigée

par M. Donald R. McGaughey, Ph.D. et M. Michael J. Korenberg

La Recherche et le développement pour la défense du Canada, secteur Atlan-
tique, enregistre les activités des mammiferes marins environnants. Les données sont
présentement transmises par lien satellite ayant une faible largeur de bande. La
transmission de ces données en temps opportun est critique afin de comformer avec
la directive maritime qui oblige a localiser les activités des mammiféres marins avant
de commencer des exercises d’entrainement. Présentement, les données ne sont pas
compressées, et la transmission en temps opportun n’est pas atteinte.

Cette these utilise la technique de traitement des signaux appellée algorithme de
recherche orthogonale rapide pour atteindre la compression de données. L’algorithme
de recherche orthogonale rapide a déja démontré sa capacité a fournir une représentation
des signaux du domaine temporel et fréquenciel, utilisant un modele de développement.
De plus, I’échantillonnage irrégulier et la transformation des domaines ont été utilisés
avec succes pour reconstituer les données. L’algorithme proposé, breveté par Koren-
berg et al [1], a été déja utilisé pour les données de spectrometre interférométrique.

Deux versions de l'algorithme ont été utilisées, I'une est plus applicable aux bouées
acoustiques, qui ont plus de capacité de traitement et l'autre est plus attribué aux
sous-marins autonomes, qui ont une capacité de traitement plus limitée. Ces tech-
niques de compression de données permettent une réduction significative du temps

de transmission de données en gardant les données importantes pour la détection.

v
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Chapter 1

Introduction

1.1 Problem

Some of the Naval training exercises currently employed have the potential to harm
marine mammals within their vicinity. As such it is a policy of the Canadian
Forces (CF) Navy to refrain from conducting training activities when there is marine
mammal activity within four kilometers of the training area [2]. However, while this
policy has been instituted, it is currently enforced in a limited manner because there
is no vigorous system in place to verify if there are marine mammals present. The
CF Navy relies on historical data and visual clues to determine if marine mammals
are present within the training area. A more robust method is desired.

The Department of National Defence (DND) and Defence Research and Devel-
opment Canada (DRDC) Atlantic have a series of autonomous underwater vehicles
(AUVs) and sonobuoys which contain hydrophones. The hydrophones record the un-
derwater acoustic signals, which are then transmitted by the AUVs and sonobuoys.
The signals can be received and analyzed to determine the presence of marine mam-
mal activity in the vicinity of the AUVs or sonobuoys.

With some modifications these vehicles could be used in order to detect the pres-
ence of marine mammal activity in the vicinity of training missions, allowing the CF

Navy to improve its ability to abide by its training policy.

1.2 Objectives

The objective of this work is to improve the efficiency with which data are transmitted
from the AUVs and sonobuoys across a low bandwidth (BW) satellite link without
significantly degrading the ability to identify marine mammal activity within the
signal being transmitted. This is to be measured using the current detection algorithm

employed by DRDC Atlantic.



1.3 Current Techniques

Underwater acoustical data have been received from DRDC Atlantic which they col-
lect using three separate platforms. The first platform is a sonobuoy which always
has an antenna situated on the ocean surface. This platform is capable of receiving
acoustic data and transmitting the recorded data concurrently, and it has 160 GB of
memory. The second and third platforms are both AUVs. One is fully mobile, while
the other can only rise to the surface and sink using an inflatable balloon.

The AUV platforms must both surface in order to transmit data, and therefore
cannot record data while transmitting. They have on-board memory of 16 GB. They
also have acoustical detection software on-board, and can currently transmit one of
three data sets. The first is a simple text message giving the coordinates and type of
detection. The second data set includes the same text message along with 30 seconds
of raw data. This can be used to determine whether the detection was a false alarm
or not. The third data set is a 5 minute recording. The third data set is preferred for
trial use at DRDC Atlantic, and so it is the set which will be used for the purposes
of this thesis.

For all the platforms, the acoustic data are recorded at a rate of 96 kHz, producing
a 54.93 MB recording, for a 5 minute data capture. The recordings are transmitted
over a low BW satellite link to the Iridium satellite system at a rate of 4800 baud,
requiring 100 minutes per transmission. Additionally, no data compression scheme is

currently implemented by DRDC Atlantic.

1.4 Relevant Work

Both principal component analysis (PCA) and fast orthogonal search (FOS) are tech-
niques which use least squares fitting to construct a functional expansion of a given
signal. The performance of both techniques is dependent on the validity of the al-
gorithm’s input candidates. The limitation of PCA is that it is restricted to the
inclusion of orthogonal candidate sets, where as FOS can include both orthogonal

and non-orthogonal candidate sets. In 1996, Oliveira and Romera [3] used PCA to



perform data compression on medical image data. They found that PCA gave a
smaller mean square error (MSE) than Joint Photographic Experts Group (JPEG).
This work was further confirmed in 2000 by Oliveira and Mazucheli [4]. In 2006,
Oliveira [5] extended this research to show that PCA can be used to interpolate data
when the data have been irregularly sampled. He has shown this to be possible us-
ing both one-dimensional signal and image data. This work indicates that PCA is
a viable method of interpolating underwater acoustic data. This hypothesis can be
extended to FOS which follows the same principles as PCA.

FOS is similar to the later developed orthogonal matching pursuit [6]. It is also
related to, but faster than an algorithm previously published by Desrochers for fit-
ting static nonlinear models where, amongst various differences, the computational
and memory storage requirements are proportional to the square of the number of
candidates, whereas in FOS they depend linearly on the number of candidates [7].

Korenberg et al [1] have patented an algorithm which uses domain transforma-
tion and irregular sampling with reconstruction of the data accomplished through the
use of FOS. This technique has previously been used for interferometric spectrom-
eter data [1]. Similarly, Abbas [8] used this technique to compress and reconstruct
electrocardiogram (ECG) data. Like marine mammal activity, ECG signals have spe-
cific features which must be preserved during compression. It is reasonable to assume

that this technique may have similar success with underwater acoustic data.

1.5 Deficiencies

The AUV platforms must surface in order to transmit data. This means that they are
unable to record data for the duration of their transmission. Shortening the trans-
mission length would enable these platforms to record underwater acoustic signals for
a higher percentage of the time when deployed. For all platforms, data compression
would improve the speed at which the data can be received by the operators for post-
processing, allowing it to be used for current detection of marine mammal activity,
in fulfillment of the naval directive. Furthermore, the AUV platforms have limited

processing capabilities and limited battery life.



1.6 Solution

For the sonobuoy, which has a larger on-board processor and fewer power restrictions,
a technique was developed in which a time-domain model expansion is performed
using FOS. The parameters of this model are then transmitted from the sonobuoy
to the receiver station. As long as the receiver station possesses the FOS candidates,
the signal can be reconstructed upon receipt. This technique achieves a compression
ratio (CR) of approximately 93.1, although the exact compression ratio will depend
on the amount of marine mammal activity present as more marine activity causes an
increase in the number of model terms required to describe the signal.

The second technique does not achieve as high a compression ratio, however, it
is more suitable for the AUVs which have a limited on-board processing capability
and more power restrictions and achieves a CR of 5.5. In this technique, domain
transformation is performed via discrete cosine transform (DCT) and the resulting
data are irregularly sampled. The selected frequency domain samples are transmitted.
Upon receipt, reconstruction can be performed using FOS at the receiver station, if

the receiver station knows the irregular sampling pattern used to transmit the data.

1.7 Outline

Chapter 2 of this thesis provides the background theory pertaining to the proposed
algorithm. JPEG is introduced as a data compression standard for non-text-based
data. It is used as a basis for the algorithms developed in this work. The detection
algorithm used to assess the quality of the compressed data is also explained.

In Chapter 3 a detailed description of the time-domain and frequency-domain
algorithms is given. The time-domain algorithm is used for the sonobuoy platform,
and the frequency-domain algorithm is used for the AUV platforms.

Chapter 4 provides the detection algorithm parameters used and a description
of the evaluation criteria used to evaluate the algorithms in terms of the detection

capabilities.



Chapter 5 provides the results of the simulations performed, including the com-
pression ratios achieved, and the effect of the compression on signal detection.
Finally, chapter 6 provides a summary of the work performed and recommenda-

tions for future work in this area.



Chapter 2

Background Theory

2.1 Underwater Acoustic Signals

Not only are acoustic waves better suited to propagation in oceanic waters than elec-
tromagnetic waves [9], but they also propagate better in the ocean than they do in
the air [10]. For this reason, underwater acoustic data are typically used to increase
our understanding of the oceanic environment. The CF Navy has a particular inter-
est in tracking marine mammal activity in the vicinity of their assets. Marine life,
particularly mammals, can be detected through the vocalizations that they make.
Since sound waves have the best ability to propagate in the water, marine mam-
mals depend on sound as a good way of detecting food. Each species has a distinct
set of vocalizations that it makes, however, there are some commonalities between
them. This thesis concentrates on the detection of whale vocalizations and uses whale

vocalization recordings provided by DRDC Atlantic.

2.1.1 Detection of Marine Mammal Sounds

The ocean is a noisy environment, with a persistent ambient noise level. This may
be caused by any number of sources including tides, seismic disturbances, turbulence,
ship traffic, as well as some sources which are specific to regions, such as shallow or
deep water disturbances or coastal disturbances. In addition to the ambient noise,
there will be noise caused by both the hydrophone and the platform in which it is
contained [9].

Underwater acoustic data are collected in the temporal domain. An indication
that there has been marine mammal activity is a temporary increase in the amplitude
of the signal over the average background level. This increase will last anywhere from
a few milliseconds to longer than 30 seconds, depending on the type of vocalization

and the species of mammal. However, since the ocean is a noisy environment it can



be quite difficult to detect marine mammal activity in the time domain.

In the spectral domain, using a tool such as a low frequency analysis record
diagram (LOFARgram), the change in frequencies detected over a period of time
can indicate a signal of interest. An example of a LOFARgram is shown in Fig 2.1.
It shows the changes over time in the energy at given frequencies. The fast Fourier
transform (FFT) has been applied over a set of 1024 samples at a time. There is a
50 % overlap between the sets. Using this technique it is posible to see changes over
time in the energy at given frequencies. The energy level is indicated by a change in

intensity of the LOFARgram.

Time

0 05 1 15 2 25 3 35 4 45
Frequency (104)

Figure 2.1: This LOFARgram of Blainville's Beaked whales shows a series of buzzes as well as
a portion of a whale song. The buzzes can be seen as the bright lines between 20 and 40 kHz.
A Humpback whale song is visible between 8 and 18 kHz. The three vertical lines are caused
by the recording platform.

Once detected, classification of the signals can be performed in either domain, de-
pending on the technique used. The detection algorithm used in this thesis transforms

the signal into the frequency domain.



2.1.2 Characteristics of Whale Vocalizations

Whales produce a wide variety of vocalizations. Each species of marine mammal has
a set of features which distinguish it.

The whale which is considered in this thesis is Blainville’s Beaked whale. These are
the whale calls which were provided by DRDC Atlantic. Blainville’'s Beaked whales
are hard to see when they surface as they do not have visible blows. They also dive for
long periods, and so it can be difficult to determine their presence [11]. They produce
clicks and buzzes. The clicks last for approximately 0.271 ms with a frequency range
between 26 and 51 kHz and a frequency modulated upsweep of approximately 112
kHz/ms [12]. Buzz clicks tend to be shorter, with an average duration of 0.104 ms and
a frequency range of 25 to upwards of 80 kHz. They are not known to be frequency
modulated [12]. Some recorded buzz clicks have less total energy than others because
they are recorded off the body axis of the whale [13]. They tend to have a higher
energy content at 30 — 35 kHz and have less energy beyond this [12].

l T 1] ¥ ¥
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Figure 2.2: In a) a buzz is shown in the time domain. In b) a frequency domain representation
is given, where the solid line represents the buzz energy [14].



2.2 Compression of Acoustic Signals

Data compression techniques are commonly compared using the metric CR. The CR

is a measure of how much the signal has been compressed. CR is defined as:

CR = Sizeuncompressed (2 1)
Siz €compressed

Data compression standards can either be lossless or lossy, although some compression

standards are capable of both types of compression.

2.2.1 Lossless Compression

Lossless compression is data compression whereby none of the values in the signal
are changed or removed. Using a lossless technique, a signal can be perfectly recon-
structed when decompressed. Lossless compression generally can achieve a CR of 2
or 3 [15]. While necessary for some applications, such as medical imaging, the small

CR achieved with this type of compression limits its utility.

2.2.2 Lossy Compression

Lossy compression is a data compression strategy which permits permanent changes
to the signal. During lossy compression, some of the information stored in the signal
is lost. As a result, when decompressed, the signal cannot be perfectly reconstructed.
This is the reason why an image degrades as it is repeatedly re-saved in a lossy format
such as JPEG.

The advantage of this type of compression is that it can achieve much higher
CRs while producing signals that are of acceptable quality for their intended use.
The statistical properties of signals, when combined with the characteristics of the
exploiting system are the factors which allow reconstructed signals to be greatly
compressed yet appear to be indistinguishable from their originals [16].

Since underwater acoustic signals have a large noise component, absent of useful

information, it is reasonable to assume that lossless reconstruction of the signal is not
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efficient, nor is it necessary. Thus, so long as the features of interest are retained,

lossy compression is a valid compression technique for underwater acoustic signals.

2.3 Compression Standard - MPEG

The first international compression standard for audio data is Moving Picture Experts
Group (MPEG) [16]. MPEG audio compression can be performed using an audio
sampling rate of 32, 44.1, or 48 kHz [16]. This sampling rate is too low to retain the
information of interest for the compression of Blainville’s beaked whale vocalizations.
Retention of information up to 48 kHz is desired (requiring a sampling rate of 96
kHz). As a result, MPEG was not considered for this application.

Sometimes large data compression can be achieved simply by subsampling an
over-sampled record. However, in the present study the sampling rate had not been
excessive since the clicks and buzzes only last 7-18 samples, and the frequencies of

interest extend up to the Nyquist frequency of 48 kHz.

2.4 Compression Standard - JPEG

A commonly used compression standard for imagery is JPEG [17]. Like imagery,
underwater acoustic data can be compressed by taking advantage of the properties
of the signal itself. The JPEG compression standard follows a series of steps starting

with level-shifting.

2.4.1 Level Shifting

Level shifting is the process of taking the sample or pixel information and shifting
it so that it varies about zero. If the pixel values vary between 0 and 255 then,
the level-shifted values would be shifted to vary between —128 and +127. Following

level-shifting, sub-sampling is performed.
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2.4.2 Sub-Sampling

Sub-sampling or down-sampling is the process of reducing the number of sample

points in a signal. It is an optional step of JPEG.

2.4.3 Block Splitting

Once sub-sampling has been performed, the image is split into blocks. If the num-
ber of pixels in the image is not an integer multiple of the block size, additional
pixels are appended. These steps are performed to prepare the data for a domain

transformation. JPEG uses the DCT to perform domain transformation.

2.4.4 Discrete Cosine Transform

Once the image has been subdivided, the 2D DCT is performed separately on each
block. In this step, the image data are transformed from the spatial domain into the
spectral domain. Little information is lost, and no compression is achieved during
this step. The purpose of this transform is to put the data in a domain where
compression is easier. When the 2D DCT is performed on each block of the image,
each resulting block consists of integer values corresponding to the coeflicients of its
DCT candidate functions. There are 64 candidate functions used to represent the
blocks in the spectral domain.

After the 2D DCT has been performed on each block of the image, the DCT
coefficients represent the values which would be multiplied by their respective DCT
candidate function to recreate that block of the image in the spatial domain. The
DCT coefficients are the same size as the pixel values (i.e. up to 8 bits per pixel
per channel), but fewer of the candidate functions have significant weights. The
information lost in this step is partially due to the requirement to maintain integer
values which can be represented in 8 bits, and partially because the image may not

be fully described in 64 DCT candidates.
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2.4.5 Quantization

Quantization is a lossy step in image compression. Typically performed after a trans-
formation, quantization allows the data to be encoded using fewer bits per pixel. It
works by removing the data least likely to be noticed. The most basic quantization
scheme involves dividing each scalar value by a constant. This strategy reduces the
maximum value to be encoded, thereby possibly reducing the number of bits required
to represent the value in the encoding scheme. It also means that the scalar values
will be reconstructed as approximations of what they were, thus reducing the quality

of the image when reconstructed.

2.5 Time Domain Algorithm

The first algorithm used in this thesis is suitable for the sonobuoy platform, which
has more processing power than the AUV platforms. It modifies the compression
standard for imagery to make it suitable for underwater acoustic data as seen in Fig

2.3.

JPEG Level Shift Sub-Sampling » Block Splitting » DCT
Time Domain
IAlZorithm Block Splitting FOS
Frequency Domain | Block Splitting > DCT » Sub-Sampling » FOS
Algorithm

Figure 2.3: Similarities and differences between the JPEG algorithm for image compression, the
time domain and frequency domain algorithms for underwater acoustic data compression. Each
algorithm transmits only model terms and coefficients, resulting in compression.

The acoustic data are split into segments prior to completion of the remaining
steps. For this algorithm, no sub-sampling is performed. Finally, rather than using
the DCT to transform the acoustic signal into the spectral domain, FOS is used

to create a functional expansion in the temporal domain. Like the DCT, the FOS
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functional expansion requires fewer terms to describe each segment than the number

of samples in the original segment, resulting in data compression.

2.6 Frequency Domain Algorithm

The frequency domain algorithm does not achieve as high a CR as the time domain
algorithm, however it is better suited to the AUV platforms which have a limited
processing capability. The first step is the same as the time domain algorithm. The
data are split into blocks. Following this, a domain transformation is performed using
the DCT. Irregular sampling is then applied to each block in the frequency domain.
The domain transformation prior to the sampling ensures that short-time duration
signals will not be entirely removed when irregular sampling is performed. Addition-
ally, the irregular sampling minimizes the loss of high frequency signal components.
Once the irregular sampling has been performed, the remaining samples are trans-
mitted. Data compression is achieved because not every sample is transmitted. At
the receiver station, with knowledge of the sampling pattern used, FOS can be used
to reconstruct the frequency domain signal. This signal can then be transformed back

into the time domain as required.

2.7 Fast Orthogonal Search in Temporal Domain

The FOS algorithm is an alternative to the discrete Fourier transform (DFT) or DCT
for performing domain transformation. It can achieve a much higher resolution than
the DFT by selecting non-orthogonal candidate functions [18]. It can also detect
signals present in noise. Chon [19] used FOS to detect sinusoids at a signal-to-noise
ratio (SNR) of —10 dB. Furthermore, Korenberg and Paarmann [20] successfully used
FOS to reconstruct signals in noise for irregularly sampled signals.

FOS has been used extensively in the time domain to provide a functional ex-
pansion representation of a given signal. The candidate functions successfully used
include sinusoidal and exponential candidates. Chon [19] and Korenberg [21] used

sinusoidal candidates to detect a sinusoidal signal in noise. Likewise, Korenberg [18],
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Korenberg and Paarmann [20] and Korenberg, Brenan and Hunter [22] used sinusoidal
candidates to detect a sinusoidal signal with irregular sampling and in noise. Koren-
berg and Adeney [23] showed the ability of FOS to deal with exponential candidates
to fit an exponential signal in noise.

The results of the FOS algorithm are a functional expansion given by [23]:

M-1
y(n) = Y ampm(n) +e(n) (2:2)

where y(n) is the input signal, a,, are the non-orthogonal weights, p,,(n) are the
non-orthogonal candidate functions, and e(n) is the error.
The non-orthogonal functional expansion is determined from an orthogonal func-

tion expansion. The orthogonal expansion is given by [20]:

Y1) = 3 guttm(n) + e(n) 23)

where g, are the orthogonal weights, and w,,(n) are the orthogonal candidates. FOS

takes the set of arbitrary candidate functions, p,(n) and uses them to determine a

set of orthogonal functions using the Gram-Schmidt orthogonalization technique
The orthogonal weights, g,,,, are given by:

C(m)

Dim,m) 24

9m =

where C'(m) = y(n)wy,(n) is the time average (denoted by the overbar) given by:

N-1

_ 1
T= ; z(n) (2.5)

of the correlation between the orthogonal function and the input function and D(m, m)
Pm(n)wp,(n) is the time average of the common energy between the orthogonal and
non-orthogonal candidate functions. The common energy between two candidate

functions can be determined recursively using [20]:

D(m, ) = pulp () ~ Y- 0Dl 1) (26)
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It can be shown using Eqn 2.6 that D(m,m) = w2,(n) and the a,, are the Gram-

Schmidt coefficients given by [20]:

_ D(m,r)
e = Birry (2.7)

The correlation between an orthogonal function and the input function is determined

recursively using:
m—1
O(m) = y(n)pm(n) = Y amiC(i) (2.8)
i=0

FOS uses least squares fitting to determine which of the candidate functions are
the best match for the signal of interest [20]. The candidate functions are searched
for the candidate which will provide the maximum reduction in the remaining MSE.

The common energy, (), given by:

Q(m) = g5, D(m,m) (2.9)

of the candidate functions not already fit is compared [24]. The candidate function

which has the most common energy with the remaining signal is then fit unless:
e the number of candidates grows beyond a predetermined maximum,;

e the amount of energy being fit is less than what would be fit for white Gaussian

noise (WGN); or,
e the total amount of energy fit is below a predetermined level.

When any of these conditions is met, no more candidate frequencies are fit. These
parameters of FOS can be set to improve its performance for a given application.
Once all the candidate frequencies have been fit or any of the exit conditions have
been met, the weights of the non-orthogonal set of functions are determined. The
non-orthogonal weights, a,,, are determined using an intermediary term v;, which is
given by:
i—1

v = — Z QiU ; m<i<M (2.10)

r=m
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where v, = 1, and M is the number of terms. Using these results the non-orthogonal

weights, a,,, are given by:

M
an =Y giv; (2.11)
i=m

2.8 Fast Orthogonal Search in Spectral Domain

In US patent 6005664, Korenberg et al [1] stated in Claim 2 that FOS could be used
to form a functional expansion in the spectral domain. The FOS algorithm remains

the same as is described in Section 2.7.

2.9 Domain Transformation and Irregular Sampling
2.9.1 Domain Transformation

In order to transform a signal from the temporal domain to the spectral domain, the

DCT can be used. The DCT is defined as [25]:

_wk) = m(2n —1)(k — 1)
X[k] = i 2 x[n)cos( 5N ) (2.12)
where
1 ; k=0
w(k:):{ V2 1<k<N-_1 (2.13)

where k is the sample number in the frequency domain, n is the sample number in
the time domain, and N is the number of samples. Conversely, the inverse discrete
cosine transform (IDCT), given by [25]:

N-1

zln] = Z wv(_]%lX[k]cos(w(Qn ~2§\)[(l~c — 1)) (2.14)
where
w(k):{\/% 1SkSJ]\cfi(1) (2.15)

can be used to transform a signal from the spectral domain to the temporal domain.
The DCT and DFT are closely related. The DCT can alternatively be described

as the DF'T when performed on real data which have been made symmetric.
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As can be seen in Eqs 2.12 and 2.14, each point in a given domain is generated from
a weighted summation of all the points in the opposing domain [26]. In conjunction
with irregular sampling, this property can be exploited to reduce the number of

samples transmitted.

2.9.2 lIrregular Sampling

Irregular sampling of the signal reduces the amount of data that are stored or trans-
mitted. When the sampling is performed in the domain opposite the information
domain, removing a particular sample will not result in completely removing a sam-
ple in the information domain. In Fig 2.4, a signal with three frequency components
and additive white Gaussian noise (AWGN) is represented in both the time domain

and the frequency domain.

Time Domain
ok | ]
\ ‘ | ; | I ( I i |
i) H i ! il 1 1 | I I
l ! | | |
\ | LA
2k
1 1 L L 1 1 i L 1 1
1 2 3 4 5 5 7 8 9 10
time {s) % 10°
Frequency Domain
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400

200+ .
Pt b
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Figure 2.4: In this figure the upper image shows a time domain signal with three frequency
components and AWGN. The lower image shows the frequency domain representation of this
signal.

The same signal is shown in Fig 2.5 after being irregularly sampled. As the

results of the irregular sampling, one quarter of the samples have been removed.
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The frequency domain representation shows that no frequency component is lost by
combining irregular sampling with domain transformation.

Sampled in Time Domain

1 2 3 4 5 3] 7 g 9 10
time (s) x10?
Frequency Domain
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1
1} 05 1 15 2 25 3 3.5 4 4.5
frequency (Hz) 10"

Figure 2.5: In this figure the same time domain signal is shown, however one quarter of the
samples have been removed using an irregularly spaced sampling pattern. The lower figure
shows the frequency domain representation. The magnitude of the component frequencies have
been reduced but no single component has been lost.

The advantage of irregular sampling is that it will not cause a direct reduction
in either frequency or time resolution as would regularly spaced sampling [22]. For
instance removing every second sample would reduce the Nyquist frequency by %
However, by sampling irregularly, there will be portions of the sampled signal which
still have adjacent samples remaining, thus the higher frequency components will be
retained [22].

While the sampling is irregular and can be generated randomly, it is critical to
know the sampling pattern when attempting reconstruction as this pattern will be
used in the reconstruction of the signal. The transmitted signal will consist of the
signal samples remaining after the irregular sampling has been applied. The sampling

pattern can be included in the header of the transmitted file or can be known by both
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the compression and decompression algorithms a priori. By selecting the sampling
pattern a priori and not transmitting it, a measure of security is injected, as the signal
can only be accurately reconstructed by receiver stations which have knowledge of

the sampling pattern. This also increases the CR achieved.

2.10 Quantization Format

The data recorded by the hydrophones are recorded in signed little Endian format,
requiring 16 bits per sample. After data manipulation is performed using the two
algorithms, it is stored in IEEE double format, requiring 64 bits per data point.
Quantization of the IEEE double format is required to maintain a good CR. There
are two options for quantization to 16-bit numbers. The first is to quantize using a
fixed point format, such as Q15, and the second is to use half-precision floating point
notation, or IEEE Float16.

Q15 notation refers to a 16-bit signed proper fraction in which the first digit is a
sign bit, and the remaining 15 bits denote the proper fraction [27]. Q15 notation has
a range from —1 to 1 —271% and a precision of 271% [28]. While, the range is generally
sufficient to represent the data required, which tends to range between —1 and 1, it
is not guaranteed to be sufficient.

IEEE Floatl6 notation ranges from —2'* to 2", and the precision varies across
the range of the data [29]. The smallest magnitude which can be represented is —2714
[29]. This number format is more suitable for data which tends to have a magnitude

of less than 1. IEEE Float16 is shown in Fig 2.6.

| S [ExP [ MAN |
T 5 10

Figure 2.6: Bit allocation for IEEE 16 bit floating point notation. One bit is allocated for the
sign, 5 for the exponent and 10 for the mantissa.

The IEEE Floatl6 format has one bit which represents the sign of the number,
5 bits for the exponent and 10 bits for the mantissa [29]. Numbers outside the

range are denoted as +£Inf as appropriate. Rounding, when equidistant between two
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numbers, is typically performed so that the even integer is chosen [29]. This is one
of the rounding options available for this format, and it is the one which will be used

throughout this thesis.

2.11 Detection Algorithm

The detection algorithm used to evaluate the results of the compression algorithms
was developed at DRDC Atlantic [30]. It is a two-stage algorithm which is performed
in the frequency domain. The signal is windowed with a Hann window of length

wyse = 128 using 50% overlapping windows as demonstrated in Fig 2.7.

X [1]
 ———

x[2]

X [3]
b

x[4]
X [5]
Wy =128 —»

Figure 2.7: The signal is windowed, with a Hann window, using a 50% overlap and divided into
segments of length 128 samples.

Each segment of the windowed signal is then transformed into the frequency do-
main through a 128 point FFT, resulting in a time-frequency representation of the
signal, X,[f], where n is the segment of the signal which has been transformed. The

power spectral density (PSD), E,[f], is then calculated for each segment using [26]:

E,[f] = | Xalf] (2.16)

Once the signal has been transformed into time-varying segments, signal and noise
levels are determined for each segment. The signal level, S, is found by summing
ws time windows starting from the time window (ws — 1)/2, prior to window n and

finishing at the time window (ws —1)/2 after window n. The summation is calculated
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across the frequency bins known to contain the whale vocalization of interest. This

range is shown between fi,,, and frigr in Fig 2.8.
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Figure 2.8: The signal level at time n is a summation of the energy across the frequency bins
between fio and fpign for each segment from n— (ws —1)/2 to n+ (ws—1)/2. In this example
it is the sum of FFT bins 23 to 47 for segment 1 (shown in green). The noise level at time n is
summed across the same frequency bins from n — (w, — 1)/2 to n + (wy, — 1)/2 excluding n.
In this example, from n — 2 to n + 2 are shown (in grey).

The signal level, S,, at segment n is calculated by [30]:

(ws—1)/2 Fhigh

1
Sn=— > > Enilf] (2.17)

*i=—(ws—1)/2 \S=flow
where f1,,, is the lowest frequency bin in the frequency range which contains the
whale vocalization and fy;gp, is the highest frequency bin in the frequency range which
contains the whale vocalization.

The noise level is calculated in a similar manner, however, the segment(s) used
to calculate the signal level are excluded from the segment set which is summed for
the noise level. For the noise level, w,, segments are summed, where w, is odd, and
wy, > ws. The noise level, N, for segment n is given by [30]:

1 (wn—1)/2 Fhigh
No=—"— Y > Enyilf] = Snws (2.18)

Wn — Ws i=—(wn—1)/2 \f=flow
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Once a signal and noise level have been determined for a given window, n, the

likelihood of a signal in the band of interest, denoted L1, is determined using [30]:

S
L= 3> (2.19)

where 7y is the threshold above which a detection is generated. Using Eqns 2.17,
2.18, and 2.19, a first stage detection is determined if the energy in a given window is
above the average value of the energy in the windows around it. This indicates that
there is a short-duration signal with high energy.

The second stage of the detection algorithm was designed to remove false alarms
caused by transients such as those caused by the mechanics of the host AUV or
sonobuoy. These transients consist of a pulse of energy across the entire frequency

spectrum as seen in Fig 2.9.

Time

0 05 1 15 2 25 35 4 45
Frequency (x104)

Figure 2.9: A transient pulse has energy starting as low as the DC component unlike the whale
vocalizations of interest which tend to have energy components starting at 20 kHz.

Once the first stage detection has been completed, for each detection which was
generated, the signal level is compared to the energy level in some of the surrounding
bins, or the guard band level. As for the signal level, the guard band level is deter-
mined using wy segments, however different FFT bins are summed. There may be a

guard band on either side of the signal, or only on one side. For the case with one
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guard band, GB,, it is calculated using [30]:

1 (ws—1)/2 fGBhigh

GB,=— > Enulf] (2:20)

u*i:—@%—iy2 f=fGBiow
where fG B, and fGBpg, are the upper and lower limits of the guard band FFT
bins as shown in Fig 2.10. Since the vocalizations detected in this thesis tend to be
broadband, only the case with one guard band is used. However, in the case where
there are two guard bands, the summation is simply calculated over both regions of
interest, so that all the bins which are a part of either guard band are summed over

the range of segments.
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Figure 2.10: The guard band level at time n is a summation of the energy across the frequency
bins between fGBjo, and fGBpigh for each segment from n — (ws — 1)/2 to n+ (ws — 1)/2.
In this example it is the sum of FFT bins 13 to 22 for segment n.

The guard band level is calculated for each segment n where a detection was
generated in the first stage of detection.

The second stage then compares the energy in the frequency band of interest to
the energy in the guard band. The likelihood of a signal which does not exceed the
band of interest, denoted L2, is determined by [30]:

Sn
L= Gp= > (2.21)

where 715 is the threshold above which it is determined that a signal is present, and

below which no signal is present.



Chapter 3
Data and Methods

3.1 Time Domain Algorithm

In the time domain compression algorithm, a time domain functional expansion of
the input signal is created. The recorded data are segmented. FOS is then applied to
each segment. The input candidates to FOS are complex signals which are models of
the whale vocalizations, and are chosen based on their demonstrated ability to aptly
represent underwater acoustic signals. These candidates are all normalized to unit
energy.

The vocalization candidates are short-duration and are thus cross-correlated with
the input segment to reduce the number of time delays of the candidate required as
input to FOS.

The FOS operational parameters are set to reduce the model size, and increase
the computation speed while ensuring enough information is retained to recreate
the marine mammal vocalizations present. Once the significant model expansion
terms have been selected, the feature number, along with their quantized weights are
transmitted. The time delay is also transmitted when required. Reconstruction is
performed at the receiver station using the feature, weight, and if necessary, the time
delay. Detection results using the reconstructed signal are compared to the recorded

signal.

3.1.1 Signal Segmentation

The selection of the segment length N is constrained by the two contradictory sig-
nal processing requirements, the frequency resolution and signal processing time. N
is inversely proportional to frequency resolution, and is directly proportional to the
increase in processing requirements for FOS. Thus, improvements in frequency reso-

lution will be at the expense of increased signal processing resources. Furthermore,

24
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the selection of N affects the compression ratio which can be achieved, as well as the
ability to resolve separate events in time. An N of 1024 was selected for this thesis.

Frequency resolution for the FFT is given by fr.s = %, where f; is the sampling
frequency. The sampling frequency for these platforms is f, = 96 kHz. Using these
parameters, with a N = 1024, f,.., = 93.75. However, since FOS has been shown
to achieve a frequency resolution of eight times FFT resolution or greater [24], [18],
using N = 1024 permits a frequency resolution of at least f,., = %‘r—’ = 11.7 Hz.
Based on the known characteristics of the whale vocalizations, this f,., should be
sufficient.

The processing requirements for FOS are of order C x P x N complexity where
C is the number of candidates, P is the number of terms selected, and N is the
number of samples in the input signal [31]. An N of 1024 should not increase the
signal processing requirements beyond the on-board processing resources of the AUV
platform, given that C' = 9872, as described in Section 3.1.7, and P, is typically less
than 20, as described in Section 3.1.6.

The compression ratio is affected by the number of candidates fit for each segment,
but the number of segments is also a factor. For instance, for the time domain
algorithm, transmitting 20 terms and their associated weights and delays, would not
provide a great compression ratio were they replacing 64 samples, as there would be
between 40 and 60 values transmitted. The compression ratio is therefore dependent
on the length of the segments. Segments of length NV = 1024 provide transmission
savings for both algorithms.

- The final factor which must be considered is the ability to resolve events in time.
If the N is too large, then it may be difficult to separate individual vocalizations
which have an inter-click interval of 0.2 — 0.4 s [12]. The selection of N = 1024 allows

complete separation of the short term vocalizations detected in this thesis.

3.1.2 Sinusoidal Candidate Functions

There are two sets of candidate functions which are used as inputs to FOS. The first

set is composed of sinusoidal candidates which have previously been useful in recon-
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structing a variety of time domain signals in noise [19], [21], [20]. These candidates
are provided to the FOS algorithm in pairs, consisting of cosine and sine components
so phase can be estimated. By modifying the weighting for each of the candidates in
the pair, a different phase delay is achieved as seen in Eqns 3.1, 3.2, and 3.3. The
sinusoidal candidates are fitted in pairs by FOS, as opposed to individual candidates

which are each analyzed separately.
A -cos(0) + B -sin(f) = C - cos(6 + o) (3.1)

where A and B are the weights of the candidate pair, « is the resultant phase delay,

given by:
o=-— arctan(z) (3.2)
and C' is the magnitude of the resulting function, given by:
C=vA?+B? (3.3)

Sinusoidal candidate pairs are generated at % the FF'T resolution, giving a spacing
of 11.71875 up to the Nyquist frequency, fy = 48 kHz. Sinusoidal candidates below
5 kHz have been eliminated due to large noise levels and the absence of signals of

interest in this region. The resulting number of sinusoidal candidates used is 7338.

3.1.3 Vocalization Candidates

The vocalization candidates are created based on observed and reported parameters
for frequency range, rate of change of frequency and signal length. Johnson et al
[12] found that Blainville’s Beaked whales use a frequency range of 25 to 80 kHz to
create their most common two sounds, the buzz and the click. With f; = 96 kHz,
and fy = 48 kHz, Theriault et al [32] determined the frequency range is from 20 kHz
to greater than 40 kHz. In Fig 3.1 two sample vocalizations are shown in both the
time and frequency domains. These vocalizations have not been filtered, so the noise
components of the underwater acoustic signal remain.

For these simulations, a slightly lower range was used, 18 to 38 kHz was deemed

an appropriate range based on the observed energy distribution of the PSD in the
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Figure 3.1: Two of the vocalizations from the test signal are shown in both the time and
frequency domains. These vocalizations are extracted from the recorded acoustic signal, so
there is low frequency noise which has not been removed. This is particularly evident in the
frequency domain.

underwater acoustic data. The rate of change for frequency upswept vocalizations, is
between 100 and 130 kHz/s [12] according to Au [33]. The length of the clicks and
buzzes is 104 - 271 us, which at a sampling rate of f, = 96 kHz, gives 9 to 26 samples.
Based on the observed data, this range was lowered, to give a range between 7 and
18 samples.

The vocalization candidates are separated into two types. The first type is a stable
frequency candidate pair. These candidates are windowed using a Gaussian window,

and are created using:

1/2a-(n—no)\2 2 m
Pom(n) = e 3l Grredy? cos(i(n —Ny)) (3.4)

fs

a-(n—ngo 2
Pomsa(n) = e—3EEGERY G 2T Im s (3.5)

8
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where n, is N/2, fn is the frequency of the candidate, N is 1024, « is a constant equal
to 2.5, and m is the number of the candidate. For each frequency used, the clicks range
between n = 7 and n = 18 samples in length. The frequency, f, ranges between 18
kHz and 38 kHz in increments of 2 kHz. The 132 stable frequency candidate pairs are
modeled on the Blainville’s Beaked whale’s buzz. One of the stable frequency pairs
is shown in Fig 3.2. Both time and frequency domain representations are provided.
Comparing the stable candidate with the sample vocalizations shown in Fig 3.1, it

can be seen that they are similar in the frequency domain.
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Figure 3.2: A stable candidate pair are shown in both the time domain, and in the frequency

domain.

The second type of candidate pair are frequency upswept candidates, which use
the same frequency range and sample length as the stable frequency candidate pairs.

They also have a frequency modulation rate which varies between 100 and 130 kHz/ms
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in increments of 2 kHz/ms. The frequency upswept candidate pairs are given by:

Pam(n) = e 3CZF" . cos(0((n — n,))) (3.6)
Prmir(n) = e 35D sin(0((n - n,)) (3.7)

where n, is N/2, m is the number of the candidate and ©(n) is the phase at sample

n, given by:
0 ; n=>0
O(n) = { On—1)+ —QWZ(n) ; otherwise (3.8)
where f;(n) is the instantaneous frequency at the sample n given by:
filn) = fo+uvn(n)-n (3.9)

where f, is the starting frequency, and v,,(n) is the frequency modulation rate.

For each different frequency modulation rate, and for each length n, the starting
frequency is varied from 18 kHz in increments of the frequency modulation rate, until
the starting frequency is high enough such that the end frequency is 38 kHz. The 1135
frequency upswept candidate pairs are modeled on Blainville’s beaked whale clicks.
One of the upswept frequency pairs is shown in Fig 3.3. Both time and frequency
domain representations are provided. Comparing the frequency upswept candidates
with the sample vocalizations shown in Fig 3.1, it can be seen that they are similar
in the frequency domain, although this particular candidate pair has a slightly higher
frequency range than the vocalization samples.

These parameters create a set of vocalization candidates that contains 1267 can-

didate pairs, or 2534 candidates.

3.1.4 Normalize Candidates

Each candidate is normalized to have unit energy. Candidate normalization is per-
formed so that FOS is not biased when determining the energy @ as per Eqn 2.9,
because bias may occur when a candidate has significantly more energy than the other
candidates. Bias may be caused due to numerical precision issues between candidates
with large energy and candidates with small energy. In this case, candidates with

larger energy will be favoured.
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Figure 3.3: A frequency upswept candidate pair are shown in both the time domain, and in the
frequency domain.

The first step to achieving normalization is to determine the mean of the candi-

dates. The mean, 7, is determined using [34]:

L3 yin) (3.10)

where N is the number of samples in y. The candidates are then level-shifted to
achieve zero-mean, Yo, using [34]:

Yom(n) =y(n) =7 (3.11)

Once the candidates are level-shifted using Eqns 3.10 and 3.11 the result is divided

by the standard deviation (STD) of y(n) resulting in a normalized candidate, Ynorm,

using [34]:
Yom\ T
(3.12)

ynorm(n) = ~ ( )
\/% n;(y(n) - 7)?
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For the vocalization candidates, normalization is done so that only actual vo-
calization values are changed, not the zero-padded values. This is accomplished by
calculating the mean, 7, over the entire length of the click (after zero-padding), and
applying Eqns 3.11, and 3.12 to the candidate prior to zero-padding. Thus for yo,
and Ynorm, the values which are modified ranges from 1 to the length of the click, M
rather than to N. The normalization must be performed in this manner so that the

candidate, once zero-padded, has unit energy.

3.1.5 Cross-correlate Vocalization Candidates

When the signal is segmented, it is possible that a vocalization could start at any
sample within a given segment as seen in Fig 3.4. The vocalization candidates range
in length from 7 to 18 samples. They are zero-padded to create a candidate which
is NV, or 1024, samples in length. It is desirable that the vocalization candidate be
aligned in time with the vocalization in the signal segment.

In order to achieve a good correlation between the vocalization candidates and a
signal segment which contains a vocalization, a cross correlation between the two is
done. For each candidate, the cross-correlation is performed for each integral sample
time delay. The cross-correlation, R,,(m) is found by [26]:

N—m-1

1
Rye(m) =% D Ynimay; m 20 (3.13)
n=0

where NV is the length of the signal segment, m is the delay under consideration, y
is the signal segment, and z is the vocalization candidate. Since the vocalization
candidate is a real signal, it is equal to its complex conjugate, z*. The maximum
correlation for each candidate is then selected. It is sufficient to select the maximum
correlation for each candidate, rather than to look for multiple maxima, because the
segment length is smaller than the inter-click interval for the vocalizations of interest

as discussed in Section 3.1.1.
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Figure 3.4: The first images shows a segment of the input signal with a vocalization approxi-
mately two fifths of the way into the signal. The second image shows a vocalization candidate
which has been zero-padded. The third image shows the time-delayed vocalization candidate at
the time-delay which will give the best cross-correlation.

3.1.6 Fast Orthogonal Search Operating Parameters

The FOS algorithm has a number of parameters which can be set to change the
characteristics of the model expansion it determines for a given input signal. These
include allowing candidates to be fit either individually or as part of a group, the
inclusion of a direct current (DC) term as the first term fit, a D(m,m) threshold, and
a set of exit criteria. The exit criteria include a MSE threshold, a maximum number
of terms to be fit, and a threshold for the correlation coeflicient between the residual
energy in the signal and the energy in the new term.

The FOS algorithm implemented for this thesis fits the candidates in groups.
Some of the candidates are fitted by FOS in pairs, while other candidates are fitted

individually. The number of terms in the group, ngreup is used to ensure that each
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candidate or pair of candidates is treated similarly. When checking each of the exit
conditions, consideration is given to how many candidates are included in the group
fit. Candidate groups are based on an index which is sent in to the FOS algorithm
ordering the candidate terms as either individual candidates, or as members of a
group.

Since neither the time domain nor the frequency domain algorithm includes a
level-shifting step, a DC' value is force-fit for this algorithm. This effectively adds a
level-shift, while providing the amount by which each segment is shifted as a weighted
output of the FOS algorithm.

A D(m,m) threshold is set so that, when division by D(m,m) is performed,
numerical precision errors are not magnified by a very small value in the denominator
[18]. This threshold is set as a safeguard against including candidates which are highly
correlated to each other. It is set to 0.05.

The first exit condition for the FOS algorithm is an MSE threshold. The MSE
threshold measures the percentage of the initial MSE, M SFE;,;;, which is removed
by fitting a candidate set. For this application, the percentage of the initial MSE of
the segment fit by a given candidate set should not eli‘minate the candidate set from

consideration, therefore the MSE threshold, 7ys55 is set to 0 as given in Eqn 3.14.

% < TmsE =0 (3.14)
where M SE,.,, is the the MSE remaining after fitting the candidate set in question.
This threshold condition may only be met due to numerical precision errors when
dealing with very small MSEy; and MSFE,ey, values, resulting in a M SEy; greater
than the remaining MSE.

The maximum number of candidates is another criteria by which the FOS algo-
rithm can terminate the process of adding terms to the functional expansion. It was
found, in testing experimental data, that FOS typically modeled fewer than 20 model
terms per segment. Thus, the maximum number of terms to add was set to 20.

This value is set as low as possible without impacting the normal results. However,

if there is a segment of a signal which is not well represented by the candidates
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provided, this segment will not be able to fit terms until all of the terms have been
fit, in an attempt to model the signal. This case may occur when there the data
are corrupted, or when there are high energy disturbances. Attempting to model
these cases would reduce the CR as well as increasing the processing time required
to prepare the data for transmission without providing additional useful information
about the presence of marine mammals in the vicinity of the recording platform.

The threshold based on the STD of WGN measures the correlation between the
the candidate group under consideration and the residual in the signal. If it is less
than the 95th percentile of the standard normal distribution, which for large N is 1.96,
then the reduction in MSE is considered to be less than the amount of reduction in
MSE that would be attained by adding a AWGN candidate to the model expansion.
Using the normal distribution [35], the threshold is given by:

Qrit < TWGN = Ngroup * 1—9]\—?-2- *MSE,em (3.15)
where Qf;; is the energy fit by the candidate group, ngyeyp is the number of candidates
in the candidate group, and M SE,.,, is the amount of MSE remaining between the
input function, and the current functional expansion. If this threshold is not met,
the candidate group is not fit and the FOS algorithm will exit as the functional
expansion will be considered complete. If the candidate groups are chosen correctly,
at this point all that is left of the signal will be noise. Since this thesis is not concerned
with faithfully reconstructing the noise, the energy remaining can be ignored. This
is the exit condition on which the FOS algorithm usually exits for the simulations

performed.

3.1.7 Quantization

There are three different variables which must be transmitted to the receiver station
in order to reconstruct the signal. These include: the candidate number for each of
the candidates selected; the weight of each candidate selected; and the delay for the

vocalization candidates.
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The candidate number is an integer which can vary from 1 to the number of
candidates. There are 7338 sinusoidal and 2534 vocalization candidates, creating a
candidate set of 9872 candidates, which can be represented in binary using 14 bits.

The delay value only needs to be sent for the vocalization candidates, which are the
candidates with candidate numbers above 7338. The delay values can vary between
0 and 1023, giving 1024 points, which can be represented in binary using 10 bits.
The weight of the terms chosen is calculated in IEEE double precision, however, since
this requires 64 bits, quantization was performed. The precision is reduced to IEEE
Float16 precision, requiring 16 bits. The samples collected from the original signal
use 16-bit signed integers.

To calculate the compression ratio, which was previously described as the original
size of the data divided by the compressed size of the data, the following formula is

used:

Nsamples x 16 bits

CR =
Nierms X 14 bits + Ngerays X 10 bits + Nyeighes X 16 bits

(3.16)

where Niepms is the number of terms selected, Ngeiqys is the number of delays transmit-
ted, Nyeights is the number of weights transmitted and Ngyppies is how many samples

were collected in the original signal.

3.1.8 Reconstruction

Reconstruction is completed by multiplying the terms chosen, p,,, by the weight

transmitted, a,,, as shown in Eqn 3.17. the reconstructed segment, Y4, is given by:

yseg(n) = Z_ ampm(n) (317)

For the vocalization candidates, a delay is also transmitted, and is applied to the
term chosen, p,,. Each segment is reconstructed separately and the reconstructed

segments are then concatenated to form the received signal.
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3.1.9 Detection

Whale vocalization detections are determined, by sending the received signal through
the DRDC Atlantic detection algorithm [30]. The detection statistics for the recon-

structed signal are compared to the detection statistics for the recorded signal.

3.2 Frequency Domain Algorithm

The frequency domain algorithm takes the recorded data and segments them. Each
segment is then level-shifted. Once the segments are zero-mean, the DCT is per-
formed separately on each one. The DCT coeflicients are then quantized and irregu-
larly sampled. Sampling is based on the probability of a given DCT candidate having
a coeflicient which is significant after quantization. For instance, DCT coefficients
which are typically quantized to zero would be masked in the sampling pattern. The
quantized, sampled data are then transmitted. Reconstruction using FOS may be
performed at the receiver station with knowledge of the sampling pattern used. The
candidates selected for FOS are chosen based on the characteristics of the underwa-
ter acoustic signal in the frequency domain. Finally, the detection statistics of the

reconstructed signal are compared to the detection statistics of the recorded signal.

3.2.1 Signal Segmentation

Signal segmentation is completed in the same fashion, and for the same reasons as the
signal segmentation in the time domain algorithm. A segment length of N = 1024 is

used.

3.2.2 Domain Transformation

The signal is transformed into the frequency domain from the time domain using Eqn
2.12. Since the time domain signal is a real signal, the transformed signal, X(f),
will also be real. The result, is that both phase and magnitude information are
contained within the real signal, and the reverse transformation can be completed

without any additional information. The energy is distributed through the DCT
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candidates in a predictable pattern. Fig 3.5 shows the distribution for a segment of
underwater acoustic data which does not contain any marine mammal vocalizations.
The coefficients of each DCT candidate vary between successive signal segments,
however, the general distribution remains consistent. Each of the marine mammal
vocalizations adds energy to a region of the DCT candidates. For instance, Blainville’s
Beaked whale buzzes add energy between the 400th and 800th DCT candidates for
a 1024 point DCT. Knowledge of the general distribution pattern as well as which
candidates are affected by the marine mammal vocalizations of interest is used to

determine a sampling pattern.

Figure 3.5: A typical distribution of the coefficients for a segment of underwater acoustic data.
The first coefficients hold more information than the remainder of the coefficients, although
there are regions where there is more information than others as seen by the larger amplitude
in these regions.
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3.2.3 Quantization

Only the DCT coefficients must be transmitted to the receiver station for signal
reconstruction when using the frequency domain algorithm as the sampling pattern
is known a priori. Since the level shift and DCT are computed using double precision
numbers, and double precision is not required for reconstruction of the signal, the
precision is reduced to IEEE Float16 precision. This requires 16 bits rather than 64
bits. Quantization of the DCT coeflicients reduces the number of bits required to
represent each DCT coefficient.

The compression ratio is calculated using:

Nampies % 16 bits

CR =
NDCTCoeffs x 16 bits

(3.18)

where Nggmpies 18 the length of the original signal and Npcorcoesss is the number of

DCT coefficients transmitted.

3.2.4 Sampling Pattern

The sampling pattern determines which coefficients will be transmitted and which
coefficients will be dropped. For irregular sampling, an appropriate pattern must be
selected so that the marine mammal vocalizations are retained. The sampling is done
in the frequency domain so that individual vocalizations, which can be as short as 7
samples long, are not missed by removing too many adjacent samples. Furthermore,
there is a section of the frequency band which is known to contain solely noise.
The DCT coefficients corresponding to this section will be entirely removed by the
sampling pattern.

To determine whether or not to retain the remaining DCT coefficients, a training
set of underwater acoustic data was used. The DCT was taken on each segment
of this training set. DCT coeflicients below a threshold were zeroed. A histogram
of the number of times a given candidate was used over the course of the signal
was computed. The coefficients with the smallest occurrence in the histogram were

masked in the sampling pattern.
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Segments which hold marine mammal vocalizations, and DCT coefficients which
are used often in these segments, were chosen in the sampling pattern regardless of
their rate of occurrence in the remainder of the training set.

The distribution of the sampling pattern is shown in Fig 3.6.

Figure 3.6: A histogram of the number of spaces between samples for the sampling pattern used
by the frequency algorithm.

3.2.5 lrregularly Sample

The signal segments are each sampled using the sampling pattern. During recon-
struction, the FOS candidates are sampled using the same sampling pattern which is

known by both the AUV platform and the receiving station a priori.
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3.2.6 Discrete Cosine Transform Candidate Functions

As in the time domain, there are two sets of candidates which are used as inputs to
FOS. The first set is composed of DCT candidate functions. These candidates are
sent into FOS individually. The DCT candidate functions are generated similarly
to the sinusoidal candidates in the time domain. They are generated at % the FFT
resolution up to the Nyquist frequency, fy, which is % the sampling frequency, fs or
fyv = 48 kHz. Candidates below 5.4 kHz have been eliminated because there is a
large amount of noise and no signals of interest in this frequency range.

Sinusoidal candidate functions are created in the time domain and the the DCT
of these time domain functions is taken to create the frequency domain candidate

functions. 3635 DCT candidates are created.

3.2.7 Vocalization Candidates

The vocalization candidates are based on the energy distribution seen in the test
signal for the DCT of signal segments which contain marine mammal vocalizations.
In Fig 3.7 the segments containing two of the vocalizations are shown as they look
after the DCT is applied, upper images, and after the FFT is applied, lower images.
The energy caused by noise and by the platform have not been removed.

The DCT candidates are sinusoidal pairs, which are windowed using a rectangular
window. The vocalization candidates are given by:

27 fe

S

2n f..
fs

Pm(n) = II(n) - cos( n) (3.19)

Pm+1(n) = II(n) - sin( n) (3.20)

where II(n) is given by:

1 5 200 <n <400

M(n) = { 0 ; otherwise (3.21)

and where n = 400, which is the length in terms of frequency bins, of the marine
mammal vocalizations, and f. is the frequency of the candidate pair. The frequency,

fe, ranges between 20 kHz and 40 kHz in increments of 2 kHz. The vocalization
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Figure 3.7: Two of the segments containing vocalizations from the test signal are shown in both
the DCT and frequency domains. These vocalizations are extracted from the recorded acoustic
signal, so there is low frequency noise which has not been removed. The energy of interest has
been circled.

candidates are zero-padded to length N by adding 400 zeros prior to the candidate,
and 224 zeros after the candidate. They are then normalized in the same manner
as the time domain vocalization candidates. This ensures the energy of the vocaliza-
tion candidates does not spread beyond the frequency range of the marine mammal
vocalizations studied.

There are a total of 22 vocalization candidates used by the frequency domain

algorithm.

3.2.8 Normalize Candidates

As in the time-domain algorithm, each candidate is normalized to have unit energy.

The vocalization candidates are normalized using the same modifications as the time
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Figure 3.8: The vocalizations from Fig 3.7 are shown in red. They are overlaid by a DCT
candidate pair which is shown in blue in both the DCT and FFT domains.

domain vocalization candidates. This eliminates the possibility of adding energy

outside the frequency range of interest for the frequency band-limited candidates.

3.2.9 Reconstruction

The DCT term coefficients are received, and the DCT terms are known. The FOS
candidates are subjected to the same irregular sampling that was applied to the
DCT coefficients prior to transmission. The sampled coefficients, and the sampled
candidates are input to FOS. Once the model terms are chosen, reconstruction is
performed by applying the weights to the unsampled candidates using Eqn 3.17. The
resulting signal is then subjected to the IDCT.
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3.2.10 Fast Orthogonal Search Operating Parameters

The FOS algorithm used by the frequency domain compression algorithm is the same
as the FOS algorithm used by the time domain compression algorithm. The D(m, m)
threshold, MSE threshold, and threshold for the correlation coefficient between the
residual energy in the signal and the energy in the new term remain the same as in
Section 3.1.6. The maximum number of terms to be fit is increased to 25. In the
frequency domain algoriﬁhm, the number of candidates is the stopping criteria which

is most often chosen.

3.2.11 Detection

The reconstructed signal is transformed into the time domain. This time domain
signal is used in the DRDC Atlantic detection algorithm [30]. The detection statistics
for the reconstructed signal are compared with the detection statistics for the original

signal.



Chapter 4

Performance Metrics

The performance metrics used to evaluate the time domain and frequency domain
compression algorithms are derived in this chapter. These tools assist in evaluating
how the reconstructed signal compares with the original signal in terms of detection

of the marine mammal vocalizations present. The performance metrics include:

e probability of detection;
e receiver operating characteristic curve; and

e significance testing.

The parameters used in the application of the detection algorithm are also defined

in this chapter.

4.1 Probability of Detection

The probability of detection for each vocalization as the detection threshold changes
will give an indication of an appropriate threshold, 7; to select for use in the second
stage of the detection algorithm. This curve shows the thresholds at which the individ-
ual vocalizations cease to be detected. Differences between the detection capabilities
of the signals compressed with the time domain and frequency domain algorithm and
the original signal are also highlighted in a probability of detection curve. Since false
alarms can be reduced by raising the detection threshold, it is desirable to maintain
a high probability of detection as the threshold increases. Ideally the probability
of detection would remain at 1 until the threshold has been raised high enough to

eliminate false alarms.

44
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4.2 Receiver Operating Characteristic Curve

The receiver operating characteristic (ROC) curve plots the probability of detection
versus 1 - (the probability of false alarm) as the threshold of the detection algorithm
is varied. The area under the ROC curve measures the probability that a correct
identification will be achieved using the detection algorithm and associated detection
parameters. By comparing the area under the ROC curve for the original and recon-
structed signals, it is possible to evaluate how the compression algorithm affected the
signal in terms of detection. The area under the ROC curve should be as close to 1

as possible for best results, with an area of 0.5 being a totally random predictor [36].

4.3 Significance Results

The significance results are measures of the quality of the results. There are a number
of different significance results measuring everything from the standard deviation
on the ROC curve to the accuracy. For the significance results, it is important
that the results be independent. To ensure independence, no overlapping of the
windowed segments is performed when using the DRDC Atlantic detection algorithm.
Furthermore, a single value for the thresholds, 7 and 7, is used to calculate the
significance results. These values have been provided by DRDC and are discussed in

Section 4.4.

4.3.1 Standard Error

The standard error is a measure of STD. It can be used to calculate the error
associated with the area under the ROC curve. The standard error, when applied
to the area under the ROC curve will give the statistical significance of the results.

Standard error, SE(A), is calculated using [36]:

ToyTly

SE(4) = \/A(l —A) (= DO A + (D@24
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where A is the area under the ROC curve, n, is the number of vocalizations, n,, is
the number of non-vocalizations, and @1, and Q)2 are given by [36]:

A

A2
Q2= 12+ v (4.3)

This measure is used to calculate how many standard deviations from the area
under the ROC curve would be required to get an area of 0.5. The more standard
deviations required, the more likely the results are significant. The number of STDs,

nsrp is calculated using:

nsTo = —op (4.4)

4.3.2 Curve Comparison

The ROC of the original signal can be compared to the ROCs of the reconstructed
data from both the time domain and frequency domain algorithms. The standard

error of the difference between the two areas, SE(Al — A2), is calculated using [37]:

SE(A1 — A2) = \/SE2(Al) + SE?(A2) — 2rSE(A1)SE(A2) (4.5)

where SE(A1) is the standard error of the area under the first ROC curve, SE(A2)
is the standard error of the area under the second ROC curve and r is the correlation
between the curves caused by the fact that they are derived from the same set of
data. The term 7 is derived from a look-up table produced by Hanley and McNeil

using Ag, and 7,4, [37]. Ay is the average area under the two curves. It is given by:

Al + A2
Ay =222 (4.6)
2
The term r,, is an average of two r terms. rg, is given by:
LA (4.7)

The first of these terms, r, is a measure of the state without marine mammal vocal-

izations. It is given by:

= (nBothTN + nB;LthFP) - (nDiff) (4.8)
mn
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where npynrnv is the number of segments where both the original and reconstructed
signal have true negative detection states, npynrp is the number of segments where
both the original and reconstructed signal have false positive detection states, and
npifs is the number of segments where one has a false positive and the other has a
true negative detection state. The second term, r,, is a measure of the state with

marine mammal vocalizations. It is given by:

(nBothrr + nBZhFN) — (nDiff ) (4.9)

ry =

where npyrp is the number of segments where both the original and reconstructed
signal have true positive detection states, npg.nry i the number of segments where
both the original and reconstructed signal have false negative detection states, and
npigs is the number of segments where one has a false negative and the other has a
true positive detection state.

Knowing the standard error of the difference between the two curves, z, measures

how many STDs there are between the two curves. z is calculated using [37]:

Al — A2

* = SE(AL - A2)

(4.10)

4.3.3 Prediction Results
There are four states which the results of a prediction may fall into. They are:

e false positive (FP): the number of segments incorrectly identified as containing

marine mammal vocalizations;

e true positive (TP): the number of segments containing marine mammal vocal-

izations which are detected;

e true negative (TN): the number of segments correctly identified as not contain-

ing marine mammal vocalizations; and

e false negative (FN): the number of segments containing marine mammal vocal-

izations which are not detected.
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These four states can be used to determine the accuracy, positive predictive value
(PPV), negative predictive value (NPV), sensitivity, specificity and phi coefficient of
association. In graphical format they they are given by Fig 4.1

-
01
=3
2| 1|FP| TP |PPY
z
S 10| TN [ FN |NPY
= =
5|z
s | %
Q c
o a
53] [12]

Figure 4.1: The states are given as they pertain to the actual an predicted value. The direc-
tionality of PPV, NPV, sensitivity and specificity are also given.

4.3.4 Accuracy

Accuracy is a measure of the percentage of the data which are correctly assigned, as
in the number of correct detections or correct non-detections out of the total number

of sets. It is given by [38]:

TP+TN
TP+ FP+TN+FN

Accuracy = (4.11)

When the numbers of TN and TP are very different, the accuracy can be skewed.
Since there are 11379 segments without vocalizations and only 21 segments with
vocalizations in the test signal, the ability to determine the TN values will have a
greater impact on the accuracy than the ability to determine the TP values. In
order to provide a measure of accuracy which gives equal weighting to segments seg-
ments containing vocalizations and those without vocalizations, a modified accuracy

measure is introduced. The modified accuracy, accuracymqq, is given by:

TP TN
(TP + FN) ' 2(TN + FP)

Accuracymeq = 4.12
Y
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4.3.5 Positive Predictive Value

The PPV is the measure of the probability that there is a marine mammal vocalization

given that the result of the test is positive. It is given by [38]:

TP

PPV = 55 Fp

(4.13)

4.3.6 Negative Predictive Value

The NPV is the measure of the probability that there is no vocalization given that

the results of the test is negative. It is given by [38]:

TN

NPV = TN T FN

(4.14)

4.3.7 Sensitivity

The sensitivity is the measure of the ability of the detection algorithm to correctly

detect occurrences of marine mammal vocalizations. It is given by:

TP

—_— 4.
TP+ FN (415)

Sensitivity =

4.3.8 Specificity

The specificity is the measure of the ability of the detection algorithm to correctly

detect non-occurrences of marine mammal vocalizations. It is given by:

TN

—_— 4.1
TN+ FP (4.16)

Specificity =

4.3.9 Phi Coefficient of Association

The Phi test measures how much association there is between two binary variables, in
this case, it is the association between a vocalization segment and a segment without

a vocalization. It is given by:
b= TPxTN —-FPxFN (4.17)
V(FP+TP)x (TN +FN) x (FP+TN) x (TP +FN) '

This value may vary from —1 to 1 where strong values of ® are higher than 0.61,

between 0.31 and 0.6 is moderate, and anything lower than 0.3 is weak [38].
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4.4 Detection Algorithm Parameters

There are a number of parameters which must be set in the DRDC Atlantic detection
algorithm. These parameters are set as advised by the scientists at DRDC Atlantic.
The windowing length, wyy is set to 128. The length of the signal time window, w;,
is set to 1. The length of the the noise time window, w,, is set to 313. The frequency
bandwidth over which the signal and noise levels are summed ranges from fi,,, = 17
kHz to frign = 35 kHz. For the guard band, the frequency range is fG By, = 10 kHz
to fGBhigh = 17 kHz. Finally, the first detection threshold, 7y is set to 4, and the

second detection threshold, 7, is set to 3.



Chapter 5

Results

Trial data containing Blainville’s beaked whale vocalizations were provided by DRDC
Atlantic. The signal of interest is a 15 second acoustic recording of Blainville’s Beaked
whales collected in the Alboran Sea in June of 2008, off the coast of Spain as seen in

Fig 5.1. The candidates are based primarily on this data set.

Figure 5.1: A set of buzzes are shown as horizontal lines of increased intensity across the
frequency range 20 to 40 kHz. A whale song is visible in the 5 to 15 kHz range, shown as a
series of high intensity regions varying in both time and frequency between the 2nd and 3rd
vertical lines. The vertical lines are caused by the recording platform.

There are 20 Blainville’s Beaked whale vocalizations present in this sample, spread

across 21 signal segments. These were determined visually in both the time and

ol
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frequency domains. Vocalizations were separated from platform transients, which
cause an increase in energy across the entire frequency range. An example of a buzz
can be seen in Fig 5.2. The buzz looks like a short duration burst of energy in the

time domain. In the frequency domain, the buzz is shown as a wide band of energy.

R S S

Figure 5.2: A Blainville's Beaked whale buzz is shown in both the time and frequency domains.
The buzz has a larger amplitude than the surrounding noise in the time domain view, and causes
an increase in energy in across the frequency range 20-40 kHz in the frequency domain view.

Platform transient signals may resemble long burst of buzzes, or they may resemble
noise with higher than average energy. An example of a platform transient can be seen
in Fig 5.3. In the frequency domain there is an increase in energy across the entire
spectrum, not just the frequency range of 20 — 40 kHz. This property is exploited
by the detection algorithm in its second stage to reduce the number of false alarms

detected.
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NETAR R R,

Figure 5.3: A transient signal is shown in both the time and frequency domains. The transient
signal also has a larger amplitude than the surrounding noise in the time domain view, although
it lasts longer. In the frequency domain view, there is an increase in energy across the entire
spectrum.

5.1 Time Domain and Frequency Domain Results

As can be seen in Fig 5.4 the time domain algorithm resulted in a signal which
had a visible reduction in noise in the LOFARgram. The Blainville’s Beaked whale
vocalizations remain visible, as do the transient signals generated by the platform.
The whale song is partially visible, and the low-frequency noise has been almost
completely eliminated.

As shown in Fig 5.5 the frequency domain algorithm resulted in a visible reduction
in noise on the LOFARgram. The Blainville’s Beaked whale vocalizations remain
visible, as does the energy bursts caused by the platform, although these are no longer
easily distinguishable from vocalizations. The whale song is completely visible, and

the low-frequency noise has been significantly reduced.
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Figure 5.4: The set of buzzes can still be seen, shown as horizontal lines of increased intensity
across the frequency range 20 to 40 kHz. Also, a whale song is partially visible in the 5 to 15
kHz range. The energy from the recording platform remains visible, while the remaining energy
has been eliminated.

5.2 Analysis

Both algorithms provide a significant gain in terms of speed of transmission due to
the CRs achieved. However, the frequency domain compressed signal has poorer
detection than the original and time domain compressed signals. The number of false
alarms is not reduced enough to provide adequate PPV. Due to the relatively low
number of segments which contain vocalizations compared to the number of segments
which do not contain vocalizations, any increase in the percentage of false alarms for
the same percentage of detections causes a significant decrease in the PPV as well as
the Phi coeflicient of association.

A summary of the results for the signal of interest, using the detection algorithm
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Figure 5.5: The set of buzzes can still be seen, shown as horizontal lines of increased intensity
across the frequency range 20 to 40 kHz. Also, a whale song is completely visible in the 5 to 15
kHz range. The energy from the recording platform remains partially visible, while the remaining
energy has been reduced at the sampled frequencies.

parameters provided by DRDC is provided in Table 5.1.

5.3 Compression Ratio

There is no compression applied to the original signal. The CR, from Eqn 3.16, of the
signal after compression by the time domain algorithm is 93.0597. This was accom-
plished using IEEE Float16 notation to transmit the FOS coefficients, and integer
representation of the delay values and candidate term numbers. This CR means that
a b minute data capture, which would previously have taken 100 minutes to transmit,
can now be transmitted in 64.5 seconds. The CR of the signal after compression by
the frequency domain algorithm is 5.5652. This was accomplished using IEEE Float16

notation to transmit the DCT coefficients remaining after irregular sampling. This
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Freq D

CR 1 93.06 |5.5652

# Segments w Voc 21 21 21
ROC Stage 1] 0.8012 [ 0.8125 | 0.8551
ROC Stage 2| 0.8331 [ 0.8092 | 0.7555
SE 0.0549 | 0.0574 | 0.0616
STD from ROC=0.5 6.3868 | 4.1477

Signal Original [ Time D

SE between Curves .0196 | 0.0355

STD between Curves 11.2939 | 2.1875
TP 12 12 11
FN 9 9 10
TN 11376 | 11379 | 11315
FP 3 0 64

Accuracy 0.9989 | 0.9992 | 0.9935
Mod Accuracy 0.7856 | 0.7857 | D.7691

PPV 0.8 1 0.1467
NPY 0.9992 | 0.9982 | 0.9991

Sensitivity 0.5714 [ 05714 | 0.5238

Specificity 0.9997 1 0.9944
Phi 0.68 076 | 0.27

Table 5.1: A comparison of the evaluation criteria results for the original signal, and the signals
reconstructed after the application of the time and frequency domain algorithms respectively
using the detection algorithm parameters provided by DRDC Atlantic.

CR indicates that a 5 minute data capture, which would previously have taken 100
minutes to transmit, can now be transmitted in 17 minutes and 58 seconds. Both
algorithms provide significant significant savings in terms of transmission time over
the original signal. The time domain algorithm also provides significant transmission

time savings over the frequency domain algorithm.

5.4 Probability of Detection

Fig 5.6 shows the probability of detection of the 21 vocalizations as the detection
threshold, 71, is increased. The threshold at which each vocalization ceases to be
detected causes a decrease in the probability of detection at the given detection
threshold. The probability of detection for the original signal and for the signal

compressed using the time domain algorithm are shown in Fig 5.6. The two curves
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cross at 4 = 1 and again at 7y = 7.8. Prior to 7y = 1, the time domain compressed
signal has a better probability of detection than the original signal. Between the two
thresholds, the original signal has a better probability of detection, and after the sec-
ond threshold, 7y = 7.8, the time domain compressed signal once again has a better
probability of detection. At the threshold at which the probability of detection of
the original signal is reduced to 0, the probability of detection of the time domain
compressed signal remains at 0.33. The threshold chosen will depend on the relative
importance of accurate detections with respect to accurate classification of segments
without vocalizations. The threshold used by DRDC Atlantic is 4. At this threshold,
the original signal has a higher probability of detection which is 0.6667, than the time
domain compressed signal which is 0.619. However for the time compressed signal,
the values of TP, TN, PPV, NPV, and phi (the coefficient of association or Matthews’
correlation coefficient) still equaled or exceeded those for the original signal, as shown
in Table 5.1.

The probability of detection for the original signal and for the signal compressed
using the frequency domain algorithm are shown in Fig 5.7. The two curves cross at
71 = 0.5 and again at 7, = 1.9. Prior to 7y = 0.5, the original signal has a better
probability of detection than the frequency domain compressed signal. Between the
two thresholds, the frequency domain compressed signal has a better probability of
detection than the original signal, and after the second threshold, 7y = 1.9, the
original signal once again has a better probability of detection. The probability of
detection for the frequency domain compressed signal is reduced to 0 at 7, = 19.6.
At this threshold, the probability of detection for the original signal is 0.33, and the
probability of detection of the time domain compressed signal is 0.52. The threshold
used by DRDC Atlantic is 4. At this threshold, the original signal has a higher
probability of detection which is 0.6667 than the frequency domain compressed signal
which is 0.5238.
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~— Qriginal
«=«~-«- Time Domain

Figure 5.6: A comparison of the probability of detection for the vocalizations in the original
signal and the time domain compressed signal. At the DRDC supplied threshold 71 = 4, the
original signal has a higher probability of detection than the time domain compressed signal.

5.5 Receiver Operating Characteristic Curve

The area under the ROC curve for the original signal after the first stage of detection
is 0.8012. From the ROC curve produced by the first stage of the detection algorithm,
a threshold, 71, of 4 was selected as the basis for the second stage of the detection
algorithm. This value was provided as a value typically used by DRDC. After the
second stage of detection the area under the ROC curve improves to 0.8331 since the
false alarm rate for a given detection level is reduced for the second stage as compared
to the first stage. The ROC curves for the original signal are provided in Fig 5.8.
The area under the ROC curve for the time-domain compressed signal is 0.8125
after the first stage and 0.8092 after the second stage. Compared to the original
signal, the area under the ROC curve has improved slightly after the first stage of
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Figure 5.7: A comparison of the probability of detection for the vocalizations in the original
signal and the frequency domain compressed signal. At the DRDC supplied threshold 7 = 4,
the original signal has a higher probability of detection than the frequency domain compressed
signal.

detection, but has decreased after the second stage of detection. This indicates that
the detection algorithm, given the parameters used, is a better test for the original
signal. The ROC curves for the signal subjected to the time domain algorithm are
provided in Fig 5.9.

In examining Figs 5.8, and 5.9, it is evident that the first stage of detection for the
original signal has a slightly higher probability of detection at a very low probability
of false alarm than the time domain compressed signal. However, the point at which
the probability of detection reaches 1 for the time domain compressed signal is at a
much lower probability of false alarm than for the original signal. Knowing that there
are two vocalizations which are not detected in the time domain compressed signal,

it is probable that an improvement in the modeling of the vocalization candidates
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ROC, = 0.80119

ROC, =0.83314

Figure 5.8: The area under the ROC curve measures the ability of the detection algorithm to
correctly identify the state of having a marine mammal vocalization or not having a marine
mammal vocalization. The blue curve shows the results after stage 1 of the DRDC Atlantic
detection algorithm, and the red curve shows the results after stage 2 for the original signal.

would improve the area under the ROC curve for the time domain compressed signal.
This may be as simple as providing a larger subset of vocalization candidates from
the candidates developed.

The area under the ROC curve for the frequency domain compressed signal is
0.8951 after the first stage and 0.7555 after the second stage. Compared to the original
signal, the area under the ROC curve has improved significantly after the first stage
of detection, but has decreased significantly after the second stage of detection. This
indicates that the detection algorithm, given the parameters used, is a better test for
the original signal. The ROC curves for the signal subjected to the frequency domain
algorithm are provided in Fig 5.10.

In examining Figs 5.8, and 5.10, it is evident that the first stage of detection for the
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ROC, =0.81245

ROC, =0.80913

Figure 5.9: The ROC curves for the signal subjected to the time domain compression algorithm
are similar to those of the original signal. The results after the first stage are better than the
original signal, but after the second stage they are worse.

original signal has a higher probability of detection at a very low probability of false
alarm than the time domain compressed signal. However, the probability of detection
increases more steadily as the probability of false alarm is increased. The probability
of false alarm at which the probability of detection reaches 1 is lower than for the
original signal. Improvement in the second stage of the detection algorithm could
be achieved by selecting a different threshold, however, the frequency domain algo-
rithm would also benefit from modeling of the platform transient signals. Through
examination of the LOFARgrams, it can be noted that the transient signals are mod-
eled using vocalization candidates. The DCT coefficients selected do not adequately
show the platform transient energy upon reconstruction, removing the energy in the
guard band frequencies. This reduces the ability of the DRDC detection algorithm

to differentiate between a true vocalization and a transient. Another possibility to
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ROC, = 0.82511

ROC, = 0.75547

Figure 5.10: The area under the first stage of the ROC curve has improved significantly for
the signal which has been compressed with the frequency domain compression algorithm as
compared to the original signal. However, the area under the second stage of the ROC curve
has deteriorated. In this case, the second stage of detection is actually detrimental to the
detection of vocalizations in the reconstructed signal.

improve this defect would be to use Huffman coding rather than irregular sampling.
This would keep the energy in the guard bands. This option is discussed in Section

6.2.4.

5.6 Significance Results

The value of 7 was set to 4, while 7, was set to 3 as specified by the scientists at
DRDC. The significance results are calculated using the number of TP, FP, TN and
FN resulting from running the detection algorithm at these thresholds. The values

of TP, FP, TN and FN for each signal are given in Table 5.1
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5.6.1 Standard Error

The standard error of the ROC of the original signal is 0.0549 for an area of 0.8331,
meaning that 6.0674 standard deviations are required for the area under the ROC
curve to equal 0.5. On a normally distributed curve, 99.994% of all data is within 4
STD of the mean. This standard error result is highly significant.

The standard error of the ROC curve for the signal compressed using the time
domain algorithm is 0.0574 for an area of 0.8092, meaning that 5.3868 standard
deviations are required for the area under the ROC curve to actually be 0.5. This is
slightly worse than for the original signal, although both are highly significant.

The standard error of the ROC curve of the signal compressed using the frequency
domain algorithm is 0.0616 for an area of 0.7555, meaning that 4.1477 standard
deviations are required for the area under the ROC curve to equal 0.5. This is
worse than for the original and time domain compressed signals, although still highly

significant.

5.6.2 Curve Comparison

The standard error between the ROC curves of the original signal and the time-
domain compressed signal after the second stage of the detection algorithm is 0.0196.
As a result, 1.2939 standard deviations are required for the one curve to actually be
the other. This indicates that the two curves are correlated, as 1.96 STDs is the
standard cut-off for determining correlation.

The standard error between the ROC curve of the original signal and the frequency
domain compressed signal is 0.0355. As a result, 2.1875 standard deviations are

required for the curves to equal each other. The two curves are not correlated.

5.6.3 Accuracy

The accuracy of the original signal is 0.9989. The accuracy of the signal compressed
using the time domain algorithm is 0.9992. This is slightly better than the accuracy of

the original signal. The accuracy of the signal compressed using the frequency domain
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algorithm is 0.9935. This is slightly worse than the accuracy of the original signal. All
three accuracy values are very high, however, since the number of segments without
vocalizations is significantly higher than the number of segments with vocalizations, it
is necessary to look at further significance results. Using the modified accuracy, which
gives equal weighting to the segments with vocalizations and the segments without
vocalizations, the accuracies are adjusted to 0.7856, 0.7857, 0.7591 for the original,

time domain compressed and frequency domain compressed signals respectively.

5.6.4 Positive Predictive Value

The PPV of the original signal is 0.8. This value is much lower than the accuracy,
because the number of segments with vocalizations present is 21, where as the number
of segments without vocalizations is 11379. While the percentage of segments which
have false alarms, may be small, when the number of FP is compared to the number
of TP, even a small fraction of the segments without vocalizations being shown as
FP will be large compared to the number of TP. The PPV of the signal compressed
using the time domain algorithm is 1. This is significantly better than the PPV of
the original signal. The PPV of the signal compressed using the frequency domain
algorithm is 0.1467. This is significantly worse than the PPV of the original signal.
This value is so low because there are 64 segments which are FPs. In comparison,
the original signal has 3 FPs and the time domain compressed signal has 0 FPs. As
previously discussed, the frequency domain algorithm needs better transient modeling

to avoid this scenario.

5.6.5 Negative Predictive Value

The NPV is an important measure for this experiment. In any typical underwater
acoustic signal, the number of segments which have marine mammal vocalizations will
be small compared to the number which will have no vocalizations. For this reason,
the reduction of false alarms is extremely important, as even a small reduction in the

probability of false alarms will have a large impact on the number of detections. The
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NPV of the original signal is 0.9992. The NPV of the signal compressed using the
time domain algorithm is also 0.9992. The NPV of the signal compressed using the
frequency domain algorithm is 0.9991. This is slightly worse than the NPV of the
original signal. All three NPV are high.

5.6.6 Sensitivity

The sensitivity of the original signal is 0.5714. The sensitivity of the signal com-
pressed using the time domain algorithm is also 0.5714. The sensitivity of the signal
compressed using the frequency domain algorithm is 0.5238. This is slightly worse
than the sensitivity of the original signal. These results are all somewhat low because
the detection algorithm cannot detect more of the marine mammal vocalizations at
the thresholds, 71, and 7 which were chosen. This indicates that the difference in
energy between the segments with marine mammal vocalizations and the segments

without is not high enough to register at detection at these thresholds.

5.6.7 Specificity

The specificity of the original signal is 0.9997. The specificity of the signal compressed
using the time domain algorithm is 1, which is slightly higher than the specificity of the
original signal. The specificity of the signal compressed using the frequency domain
algorithm is 0.9944. This is slightly worse than the specificity of the original signal.
All three specificity values are high because there are not very many FP relative to

the number of TN segments.

5.6.8 Phi Coefficient of Association

The Phi coeflicient of association of the original signal is 0.68. Any value of Phi which
is greater than 0.60 denotes a strong association. The Phi coefficient of association
of the signal compressed using the time domain algorithm is 0.76. This is better
than the Phi coefficient of association of the original signal. The Phi coefficient of

association of the signal compressed using the frequency domain algorithm is 0.27.
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This denotes weak association and is significantly worse than the Phi coefficient of

association of the original signal.

5.7 Further Results

The initial tests were all completed using the detection parameters provided by the
scientists at DRDC. However, some work was performed using different modifications
to the detection algorithm, in order to examine the effects of changing the detection
algorithm on the performance by the original, time domain compressed and frequency
domain compressed signals. One set of the modified results is provided in Table 5.2.
For these results, the only parameters changed were the selection of the detection
thresholds, 71, and 75, which were set to 0.49 and 1.69 respectively. The first thresh-
old, 7y was selected because it is the highest value which retains a probability of
detection of 1. A threshold of 1.69 was selected for the second threshold, 7. This was
determined because it is a threshold which has a low number of false alarms, while
maintaining a fairly high detection rate.

A second modification of the detection algorithm is performed for the frequency
domain algorithm only. The first modification involved replacing the PSD with the
magnitude of the FFT. Since the values of the candidates are so small, squaring them
makes them even smaller. This process was enough to reduce the area under the ROC
curve by about 6%. The second modification was to increase the BW from the range
17 — 35 kHz to 17 — 38 kHz. This modification only increased the area under the
ROC curve by a few tenths of a percentage point, but the combination of these two
modifications allowed the selection of a higher threshold, 7 = 2.59 to perform the
significance calculations. The second stage of the detection algorithm is removed as
it does not improve the area under the ROC curve.

A third set of results is given for both the time and frequency domain algorithms.
These results were derived from the reconstruction itself. Each segment which used
a vocalization candidate is considered a detection. Since both time and frequency

domain algorithms use segment length of N = 1024, the segments are longer, and
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? Signal QOriginal | Time D | Freq D |Freq D2|FOS TD{FOS FD
| CR 1 93.06 | 56652 |5.5652 | 93.06 |5.5652
# Segments w Voc 21 21 21 21 20 20
Segment Length 128 128 128 128 4

ROC Stage 1] 0.8012 | 0.8125 | 0.8951 | 0.9538
ROC Stage 2} 0.8922 [ 0.9030 | 0.8545 | N/A
SE 0.0465 | 0.0445 | 0.0522 | 0.032

STD from ROC=0.5 | 8.4344 | 9.0562 | 6.7912 | 14.179
SE between Curves | 0.0371 | 0.0271 | 0.0256

STD between Curves} 1.8828 | 1.3195 | 2.4623

TP 15 15 15 13 19 16
FN B B ] 2] 1 4
TN 11367 | 11379 [ 10664 | 11189 | 1237 [ 1110
FP 12 0 715 190 168 295
Accuracy 0.9984 | 0.9995 | 0.9368 | 0.9826 | 0.8614 | 0.7902
Mod Accuracy 0.8566 | 0.8571 | 0.8257 | 0.8012 | 0.9152 | 0.795
PPY 0.5556 1 0.0205 | 0.064 |0.1016 | 0.0514
NPV 0.9895 |1 0.9995 [0.9994 | 0.9993 | 0.9992 | 0.9964
Sensitivity 07143 10.7143 [0.7143 | 0.619 | 0.95 0.8
Specificity 0.9989 1 0.9372 [0.9833 [0.8804 | 0.79
Phi 0.63 0.64 0.11 0.2 0.29 0.17

Table 5.2: Results for the original, time domain compressed and frequency domain compressed
signals using a different set of thresholds. A second set of results for the frequency domain
algorithm using a modified detection algorithm are also provided. Finally, there are results
derived using the candidates fit by FOS. The segment length for these results is 1024, as this
is the length of segment on which the compression algorithms were performed.

there are fewer of them. This gives a coarser detection than is achieved using the

detection algorithm, however, the results are comparable.

5.7.1 Receiver Operating Characteristic Curve

The area under the ROC curve for the original signal after the first stage of detection
is 0.8012. After the second stage of detection the area under the ROC curve improves
to 0.8922 since the false alarm rate for a given detection level is reduced for the second
stage as compared to the first stage.

The area under the ROC curve for the time-domain compressed signal is 0.8125
after the first stage and 0.9030 after the second stage. It can be seen that the area

under the ROC curve has improved slightly after each stage of detection as compared
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ROC, =0.80113

ROC, =0.8922

Figure 5.11: The area under the ROC curves for the original signal using the threshold values
of 1 = 0.49, and ™ = 1.69.

to the original signal. This indicates, that despite the signal compression, there has
been no deterioration to the signal in terms of ability to detect the marine mammal
vocalizations. In fact, the ability to detect these vocalizations has increased slightly.

The area under the ROC curve for the frequency domain compressed signal is
0.8951 after the first stage and 0.8545 after the second stage. It can be seen that
the area under the ROC curve has improved significantly after the first stage of
detection, however it has been reduced after the second stage. This is because the
threshold selected for the second stage of detection is not the optimal threshold for
this particular ROC curve. The irregular sampling has modified the properties of
the signal in terms of the guard band region. Since a large amount of the random
energy has been removed from the reconstructed signal, it has changed the properties

in terms of detection.
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ROC, =0.81245

ROC, = 0.90301

Figure 5.12: The area under both the first and second stages of the ROC curve have improved
slightly for the signal which has been compressed with the time domain compression algorithm
as compared to the original signal, using the threshold values of 71 = 0.49, and ™ = 1.69.

Using the additional modifications for the frequency domain compressed signal,
the area under the ROC curve is 0.9538 after the first stage. This area is significantly
better than for either stage of detection of the original signal. The second stage of
detection is not performed in this case because transient signals are not modeled by
the frequency domain algorithm. The transient signals are most closely modeled by
the vocalization candidates. This means that they are no longer distinguishable from
true vocalizations and cannot be eliminated using the second stage of the DRDC

Atlantic detection algorithm.
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ROC, = 0.89511

ROC, = 0.85449

Figure 5.13: The area under the first stage of the ROC curve has improved significantly for
the signal which has been compressed with the frequency domain compression algorithm as
compared to the original signal. However, the area under the second stage of the ROC curve
has deteriorated. In this case, the second stage of detection is actually detrimental to the
detection of vocalizations in the reconstructed signal.

5.7.2 Significance Results

The significance results for the modified detection parameters are not significantly
different than for the original detection parameters.

The standard error results in a number of STDs between the derived areas and
an area of 0.5 are all very high, as indicated in Table 5.2.

The standard error between the time and frequency domain compressed signals
and the original signal result in correlated signals with the exception of the frequency
domain compressed signal using the second detection modification.

The accuracy of all the signals is extremely high, however, the time domain com-

pressed signal using the modified detection parameters has the highest accuracy of
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ROC, = 0.95381

Figure 5.14: The area under the first stage of the ROC curve has improved significantly for
the signal which has been compressed with the frequency domain compression algorithm as
compared to the original signal. The second stage of the detection algorithm is not run because
it is not effective in removing false alarms for the frequency domain, modified signal.

all candidates. Using the modified accuracy, the FOS detector for the time domain
compressed signal has the highest value, although all are above 0.79, as indicated in
Table 5.2.

The PPV is worse in each case except for the time domain compressed signal.
This signal, like with the original detection parameters, has a value of 1.

The NPV is better in all cases, except the FOS detector for the frequency domain
compressed signal than any of the NPV values using the original detection parameters.

The sensitivity is better in each case.

The specificity is worse in each case except for the time domain compressed signal.
For this case, the specificity is 1 which is better than for the original signal, and equal

to the time domain algorithm using the original detection parameters.
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The Phi coefficient of association is also worse in each case except for the time
domain compressed signal, which is once again better than the Phi coefficient of

association achieved for any of the signals using the original detection parameters.

5.7.3 Conclusions

While the modified detection parameters achieve a higher area under the ROC curves
of the original, the time domain compressed and the frequency domain compressed
signals, the significance tests tend to be worse. The exception is the time domain
compressed signal. The modification of the detection thresholds improved the area
under the ROC curve as well as all the significance results for this signal. This signal
performs better at each test than both the time domain compressed signal using the
provided detection parameters, and the original signal, using either set of detection
parameters.

This experiment demonstrates the requirement to carefully select the detection
algorithm parameters, and the effect it can have on the ability to detect marine

mammal vocalizations in the underwater acoustic signal.



Chapter 6

Discussion and Conclusions

6.1 Summary

The detection and classification of marine mammal vocalizations can provide valuable
information as to the marine activity in the region in which a sonobuoy or AUV
is located. The signal of interest contains a series of features which must remain
recognizable after data compression has been applied. The features are dependent on
the marine activity present during data acquisition.

The purpose of this thesis was to determine a method of achieving data compres-
sion for underwater acoustic data while maintaining the integrity of the marine mam-
mal vocalizations sought. Two algorithms were presented, the time domain algorithm
provides a better compression ratio but has greater signal processing requirements,
while the frequency domain algorithm is more practical for platforms with less on
board processing power such as AUVs.

On the training signal, the time domain algorithm achieved a CR of 93.1, while
still detecting these clicks and buzzes. Obviously, these results could not have been
achieved simply by retaining every 93rd point because then most of the clicks and
buzzes would have been entirely missed and the remainder could each contribute only
one point. The frequency domain algorithm achieved a CR of 5.5. The original signal
had a CR of 1, since there is no compression applied.

There are performance gains for both algorithms in terms of CR and therefore in
the speed of transmission. The time domain algorithm has a higher area under the
ROC curve, using the modified detection parameters, and a slightly lower area under
the ROC curve using the provided detection parameters. However, in both cases,
it is more significant according to the significance tests run. The frequency domain
algorithm suffers from a degradation in detection performance when the same thresh-

olds are used. It also performs worse in the significance tests, especially PPV. This

73
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algorithm would likely benefit from additional model terms, and Huffman encoding

to replace the irregular sampling.

6.1.1 Lessons Learned

The FOS algorithm, both on its own, and when combined with irregular sampling and
domain transformation proved to be a useful tool in order to achieve data compression.
However, the ability of both algorithms to provide useful signals after compression is
dependent on an appropriate selection of candidate functions as inputs to FOS. As
such, an undersﬁanding of the operating environment, as well as a priori knowledge
of the features of interest is required for these algorithms to perform in an acceptable

manner.

6.2 Future Work

There are a number of improvements which could be implemented to make this al-
gorithm more robust for use by DRDC Atlantic. These include hardware implemen-
tation of the algorithm, and extension to further vocalization sets, including further
modeling of marine mammal vocalizations. Development of the detection algorithm
could also be performed to ensure its performance with the reconstructed data set.
For the frequency domain algorithm Huffman coding should be considered as a means

of increasing compression. Finally, independent verification of the truth sets would

be beneficial.

6.2.1 Hardware Implementation

The entire algorithm would benefit from implementation on a hardware platform such
as an field programmable gate array (FPGA). This would speed up the time taken
to perform the operations required to prepare the data for transmission. Particular
effort should be applied to make the candidate terms parametric as inputs to FOS.

With equations rather than points as input, the performance of this particular aspect
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of the FOS algorithm will be improved because the correlation computations may be

performed more quickly.

6.2.2 Extension to Further Vocalization Sets

A limited data set was used during this thesis. Only a few types of vocalizations,
from Blainville’s Beaked whales were analyzed. Extension of the candidate sets to
include other whale vocalizations would expand the usefulness of this algorithm. This
should include modeling of the marine mammal vocalizations to determine a set of
candidates which accurately represent the specific vocalizations sought.

Modeling of platform transient signals should also be incorporated. There are
certain transient signals, produced by the platform, which are known to occur. Their
modeling would improve the ability to reduce false alarms during the second stage of
the DRDC Atlantic detection algorithm. During the reconstruction of the frequency
domain compressed signal, some transients are reconstructed as marine mammal vo-
calizations because these are the model terms which best fit the energy. This would
not be the case if there were candidate functions which modeled the transient signals.

Finally, the modeling of the current vocalizations could be improved. The Gaus-
sian window which was applied to the vocalization candidates for the time domain
algorithm was set with the default values, this could likely be improved. The fre-
quency modulation rates were also rather coarse. Further work could be done to find

a better model of the vocalizations modeled in this thesis.

6.2.3 Detection Algorithm

Ideally, since FOS uses candidates which were developed to model specific marine
mammal vocalizations, their use in a particular segment could be considered a de-
tection. False alarms would then need to be eliminated using a detection algorithm
similar to the second stage of the detection algorithm developed by DRDC Atlantic.

This could improve the efficacy with which detections are made.
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6.2.4 Huffman Coding

The frequency domain algorithm uses irregular sampling to remove the coefficients
of the DCT candidates which are statistically insignificant, or which are not in the
frequency regions of interest. Another method of achieving data compression would be
to use Huffman coding, as is done for the JPEG algorithm. This algorithm encodes
zero-run lengths, as well as assigning the most commonly used values to shorter
symbols. It is possible, that Huffman coding would increase the compression ratio
achieved for the frequency domain algorithm. It would also be a means of retaining
energy caused by transient signals, and thereby improving the detection capabilities

of the DRDC detection algorithm for the frequency domain compressed signal.

6.2.5 Truth Data

I manually determined the truth data for the data sets provided. Independent verifi-

cation of the truth sets would improve the veracity of the results provided.
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