
University of Alberta 

Bioaccumulation, Tissue Distribution, Excretion and Metabolism of 
Polybrominated Diphenyl Ethers in Farmed Mink 

by 

Si Zhang © 

A thesis submitted to the Faculty of Graduate Studies and Research 
in partial fulfillment of the requirements for the degree of 

Master of Science 

in 

Medical Science — Laboratory Medicine and Pathology 

Department of Laboratory Medicine and Pathology 

Edmonton, Alberta 

Spring 2008 



1*1 Library and 
Archives Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-45914-0 
Our file Notre reference 
ISBN: 978-0-494-45914-0 

NOTICE: 
The author has granted a non
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

AVIS: 
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par Plntemet, prefer, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. 
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

Canada 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



Abstract 

Polybrominated diphenyl ethers (PBDEs) are brominated flame retardants that have 

been, and still are, used in consumer products. They are now ubiquitous in the 

environment. This may present environmental health risks given that toxicological 

studies have demonstrated several adverse effects in animals. 

Taking mink as a study subject, this thesis examined the tissue distribution, maternal 

transfer, biotransformation, and biomagnification of the technical penta-BDE mixture, 

DE-71. Moreover, this thesis studied in vitro biotransformation pathways using mink 

hepatic microsomes and rat intestinal microflora. 

Most BDE congeners were accumulative in mink tissues and on a whole-body basis. 

Maternal transfer of PBDEs favoured lactational transfer rather than transplacental 

transfer. Different BDE congeners exhibited different biomagnification potential, 

depending on the bromine substitution pattern. The biomagnification factors were 

significantly higher than one for some PBDEs, but biotransformation, such as the 

detected hydroxylation process mediated by mink hepatic microsomes, clearly limited the 

biomagnification of some other PBDEs. 
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Chapter 1: Introduction 

1.1 Brominated flame retardants (BFRs) and their function, 

value, and general problems posed 

Chemical flame retardants have a long history of application to prevent things from 

catching fire, which can be traced back to Roman times [1]. The extensive usage of these 

substances began after the introduction of polymeric materials which are very beneficial 

but more inflammable than traditional materials [1,2]. 

To understand how flame retardants work, it is necessary to understand the 

combustion process. There is an important process involved in the ignition of solid 

materials: pyrolysis. During heating of solid materials, high energy free radicals 

(H' and "OH) present in the gas phase react with and decompose the carbon bond of solid 

materials (i.e. fuel). Short-chain and small flammable molecules are then released into the 

gas phase and start to burn, thus providing more heat and, in turn, more flammable gases 

to burn [3]. When the relatively small fire provides enough heat to ignite all flammable 

materials simultaneously in a region, flashover occurs [1,3]. 

Organohalogen compounds can act as electron accepters to form non-flammable 

gases with free radicals emitted during the initial stages of pyrolysis. This reduces both 

the generation of heat and the production of flammable gases induced by free radical 

chain reactions [1, 4, 5]. As a result, flashover is delayed, thus providing people extra 

time to escape or to put out the fire. Effective organohalogen flame retardants must have 
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a strong ability to capture free radicals and a suitable decomposing temperature that is 

slightly lower than the host polymer [4, 5]. With increasing radius of halogen elements, 

the ability of capturing free radicals increases, but halogenated compounds become less 

stable under slightly elevated temperature [5]. To achieve the best balance, BFRs are very 

suitable and have become the most cost-effective flame retardants [3, 5]. 

The practice of requiring flame retardants in flammable materials saves lives and 

reduces fire damage and associated costs [3]. However, the benefits of BFRs must be 

balanced with the associated risks. The risks of using BFRs were not noticed until BFRs 

were found in remote areas of the globe, thus providing a clue that they had become 

ubiquitous in our environment [6]. Subsequent studies on the environmental 

concentrations in various regions of the world did not catch much attention until BFRs 

were reported to be doubling their concentrations in breast milk every five years in 1998, 

whereas polychlorinated biphenyls (PCBs) were reported to be simultaneously declining 

[7]. Later on, further evidence emerged relating to the increasing trend of BFRs in the 

environment [8, 9]. This led to studies on the environmental fate, persistence, and toxicity 

of BFRs. Initially toxicity studies related to their acute toxic effects from high doses, and 

later to sub-chronic and chronic toxicity with environmentally relevant concentrations [9]. 

In general, results indicated that some BFRs were similar in many ways to persistent 

organic pollutants (POPs) — chemicals that are slow to degrade in the environment, 

become widely distributed geographically due to long-range transport, and accumulate in 

fatty tissues of living organisms through bioconcentration and food chain accumulation 

and which can be toxic at relatively low concentrations [10, 11]. 
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BFRs can be classified based on the way in which they are incorporated into their 

host polymers: either reactive or additive. Reactive BFRs such as tetrabromobisphenol A 

are incorporated with host polymers by covalent bonds, whereas additive BFRs, such as 

the polybrominated diphenyl ethers (PBDEs) and hexabromocylododecane (HBCD) are 

simply dissolved in host polymers. Consequently, the latter can leach into the 

environment more easily [4, 5, 12] and thus may pose a higher risk of exposure to 

humans and wildlife. The present thesis focuses on PBDEs, a family of additive BFRs 

which were historically and still today, produced and applied in the greatest quantities 

compared to all other additive BFRs [1]. 

1.2 Overview of PBDEs 

1.2.1 What are PBDEs and their physicochemical properties 

1.2.1.1 PBDEs and their structures 

PBDEs are a family of structurally related BFRs. From a chemical architecture point 

of view, the structure of PBDEs (Figure 1-1) includes an ether bond connecting two 

phenyl rings, and 1-10 bromine atoms may be covalently bound to the 10 available 

positions of the two phenyl rings. Depending on the degree of bromination and the 

position of the bromine atoms on the phenyl rings, there are 209 possible PBDE 

congeners. These congeners are numbered following the same rules established for PCBs 

(Table 1-1). 
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Figure 1-1: The general structure of PBDEs, where x + y = 1 to 10. 

Table 1-1: Names, structures and congener numbers of selected PBDEs. 

Name 

2,4,4'-tribromodiphenyl ether 

2,2',4,4'-tetrabromodiphenyl ether 

2,2',4,4',5-pentabromodiphenyl ether 

2,2',4,4',6-pentabromodiphenyl ether 

2,2',4,4',5,5' -hexabromodipheny 1 ether 

2,2',4,4',5,6-hexabromodiphenyl ether 

Congener 
number 
BDE28 

BDE47 

BDE99 

BDE 100 

BDE153 

BDE 154 

Structure 

.&XX. 
Br Br 

Br Br 

Br 

j£o6. 
Br Br 

Br Br 
Br Br 

J^-f Br^^Br 
Br 
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Name 

2,2',3,4,4',5,6'-heptabromodiphenyl ether 

Decabromodiphenyl ether 

Congener 
number 
BDE183 

BDE-209 

Structure 

Br Br 

B r ^ ^ B r Y ^ B r 
Br 

Br Br 

In the laboratory, pure PBDE congeners can be synthesized by coupling a 

diphenyliodonium salt with bromophenolate without subsequent cleanup procedures [13]. 

In industry, however, most PBDE products are manufactured by bromination of diphenyl 

ether in the presence of a Friedel-Craft catalyst (i.e. AlBr3 or FeBr3) in a brominated 

solvent such as dibromomethane; and thus usually contain many isomers and homologues 

in the resulting technical mixtures [4, 5, 12]. Three major technical brominated diphenyl 

ether mixtures were manufactured and sold commercially, termed penta-BDE, octa-BDE, 

and deca-BDE classified based on the average bromine substitution content (Table 1-2). 

Table 1-2: Compositions of commercial PBDE mixtures. 

Technical 
Mixtures 

Penta-BDE 

Octa-BDE 

Deca-BDE 

Composition (Percentage of Total) [14] 

Tri-
BDEs 

0-1% 

Tetra-
BDEs 
24-
38% 

Penta-
BDEs 
50-
62% 

Hexa-
BDEs 

4-8% 

10-
12% 

Hepta-
BDEs 

43-
44% 

Octa-
BDEs 

31-
35% 

Nona-
BDEs 

9-11% 

0.3-
3% 

Deca-
BDEs 

0-1% 

97-
98% 
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1.2.1.2 Physicochemical properties 

It is essential to discuss the physicochemical properties of PBDEs (Table 1-3) in 

order to understand their environmental partitioning and fate. The large values of log K0 

of PBDEs reflect their relatively poor water solubility and high lipophilicity. Therefore, 

PBDEs tend to partition to lipid-rich compartments such as fish from water. This is 

presumed to be their mechanism of bioconcentration. 

Table 1-3: Water solubility and octanol-water partitioning coefficients (log AT0W) of 
PBDEs. 

Sw a(25°C) 
(mol/L) 

logXow3 

logXowb 

Vapour pressure 
(Pa at 25°C) 

Melting point 
(°C) 
Boiling point 
(°C) 

Penta-BDE 

3.04x10"* (BDE 47) 
7.74xl(r9(BDE99) 
7.82xlO-u(BDE153) 
6.78 (BDE 47) 
7.39 (BDE 99) 
8.05 (BDE 153) 

6.5-7.0 

2.19xlO"i(BDE47) 
2.88xl0"6(BDE85) 
1.26xlO_5(BDE99) 
92 (BDE 99) 
97-98 (BDE 100) 

Octa-
BDE 

n.a. 

n.a. 

8.4-8.9 

-200 

Deca-
BDE 

n.a. 

n.a. 

10 

290-306 

310-425 (for all three commercial mixtures) 

Ref. 

[15] 

[15] 

[12] (citing 
Watanabe and 
Tatsukawa, 1990) 

[16] 

[9] (citing from 
other resources) 

[4] 

values are from reference [15]. values are from reference [12]. n.a. - not available. 

According to their vapour pressure, PBDEs have relatively low volatility, and within 

the family of homologues the vapour pressure decreases with increasing number of 

bromine atoms [16, 17]. Vapour pressure is also associated with the position of 
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substituted bromine, such that ort/zo-position substituted PBDEs have higher vapour 

pressure than their meta- ox para-\soms,xs [17]. 

1.2.2 Application, production, and regulations of PBDEs 

The only use for PBDEs is in flame retardant applications. They are added at 

concentrations ranging from 5 to 30% by weight into raw materials including polymers, 

resins, substrates, and common plastics [9, 14]. The raw materials are then incorporated 

into various final products such as electronic devices (e.g. TV sets, computers, 

appliances), building materials (e.g. insulation, laminate flooring), and textiles (e.g. 

carpets, automotive interiors) [14], which people come into contact with in daily life. The 

commercial deca-BDE has been, and still is, the most widely used BDE mixture in 

electric components, whereas the penta-BDE was mainly used in coating and stuffing 

materials, and the octa-BDE was primarily used (95%) in acrylonitrile-butadiene-styrene 

(i.e. ABS) plastic [2, 14]. 

The market demand for PBDEs (Table 1-4) was estimated to account for 33% of the 

global BFRs production in 1999, and based on estimates from 2001, the total demand had 

increased by 265 metric tons with a decrease in demand for penta- and octa-BDE and an 

increase in demand for deca-BDE [1,2,12]. From a continental perspective, the 

Americas consumed the largest volumes of penta-BDE, which accounted for 98% of the 

production volume of total penta-BDE in 1999 and for 95% in 2001, and also consumed 

40% and 44% of octa- and deca-BDE, respectively, in 2001 [2]. 
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Table 1-4: Market demand for PBDEs worldwide. 

PBDE Products Americas Europe Asia Total 
1990 [121 

Penta-BDE 
Octa-BDE 
Deca-BDE 

n.a. 
n.a. 
n.a. 

n.a. 
n.a. 
n.a. 

n.a. 
n.a. 
n.a. 

4,000 
6,000 

30,000 
1999 Til 

Penta-BDE 
Octa-BDE 
Deca-BDE 

8,290 
1,375 

24,300 

210 
450 

7,500 

n.a. 
2,000 

23,000 

8,500 
3,825 

54,800 
2000 [21 

Penta-BDE 
Octa-BDE 
Deca-BDE 

7,100 
1,500 

24,500 

150 
610 

7,600 

150 
1,500 

23,000 

7,500 
3,790 

56,100 
n.a. not available. Unit: metric ton. 

However, when PBDEs were found to exhibit similar properties as POPs, a number 

of countries and international organizations began to establish regulations to ban 

production, or certain uses, of PBDEs, particularly the penta- and octa-BDEs [5, 18, 19]. 

The use of penta-BDE was voluntarily phased out from the Japanese market [5], and 

the European Union (EU) led the way in phasing out the use of penta- and octa-BDEs in 

2003, and further banned them in August 2004. As of July 1, 2006, the EU has also 

banned the deca-BDE for use in electronic products and is considering a full ban of the 

deca-BDE by 2008 [20]. In the US, several states also took action in phasing out the use 

of penta- and octa-BDEs since 2004 [18]. Except for Washington and Maine, no other 

states have enacted restrictions on the use of deca-BDE [18]. 

In Canada, PBDEs were added to the List of Toxic Substances under the Canadian 

Environmental Protection Act by the Canadian government in 2006 [20]. Commercial 

penta-BDEs have also been voluntarily phased out in Canada since 2005, and the 

regulation completely banning the manufacturing, use, sale, or import of commercial 
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penta- and octa-BDEs came into effect at the end of 2007 [20]. However, the use of deca-

BDE was not restricted [21]. 

1.2.3 PBDEs in the environment 

A schematic representation of the multiple pathways for PBDEs in the environment is 

shown in Figure 1-2. 

Figure 1-2: Environmental partitioning and fate of PBDEs. Concepts in orange frames 
will be discussed in the section of "environmental levels and trends" (Section 1.2.3.1); 
concepts in purple frames will be discussed under "environmental behaviour and fate" 
(Section 1.2.3.2); and the concept in the green frames will be discussed under 
"biotransformation by microorganisms" (Section 1.2.3.2.3) and "metabolism" (Section 
1.2.4.4). (D PBDEs in commercial products may enter the environment through solid or 
aqueous wastes or by partitioning to the atmosphere from product surfaces where they are 
non-covalently bound [4]. (2) In the atmosphere, PBDEs are either present in the gas 
phase or are associated with the particle phase; PBDEs can leach into soil from the solid 
waste; in water, PBDEs partition between the dissolved phase and solid phases (sewage 
sludge, SPM, sediments). ® Sewage sludge is commonly applied to agricultural lands for 
fertilization, and thus may enter the soil. © Gas phase PBDEs undergo long-range 
transport. © Particle phase PBDEs undergo deposition to the soil. © Uptake of PBDEs 
by organisms can occur through inhalation and ingestion of solids. © Interaction of 
PBDEs between some environmental compartments and organisms, where 
biotransformation and bioaccumulation change the concentrations and forms of PBDEs. 
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1.2.3.1 Environment concentrations and trends 

1.2.3.1.1 PBDEs in the abiotic environment 

1.2.3.1.1.1 PBDEs in the atmosphere 

The non-covalent nature of PBDEs in polymers allows them to easily enter the 

atmosphere from the product surfaces through simple partitioning via volatilization [4, 12, 

22, 23]. Sources of atmospheric PBDEs, especially in the indoor environment, could also 

be dust formed from fragments of PBDE-treated polymers [24]. The significant 

associations shown between suddenly high concentrations of PBDEs in the air and large 

combustion events, such as a bonfire festival [25], or incineration of waste [11, 26, 27] 

indicate that combustion of PBDE-treated products is also a source of PBDEs entering 

the atmosphere. 

Atmospheric concentrations of PBDEs are usually monitored using high volume air 

sampling or passive diffusion air sampling. The former requires a high-volume pump to 

actively pull air through a glass microfiber filter to collect the particle-bound PBDEs, 

followed by adsorbents to collect the gas-phase PBDEs. The latter generally involves 

collection of only the gas-phase compounds through simple steady-state partitioning onto 

an adsorbent, similar to the adsorbents used in the high-volume sampler; however, the 

passive sampling is designed to exclude the particle-associated compounds [28]. Two 

types of adsorbents have been used for PBDE sampling: XAD-2® resin [26, 29] and 

polyurethane foam (PUF) plugs [27, 28, 30-38]. Gas-phase air concentrations can be 

estimated from passive samples by back-calculation from concentrations of other media 
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using the media-air partition coefficient such as KFA (film-air coefficient) [39]. Detailed 

atmospheric concentrations of PBDEs are summarized in Appendix I, where 

concentrations of SPBDEs, excluding BDE 209 (shown separately), and concentrations 

of EPCB in the same samples are also listed for comparison. 

In general, SPBDEs are slightly lower but comparable to ZPCBs in most air samples 

reported [36, 40]. BDE 209 generally dominates the air samples followed by BDE 47 or 

BDE 99, with an exception that in earlier (1997-1999) samples from Chicago, BDE 209 

was present at much lower concentrations than the rest of the congeners. However, after 

Hoh and Hites collected more recent (2002-2003) samples at the same site showing the 

predominance of BDE 209, they declared that the increased usage of deca-BDE in the US 

was responsible for the change [33]. Indoor concentrations are always significantly 

higher than outdoor concentrations [41] irrespective of where samples were collected 

such as in industrialized urban [30], non-industrialized urban [38], suburban, or rural 

areas [39]. Significant positive correlations have been shown between the concentration 

of PBDEs in air and the number of electrical appliances and PUF chairs at the indoor 

location [30]. Compared to other endocrine-disrupting chemicals in the indoor 

atmosphere (air + dust), PBDEs were slightly lower in concentration than phthalates and 

alkylphenols, but comparable or slightly higher than pesticides and PCBs [42]. The high 

concentrations of PBDEs in indoor dust compared to importance of the gas-phase PBDEs 

may result from fragments of PBDE-treated polymers [43]. In addition, the trend of the 

atmospheric concentration of PBDEs in urban > suburban > rural areas indicated a 

linkage between high emission and heavy usage of PBDEs [28]. Taken together, 

atmospheric concentrations of PBDEs are clearly emitted from microenvironments or the 
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regions where they are applied or used most heavily [24]; but the occurrence of 

detectable PBDEs in remote areas, far from known sources, indicates the role of long-

range transport in the fate of PBDEs [11, 28]. 

PBDEs partition between the gas- and particle-phase according to their vapour 

pressures, whereby lower brominated congeners1 partition to a greater extent into the gas 

phase than higher brominated congeners. Therefore, it is not surprising that only the 

congeners having fewer than six bromine atoms can be detected using passive diffusion 

samples [28, 40]. Furthermore, the fact that up to 70% of the hexa-BDEs partitioning to 

the particle phase at 20°C [29] indicates the potential underestimation of the detectable 

PBDE homologues using passive diffusion sampling. The partitioning of higher 

brominated congeners to the particle phase may limit their long-range transport, possibly 

via scavenging by precipitation events which are a significant atmospheric removal 

pathway for PBDEs [36]. Because increasing temperature increases the vapour pressure 

in general, total PBDE concentrations are somewhat higher in the summer and a higher 

fraction is present in the gas phase, whereas in the winter PBDEs tend to partition to 

other environmental compartments such as soil [34]. Soil and sediment is discussed 

further in the next section, but there is a latitudinal fractionation of PBDEs, due to 

differential atmospheric transport, in sediments and soils whereby lower brominated 

congeners such as BDE 47 become more important in northern latitudes [44-46], whereas 

higher brominated congeners, such as BDE 209, diminish with increasing latitude [11]. 

1 Lower brominated BDE congeners have seven or fewer bromine atoms, whereas higher brominated 

congeners contain more than seven bromine atoms. 
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1.2.3.1.1.2 Soil, sewage sludge, and sediment 

Besides their wide distribution in the atmosphere, PBDEs are also detectable in the 

solid compartments of our abiotic environment. The concentration and trend of PBDEs in 

the solid compartments will be discussed in three parts: soil, sewage sludge, and 

sediments. Generally, the profiles of PBDEs in these samples (soil, sewage sludge, and 

sediments) are either similar to the penta-BDE mixture, or dominated by BDE 209, 

depending on local use patterns. 

The concentration of PBDEs in soil is generally low, whereas aquatic sediments 

contain higher concentrations, and sewage sludge contains the highest (Appendix II). 

Despite that sewage sludge is usually applied to agricultural land for fertilization [47, 48], 

resulting in 2 to 3-fold increase in PBDE concentrations [49, 50], the amended 

agricultural soil still contains lower concentrations than sediment and sewage sludge 

from various regions (Appendix II) unless there is a local source to the limited area [51]. 

Such contributions can be localized by matching the congener profile between the 

suspected sites to the sources [44, 45, 52, 53]. For example, in the Arctic region, the low 

concentration and the congener profile of PBDEs in the soil could be attributed to the 

atmospheric deposition [11]. The lower concentrations in background soil are presumably 

due to relatively few sources of contribution (e.g. atmospheric deposition only) compared 

to sewage sludge that accumulates discharged PBDEs from industrial and residential 

sewage [24] or compared to sediments that connect to the water system which often 

contains wastewater from surrounding municipalities or cities. 

The congener profiles of sewage sludge reflect local discharge [44, 51] and can vary 

among regions, with especially large differences that are observed in the percentage 
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contribution of BDE 209 [48]. Generally, sewage sludge samples obtained from the US 

had about 10-fold higher PBDE concentrations than European samples [24], probably due 

to larger usage in the US. 

The major sources of sediment-borne PBDEs in urban and rural regions are also from 

industrial and residential discharges. The closer to the source of discharge, the higher the 

concentrations are [11, 52, 54-58]. Whereas in remote regions such as the Arctic, similar 

to the soil, the only source of PBDEs is likely atmospheric deposition, and thus the 

concentrations among various locations (Norway, Russia, and Canada) were similar [11]. 

Marine sediments generally had lower concentrations of PBDEs than freshwater 

sediments, except for where there was local contamination [11]. 

The few disturbances in sediments make them the best model to predict the historical 

time trend of PBDE usage. A study in Europe which separately analyzed the layers of 

sediment corresponding to different years indicated the usage of penta-BDE began in the 

early 1970s and declined between 1995 and 1997, whereas the usage of deca-BDE began 

in the late 1970s and had itself subsequently declined in the most recent years (e.g. 1995-

1997) [59]. This temporal trend was also suggested by Nylund et al. who found a rapid 

increasing concentration of PBDEs from the 1950s in Sweden [60], and by another study 

of layered sediments from Greenland, which also showed increasing concentrations of 

PBDEs in the layers dated 1990 to 2000 [46]. These results predicted from sediment 

studies match well with the investigation of PBDE usage by Prevedouros et al. during 

these periods [61]. 
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1.2.3.1.1.3 Water 

Data on PBDE water concentrations are very limited, and most are for effluents from 

sewage treatment plants (STPs). However there are data for suspended particulate matter 

(SPM) in some surface water. This is not surprising because the low water solubility of 

these compounds makes PBDEs difficult to detect in the dissolved phases, whereas they 

tend to be adsorbed on suspended particulates particularly as the degree of bromination 

increases (Table 1-3). 

STP effluents contain a large amount of solids and lipids, and are thus a good 

reservoir for PBDEs. North reported PBDE concentrations in STP effluent in California, 

US, which contained 273 ng/L for SPBDEs (mono - nona) and 1.73 ng/L for BDE 209 

[62]. The sewage sludge from the same STP was also reported as 2198 ng/g for SPBDEs 

(mono - nona) and 1183 ng/g for BDE 209. The concentrations of PBDEs in STP 

effluents and sewage sludge from a Canadian city were reported by Rayne and Ikonomou, 

and ranged from 1 to 392 ng/L in the effluents and up to 2429 ng/g in the sludge [63]. 

STP effluent concentrations from the Netherlands were reported based on the 

concentration of the particulate matter (ng/g) collected by centrifugation of the effluents 

[64]. The median of ZPBDE concentration (BDE 47, 99, and 153) was 22 ng/g and of 

BDE 209 was 350 ng/g. As a result, PBDE burdens in STP effluents were similar 

between two North American STPs and were 10-fold higher than the European STP; 

moreover, this trend is well correlated with the trend observed in sewage sludge. 

Surface water concentrations from Lake Ontario and Lake Michigan have been 

reported at 4 to 13 pg/L and 21 pg/L, respectively, and consisted mainly of BDE 47 and 

99 (>70% in Lake Ontario and >89% in Lake Michigan) [65, 66]. The dissolved BDE 47 
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in Lake Ontario was 0.06 to 3.6 pg/L and the particulate matter adsorbed BDE 47 was 

0.05 to 0.23 pg/L. A similar ratio between dissolved to particulate matter adsorbed BDE 

47 was observed in Lake Michigan where BDE 47 was 10 pg/L and 1.3 pg/L in the 

dissolved and particulate phases respectively [66]. Dissolved and particulate phase BDE 

99 and 100 in Lake Michigan were also reported and were, respectively, 6.1 and 1.4 pg/L 

for BDE 99 and 1.3 and 0.18 pg/L for BDE 100. Congeners having more than five 

bromine atoms were not detected in either of these samples. In addition, PBDE 

concentrations were 1 to 2 orders of magnitude lower than the PCBs in the same sample. 

Surface water samples obtained from rivers in the Netherlands were analyzed by de 

Boer et al. and the results revealed that suspended particulate matter (SPM) associated 

EPBDEs (BDE 47, 99, and 153) (4.6 ng/g dry weight (dw)) was much lower than BDE 

209 (71 ng/g dw) [64]. This may be attributed either to the larger discharge of BDE 209 

or to the lower water solubility of heavier congeners (Table 1-3). Consequently, dissolved 

lower brominated congeners may be more bioavailable to aquatic organisms [24]. 

The presence of certain PBDEs in both the dissolved and particle phases in surface 

water allows the estimation of water-organic carbon partition coefficients (Koc) when the 

organic carbon content of SPM is recorded. The correlation between Kow and Koc can be 

used to examine the equilibrium partitioning of PBDEs between the dissolved and 

particle phases. A positive correlation with a slope of 1 would indicate the equilibrium 

partitioning. However, few studies have found such a correlation for PBDEs and PCBs 

and the authors suggested either a lack of equilibrium or partitioning to a colloidal "third" 

phase [66]. It is also possible that octanol is not a perfect model for SPM organic matter. 
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1.2.3.1.2 PBDEs in wildlife 

1.2.3.1.2.1 Concentrations 

Due to their high KoW, PBDEs tend to accumulate in lipid-rich tissues of exposed 

wildlife. The concentrations of SPBDEs (sum of tri-hepta BDEs), BDE 209, and partial 

SPCB concentrations (the number of summed congeners varied between studies) in 

wildlife including invertebrates, fish, frogs, birds, terrestrial mammals, and marine 

mammals from North America, Europe, Asia, and the Arctic region are summarized in 

Appendix III. A 5-order-of-magnitude range was observed for PBDE concentrations 

across all the samples obtained during 1979 to 2005; the lowest occurring in suet samples 

from reindeer obtained in Sweden in 1986 at 0.51 ng/g lipid weight (lw) [67] and the 

highest in eggs from herring gull in Lake Michigan in 2000 at 1.3x104 ng/g lw [68]. The 

corresponding SPCB concentrations (depending on the number of summed PCB 

congeners), if applicable, were 1 to 2 orders of magnitude higher than EPBDE. Trends in 

PBDE concentrations in wildlife are also noted with respect to time, region, and trophic 

level (e.g. biomagnification). Generally, higher concentrations are associated with more 

recent samples, with samples from contaminated sites, or for higher trophic level 

organisms. 

BDE 209 was only detected in a limited number of wildlife samples compared to 

XPBDEs. It was seldom detectable in aquatic organisms [64] and piscivorous species [44] 

except for samples from heavily contaminated sites [69] or for oligochaetes which were 

suspected to be biased by ingested but not absorbed sediments [64, 70]. It was once 

hypothesized that BDE 209 could not be absorbed by organisms due to its large 
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molecular size [71] but more recent detection of BDE 209 in terrestrial animals such as 

birds of prey and foxes [44, 72-74] disproved this hypothesis, thus providing 

environmental evidence that BDE 209 is bioavailable. However, compared to the abiotic 

environment (sediments, sewage sludge, SPM) the concentration of BDE 209 in 

biological samples was relatively low [70], and compared to lower brominated congeners 

the accumulation of BDE 209 is minimal and does not contribute significantly to the 

congener profile. The difference between terrestrial animals and aquatic and piscivorous 

species with respect to BDE 209 accumulation may be explained by the water barrier 

which limits the transfer of BDE 209 from SPM and sediments to pelagic aquatic 

organisms at the base of the food web [44]. Hence, BDE 209 will not be included in 

further discussions of congener profiles in wildlife. 

1.2.3.1.2.2 Congener profiles 

The major components of the commercial penta-BDE mixture (BDE 47, 99,100,153, 

154) dominate wildlife samples. BDE 183 is an indicator of the commercial octa-BDE 

mixture, but it either was not found or was detected at lower concentrations than penta 

congeners. To a large extent, this is likely a function of the smaller production of this 

commercial mixture which only accounted for 5% of total historical PBDE production. 

In general, two distinct congener profiles were observed in wildlife: one was 

dominated by lower brominated congeners such as BDE 47 and 99, and the other was 

shifted towards heavier congeners such as BDE 153 (hexa) and BDE 183 (octa). 

Organisms from freshwater and marine ecosystems, including marine mammals, 

piscivorous species (water birds), fishes, and invertebrate species, followed the former 
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congener profile while terrestrial animals, including terrestrial birds2 and terrestrial 

mammals, followed the latter (Figure 1-3). 
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Figure 1-3: Congener profiles in wildlife. The first five columns from left exhibit average 
congener profiles in organisms from freshwater and marine ecosystems: invertebrates [57, 
58, 64, 69, 70, 75-78], fish [51, 54, 70, 75, 76, 78-90], marine mammals [70, 76, 77, 79, 
81, 83, 91-99], polar bears [77, 100, 101], and piscivorous birds [68, 79, 83, 90, 93, 101-
106]; the two columns from right exhibit average congener profiles in terrestrial birds [73, 
74,102, 107] and terrestrial mammals [72]. 

For example, piscivorous and terrestrial birds showed a distinct congener profile 

whereby heavier brominated congeners (i.e. BDE 153) became the major congener. The 

fact that terrestrial birds exhibited a higher percentage of heavier BDE 153 may be due to 

higher exposure [8] compared to piscivorous birds whose food sources also contain low 

concentrations of higher PBDEs [44]. The similar congener profile in both terrestrial 

2 In the present thesis, terrestrial birds refer to the birds that feed on terrestrial animals only. 

19 



birds and terrestrial mammals — that was shifted to heavier brominated congeners — can, 

therefore, perhaps be attributed to dietary exposure. Alternatively, the lower water 

solubility and higher atmospheric concentration of higher brominated congeners may 

result in higher concentration of these compounds in the terrestrial food web than in 

either the aquatic or marine food web. An additional consideration is that divergent 

biotransformation capacities between different species may also play a role in affecting 

PBDE congener profile of organisms. However, this could be less important in birds 

because common cormorants (Phalacrocorax carbo) in the UK and Japan exhibited 

different congener profile while each had profiles consistent with the type of PBDE 

mixtures used locally [93, 98]. Nevertheless, some species may have a distinctive 

metabolic capacity, such as the melon-headed whale from Japan in which tetra- and 

penta- BDEs were less contributive than hexa-BDEs [98], compared to most other 

waterborne marine mammals (Figure 1-3). Hence, even though these whales were from 

the same region, and thus were likely exposed to the same source of PBDEs, the 

congener profile in melon-headed whales was different from other whale species. 

1.2.3.1.2.3 Temporal trends 

The emission of PBDEs to the environment not only resulted in their increasing 

concentration over time in the abiotic environment, but also in wildlife (Figure 1-4). The 

concentrations and temporal trends in wildlife provide information on the local use 

patterns despite that differential bioavailability [71, 73, 108] and biotransformation 

capacity may partially change the congener profile to a certain extent. 
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Figure 1-4: Time trends of SPBDEs (tri- ~ hexa-) in wildlife from Europe, North 
America, Asia, and the Arctic region. The inset shows certain temporal trends on a log-
scale. Cited authors include Kierkegaard et al. [85], Sellstrom et al. [104], Norstrom et al. 
[68], Vorkamp et al. [109], Kajiwara et al. [94], Ikonomou et al. [91], and Lebeuf et al. 
[95]. 

Most accumulated BDE congeners in wildlife are markers of the commercial penta-

BDE mixture. In the eggs of guillemot (a permanent resident) from the Swedish coast of 
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the Baltic Sea, PBDE concentrations (mainly the congeners in penta-BDE formula) were 

low before the application of PBDEs as flame retardants, followed by a rapid increase 

that peaked around the mid- to late-1980s and later dropped to relatively stable 

concentrations in the mid- to late-1990s [104]. A similar trend was found in pike in 

remote Lake Bolmen, Sweden [85]. In contrast, wildlife in North America and Greenland 

showed a continuous increase until 2000 [68, 91, 95, 109]. The EPBDEs increased 8-fold 

in ringed seals in the Canadian Arctic from 1981 to 2000, and the doubling time for the 

sum of tetra-, penta-, and hexa-BDEs was estimated at 8.6, 4.7, and 4.3 years, 

respectively [91]. Similar increases (a 3-fold increase over a 10-year period) were 

observed in peregrine falcons from Greenland [109]. Lebeuf et al. reported a 22-fold 

increase of EPBDEs in beluga whales in the St. Lawrence Estuary, Canada, and estimated 

the doubling time of EPBDEs at less than 3 years [95]. The most rapid increase occurred 

in the Great Lakes region, whereby concentrations of EPBDEs in herring gull eggs 

increased 60-fold in Lake Ontario and 80-fold in Lake Michigan between 1981 and 2000, 

and the doubling time for EPBDEs (47, 99, 100) was estimated at 2.6 years in Lake 

Michigan and 3.1 years in Lake Ontario [68]. The concern that rapidly increasing PBDE 

concentrations may eventually surpass PCB concentrations was consequently raised [88]. 

The areas of North America close to PBDE manufacturing sites, such as Lake 

Michigan, had much higher concentrations than remote regions, and correlations between 

the use of penta-BDE technical formulations and PBDE concentrations (BDE 47, 99, 100, 

153, and 154) in biological samples were observed in these corresponding regions. For 

example, the estimated consumption of penta-BDE in Europe started dropping in 1995 

[61], and this was correlated with the decrease in concentrations in both herring and 
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guillemot eggs from Sweden (Figure 1-4) [85, 104]. Conversely, penta-BDE mixtures 

were still in use in North America in 2000 resulting in the highest concentration at that 

time (Figure 1-4) [68, 91, 95]. The influence of the voluntary phase-out of penta-BDE in 

North America in 2004 [18] cannot currently be assessed due to lack of more recent data. 

1.2.3.1.2.4 Spatial trend 

Latitudinal fractionation, as observed for PBDEs in sediments and soils [44-46], was 

also observed in frogs [105], whereby lower brominated congeners such as BDE 47 

become more important in northern latitudes. As mentioned previously, this spatial trend 

likely resulted from the differential atmospheric transport based on vapour pressure of 

different BDE congeners. 

1.2.3.1.3 PBDEs in humans 

Human exposure to PBDEs may occur through food, ingestion of dust, or by 

inhalation; the first two may be the major routes, while dermal absorption is expected to 

be minimal [110,111]. Following absorption, these high Kow compounds tend to partition 

preferentially to lipid-rich tissues. The partitioning ratio of PBDEs between human 

adipose tissue, milk, and blood was close to 1:1:1 based on lipid-normalized 

concentrations [112, 113]. Generally, body burdens of PBDEs in the European population 

were 10 to 100-fold lower than in the North American population [114]. Occupational 

exposure of PBDEs (mainly via inhalation of particulate matter), or high consumption of 

PBDE-contaminated fish, may result in a significantly higher body burden than in the 

background population [111, 115]. No trends have been associated with age, as have been 
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found for PCBs, for concentrations of PBDEs in adipose tissue or breast milk samples 

[114, 116]. In fact, there is a lack of correlation between PCB and PBDE concentrations 

in humans, suggesting there are other (other than diet) important routes of exposure (e.g. 

inhalation) to PBDEs in the general populations [112, 116]. 

Compared to the general population, the developing fetus and nursing infant may be 

at a higher risk from PBDE exposure because animal studies have suggested several toxic 

effects induced by PBDE exposure specific to these life-stages, including the 

development of the nervous system and thyroid hormone regulation [117-120]. The 

detectable PBDEs in breast milk and the serum in newborns make it evident that PBDE 

exposure for the fetus and infant can occur via transplacental transfer and breast milk, 

respectively [12, 112, 115, 121]. The placenta may act as a barrier by reducing exposure 

to a certain extent [112], but may not be able to protect the fetus when the maternal body 

burden exceeds a certain limit. For example, a 70% reduction from maternal to cord 

blood was observed in mother and fetus pairs when the mother's plasma concentrations 

ranged from 6.53 to 57.9 ng/g Iw [112], but comparable concentrations were observed 

when the mother's blood concentrations ranged from 15 to 530 ng/g lw [121]. Maternal 

transfer of PBDEs via breast milk has been suggested to be more pronounced than 

placental transfer [112]. Concentrations of EPBDEs (sum of BDE 47, 99, 100,153,154) 

in the breast milk from Swedish mothers ranged from 0.4 to 3.2 ng/g lw and this was 

similar to the milk from other European mothers [115]; whereas these concentrations are 

about 10 times lower than in Canadian mothers (median of BDE 47 = 13 ng/g lw), and up 

to 100 times lower than in US mothers (EPBDEs = 6.2 to 419 ng/g lw), respectively 

[110]. Likely as a direct result of higher maternal body burden and milk concentrations in 
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North Americans, fetal serum concentrations in the US were 69-fold higher than in 

Sweden [110]. The effort by European countries to voluntarily phase out and establish 

regulations against commercial penta-BDE and octa-BDE mixtures has shown 

encouraging results at the population and environmental exposure level as evidenced by 

decreasing concentrations of PBDEs in environmental samples since the mid 1990s and 

in breast milk in the late 1990s [110, 115]. 

1.2.3.2 Environmental behaviour and fate 

Addressing the questions of where in the environment a chemical accumulates, and in 

what chemical form it resides, can assist in developing wiser uses, manufacturing and 

application scenarios, and effective regulations. Specifically, after their emission of from 

sources, PBDEs partition among various environmental compartments, including 

organisms, as shown in Figure 1-2. The environmental monitoring studies described in 

the previous sections have demonstrated some trends and behavioural characteristics of 

PBDEs which can be summarized, in general, may be similar to POPs with regard to 

environmental persistence and long-range transport [10, 11]. Another important 

characteristic to consider is their bioaccumulation and biotransformation capacity, and 

these are a focus of the present thesis. In Canada, the Canadian Environmental 

Protection Act prescribes certain conditions that must be met in order for a chemical to be 

labeled as persistent subject to long-range transport, or bioaccumulative. 
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1.2.3.2.1 Persistence and long-range transport 

According to the Canadian Environmental Protection Act, "a substance is considered 

to be persistent when its half life equals to or is longer than 2 days in air, 182 days in 

water, 365 days in sediments and 182 days in the soil"; furthermore, "a substance may be 

considered as persistent in air if it is shown to be subject to atmospheric transport to 

remote regions such as the Arctic." 

Studies on the half-life of PBDEs in environmental compartments are limited. Half-

lives under solar light degradation have been studied in pure solvent or water/solvent 

mixtures (Appendix IV) [122, 123]. The half-lives of PBDEs varied according to the 

degree of bromination and the ratio of organic and aqueous composition; with the 

decrease in the degree of bromination and/or increase in aqueous composition, the 

degradation half-life of certain PBDEs increased [123]. However, this study did not 

demonstrate the degradation of PBDEs in pure water. The degradation in pure water has 

only been studied for BDE 209, and that half-life (30 to 40 h) was longer than that in any 

of the studies using pure solvent (0.1 to 0.5 h) [122, 123]. Although the experimental 

conditions such as lower light intensity could result in a longer half-life, in pure water the 

half-life of lower brominated congeners such as BDE 47 (half-life was 290 h in 

MeOH/water (80:20, v/v)) is presumably longer than the persistence criteria prescribed in 

the Canadian Environmental Protection Act. 

In addition, the similar composition of PBDEs between the commercial penta-

mixtures and samples of soil or sediment may be interpreted as evidence that little 

degradation of the congeners occurs by processes occurring during atmospheric transport 

or within the soil [44]. Microbial biodegradation studies have shown that the full 
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brominated congener, BDE 209, had a longer half-life (700 d) [124] than the Canadian 

Environmental Protection Act criteria. Moreover, the authors also suggested that the 

lower brominated congeners would be even more resistant to microbial degradation. 

The detectable levels of PBDEs in many samples from remote environments, where 

few local sources of PBDEs exist, provide the most convincing evidence for long-rang 

transport. Atmospheric half-lives have not been measured directly, but the fact that the 

congener profile in soil matches the atmospheric congener profile [11] provides some 

evidence that PBDEs may undergo long-range atmospheric transport. In the atmosphere, 

the relative contribution of BDE 47 — a relatively "light" congener — to EPBDEs 

increases towards the North Pole, suggesting that the "cold condensation" effect has 

acted to deposit the least volatile fraction at lower latitudes, and hence to enrich the more 

volatile compounds in the colder areas during long-range transport [45, 46]. As such, 

larger PBDEs such as BDE 209 are poor candidates for long-range transport to the Arctic. 

This effect also resulted in the latitudinal fractionation of PBDEs which has been 

described in several previous sections. 

1.2.3.2.2 Bioaccumulation 

1.2.3.2.2.1 Bioconcentration 

Bioconcentration describes the magnification of a waterborne chemical into an 

aqueous organism through respiration or skin absorption. It is usually measured under 

experimental conditions in which the aquatic organism (e.g. fish) is exposed to the 

chemical only through the water. The degree of bioconcentration is expressed by the 
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bioconcentration factor (BCF), which is defined as the concentration ratio, at steady state, 

of the chemical concentration in the aquatic organism to that in the water [125]. The 

concentration can be based on wet weight (ww). 

oK^t — C organism ' ^ water 

1.2.3.2.2.2 Biomagnification 

Biomagnification describes the magnification of a chemical by an organism only 

through the diet, and can thus be determined in laboratory feeding experiments, but it is 

also applicable to field measurements when exposure through other routes (e.g. 

respiration or skin absorption) is thought to be negligible. The biomagnification factor 

(BMF) is therefore defined as the concentration ratio, at steady state, of the chemical 

concentration in an animal to that in its diet. BMFs are best determined under 

experimental conditions to minimize other exposure sources [125] and also to have high 

confidence in the true diet concentration, which can be difficult to assess in the field. 

However, many field studies use BMFs as a term to describe the magnification of a 

chemical from assumed predator/prey relationships. These "BMFs" are rather 

bioaccumulation factors (BAFs), which are described below. Only when the 

predator/prey relationship is simple enough (e.g. polar bear/ringed seal), and other 

exposure routes of the predator are negligible (e.g. respiration), can the BAFs estimated 

from the field studies be treated as BMFs. The concentration can be based on ww, dw, or 

lw. However, because increasing wet weight concentrations of some hydrophobic (and 

3 There is no unit for BCF. Units of concentrations in the organism and water are cancelled based on the 

assumption that the density of water is 1 g/ml. 
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lipophilic) chemicals in food chains may occur simply as a result of increasing lipid 

content of higher trophic organisms, it is often necessary to use lipid-normalized 

concentrations of the chemical. 

13 M r — L/ organism ' v diet 

1.2.3.2.2.3 Bioaccumulation 

Bioaccumulation is a more general term and is "the result of simultaneous 

bioconcentration and biomagnification" [125]. For the waterborne organisms, BAFs are 

determined by the ratio, at steady state, of the chemical concentration in the organism to 

the chemical concentration in the water (sometimes only involving in the dissolved 

phase). However, BAFs can vary with a change in the relative apportionment of the 

chemical in the diet and exposure water. Therefore, BAFs estimated in a certain 

environment cannot necessarily be used to predict the concentrations in water or 

organisms in another environment. For terrestrial animals, BMFs best represent BAFs if 

the exposure routes other than diet (e.g. respiration) are negligible. The concentration can 

be based on ww, dw, or lw. 

1.2.3.2.2.4 Food-chain b ioaccumulation 

Food-chain bioaccumulation describes the magnification of a chemical through the 

food chain and, thus, is a measure of accumulation across multiple trophic levels [125]. 

The food-chain bioaccumulation factor (sometimes also called the trophic magnification 

factor) can be estimated by the biomagnification power {B value) by the following 

equation, c = A • e^B's N\ where c is the lipid-normalized concentration (the reason why 
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lipid-normalized concentrations are used has been described previously in the 

"Biomagnification" section) in one organism for which the 8I5N value has been 

determined (as a measure of trophic level), and the A is the base concentration in the food 

chain [126]. A positive B value indicates that organisms located in higher trophic levels 

accumulate higher lipid-normalized concentration of the substances. 

1.2.3.2.2.5 Practical considerations for measuring bioaccumulation 

It is important to note that for all the above bioaccumulation parameters it is 

technically necessary to know the whole-body concentration of the target chemical. 

However, this is only practically feasible when an organism is small enough to be fully 

homogenized, and therefore would limit the study of larger wildlife such as whales or 

polar bears. Therefore, for lipophilic compounds, it has become common practice to 

lipid-normalize the concentration determined in a single tissue (or fluid) of the predator 

and its diet [77, 96, 100] based on the assumption that lipid-normalized concentrations 

between tissues are comparable, or in other words, that the whole-body lipid-normalized 

concentration is reflected by the lipid-normalized concentration of a single tissue sample. 

However, this is not always a safe assumption, particularly in species, such as ringed 

seals, that undergo pronounced lipid cycles. This may result in a large variance of lipid-

normalized concentrations for any contaminant, and more importantly may lead to 

inaccurate assessments of bioaccumulation tendencies [77, 96, 127]. In addition, the use 

of lipid-normalized concentrations may give inaccurate impressions of the total body 

burden when suspect compounds do not distribute evenly on a lw basis [77]. In this case, 

ww-based whole-body concentrations (predicted from lipid-normalized concentrations 
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and the whole-body lipid content) are estimated [77] and used to calculate or interpret the 

BMF. 

The use of ww-based whole-body concentration for assessing bioaccumulation 

clearly reduces the bias caused by tissue-specific accumulation. However, the resulting 

BMF parameter can be misleading for lipophilic chemicals when the predator has a 

higher percentage of body fat than its prey. This is because the increase in concentrations 

of some hydrophobic chemicals in a predator organism can simply result from a higher 

total lipid content of the predator relative to its prey [125]. Nevertheless, the relative 

biomagnification ability between PBDE congeners can be compared by any of these 

methods. 

1.2.3.2.2.6 Bioaccumulation data for PBDEs 

According to the Canadian Environmental Protection Act, substances having log Kow 

larger than 5 are considered to be bioaccumulative; all the major PBDEs detected in the 

environment belong to this category (Table 1-3). Thus PBDEs have been the subject of 

several bioaccumulation investigations in various species. 

Though no study has estimated the BCFs and waterborne BAFs of PBDEs, they are 

believed to be bioavailable to aquatic organisms, through dietary intake of particulate 

organic matter, contaminated prey organisms or detritus [77]. However, food-chain 

bioaccumulation (expressed by B values) and biomagnification (expressed by lw-

normalized BMFs) of PBDEs have been determined for several natural feeding 

relationships around the globe (Figure 1-5). 
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Significant bioaccumulative potential through the food chain (B value > 0) for lower 

PBDEs has been observed in the Baltic Sea food web (roach, perch, and pike) (Table 1-5), 

and the Atlantic Ocean food web (zooplankton, sprat, herring, and salmon) (Table 1-5). 

However, negative B values were suggested for higher brominated congeners such as 

BDE 203 (octa), and the B value was not significantly different than 0 for BDE 209 [126, 

129]. 

Biomagnification was also observed for BDE 47 in ringed seals when interpreted by 

BMFs based on estimated whole-body concentrations (ww-based) and lipid-normalized 

tissue concentration (Table 1-5). However, BDE 100 was shown to biomagnify to a 

larger extent than BDE 99 in ringed seals relative to polar cod; and polar bears seemed to 

biomagnify only BDE 153 other than BDE 47, relative to ringed seals which were 

presumed to be their primary prey (Table 1-5). 

Table 1-5: Bioaccumulation (expressed by BMFs and B values) of PBDEs. 

Marine 
BMFs 

Terrestrial 
BMFs 

B values" 

Predator/Prey 
harbor seal/cod [70] 

ringed seal/polar cod [77] 

polar bear/ringed seal [100] 

polar bear/ringed seal [77] 

Sparrowhawk 
/passerine [128] 

buzzard/rodent [128] 

fox/rodent [128] 

Baltic Sea food web [126] 

Atlantic food web [129] 

BDE Congeners 

28 

3.6 

14 

— 

0.1 

4 

— 

— 

>0.3 

>0.1 

47 

29 

56 

3.9 

0.5 

10 

12 

<1 

>0.6 

>0.4 

99 

6.3 

14 

5.8 

0.3 

20 

14 

<1 

>0.6 

>0.3 

100 

44 

26 

4.7 

0.3 

25 

17 

<1 

>0.6 

>0.3 

153 

>140 

— 

71 

7.5 

21 

22 

<1 

>0.5 

>0.2 

154 

5.4 

7.9 

— 

0.3 

24 

— 

— 

>0.5 

>0.2 

" B values are estimated from figures. — not available 
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Relative to the simple feeding relationships in arctic marine food webs, comparatively 

few accumulation measurements have been made in terrestrial food chains because the 

food sources for terrestrial animals are varied (in space and time) which greatly 

complicates the dietary assessment and, thus, the number of samples required to be 

collected and analyzed. Nonetheless, some data have been reported for BMFs in some 

terrestrial feeding relationships (Table 1-5). In two terrestrial feeding relationships, 

sparrowhawk/passerine and buzzard/rodent, BMFs for detectable PBDEs were all greater 

than one, whereas in another relationship involving a top predator (fox/rodent), foxes 

seemed not to accumulate PBDEs [128]. A significant linear relationship between BMFs 

and log Kow was shown for all the detected congeners (tri- to hepta-) in sparrowhawks, 

whereas in buzzards the correlation was only observed for congeners having fewer than 

six bromine atoms [128], suggesting that buzzards may have the capacity to biotransform 

the higher brominated PBDEs, unlike sparrowhawks. 

In general, high Kow PBDEs are bioaccumulative through the food chain resulting in 

higher exposure to top predators in both marine and terrestrial food webs. However, the 

negative BMFs of polar bears and foxes indicated that these organisms might have an 

elevated capacity for biotransformation and elimination of PBDEs. Lower brominated 

congeners are more accumulative and their BMFs may be correlated with their log K^, 

because they are not readily biotransformed, whereas higher brominated congeners are 

less bioaccumulative and are more susceptible to biotransformation. 
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1.2.3.2.3 Biotransformation in microorganisms 

Biotransformation of PBDEs has been demonstrated in various microorganisms. 

Microbial reductive debromination of higher brominated PBDEs was observed under 

anaerobic conditions (Table 1-6) [130, 131]. 

Table 1-6: Possible debromination pathways by microbial degradation. 

Substrate (PBDEs) 
Deca-BDE 

Nona-BDE congeners 
(207 and 206) 
Deca-BDE 

Octa-BDE mixture 

Octa-BDE mixture 

Active Microbes 
Sewage sludge from a 
mesophilic digester 
Sewage sludge from a 
mesophilic digester 
Sulurospirillum 
multivorans 
Dehalococco ides 
ethenogenes 195 
Dehalococcoides 
ethenogenes 195 
and 
Dehalococcoides sp. 
strainBAVl 

Products 
Nona- (BDE 208 and 207) 
to octa-BDE congeners 
Octa-BDE congeners 

Octa- and hepta-BDE 
congeners 
Hepta- to di-BDE 
congeners 
Tetra- to di-BDE 
congeners 

Ref. 
[130] 

[130] 

[131] 

[131] 

[131] 

Anaerobic degradation of deca-BDE by sewage sludge, collected from a mesophilic 

digester, was observed within an 8-month incubation; the disappearance rate with the 

addition of primers (related compounds which may enhance the degradation of the target 

compound) corresponded to a pseudo-first-order rate constant of lxlO"3 per d [130]. 

Much quicker debromination of deca-BDE was observed by a dechlorinating bacterium, 

Sulurospirillum multivorans, which is responsible for dechlorinating highly chlorinated 

ethenes; it was able to convert deca-BDE to octa- and hepta-BDE congeners, but without 

further debromination [131]. Several Dehalococcoides species are capable of 

debromination of the octa-BDE mixture to much lower brominated congeners (from 
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hepta to di-). However, due to the toxicity of PBDEs to these bacterial species, the 

transformation rate of PBDEs was slow and the fastest degradation rate was limited to 

several hundred nanomole per year [131]. The identified debromination product 

congeners in sewage sludge included BDE 207 and 208 and by Dehalococcoides species 

included BDE 47, 49, 99, and 154, of which the congeners containing ort/jo-substituted 

bromine atoms were the most resistant to further debromination [130, 131]. No microbial 

debromination has been reported for penta-BDE mixture presumably due to the resistance 

of debromination of these lower brominated congeners. 

1.2.4 Mammalian toxicological profile 

The mammalian toxicological profile of lower brominated BDE congeners is 

discussed in the following sections. Higher brominated BDE congeners are not of the 

interest due to their less frequent detection, lower bioaccumulation and toxicity, and 

debromination to lower brominated congeners. Absorption4, distribution, metabolism, 

excretion5 (ADME), and toxic effects after oral exposure of individual congeners (BDE 

47, 99, 100, and 153) or a commercial penta-BDE mixture (DE-71) in two rodent species 

(rats and mice) are discussed in the following sections in order. 

4 Absorption is defined as the fraction of the dose being absorbed from the gut. The dose includes the 

parent compounds and their metabolites. 

5 Excretion is the removal of administered substances in the parent forms in excreta (including feces and 

urine in general, and other routes such as milk and bile); whereas elimination refers to all the processes that 

remove administered substances including excretion and metabolism. 
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1.2.4.1 Absorption 

The individual congener exposure studies have demonstrated that all the tested 

congeners are bioavailable and well-absorbed by the gastrointestinal tract. However, the 

absorption in rodents after a single exposure generally decreased with the increasing 

molecular weight, specifically, >75% of BDE 47 [23, 132], 50% to 80% of BDE 99 [133, 

134], 73% of BDE 100 [135], and 70% of BDE 153 [136]. 

1.2.4.2 Distribution 

Using 14C-labeled BDE 99, tissue concentrations and tissue distribution were studied 

in rats and mice [134]. Six hours after a single oral exposure, the highest 14C 

concentrations were observed in the liver and kidney. Between 6 and 24 h, concentrations 

increased in adipose tissue while decreased rapidly in other major tissues. The adipose 

14C concentration remained constant over the next 9 d. This result revealed the fact that 

adipose tissue was the major accumulation site of BDE 99 [134], in agreement with its 

high Kow. Based on the proportion of the administered dose, the skin accumulated the 

second most PBDEs at 24 h, followed by the muscles and liver [132-135]. However, 

BDE 153 was an exception as it accumulated primarily in liver but the reason for this was 

not clear [136]. The accumulation potential of PBDEs in other tissues was generally low. 

Repeated-dose exposure to rats and mice resulted in enhanced relative accumulation 

of BDE 47 and 99 in adipose tissue compared to single exposure at the same amount 

[132-134, 137]. Selective accumulation of PBDE congeners was observed in some tissues 

6 The bioavailability was defined as the fraction of the administered parent compound reaching systemic 

circulation. 
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in rats. For example, BDE 47 had a greater preference for adipose tissue than BDE 99 

[133]. Therefore, if only adipose tissue was measured, then BDE 99 may have been 

underestimated and BDE 47 overestimated in the whole body [133]. 

A sex difference for BDE 47 accumulation in adipose tissue, and excretion to feces, 

was observed whereby females accumulated more and excreted less than males [132], 

thus suggesting a longer whole-body half-life for BDE 47 in females [132]. However, it 

is important to keep in mind that females can also excrete some of the dose through the 

maternal transfer mechanisms during pregnancy [12]. In contrast, sex differences for 

either tissue distribution or excretion were not significant for BDE 99 or 153 [134, 136]. 

1.2.4.3 Excretion 

As previously mentioned, species differences for PBDE excretion were observed. 

Urinary excretion of BDE 47 and 99 was different between rats and mice [132, 134, 137], 

whereas urinary excretion of BDE 100 and 153 and fecal excretion of BDE 47, 99 and 

100 was similar between species [135-137]. The dose concentration of BDE 47 (0.1 to 

1000 jimol/kg) seemed not to affect the proportion excreted [132]. In rats, excretion in 

the parent forms through feces was a significant route (>26% of a single dose within 24 h) 

for elimination of BDE congeners (BDE 47, 99, and 153), whereas their excretion 

through urine was limited [132, 134, 136]. In mice, the dominant fecal route of excretion 

was similar to rats for BDE 99 and 153; however, BDE 47 was not only greatly excreted 

through feces (>20% of a single dose within 24 h) but also significantly excreted through 

urine (>20% of a single dose within 24 h) [132, 134, 136]. Excretion of BDE 99 through 

feces was higher than BDE 47 in rodents (based on percentage of dose administered), 
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probably due to the poorer intestinal absorption of BDE 99 resulting from its larger 

molecular weight [133, 134, 137]. The reduced capacity of developing mice to excrete of 

BDE 47 may have resulted in higher concentrations in target tissues during critical 

windows of development [138]. A reference half-life of a tetra-BDE (not defined but 

likely to be BDE 47) in adipose tissue was estimated at 19 days in male rats [23, 139, 

140]. 

1.2.4.4 Metabolism 

Biotransformation of PBDEs occurring in higher organisms is more complicated than 

in lower organisms because of the transient nature of the metabolites of PBDEs which 

may be eliminated or transported into different tissues. Biotransformation processes, 

including oxidative debromination, hydroxylation, reductive debromination, cleavage of 

the ether bond, and phase II conjugation have been observed, and many products 

including hydroxylated PBDEs (OH-PBDEs), bromophenols, glucuronides, glutathione, 

and sulfate conjugates have been reported in various experimental animals [23, 132-135, 

139, 141, 142]. The metabolic pathways for PBDE are summarized in Figure 1-5. 

Hydroxylation of BDE 47 has been suggested to be mediated by cytochromes P450, 

because some of their gene expression was up-regulated in rats following repeated 

exposure to BDE 47 [132]. Proposed metabolism pathways of BDE 99 were more 

complicated than BDE 47 in rodents [133]. In addition to phase I metabolism such as 

hydroxylation and several phase II metabolites identified in bile, feces, and urine, 

debromination metabolites were also detected [134]. Fewer metabolites were identified in 

fecal extracts for BDE 100 compared to BDE 99 or 47, but the identified metabolites 
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included mono-hydroxylated, oxidative debrominated congeners [135]. Comparatively 

minimal metabolism of BDE 153 in rodents has been observed [136]. This could be 

attributed to the absence of adjacent unsubstituted carbons which is an essential feature 

for arene oxide formation catalyzed by cytochrome P450 [136]. 

°Glu<\ OGluc 

UDPGA 

OGluc 

Figure 1-5: Proposed metabolic pathways of PBDEs to form lower brominated congeners, 
mono-OH-PBDEs, di-OH-PBDEs, bromophenols, glutathione, and glucuronide 
conjugates. 
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In summary, the toxicokinetics of PBDEs are consistent with environmental 

observations that the lower brominated congeners are generally persistent and, to some 

extent, accumulative in organisms. Phase I and phase II metabolism changes the structure 

and properties for a fraction of the parent PBDE congeners, thus making them more 

water-soluble and more easily excreted. However, as will be mentioned in the following 

sections, these metabolic processes may also result in the bioactivation of PBDEs. 

1.2.4.5 Toxic effects and the mechanisms of action 

Because PBDEs are structurally similar to toxic polyhalogenated aromatic 

hydrocarbons, such as PCBs, dibenzo-/?-dioxins, and dibenzofurans, concerns were raised 

that PBDEs may cause similar toxic effects. Nevertheless, other toxic effects, specific to 

PBDEs, are also important to examine. Lower brominated congeners are more toxic than 

higher brominated congeners in terms of acute and subacute to subchronic toxicity [9, 

143], influence on hepatic enzyme activities, thyrotoxicity [117, 118], and neurotoxicity 

[119, 120, 144, 145]. Moreover, lower brominated congeners are more bioaccumulative 

than higher brominated congeners, and furthermore, higher brominated congeners can be 

debrominated to lower brominated congeners in mammals [71, 146] or by environmental 

bacteria [130, 131] as described in previous sections. Typical toxic effects of lower 

brominated congeners, including acute toxicity, thyrotoxicity, neurotoxicity, and 

hepatotoxicity, are discussed here. 
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1.2.4.5.1 Acute toxicity 

Although lower brominated congeners are more potent toxicants than higher 

brominated congeners regarding in acute exposures, the effective doses required to elicit 

acute toxic effects are relatively high compared to the well-known toxic compounds, 

dioxins. For example, the oral LD50 of the penta-BDE mixture for female and male rats 

was 5.8 and 7.4 g/kg body weight (bw) respectively [14], whereas the LD50 range of 

dioxins was from microgram to milligram per kg bw level [147]. Humans and wildlife 

are not likely to be exposed to such high concentrations of PBDEs under any exposure 

scenario, except perhaps in accidental exposures. Greater focus, therefore, is placed here 

on the effects of these congeners in chronic low-dose exposure scenarios. 

1.2.4.5.2 Affected hepatic enzyme activities 

In vivo and in vitro studies have demonstrated that hepatic phase I enzymes activities, 

such as cytochrome P450 isozymes, can be up-regulated by PBDEs in many models 

(Table 1-7). As hydrophobic xenobiotics, biotransformation of PBDEs by P450 will 

increase their hydrophilicity, and thus induction of phase I enzyme activity may initially 

be thought to be a detoxification step. However, these processes may also lead to 

bioactivation. For instance, hydroxylated BDEs are likely to lead to thyrotoxicity as 

discussed in the following sections. PBDEs also induced phase II enzyme activities, such 

as uridinediphosphate-glucuronosyltransferase (UDPGT), and through this pathway may 

have cause thyrotoxicity. This will also further discussed in the following sections. 
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Table 1-7: Summary of in vivo and in vitro studies examining the influence of PBDEs on 
the activity of P450 enzymes. 

Tested Study Object Targets Results Ref. 
PBDEs 
DE-71 MaleF344 CYP1A1 gene Up-regulation but weak compared to [148] 

rats positive control (PCB 126). 

Primary rat 
hepatocytes 
Long-Evans 
rats 

BDE 47 Male F344 
rats 

C57BL6 mice 

Primary rat 
hepatocytes 

BDE 99 Male F344 
rats 

C57BL6 mice 

Primary rat 
hepatocytes 

BDE Male F344 
153 rats 

Primary rat 
hepatocytes 

CYP 2B gene 
CYP 3A gene 
CYP 1A1 activity" 

CYP 1A1 activity" 

CYP 2B activity6 

CYP 1A1 gene 

CYP 2B gene 
CYP 3A gene 
CYP 1A gene 

CYP 2B gene 

CYP 3A gene 

CYP 1A1 activity" 

CYP 1A1 gene 

CYP 2B gene 
CYP 3A gene 
CYP 1A gene 

CYP 2B gene 

CYP 3A gene 

CYP 1A1 activity" 

CYP 1A1 gene 

CYP 2B gene 
CYP 3A gene 
CYP 1A1 activity" 

Up-regulation 
Up-regulation 
No induction of CYP 1A1 [ 

Significant induction in both dam and J 
offspring at 10 mg/kg/d 
Significant induction in both dam and 
offspring at 10 mg/kg/d 
Up-regulation only appeared at 100 
ug/kg/d group 
Up-regulation 
Up-regulation 
No induction of CYP 1A1 or CYP 1A2 [ 
gene expression 
Induction of CYP 2B10 gene 
expression 
Induction of CYP 3All gene 
expression 
No induction of CYP 1A1 

Up-regulation only appeared at 100 
umol/kg/d group 
Up-regulation 
Up-regulation 
No induction of CYP 1A1 or CYP 1A2 
gene expression 
Induction of CYP 2B10 gene 
expression 
Induction of CYP 3All gene 
expression 
No induction of CYP 1A1 

Up-regulation only appeared at 100 
ug/kg/d group 
Up-regulation 
Up-regulation 
Weak induction of CYP 1A1 

148] 
148] 
149] 

118] 

118] 

148] 

148] 
148] 
150] 

150] 

150] 

.149] 

148] 

148] 
148] 
150] 

.150] 

;i50] 

149] 

148] 

"148] 
;i48] 
[149] 

" CYP 1 Al activity was tested by the 7-ethoxyresorufin-O-deethylase (EROD) assay. * CYP 2B 
activity was tested by the 7-pentoxy-resorufin-Odealkylase (PROD) assay. 
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1.2.4.5.3 Thyrotoxicity 

Because PBDEs, and particularly their OH-PBDE metabolites, structurally resemble 

of thyroid hormones, such as thyroxine (T4) and triiodothyronine (T3) (Figure 1-6), and 

also because other halogenated aromatic hydrocarbons have been found to affect thyroid 

hormone regulations, PBDEs and their metabolites are suspected to be thyroid hormone 

disrupters. 

HO I 

I H2N OH 

Br 

Figure 1-6: Structure of T4 (upper left), T3 (upper right), and an OH-penta-BDE (lower 
middle). 

T4 is the major thyroid hormone in the blood, whereas T3 is the biologically active 

form in cells. T4 can be converted to T3 by 5'-deiodinase in various tissues and in the 

placenta for use by the fetus [151]. Once released from the thyroid gland, thyroid 

hormones bind to a great extent to serum transport proteins including thyroxine binding 

globulin, transthyretin (TTR), or albumin. Only the free fractions of T4 and T3 are 

considered physiologically relevant. Thyroid hormone homeostasis is regulated by a 

sensitive feedback mechanism via the hypothalamic-pituitary-thyroid axis [152, 153]. 

Normal thyroid hormone levels in blood are essential for growth and development of 

tissues and for the maintenance of tissue and organ function [151]. The most critical role 
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for thyroid hormones is their regulation of the development of the central nervous system 

(CNS) in the developing fetus. Insufficient thyroid hormones during critical windows of 

development will result in irreversible damage [154], which may be subtle (e.g. effect on 

behaviour) or overt (e.g. mental retardation or abortion). 

Indeed, among various PBDE toxicities, altering thyroid hormone regulation is one of 

the most sensitive endpoints [120]. Dose-dependent decrease of serum T4 was observed 

(no sex difference) in both rats and mice (weaning to adult stages) after PBDE short- or 

long-term exposure at relatively low doses (lowest-observed-adverse-effect-level 

(LOAEL) was 30 mg/kg/d in different studies) [117, 152]. Although not all the studies 

examined free T4 in serum or plasma, one study showed that the total and free T4 

concentrations paralleled each other after PBDE exposure [155] indicating that free T4 is 

affected proportionally with total T4. The free T3 concentration was but not significantly 

affected by PBDEs, but the male was more sensitive than the female [117, 152]. However, 

this is not to say that PBDE exposure is less critical for tissue development or function 

maintenance in the female because hypothyroxinemia7 with normal T3 levels will still 

leads to permanent functional abnormalities [118]. Another thyroid endpoint, thyroid-

stimulating hormone (TSH), which serves to stimulate release to T4 when circulating 

levels are low, was not affected in all these studies [117, 143] except that it increased at a 

higher dose (60 mg/kg/d) in the pubertal males [152]. 

Neonatal and fetal stages may be more sensitive to PBDE exposure due to their 

developing CNS. It has been shown that PBDEs were retained in the neonatal brain 

during a defined critical period of brain development following maternal exposure [119]. 

7 Hypothyroxinemia is characterized as low level of serum T4 with normal level of TSH. 
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In addition, fetal and neonatal hypothyroxinemia was observed after in utero and/or 

lactational exposure to PBDEs [117, 118]. Furthermore, the no-observed-adverse-effect-

level (NOAEL) and LOAEL of hypothyroxinemia was respectively 1 and 10 mg/kg/d for 

fetuses or suckling neonates and the NOAEL was one-order-of-magnitude lower than the 

NOAEL in weanling or adult animals [117, 118]. Fortunately, serum total T4 of these 

young rats returned to and remained at the normal level after ceasing the exposure [118]. 

Three general mechanisms for disruption of the thyroid hormone regulation systems 

by PBDEs have been conceived: i) direct interference (i.e. toxicity) on the thyroid gland; 

ii) interference with thyroid hormone metabolizing enzymes; or iii) interference with the 

plasma transport of thyroid hormones [156]. Although enlarged thyroid glands were 

observed after PBDE exposure following high-dose (100 mg/kg/d) and subchronic 

exposure (90 d) [9], it was unlikely that PBDEs directly affected the thyroid gland at the 

previously studied doses. Several experiments have demonstrated the effects of PBDEs 

on thyroid hormone metabolism enzymes, particularly induction of the phase II enzyme, 

UDPGT [117, 118], leading to faster elimination of free serum T4 via glucuronidation. 

Interestingly, PBDE metabolites have a higher affinity to the serum transport protein 

TTR than T4, the natural ligand [157]. Therefore, this may also serve as one of the 

mechanisms affecting the thyroid hormone regulation. The specific metabolites were not 

characterized by these authors; therefore the effective compounds remain unidentified but 

could be OH-PBDEs or bromophenols [157, 158]. However, the physiological relevance 

of this was unclear since T3 and TSH were unaffected in vivo [117, 118]. In another 

study, the total T4 in plasma after BDE 99 exposure was elevated in adult rats, though it 

returned to the control level several days after exposure was ceased [133]. The authors 
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attributed this to competed binding of T4 and hydroxylated BDE 99 to TTR, because this 

results in low protein-bound T4 which serves as a signal to the hypothalamus to send the 

signal, thyrotropin-releasing hormone (TRH), to the pituitary to release the TSH which 

triggers the synthesis of T4 in the thyroid gland. However, neither TRH nor TSH level 

was measured in the study. 

1.2.4.5.4 Neurotoxicity 

Even though no immediate effects were observed in mothers, such as on bw gain, 

pregnancy duration, proportion of successful deliveries, or pup sex-ratio after maternal 

exposure to DE-71 and BDE 99 [119, 120], prolonged effects in offspring, including 

hyperactivity at young adulthood [144, 159] and hypoactivity at late adulthood, were 

observed in perinatally exposed animals [159]. Furthermore, the effects of PBDEs on the 

CNS and brain function can get worse with age [119, 120, 144]. These behavioural 

effects may be attributed to the neurotoxicity of PBDEs in the CNS, and perhaps as a 

secondary effect derived from thyroid hormone disruption [120], although the latter has 

not been demonstrated. However, linkage between disrupted thyroid hormone (decreases 

in maternal serum T4 or free T4, or other indicators of thyroid abnormalities) and 

negative impact on the intelligence of children has been demonstrated in humans [120]. 

In other studies, neonatal mice exposed BDE 99 and 153 exhibited impaired cognitive 

Q 

abilities in the Morris water maze test [120, 144]. 

8 The Morris water maze is one of the most used behavioural procedures to explore the role of the 

hippocampus in the formation of spatial memories. It was developed by neuroscientist Richard G. Morris in 
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A potential underlying mechanism of neurotoxicity can be related to the regulation of 

the cholinergic system which is one of the major transmitter systems that correlated 

closely to cognitive abilities such as reversal learning and working memory in animals 

[144]. Indeed, a disrupted cholinergic neurotransmitter system (significant decrease in 

density of nicotinic receptors in the hippocampus) in adult rodents has been observed 

after neonatal exposure to PBDEs [144, 160]. 

1.3 Mink {Mustela vison) 

The mink is a member of the weasel family and is widespread throughout North 

America. Mink are shoreline dwellers and their one basic habitat requirement is a suitable 

permanent water area such as rivers or lakes. Mink are strictly carnivorous and are 

semiaquatic animals. Their diets are composed of organisms from both land and water 

including small mammals, such as rats and rabbits, frogs, fish, muskrats, insects, birds, 

and eggs. Their predators, such as owls and wolves, are generally the top predators in the 

terrestrial food webs, and mink have few aquatic predators. Their life span is generally 8 

to 10 years. 

Compared to laboratory animals, such as rats and mice, mink are in a higher trophic 

level and have a longer life span. Therefore they may be exposed to higher concentrations 

of PBDEs over a longer period of time than typical laboratory test species. In addition, 

because of their dietary habits, they may have a different metabolic capacity than rats and 

mice, possibly including a more efficient elimination of xenobiotics via 

1984. It is now commonly used to test the cognitive ability of rats and mice, by testing whether they can 

learn to orient and swim rapidly to an invisible escape platform using distant cues. 
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biotransformation. However, metabolism of xenobiotics may also be a bioactivation 

process. This is supported by different congener profiles in DE-71 exposed laboratory 

rodents and farmed mink (Chapter 2). In addition, mink may respond differently to PBDE 

exposure than laboratory rodents. For example, cholinergic parameters were not affected 

in mink following chronic exposure to DE-71 [161], whereas both rats and mice were 

indeed affected. Taken together, the mink species is a more environmentally relevant 

model to study the fate of PBDEs and other accumulative organohalogens. For example, 

mink have previously been used to investigate environmental toxicants such as dichloro-

diphenyl-trichloroethane (i.e. DDT) and PCBs [162, 163]. 

1.4 Objectives 

Health and environmental concerns have been raised as a consequence of 

observations that concentrations of PBDEs were quickly increasing in biota, particularly 

the lower brominated congeners, and thus investigations on the environmental 

concentrations, toxicological effects, and fate of PBDEs continue to be undertaken. Risk 

assessment, regulation, and/or replacement of PBDEs with suitable alternatives depend 

on sound decision-making supported by scientific evidence. An understanding of how 

these compounds circulate between environmental components, particularly within and 

among relevant organisms, including bioaccumulation, excretion, metabolism, and 

maternal transfer, is thus a very important consideration. 

Taking mink as a sentinel species and as the study subject, the present work aims i) to 

characterize the dietary accumulation, disposition and metabolism of PBDEs in pregnant 

mink and their offspring and ii) to study potential metabolic pathways for PBDEs 
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including debromination and hydroxylation by in vitro methods using mink intestinal 

microflora and hepatic microsomes. 
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Chapter 2: Dietary accumulation, disposition, and 

metabolism of technical pentabrominated diphenyl 

ether (DE-71) in pregnant mink {Mustela vison) and 

their offspring9 

2.1 Introduction 

Because of their wide use in consumer products, polybrominated diphenyl ethers 

(PBDEs) are now ubiquitous in the abiotic environments [1, 2], wildlife [3, 4], and in 

humans [5-7]. This may present environmental health risks given that animal studies have 

demonstrated that PBDEs can cause adverse effects on reproductive capacity, thyroid 

hormone regulation, and on the central nervous system (CNS) [8]. 

Although the highly brominated deca-BDE mixture is the major commercial 

formulation in use today, and its primary component (BDE-209) is now the major 

congener in many abiotic environmental samples [1], the most prominent and frequently 

detected PBDEs in wildlife and human samples are the tetra- to hexa-brominated 

congeners, BDE 47, 99, 100, and 153 [9]. These are the major congeners in penta-BDE 

commercial formulations, such as DE-71, that are now largely phased out, but because of 

9 A version of this chapter has been published as "Dietary accumulation, disposition, and metabolism of 

technical penta brominated diphenyl ether (DE-71) in pregnant mink (Mustela vison) and their offspring" in 

Environmental Toxicology and Chemistry. Available online at http://dx.doi.org/10.1897/07-487. 

71 

http://dx.doi.org/10.1897/07-487


their persistence in the environment, the fact that they accumulate in organisms to a 

greater extent than more highly brominated PBDEs [10, 11], and the presumed stockpile 

of current-use products still containing penta-BDE mixtures, continued study of their 

environmental fate is warranted. 

Studies on arctic marine animals, using lipid-normalized tissue concentrations as a 

proxy for whole-body concentration, have demonstrated that biomagnification factors 

(BMFs) for major BDE congeners (BDE 47, 99, 100, 153, 154) are larger than 1 (Table 

1-5). These data are highly suggestive of significant biomagnification potential in these 

species [12, 13], but BMFs derived from monitoring studies can be uncertain due to the 

wide range of food sources (spatially, temporally, and ranging from plants to small 

animals), thus making it hard to define the true concentration in prey. Therefore, there is 

great value in conducting dietary accumulation studies in a controlled laboratory setting 

where food concentrations are constant and multiple tissues can be analyzed to ensure 

that the analytes are distributed evenly among tissues on a lipid-normalized basis. 

Previous studies have investigated PBDE toxicokinetics in traditional laboratory 

animals, but these are not necessarily good models for higher trophic level wildlife. Even 

among common laboratory test-species, there are significant differences with regards to 

metabolism and excretion of specific BDE congeners [14-16]. Consistent with this 

observation, different wildlife also vary widely with respect to their PBDE BMFs. For 

example, BMFs of the predominant congeners for sparrowhawks and common buzzards 

were larger than 1, whereas red foxes had lower tissue concentrations than their potential 

prey [17]. 
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Mink are high trophic level carnivores and are known to be susceptible to the 

accumulation of other persistent organic pollutants, such as polychlorinated biphenyls 

(PCBs) [18], and thus were chosen here as an environmentally relevant test-species to test 

PBDE accumulation. As part of a larger study examining the effects of DE-71 on 

reproduction, endocrine disruption, and development of the CNS in these animals [19, 

20], we report here on the congener-specific dietary accumulation, disposition, and 

metabolism of DE-71 in pregnant farmed mink and their offspring. 

2.2 Materials and methods 

2.2.1 Chemicals and standards 

Standard solutions of PBDEs including DE-71 and standard solutions containing 

BDE 28, 47, 66, 85, 99, 100, 153, 154, [13C]BDE 138, and [13C]6-OH-BDE 47 were 

purchased from Wellington Laboratories (Guelph, ON, Canada). The PCB standard PCB 

199 was purchased from Cambridge Isotope Laboratories (Andover, MA, USA). Ottawa 

sand (60-100 mesh), Florisil® (60-100 mesh), hexanes (optima grade), acetone (optima 

grade), and methyl ^-butyl ether (MTBE) were obtained from Fisher Scientific (Ottawa, 

ON, Canada), and dichloromethane (Omnisolv) was obtained from VWR (Mississauga, 

ON, Canada). Bio-Beads® S-X3 (200-400 mesh), for size exclusion chromatography, 

were purchased from Bio-Rad (Mississauga, ON, Canada). The derivatization reagent 

diazomethane was generated from nitrosomethylurea (Sigma Aldrich, Oakville, ON, 

Canada). 
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2.2.2 Animal treatment 

Forty first-year virgin, natural dark, female mink were housed at the Michigan State 

University (MSU) Experimental Fur Farm (East Lansing, MI, USA) as previously 

described [18, 19]. This application to use animals in research (05/03-069-00) was 

approved by the Michigan State University Institutional Animal Care and Use Committee. 

Ten female mink were randomly chosen per group and each group received the standard 

MSU Experimental Fur Farm ranch diet spiked with one of four treatment doses of DE-

71 in mink feed: 0, 0.1, 0.5, or 2.5 ug/g wet weight (ww). Samples of each treatment diet 

were frozen at -20°C for subsequent analysis of PBDEs. Animals commenced their 

respective treatment diets 5 to 7 weeks prior to breeding, through 6 weeks (on average) of 

gestation, and until weaning at 6 weeks post-parturition. Spiked feed and clean water 

were available ad libitum. Dietary intake of DE-71 was estimated from feed consumption 

and body weight (bw) of females recorded weekly during the first 4 weeks of treatment. 

Offspring were completely weaned by 6 weeks of age, at which time all adult females 

and six offspring (6-week-old kits) per treatment group were necropsied. Ten offspring 

from each treatment group, except at the highest dose (because there were no offspring in 

this group), were maintained on their respective treatment diets until approximately 27 

weeks of age at which time these offspring (7-month-old juveniles) were all necropsied. 

Urine and feces from the juveniles were collected 5 or 6 d before necropsy by suspending 

a screen with a plastic bag attached from the bottom of the cage for 24 h. The feces were 

collected from the top of the screen while urine was collected in the plastic bag to 

minimize any cross-contamination. Whole-body and major organ weights were recorded 

at necropsy. Samples of plasma, whole liver, hind femur muscle, abdominal fat, and 
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centrifugation (2000 * g for 5 min), the organic phase was transferred to another test tube. 

This procedure was repeated again after the addition of 10 ml of hexane:MTBE (9:1) to 

the lower layer, and the two organic phases were combined and evaporated to dryness. 

The residue was weighed to calculate the lipid content, dissolved in 3 ml of 

dichloromenthanerhexane (1:1, v/v); fractionated by size-exclusion in vertical glass 

columns (55 cm x 27 mm inner diameter (i.d.)) packed with 60 g of Bio-Beads S-X3. 

Size-exclusion columns were eluted with dichloromethane:hexane (1:1, v/v), and the first 

140 ml fraction, containing lipids, was discarded and the second 220 ml fraction, 

containing analytes, was collected, reduced, and split into two aliquots. 

The first aliquot was to be analyzed for parent PBDEs and was further cleaned by 

passing through glass columns (30 cm x 10 mm i.d.) packed with 8 g of 1.2% deactivated 

Florisil, eluted with 100 ml of hexanes, reduced to dryness, and solvent-exchanged into 

500 p.1 toluene. An instrument performance internal standard, 10 ul accepted of 100 

ng/ml PCB 199, was added before analysis. 

The second aliquot was analyzed for OH-PBDEs. A second internal standard, [13C]6-

OH-BDE 47 (2 ng) was added prior to fractionation of parent and OH-PBDEs. The 

fractionation method has been described by Verreault et al. [22] but with minor 

modifications here. Briefly, 6 ml of KOH solution (1 M in 50% ethanol) was added to the 

extract and the mixture was vortexed for 30 s, allowing OH-PBDEs to partition to the 

aqueous phase. The aqueous fraction was then acidified by 1 ml of 3 M H2SO4 and back-

extracted with 10 ml hexane:MTBE (9:1, v/v) three times. The extract was then washed 

with water until the pH exceeded 5.0, and solvent-exchanged to hexane. OH-PBDEs were 

derivatized by diazomethane at room temperature for at least 3 h. The solvent was then 
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whole brain were collected and initially frozen at -80°C but were later shipped on dry ice 

and stored at -20°C (brain tissues were stored at -80°C) until the time of PBDE analysis. 

Three mink from each of the maternal and kit groups, and four mink from the juvenile 

group were analyzed for PBDEs or OH-PBDEs. Only adult females that had 

corresponding kits and surviving juveniles were chosen for analysis. 

2.2.3 Analytical methods 

All tissues were homogenized by mortar and pestle in liquid nitrogen and extracted 

by accelerated solvent extraction (ASE 200, Dionex, Sunnyvale, ON, Canada). Fecal 

samples were extracted identically to tissue samples except that they were homogenized 

at room temperature. Prior to sample extraction, each ASE cell was pre-cleaned by the 

following procedure: two cellulose filters were placed in each ASE cell (22 ml), the void 

volume filled with Ottawa sand, and the cell was washed with dichloromethane:acetone 

(1:1, v/v) at 100°C and 1,500 psi with a 5 min heat-up period and three static cycles. 

Depending on the sample size, up to 3 g of sample (0.5 g of fat) was weighed, dispersed 

in pre-washed Ottawa sand in a pre-washed aluminum weighing boat, loaded into the pre-

washed ASE cell, and spiked with the internal standard ([ C]BDE 138). Samples were 

extracted by the same method used for ASE cell washing. After high temperature and 

pressure ASE extraction, tissue samples with Ottawa sand were disposed as chemical 

wastes. The extracts were reduced to dryness under a gentle stream of nitrogen. The 

removal of coextracted water and particles has been described by Saito et al. [21] but 

briefly, 10 ml of hexane:MTBE (9:1, v/v) and 10 ml of 1% KC1 in 0.1 M H3P04 (w/v) 

aqueous solution were added to the residue, and the solution was mixed thoroughly. After 
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reduced to dryness and analytes dissolved in 100 (j,l of toluene. For urine (2 to 5 ml) and 

pooled plasma (5 g) samples, both internal standards were added prior to extraction. Then 

the samples were extracted three times by liquid-liquid extraction using 5 ml of 

hexane:MTBE (1:1, v/v) followed by fractionation and derivatization as described above. 

Parent PBDEs, derivatized OH-PBDEs, and internal standards were analyzed by gas 

chromatography/mass spectrometry (GC/MS) using an HP6890 gas chromatograph 

(Agilent, Palo Alto, CA, USA) with a DB-5MS capillary column (25 m x 0.25 mm i.d. x 

0.25 urn film thickness, J&W Scientific (Folsom, CA, USA)) and helium as the carrier 

gas (2 ml/min) coupled to an HP5973N mass spectrometer (Agilent) operated in electron 

impact ionization mode. The injections (1 ul) were made in splitless mode at 230°C. The 

GC oven temperature was initially 110°C, ramped to 250°C at 32.5°C per min, then to 

275°C at 10°C per min and to 325°C at 20°C per min, followed by a 5 min hold. The 

transfer line and ion source temperatures were held at 300 and 150°C, respectively, and 

the electron energy was always 69.6 eV. Identification and quantification of PBDEs and 

OH-PBDEs including QA/QC criteria are described in detail in Appendices V and VI. 

The concentrations of BDE 28, 47, 66, 85, 99, 100, 153, and 154 were quantified by 

their relative response to [13C]BDE 138. Internal standards also acted as a recovery 

surrogate and were quantified by their relative response to the instrumental performance 

internal standard. Only the samples for which the absolute recovery of internal standard 

ranged between 70 and 100% were considered valid and included in data analysis; invalid 

samples were reprocessed. The sum of eight quantified BDE congeners was considered to 

be the total amount of PBDEs in DE-71, because they accounted for approximately 96% 

of DE-71 by weight according to supplied specifications (Wellington Labs). The entire 
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method was verified and monitored every five batches using the certified reference 

material (WMF-01, fish, Wellington Laboratory). The method detection limit (MDL) was 

determined based on the minimum concentration per g (for tissues and feces) or per ml 

(for urine) of sample required to reach the instrumental quantification limit (signal to 

noise ratio > 10). For statistical analysis, congener concentrations below the MDL were 

estimated as half the MDL (ng) / sample weight (g). Statistical analysis was performed by 

GraphPad Prism 4 (GraphPad Software, San Diego, CA, USA) and Microsoft Excel 2003 

(Redmond, WA, USA). The Student's Mest, or one-way analysis of variance followed by 

Tukey's test, was applied to test for statistical differences (a = 0.05) of concentrations 

between tissues or age groups. 

2.3 Results and Discussion 

2.3.1 Method validation 

All analyte concentrations in certified standard material were quantified within the 

range of reference values and their relative standard deviations were less than 10%. BDE 

47 (and sometimes BDE 99) was detectable in control animal samples; however, the 

concentrations were always less than 10% of the lowest dose group, therefore 

concentrations were not corrected for control concentrations. 
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2.3.2 Exposure scenario 

The exposure scenarios, including exposure route and duration, were different for the 

three different age groups of mink: adult females, kits and juveniles. The adult females 

were exposed to DE-71 in their diets 6 weeks before gestation (on average), throughout 

the 6 weeks of gestation (on average), and during 6 weeks of lactation. Kits received DE-

71 indirectly through their mother during in utero and lactation, and the subsequent 

juveniles, in addition to their exposure as kits, were exposed to DE-71 in their diets for an 

additional 21 weeks. 

The measured concentration of DE-71 in the nominal diets of 0.1 and 0.5 ug/g were 

0.078 ± 0.004 (« = 3, mean ± standard deviation) and 0.45 (« = 1) ug/g ww respectively, 

and the composition of major BDEs was 35, 44, 11, 3.8, and 3.5% for BDE 47, 99, 100, 

153, and 154, respectively. Due to decreased food consumption at the two higher doses 

(0.5 and 2.5 ug/g), and reproductive toxicity at the highest dose (2.5 M-g/g), only samples 

collected from the lowest dose (0.1 ug/g) were considered in this paper to reflect PBDE 

disposition in healthy animals. Since 0.5 ug/g was the lowest-observed-adverse-effect-

level (LOAEL, reduced food consumption), these tissue concentrations may be useful as 

critical concentrations for any future biomonitoring and risk assessment in mink. For this 

purpose, the tissues (liver, muscle, and fat) of one adult female from the 0.5 ug/g dose 

group were analyzed for parent PBDEs and whole-body concentrations calculated (Figure 

2-1A). 

Assuming that juveniles consumed feed at the same rate as the adult female, the daily 

intake of total PBDEs for mink in both age groups was approximately 0.01 mg/kg/d at the 

0.1 ug/g dose. The daily consumption rates for neonatal mink, during lactation, were not 
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determined directly (i.e. milk samples were not obtained); in a previous study, however, 

the average milk consumption during lactation by mink kits was 29.0 g/d and the fat 

content of milk was 30% [23]. It was assumed that mink milk would share the same lipid-

normalized total PBDE concentrations as adipose tissue (900 ±140 ng/g, mean ± 

standard deviation, n = 3) given that PBDE concentrations in human breast milk and 

adipose tissue were also similar [24, 25]. Therefore, the average daily intake of total 

PBDEs during lactation was approximately 0.015 mg/kg bw in the 0.1 (xg/g dose group. 

2.3.3 Tissue distribution and whole-body concentrations 

Concentrations of BDE congeners in liver, muscle, and fat for the three age groups 

(adult females, kits, and juveniles) were analyzed. Wet weight tissue concentrations were 

significantly higher in fat than in liver or muscle. This was in agreement with previous 

studies in rodents [14-16] and, as expected, revealed that these hydrophilic compounds 

tend to accumulate in lipid-rich tissues. Lipid-normalized concentrations in tissues of 

adult females, kits, and juveniles are shown (Figures 2-1B-D), with the exception of 

BDE28 and 66, which were detected but minor. For all congeners detected, the lipid-

normalized concentrations in all age groups for these tissues were not statistically 

different except for a few exceptions in kits. In kits the concentrations of BDE 47 in liver 

were significantly lower than in fat, and BDE 99 in kit liver was significantly lower than 

in either fat or muscle. The similarity of lipid-normalized concentrations in different 

tissues was also observed in a field study in wild birds and rodents [17, 26] and suggests 

that, in general, accumulation of PBDEs is lipid content dependent. 
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Figure 2-1: PBDE congener concentrations (ng/g lipid weight (lw)) of tissues (liver, 
muscle, fat, and brain) and the whole-body concentrations (ng/g ww) of adult females 
from (A) 0.5 ug/g dose group («=1) and (B) 0.1 ug/g dose group (n=3); also from (C) kits, 
(D) juvenile tissues from 0.1 ng/g dose group («=4), (E) juvenile excreta from 0.1 ng/g 
dose group («=3 for urine, n-A for feces) and (F) mink feed («=3). Error bars represent 
one standard deviation. *Lipid-normalized concentrations in the brain were significantly 
lower than other tissues (p<0.05). 
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However, plasma and brain tissue were exceptions. The lipid-normalized 2PBDE 

concentration in the plasma of adult females was 406 ng/g lw (three pooled samples) and 

337 ng/g lw (average of concentrations from female (« = 5) and male (n -5),n = number 

of pooled samples) in juveniles. The plasma concentrations were 2- to 4-fold lower than 

in the liver, muscle, and fat of adult females, and were 3- to 6-fold lower in juveniles. 

Furthermore, lipid-normalized concentrations in the brain of adult females were 2- to 5-

fold lower than those in the plasma, and kit brain concentrations were 2- to 6-fold lower 

than those in all other kit tissues (Figures IB and C). 

Lower PBDE concentrations in the brain were also observed experimentally in 

rodents (ww-based) [27, 28] and in wild mice and voles (lipid-normalized) [17]. This 

suggests that the blood-brain barrier, which is known to protect the CNS from xenobiotic 

exposure [29], limits the diffusion of PBDEs into the CNS. Moreover, unlike liver, 

muscle, and fat, in which maternal concentrations (lw-based) were significantly higher 

than those of kits, brain concentrations were similar between age groups. In other words, 

the kits had a higher proportion of the total PBDE body burden in brain tissue compared 

to their mothers, presumably because development of the blood-brain barrier was not 

complete until after birth. In rats, for example, the development of the blood-brain barrier 

begins in the embryo but is not completed until weaning [29, 30]. 

Whole-body concentrations were reconstructed from measured tissue concentrations 

(muscle, liver, and abdominal fat), predicted skin subcutaneous fat concentrations, and 

the relative tissue weight to the bw. It has been demonstrated that skin accumulates 

higher PBDE concentrations (presumably equivalent on lw basis) of PBDE-derived 

radioactivity than liver or muscle in experimental mammals, especially after repeated 
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doses [14-16]. In mink, skin subcutaneous fat tends to accumulate lipophilic substances 

such as DDT [31]; it accounts for 17% of the bw in female mink and 21% in male mink 

[32] and thus could not be discounted here. For BMF calculation purposes, we assumed 

that skin subcutaneous fat had an equal lipid-normalized PBDE concentration to 

abdominal fat. This was justified given that there were no statistically significant 

differences among lipid-normalized BDE congener concentrations in adipose, liver, and 

muscle. Concentrations of all other tissues and organs were assumed to be negligible 

because of their minor contribution to the overall mass of the animal. The relative tissue 

weight was estimated based on previous studies on mink and other animals (i.e. rabbits 

and rats) [31-33]. 

Among juveniles, it is notable that a consistent trend was observed whereby the two 

females had higher whole-body concentrations for each congener than the two males. 

However, statistical significance could not be tested due to the small sample size (» = 2 

for each sex) (Figure 2-2A), thus female and male juvenile data were combined for 

analysis in all of the following sections. The lower whole-body concentrations in male 

juveniles were due, at least partially, to more rapid growth dilution because male mink 

grow faster than female mink after 6 weeks of age [34], and at the end of the present 

study had significantly higher bw than females. The concentration differences could not 

otherwise be explained by differential metabolism or excretion since the general rank of 

the major BDE congeners (Figure 2-2A) was not different between the sexes and no overt 

differences were seen between female and male excretion (Figures 2-2B and C). The 

difference between the sexes is similar to that shown in rodents, in which the difference 
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diminished with increasing degree of bromination [14-16] from BDE 47 (tetra) through 

BDE 99 (penta) and BDE 153(hexa) (Figure 2-2A). 

„ 300. 

200. 

t 1004 

A: whole body concentration 

1 female (n = 2) 

I male ( n = 2 ) 

I H/m MJ I q« n̂  
47 85 99 100 153 154 

BDE 

B: feces 
~ 7 n 

"5 5' 

?3H 

t 2 
c 1. o 

Q female (n=2) 

• •ma le (n=2) 

HM*. A«-
47 85 99 100 153 154 

BDE 

C: urine 
~4 , 

£ 3. 
c 

§ 2 H 

c 1. 
V 
u c o 
o Q. 

I female (n=2) 

I male ( n = l ) 

•k^^^M^^^JJH^^^MABL^^^HUHHMHi^HtafflMkv 

47 85 99 100 153 154 

BDE 

Figure 2-2: Concentrations of PBDE congeners in female (« = 2) and male juvenile mink 
in = 2). Means are shown, but due to the limited number of samples no statistical analysis 
was performed. 

2.3.4 Maternal transfer of PBDEs 

In the present study, the pathways of maternal transfer to the kits included in utero 

and lactational transfer. The percent maternal transfer was defined in the present study as 
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the kit's body burden at weaning divided by the sum body burden of the kit and its 

respective mother at weaning. Ww-based whole-body concentrations in kits at weaning 

were always less than concentrations in the corresponding mother, and the average 

maternal transfer for total PBDEs was 6.2 ± 1.3%. In fact, PBDEs may accumulate to a 

higher extent in kits than their mothers in some specific tissue such as plasma. This result 

has been observed in mice [35]. Congener-specific maternal transfer was calculated for 

those congeners that were always above the MDL, and a plot of maternal transfer versus 

the number of bromine atoms revealed a statistically significant inverse linear 

relationship, suggesting that maternal transfer favoured the lower brominated BDEs 

(Figure 2-3). This general trend was also suggested by Meironyte-Guvenius et al. based 

on paired analysis of human maternal and cord blood samples [25]. 
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Figure 2-3: Maternal transfer favoured the lower brominated PBDEs, as demonstrated by 
the statistically significant negative slope (p < 0.05), when calculated for each PBDE 
congener and plotted versus the number of bromine atoms. 

Human studies also indicate that the placenta acts as a barrier to PBDEs, and the fetus 

does not accumulate a greater concentration than the mother, as determined by comparing 

cord blood to maternal blood [25, 36]. For species without a placenta, such as birds, the 

85 



PBDE concentrations in birds and their eggs are similar based on lipid-normalized 

concentrations [17]. In this study, although newborns were not analyzed at birth, the bulk 

of the kits' body burden at weaning was expected to be resulted from lactational transfer, 

rather than transplacental transfer. This is because kits are only approximately 10 g at 

birth [34, 37], and assuming a worst-case scenario in which the kits shared the same 

concentration of PBDEs as their mother at parturition, the total mass of PBDEs received 

through in utero exposure could be no greater than 3 |xg. Given that mink kits had 

accumulated an average of 21 ug total PBDEs by the time of weaning, the contribution of 

in utero exposure must account for less than 15% of the body burden by this stage. This is 

not to say, however, that in utero exposure is not toxicologically significant; if indeed the 

kits shared the same concentration as their mothers at or before birth (312 ng/g bw), this 

is far higher than measured at weaning (41.7 ng/g bw). Additionally, although the kits 

had a lower body burden at weaning, some tissues (such as plasma) may accumulate 

higher levels of PBDEs than their mothers [35]. 

2.3.5 Biomagnification factors (BMFs) 

When reporting accumulation factors from laboratory studies it is important to 

consider whether the exposure was long enough to allow steady-state concentrations to be 

achieved. In the present study, we did not have sufficient animals to prove this by 

sampling at several different times, thus we can only assume that juveniles approached 

steady-state after 21 weeks of dietary exposure. For this reason, and because growth 

dilution was occurring to some extent, BMFs presented here may be somewhat 

underestimated. Adult females were excluded from BMF analysis because of the complex 
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physiological changes during pregnancy, including transplacental transfer of PBDEs, 

which would result in underestimation of whole-body concentrations. 

Wet-weight biomagnification factors (wwBMFs) were calculated by dividing 

reconstructed whole-body concentrations of juveniles by the measured food 

concentration (Table 2-1). Mean wwBMFs ranged from 1.3 for BDE 154 to 13 for BDE 

153; only BDE 47 and 153 had wwBMF significantly greater than 1. The rank order, 

from most to least accumulative, was BDE 153 > 47 > 28 > 100 > 99 > BDE 154, and 

was evidently not a simple function of the number of bromine atoms. This general trend 

for accumulation potential of BDE congeners has also been demonstrated in several food 

webs [10, 11]. 

Table 2-1: BMFs of PBDEs reported in the literature and from the present study based on 
either lipid-normalized or whole-body concentrations. 

Marine 
food web 

Juvenile 
mink 

Marine 
food web 
Juvenile 
mink 

Predator/Prey 

Harbor seal/cod [9] 
Polar bear/ringed seal [13] 
Polar bear/ringed seal [12] 
Mink/mink feed (n = 4, 
mean ± 95% confidence 
interval) 

Polar bear/ringed seal [13] 

Mink/mink feed (n=4, mean 
±95% confidence interval) 

BDE 
28 

BDE 
47 

BDE 
99 

BDE BDE 
100 1 153 

BDE 
154 

BMFs based on lipid-normalized concentrations 
(IwBMFs) 
3.6 
0.1 
— 

1.2 ± 
0.8 

29 
0.5 
3.9 

2.6 ± 
1.7 

6.3 
0.3 
5.8 

0.9 ± 
0.5 

44 
0.3 
4.7 

1.2 ± 
0.9 

>140 
7.5 
71 

5.2 ± 
2.7 

5.4 

0.3 
— 

0.5 ± 
0.3 

BMFs based on ww-based concentrations 
(wBMFs) 

0.16 

5.6 ± 
4.2 

0.4 

7.1 ± 
5.4 

0.29 

2.4 ± 
1.6 

0.23 

3.5 ± 
2.6 

5.2 

13±7 

0.25 

1.3 ± 
0.8 

— Not available. 

For lipophilic contaminants, increases in the wet-weight concentration up a food 

chain (e.g. wwBMF > 1) can occur as a simple result of a relatively higher lipid content in 
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the consumer, and thus may be misconstrued as biomagnification. In this study, the 

whole-body mink lipid content was approximately 3-fold higher than the lipid content of 

spiked food, and thus a better measure of true biomagnification (e.g. fugacity driven) is 

the lw-normalized BMF (IwBMF) [38]. The /wBMFs were calculated by dividing the 

mean lipid-normalized abdominal fat concentrations by the measured lipid-normalized 

food concentrations (Table 2-1). The rank order of congener-specific /wBMFs is identical 

to the rank order of wwBMFs, but as expected /wBMFs are approximately 3-fold lower. 

The /wBMFs also allow a comparison from this study to field observations of various 

predator/prey relationships in which lipid-normalized BMFs were reported (Table 2-1). 

The experimental /wBMFs for mink agree with observations in the marine food web, 

whereby all studies indicate that BDE 153 is the most accumulative congener through 

dietary exposure when measured (Table 2-1). 

2.3.6 Interpretation of PBDE profiles 

Congener profiles of PBDEs were examined in each tissue and at each life-stage. As 

described previously, although juveniles had undergone indirect exposure (i.e. lactation) 

as kits and direct exposure through food, the accumulation of PBDEs from the latter 

exposure was much more significant as indicated by the low body burden at 6 weeks of 

age (~21ug) compared to the accumulation during the 21 weeks of dietary exposure 

(-760 |ig). Consequently, the exposure scenario for juveniles was not dramatically 

different from that for adult females and this is reflected in the similar BDE congener 

profile (Figures 2-IB and D). Despite the congener profile in kit liver being different 

from either muscle or fat, the whole-body profile for kits was also similar to adult 
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females and juveniles (Figure 2-1C). There was, thus, no apparent difference caused by 

the life-stages. In mink, the general rank-order of major BDE congener concentrations 

was: BDE 47 > 99 > 153 > 100, 154. However, this rank-order was clearly different from 

food (BDE 99 > 47 > 100 > 153, 154) and urine and feces (BDE 47, 99 > 100, 153, 154). 

The relative abundance of BDE 47, a tetra-BDE, was highest in urine followed by 

whole-body, feces, and food. In contrast, the two penta-BDEs, BDE 99 and 100 showed 

the opposite trend. The relative proportion of BDE 99 and 100 significantly decreased 

from diet to whole body. Given that the tetra-BDE was less prominent than penta-BDEs 

in food and that it seemed to be selectively excreted relative to penta-BDEs, it is initially 

counterintuitive that it became more prominent than penta-BDE in the whole-body after 

long-term exposure. However, these results are most likely reflective of the 

debromination of penta-BDEs as has been reported by Stapleton et al. for fish [39], but 

penta-BDEs may also undergo metabolic oxidative debromination [16]. Furthermore, the 

ratio of BDE 99 to BDE 100 was similar in the feed and feces (4.4 ± 0.7, mean ± standard 

deviation, n = 4), but significantly lower in the whole-body of mink (3.0 ± 0.3, mean ± 

standard deviation, n = 4). These results suggest that BDE 99 is more vulnerable to 

metabolism than BDE 100, and that the biotransformation product of penta-BDEs may be 

BDE 47. 

Despite BDE 153 and 154 having very similar concentrations in food, these hexa-

BDE congener concentrations diverged in all samples of mink. For example, BDE 153 

was an order of magnitude higher than BDE 154 in whole-body samples and the relative 

concentration of BDE 153 increased from 3.8 ± 0.3% in diet to 11 ± 2% in the whole 

body. The apparent preferential accumulation of BDE 153 cannot be attributed to any 
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debromination of higher congeners because DE-71 has only two hepta-BDEs in the 

mixture that account for less than 0.15% by mass. Furthermore, this could not be 

explained by more efficient excretion of BDE 154 because it was below the MDL in 66% 

of urine samples and 50% of feces samples, whereas BDE 153 was always at least two 

times higher than the method quantification limit in the same samples. Therefore it can 

only be concluded that BDE 154 was being metabolized to a much greater extent than 

BDE 153, and this fact explains the large difference in their BMFs. This is reasonable 

given the tri-ortho substituted bromine atoms present in BDE 154 but not in BDE 153, 

thus making BDE 154 more vulnerable to P450 oxidation or debromination [12]. 

Presumably, the meta-para substitution of bromine atoms in BDE 153 also makes it more 

recalcitrant to metabolism than BDE 154. 

Some other DE-71 feeding studies are available with which to compare the BDE 

profile changes observed here. The most recent study involves rats orally exposed to DE-

71 for 21 d at 0.12 ug/kg/d [40]. The congener profile in food was similar to ours (BDE 

99 > 47 > 100, 153, 154), but the consequent congener profile in rat carcasses (BDE 99 > 

47, 100 > 153 > 154) was quite different than that in the whole body of mink (BDE47 > 

99 > 153 > 100 > 154). The difference in the congener profile between these two species 

could either be due to the difference in daily dose or to different metabolic capacities. In 

the present study, mink were exposed to a dose two orders of magnitude higher than the 

rat study; however, no toxicity was evident in the present work and the metabolic 

capacity was unlikely to have been overwhelmed here given that even 1000* higher 

doses in mink, in a different study, produced a similar profile [20]. Therefore, the 
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differences are most likely due to species differences in biotransformation, indicating that 

rats do not provide a good model for this environmentally relevant species. 

2.3.7 Metabolites of PBDEs 

Congener profile changes suggested significant metabolism of several congeners and 

this was supported by metabolite detection. Methoxy-PBDEs were not detectable in any 

sample, but OH-PBDEs were detected in the plasma, liver, and feces of juveniles in the 

0.1 ug/g dose group (Figure 2-4). Concentrations of OH-PBDEs were below MDLs in 

muscle, abdominal fat, and urine. MDLs, based on [13C]6-OH-BDE 47 response, were 

0.03 ng/g for tissue and fecal samples and 0.01 ng/ml for urine and plasma samples. In 

plasma, liver, and feces, five mono-hydroxylated tetra-BDEs (OH-tetra-BDEs, peaks A-F, 

Figure 2-4), five mono-hydroxylated penta-BDEs (OH-penta-BDEs, peaks G-K, Figure 

2-4), and two mono-hydroxylated hexa-BDEs (OH-hexa-BDEs, peaks L and M, Figure 2-

4) were observed. Other unlabeled peaks (Figure 2-4) were present in control animals, 

and are not PBDE metabolites. One of these OH-tetra-BDE congeners was identified as 

6-OH-BDE 47 (peak A, Figure 2-4) based on the same retention time as the internal 

standard, [13C]6-OH-BDE 47. Although not detectable in the fat of the low-dose group 

(0.1 ug/g), OH-PBDEs were observed in the fat extract of an adult female from the 

higher-dose group (0.5 ug/g) (Figure 2-4). Unlike parent PBDEs, the OH-PBDEs profiles 

varied among plasma, liver, fat and fecal samples (Figure 2-4) as previously noticed by 

Orn and Klasson-Wehler [41]. Therefore, biomonitoring of OH-PBDEs should consider 

tissue-dependent accumulation potential. 
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Figure 2-4: GC/MS chromatograms (SIM) for OH-tetra-BDEs {m/z of [M+] is 513.7), 
OH-penta-BDEs (m/z of [M+] is 595.6), and OH-hexa-BDEs (m/z of [M+] is 673.5) in the 
derivatized extract of liver and feces (female, 0.1 ng/g dose group shown), pooled plasma 
(5 individual males, 0.1 ug/g dose group), and abdominal fat (female, 0.5 ng/g dose 
group). There was no visible difference in hydroxylated brominated diphenyl ether 
profiles between the males and females for any sample. The juvenile female plasma 
congener profile (not shown) was identical to the male. Chromatograms of control 
samples were shown in Appendix VII. 
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In order to estimate the importance of the hydroxy lation pathway, a semi-quantitative 

approach was used to calculate the total contribution of detected OH-PBDEs to the mass 

balance by assuming that the instrumental response of the unknown OH-tetra-BDEs was 

equivalent to 6-OH-BDE 47. The total concentration of all quantifiable OH-tetra-BDEs 

was 9.75 ng/g in feces (» = 1), 0.307 ng/g in liver (« = 1), 0.254 ng/g in pooled male 

plasma (from five male juveniles), and 0.418 ng/g in pooled female plasma (from five 

female juveniles). No standard was available for semi-quantification of OH-penta-BDEs, 

but because their total peak areas were the same order of magnitude as those of OH-tetra-

BDEs, their overall contribution to the mass balance was presumed to be similar to the 

OH-tetra-BDEs. The low concentration of OH-PBDEs that accumulated in the mink body 

was likely due to their higher solubility, brought upon by the hydroxyl group moiety. 

However, since OH-PBDEs were only analyzed in tissues of plasma, liver, muscle, and 

fat, we cannot exclude the possibility that other tissues contained significant quantities of 

these metabolites. 

2.3.8 Metabolism versus excretion 

Compared to parent PBDEs, OH-PBDEs are more structurally similar to thyroid 

hormones (Figure 1-6). Accordingly, they are more likely to cause thyrotoxicity via 

interaction with the thyroid hormone transport proteins in plasma (Section 1.2.4.5.3). 

Previous studies have demonstrated that PBDE metabolites, but not parent PBDEs, bind 

with greater affinity to transthyretin than thyroxine (T4) [42]. This may displace T4 from 

its proteins, thus lowering the circulating levels of T4 since, in its free form, it may be 

rapidly eliminated through glucuronidation pathways [43,44]. Therefore, the relative 
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extent of metabolism to excretion is an important consideration to understand the 

mechanism(s) of PBDE elimination. 

In the present study, parent and OH-PBDEs were analyzed in excreta to compare the 

importance of excretion and biotransformation. In the female juvenile mink, the total 

concentration of parent PBDEs in feces was 14.8 ng/g, comprised of 6.31 ng/g from tetra-

BDEs. The estimated concentration of all OH-tetra-PBDEs in feces of the same mink was 

9.75 ng/g, which was higher than the parent tetra-BDE concentrations and within a factor 

of two of the total PBDEs. In contrast to feces, parent PBDEs but not OH-PBDEs were 

detected in urine. Using average volumes or mass of excretion (44 to 72 ml/kg/d urine, 

and 14 to 56 g/d feces), the total daily mass of parent PBDEs and OH-BDEs excreted in 

urine and feces were compared (Figure 2-5). Overall, the amount of OH-tetra-BDEs in 

excreta was substantial but was less than parent PBDEs and accounted for 28 to 32% of 

the excreted fraction on a mass basis. Although OH-penta-BDEs could not be quantified, 

they likely contribute to a similar proportion of the mass balance as OH-tetra-BDEs. 

Furthermore, bromophenols [45] and phase II metabolites such as glutathione or 

glucuronide conjugates [16] were not monitored here but have been detected in urine 

samples from PBDE-exposed rats and mice. Therefore the total metabolism may be 

greater than estimated here by hydroxylation alone. Moreover, some of the parent PBDEs 

measured in feces may represent the non-absorbed fraction from diet, or may be 

debromination products of higher parent PBDEs. Taken together, metabolism is likely 

just as important as excretion for PBDE elimination in mink. 
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Figure 2-5: Daily excretion of total parent PBDEs and total OH-PBDEs in excreta of 
juvenile female (f) and male (m) mink. 

2.4 Conclusions 

The present study found similar lipid-normalized concentrations of PBDEs in most 

tissues of adult mink, with the exception of brain tissue which was lower in adult females 

and kits, presumably because of the blood-brain barrier; albeit due to its incomplete 

development in kits the blood-brain barrier provided less protection than in adults. 

Dietary exposure to DE-71 resulted in significant biomagnification for some PBDEs in 

mink, and lipid-normalized whole-body BMFs were highest for BDE 47 and BDE 153, 

thus validating many environmental biomonitoring data. Maternal transfer to the fetus 

favoured lower brominated BDE congeners, lactational transfer was much greater than 

transplacental transfer, and kit whole-body PBDE concentrations were lower than in 

corresponding adult females. Metabolism clearly limited biomagnification of some 

PBDEs and was an important elimination pathway that requires further study to 

understand the mechanisms of PBDE degradation. 

Wa 
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Chapter 3: Metabolic pathways of polybrominated 

diphenyl ethers (PBDEs) 

3.1 Introduction 

In Chapter 2, the different congener profiles in food, whole-body, and excreta of mink 

indicated that the elimination pathways (i.e. excretion, and/or biotransformation) of DE-

71 PBDE congeners differed. Furthermore, we suggested that selective metabolism 

among congeners may be one of the reasons for this. According to the congener profile 

change and the detected metabolites in Chapter 2, we considered two general metabolic 

pathways for the elimination of PBDEs, oxidative metabolism (formation of 

hydroxylated PBDEs (OH-PBDEs)) in the liver, and reductive debromination in the 

intestines. 

The organ responsible for hydroxy lation of PBDEs was presumably the liver, such 

that it expresses the largest amount of cytochrome P450 enzymes that are well-known to 

catalyze oxidative biotransformation of xenobiotics [1]. P450 enzymes are located in the 

membrane of the endoplasmic reticulum, and thus can be studied by isolating the 

microsome fraction of cells, including hepatocytes. 

Reductive debromination of PBDEs (i.e. with no simultaneous oxidation), on the 

other hand, is generally considered to be a reductive process, and thus is most likely to 

occur within reducing environments of the body. The oxidation-reduction potential 

becomes more negative along the length of the gastrointestinal tract and there is a 
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dramatic decrease starting in the cecum which results in a large increase in the number of 

anaerobic bacteria here [2]. The tetra- to penta-brominated congeners are generally more 

accumulative (Chapters 1 and 2) and toxic (Chapter 1) than higher brominated congeners. 

Therefore it is important to characterize the extent of debromination because of potential 

bioactivation, and also because debromination of the higher brominated congeners, rather 

than excretion, may have caused a systematic bias leading to overprediction of the 

accumulation potential of lower brominated BDEs. 

Hydroxylation of PBDEs may facilitate their elimination, but this is not necessarily a 

detoxification pathway. The structures of hydroxylated PBDE metabolites are similar to 

those of thyroid hormones (Figure 1-9) and they have been shown to interfere with 

thyroid hormone homeostasis. This effect — of low circulating thyroxine (T4) 

concentrations — has been shown for individual PBDE congeners and for commercial 

PBDE mixture exposure in rodents [3-5]. The reduced T4 concentrations may arise by 

several possible mechanisms. For example, PBDEs may induce hepatic 

uridinediphosphate-glucuronosyltransferase (UDPGT) [3, 4], which may cause increased 

phase II conjugation and elimination of T4. Alternatively, reduced T4 may result from 

competitive binding of OH-PBDEs to transthyretin (TTR) [6] thus displacing T4 from its 

carrier protein and facilitating elimination of the free T4. A combination of these two 

mechanisms may also occur. 

Taken together, there is value in conducting in vitro metabolism experiments with 

PBDE congeners in order to better understand the altered BDE profiles and hydroxylated 

metabolites in mink (Chapter 1). Here we focus on the hepatic microsomal fraction of 

mink liver and intestinal microflora (from rat) to the study hydroxylation of specific BDE 
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congeners. In the microflora we tested for debromination using the same DE-71 mixture 

as in Chapter 2. For the microsomes, because of possible ambiguity from a combination 

of hydroxy lation and debromination reactions occurring simultaneously [7], we tested 

three pure BDE congeners: BDE 47, 99, and 154. BDE 47 was chosen because of its 

significant accumulation in the mink body, whereas BDE 99 was hypothesized to be 

subject to debromination, and we also hypothesized that BDE 154 was significantly 

metabolized compared to the other major hexa-congener, BDE 153. 

3.2 Materials and Methods 

3.2.1 Chemicals 

The commercial penta-BDE mixture (DE-71) and individual PBDE congeners 

including BDE 47, 99, and 154 were purchased from Wellington Laboratories (Guelph, 

ON, Canada). All solvents were Optima grade and were purchased from Fisher Scientific 

(Ottawa, ON, Canada). Sucrose and HEPES were also purchased from Fisher Scientific. 

Mannitol, ethylene glycol tetraacetic acid (EGTA), ethylenediaminetetraacetic acid 

(EDTA), ethoxy-resorufin, and pentoxy-resorufin were purchased from Sigma-Aldrich 

(Oakville, ON, Canada). The NADPH (reduced form of nicotinamide adenine 

dinucleotide phosphate) regenerating system was purchased from BD Biosciences 

(Oakville, ON, Canada). The derivatization reagent diazomethane was generated from 

nitrosomethylurea (Sigma Aldrich, Oakville, ON, Canada). 
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3.2.2 Intestinal microflora metabolism test 

3.2.2.1 Experimental design 

Intestinal microflora mediated anaerobic degradation of PBDEs was studied for DE-

71 in rat cecal microflora. VPI buffer10 was used for preparation of cecal homogenates 

and also as the incubation buffer. After the buffer was prepared, dissolved O2 was purged 

by 30% CO2 and 70% N2 for 20 min, and 10 ml of resazurin (100 mg/L) was added as a 

redox indicator (i.e. turns pink in presence of oxygen). The prepared buffer (pH 7.14) was 

then distributed into 200 ml serum bottles, purged again by the same gases as above, and 

autoclaved for 20 min. The substrate, 100 ul of 6.3 (ig/ml of DE-71, was spiked into 

another five serum bottles: three replicate samples, one positive control, and one negative 

control. A blank was prepared by spiking 100 (J.1 of hexane into another serum bottle. 

These bottles were then covered by sponge stoppers, thus allowing the evaporation of 

solvent overnight in the fume hood. After solvent evaporation, serum bottles were 

transported into the anaerobic chamber and sealed with a rubber stopper, crimp-sealed by 

aluminum caps, and filled with 50 ml of medium buffer using syringes. 

Cecal homogenate was prepared from cecal content obtained from a healthy male 

Sprague-Dawley rat. After it was sacrificed by CO2, both sides of its cecum were tied and 

removed to maintain the internal anaerobic condition. The cecum was then transported on 

ice into the anaerobic chamber. Cecal content (7.04 g) was transferred into a tube 

containing 10 ml of VPI buffer. The tube was then vortexed for homogenization of 

10 The VPI buffer is a typical type of anaerobic incubation medium. It consists of 0.1 g CaCl2/L, 0.2 g 

MgS04/L, 0.5 g KHzPOVL, 5.0 g NaHC03/L, and 1.0 g NaCI /L. 
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intestinal microflora, and 1 ml of this homogenate was inoculated by syringe into the 

triplicate samples, the positive control, and the blank. In the negative control, boiled cecal 

homogenate was added. Finally, 3 \i\ of 1,2,4-trichlorobenzene (TCB) was spiked into the 

positive control bottle because it has been shown to be metabolized to di- and mono-

chlorobenzenes in rat cecal microflora [8, 9]. All the bottles were wrapped with 

aluminum foil and incubated on a vibrating shaker at 37 °C. Samples were taken at 16 h, 

24 h, 7 d, and 30 d. After each sampling time, the serum bottles were shaken, and 5 ml of 

medium was collected by a syringe and placed into 5 ml of hexane:methyl-/-butyl ether 

(MTBE,1:1, v/v) to quench the reactions and to enable extraction. 

3.2.2.2 Analytical methods 

Before extraction, 200 \i\ of 25 ng/ml of [ C]BDE 138 (internal standard) was added 

into the solvent layer of the mixture. An exhaustive extraction was then carried out with 

hexane:MTBE three times. The extracts were combined and evaporated to about 3 ml for 

Florisil chromatography, using conditions as described in Chapter 2 (Section 2.2.3). For 

the final analysis of PBDE samples, the eluents were then evaporated to dryness and 

dissolved in 100 |il of toluene. PBDE samples were analyzed by gas 

chromatography/mass spectrometry (GC/MS), also as described in Chapter 2 (Section 

2.2.3). The same steps were used for TCB analysis, except that after the Florisil 

chromatography, the eluent was evaporated to 10 ml. The concentrations of TCB were 

semi-quantified by peak areas detected by gas chromatography/electron capture detection 

(GC/ECD) with a DB-5MS capillary column (25 m x 0.25 mm i.d. * 0.25 um film 

thickness, Agilent J&W Scientific, Palo Alto, CA, USA) and helium as the carrier gas (2 
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ml/min). The injections (1 fj.1) were made in splitless mode at 230°C. The GC oven 

temperature was initially 80°C and was ramped to 180°C at 5°C per min. 

3.2.3 PBDE depletion by mink hepatic microsomes 

3.2.3.1 Hepatic microsomes preparation 

Mink liver was taken from healthy control mink (the same colony of mink examined 

in Chapter 2) housed at the Michigan State University Experimental Fur Farm (East 

Lansing, MI, USA). Immediately after the mink had been euthanized, the liver was 

collected, flash-frozen in liquid nitrogen, and a portion shipped on dry ice to the 

University of Alberta. Upon arrival, the liver was then stored at -80°C until the 

preparation of hepatic microsomes. 

Rat livers were obtained from healthy rats that had been euthanized by CO2 gas, 

cardiac punctured, and exsanguinated for training purposes at the University of Alberta 

Health Sciences Laboratory Animal Services. Livers were collected and placed into a -

80°C freezer until the preparation of hepatic microsomes. 

Hepatic microsome preparation buffer consists of sucrose (125 mM), mannitol (125 

mM), EGTA (1 mM), and HEPES (5 mM). The procedures for extraction of hepatic 

microsomes from the whole liver are shown schematically in Figure 3-1. The total protein 

concentration of hepatic microsomes was determined by Bradford Reagent (Sigma, Saint 

Louis, MI, USA) using BSA protein (Sigma) as the protein concentration standard. 
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Thaw the mink 
liver on ice 

Chop the liver and 
rinse the blood by 

ice-cold buffer 

Liver to buffer 
(1:2, m/v) 

Centrifuge homogenate at 
lOOOxg for 10min at 4°C Homogenize liver 

Pellet 
discarded 

Supernatant 
collected 

Centrifuge the supernatant 
at 8000*g for 20 min at 4°C 

Supernatant 
collected 

Pellet 
resuspended 

Centrifuge the supernatant 
at 8000*g for 20 min at 4°C 

Supernatant 
collected 

Pellet 
discarded 

Combine two 
supematants 

Centrifuge the 
supernatant at 

39000rpm for 60 
minat4°Ca 

The first layer of pellet which 
contains the microsomes was 
collected and resuspened in 

the buffer and stored in -80°C 

a this procedure utilized a Beckman Model L7 preparative ultracentrifuge, classified R. 
The rotor model was Type 55.2 Ti; 39000rpm is approximately 100,000 xg 

Figure 3-1: Procedures of hepatic microsome extraction. 
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3.2.3.2 Validation of microsomal activity 

The quality of extracted mink (or rat) hepatic microsomes was examined by ethoxy-

resofurin-O-deethylase (EROD) (biomarker for CYP 1A, the most abundant subfamily) 

and 7-pentoxy-resorufin-O-deethylase (PROD) (biomarker for CYP 2B, the subfamily 

hypothesized to be important in PBDE metabolism) assays at a single time-point (10 min) 

by comparison to a blank and to a negative control. Because microsomal activity severely 

decreased after several freeze-thaw cycles (determined with rat hepatic microsomes), 

only the mink hepatic microsomes after one freeze-thaw cycle are reported in this thesis 

for PBDE incubation. 

The standard incubation mixture contained ethoxy-resorufin (1 uM) or pentoxy-

resorufin (10 uM), each spiked separately as substrate, hepatic microsomes (1 mg/ml for 

mink, 0.15 and 1 mg/ml for rat, quickly thawed in 37°C water bath) and 30 ul of NADPH 

regenerating system in a final volume of 500 ul of 50 mM phosphate buffer (pH 7.8). 

Ethoxy-resorufin (0.1 mM) was dissolved in acetone and the pentoxy-resorufin (1 mM) 

was dissolved in dimethyl sulphoxide (DMSO). The final concentration of delivery 

solvent in the reaction medium was 1%, v/v. The NADPH regenerating system consisted 

of 5 ul of Solution B (40 U/ml glucose-6-phosphate dehydrogenase in 5 mM sodium 

citrate) and 25 ul of Solution A (26.1 mMNADP+, 66 mM glucose-6-phosphate, and 66 

mM MgCl2 in H2O). After pre-incubation at 37°C for 1 min, the reaction was initiated by 

addition of the NADPH regenerating system. 

The mixtures were incubated at 37°C for 0 and 10 min and the reactions were 

terminated with 500 ul of ice-cold methanol by vortexing. After cooling on ice for 5 min, 

the samples were centrifuged at 4°C at 6000xg for 5 min. The supernatant was filtered, 
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and EROD and PROD activities were determined by semi-quantification of resorufin 

product. Samples were injected without chromatography delivered in methanol, and the 

peak areas of resorufin were generated by fluorescence detector. The excitation and 

emission wavelengths were set at 560 nm and 585 nm, respectively [10]. For the hepatic 

microsomal activity, a negative control was also used to control for any background 

fluorescence of the substrate and microsomes. This contained all components, except 

NADPH which was added after termination of the reaction. For mink hepatic microsomal 

activity, a blank and a negative control were applied to control the background 

fluorescence from substrates or microsomes, respectively, whereby microsomes were 

absent from the incubation medium of the blank, and substrates were absent from the 

negative control. 

3.2.3.3 Depletion of individual PBDE congeners by mink hepatic microsomes 

The experimental incubation mixtures were identical to EROD and PROD assays 

except that individual PBDE standards were spiked instead of ethoxy-resorufin or 

pentoxy-resorufin. Individual PBDE standards were dissolved in acetone at different 

concentrations (Table 3-1) selected based on a previous study examining the depletion of 

individual PBDEs by beluga whale microsomes [11]. The final concentration of acetone 

in the reaction medium was 1%. To control the introduction of any airborne contaminants 

during incubation, a blank sample consisting of hepatic microsomes, NADPH 

regenerating system, and incubation medium was also conducted. To control for the 

degradation of PBDEs under mechanisms other than biotransformation, triplicate 

negative controls for each congener were also incubated with the samples. In the negative 
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controls, boiled hepatic microsomes were added instead of live microsomes. After pre

incubation at 37°C for 1 min, the reaction was initiated by addition of the NADPH 

regeneration system. The mixtures were incubated at 37°C for 24 h and were 

subsequently terminated with 500 ul of ice-cold methanol with vortexing. 

Table 3-1: Concentration of individual PBDEs in the standard solution and their final 
concentrations in the reaction medium. 

Commercial standard in nonane (uM) 
Stock solution in acetone (uM) 
Final concentration in the reaction 
medium (uM) 
Final concentration of acetone in the 
reaction medium (v/v) 
Final concentration of nonane in the 
reaction medium (v/v) 

BDE47 
103 
5.97 

0.0597 

1% 

0.058% 

BDE99 
88.5 
5.04 

0.0504 

1% 

0.057% 

BDE 154 
77.7 
2.72 

0.0272 

1% 

0.035% 

Prior to PBDE extraction, 2 ng of [1JC]BDE 138 (internal standard) was added to the 

reaction mixture. The samples were then extracted three times by 500 ul of hexane, 

combined, and reduced to 100 ul for GC/MS analysis (as described in Chapter 2, Section 

2.2.3). Hydroxylated metabolites were analyzed to examine the possible 

biotransformation pathways. The replicated samples and corresponding negative controls 

(« = 3) were combined respectively, derivatized by diazomethane, and analyzed as 

previously described for hydroxylated PBDE analysis (Chapter 2, Section 2.2.3). 
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3.2.3.4 Data analysis 

Results are reported as the fraction of PBDE congener depleted during the 24 h time 

of the microsomal assay in the following manner. First, the relative ratio between the 

individual BDE congener and the internal standard was determined by: 

Peak areax 

ratio = -—j 
Peak areaMBDE 138 

where x is a BDE congener, either from a negative control or a sample. Second, the 

fraction of congener remaining was determined by: 

ratiosampje 
fraction of congener remainingsample = v n j-

Zii r a t l o nega t ive control / n 

In order to perform the statistical analysis, the fractions of congener remaining were 

also calculated for negative controls to generate the variance of negative controls. 

r . r • • r a t1 0negative control 

fraction of congener remainingnegat ive control = Vn ratio 1Z 

Zii r a "°nega t ive control / n 

F-tests were used to determine whether the variances between samples and negative 

controls were statistically different. Student's Wests were used to determine whether the 

samples were significantly lower than the corresponding negative control, assuming a 

one-tailed distribution and a maximum probability of a type-I error set to a = 0.05. 
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3.3 Results and discussion 

3.3.1 Gut microflora results 

During the 30-d incubation period, anaerobic conditions were maintained as indicated 

by the unchanged colour of resazurin in all bottles. The total concentrations of DE-71 

fluctuated between samples taken at different time intervals, but no trend between the 

concentration and time interval was found. This variation was most likely attributable to 

the lack of consistency in sample collection because it was difficult to obtain a 

representative sample from the heterogeneous medium with a syringe following shaking. 

Therefore, the relative concentration of congeners in DE-71 was examined, rather than 

the absolute concentrations, to evaluate the extent of metabolism. 

The relative concentration of BDE 47 (Figure 3-2) in samples collected at 16 h was 

similar to the DE-71 standard, although it was slightly increased after 24 h and 7 d 

incubation, possibly as a result of debromination from higher brominated congeners (e.g. 

BDE 99). However, the relative concentration of BDE 47 decreased to similar levels as in 

DE-71 again at 30 d. A decreased relative concentration of BDE 99 appeared at 7 d, 

consistent with the increase in BDE 47 at this time, but then increased again by 30 d. 

Statistical analysis showed there was no significant trend for the relative concentrations 

of all these DE-71 congeners over time. Therefore, intestinal microflora mediated 

metabolism was deemed to be insignificant in the present study. 
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Figure 3-2: Relative concentrations of PBDEs in pure DE-71 standard and in anaerobic 
incubations with mink intestinal microflora at various times (n = 1). 

Explanations for the negative findings in this study include possible non-viability or 

non-activity of the intestinal microflora, or the short time frame of this experiment. For 

example, pure cultures of anaerobic bacteria {Sulfurospirillum multivorans and 

Dehalococcoides), which are specifically responsible for dehalogenation, took more than 

1 month to debrominated PBDEs in a past study [12] (Table 1-6). Moreover, no microbial 

debromination has been reported for penta-BDE mixture presumably due to the resistance 

to debromination of these lower brominated congeners (Chapter 1). However, the passage 

of ingesta through the gastrointestinal tract of mink takes less than 5 h [13], thus a longer 

incubation time would be irrelevant. These results make it difficult to explain the 

substantial congener profile changes in mink feces compared to their feed (Chapter 2). 

The role of the positive control incubation, with TCB, was to validate whether rat 

cecum microflora were viable. Unfortunately, we did not have a strong positive control to 

prove the viability or activity of intestinal microflora. Although a decreasing trend was 
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observed for TCB over time, this decrease may have resulted from the unexpected 

adsorption of TCB to the rubber stopper (Figure 3-3). Therefore we cannot rule out the 

possibility that the anaerobic bacteria were not viable or active in this experiment. 
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Figure 3-3: Rubber stopper adsorption test was carried out using the same conditions as 
intestinal microflora experiments except that the incubation buffer was changed to 
deionized water, and the incubation was carried out under aerobic conditions. 

Besides intestinal microflora, cells of the intestines may also be able to metabolize 

PBDEs. In a recent study using carp intestinal microflora and intestinal microsomes to 

study the debromination of BDE 99 (penta) to BDE 47 (tetra), it was shown that 

microsomes but not microflora mediated the debromination process [14]. However, this 

study also did not have a strong positive control and did not prepare cecum in an 

anaerobic chamber to validate their negative result in their microfloral study. Therefore, 

in future studies, I suggest that mink intestinal microsomal studies be conducted, in 

addition to considering repeating these microflora tests with more reliable tests of 

microflora viability and activity. Moreover, carp intestinal or hepatic microsomes 
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mediated debromination was only observed in the presence of dithiothreitol (DTT), an 

electron donor, in the incubation buffer [14]. Thus DTT may serve as an important 

cofactor for debromination and should be included in the incubation buffer in the future 

work. 

Not all dehalogenation reactions occur under anaerobic conditions. For example, 

thyroid hormones undergo deiodination (i.e. from thyroxine to triiodothyronine) by 

deiodinases enzymes that are present in several organs, including the liver [15]. Because 

of the similarity between certain PBDEs and thyroid hormones, this metabolic route has 

been proposed as a possible mode for debromination of PBDEs [14]. Furthermore, 

deiodinases may be yet another target for thyroid hormone disruption since PBDEs have 

been shown to decrease the activity of these enzymes due to competitive or non

competitive interaction [14]. 

3.3.2 Hepatic microsome study 

3.3.2.1 Validation of P450 activity 

3.3.2.1.1 Optimization of assay condition 

Optimization of buffer conditions for P450 enzyme activity was conducted by the 

EROD assay using rat hepatic microsomes. Background fluorescence signal appeared in 

the blank when NADPH was added after inactivation of rat hepatic microsomes, but it 

was less than 1% of the peak area of the sample incubated for 1 min. 
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To validate our methods, the effects of delivery solvent and EDTA on P450 activity 

were examined in the present study. Due to the ability of acetone to enhance hydrocarbon 

hydroxylase activity [16], the final acetone concentration in our medium was optimized 

using EROD assay response. The highest conversion of exthoxy-resorufin to resorufin 

(i.e. largest peak area) was observed when the medium contained 1% of acetone 

compared to 0.4, 2, and 5%. Therefore, 1% of acetone was applied in all subsequent 

assays. 

EDTA (e.g. 1 mM) containing buffer has been used in previous PBDE metabolism 

studies [17]. However, serving as a chelating agent, excessive EDTA may chelate Mg2+, 

which is the cofactor for NADPH, thereby affecting the function of NADPH and further 

inhibiting the activity of P450 enzymes. In the present study, we observed 10-fold 

inhibition of P450 activity when the incubation buffer contained 1 mM EDTA. Therefore, 

EDTA was excluded from our incubation assays. Sharing the same chelating properties 

as EDTA, EGTA, which was introduced into THE incubation buffer by the addition of 

hepatic microsome (used in the hepatic microsome preparation buffer), may also affect 

the function of NADPH regeneration system. However, the positive control result 

showed that the P450 activity was sufficient to conduct the metabolism study in the 

presence of EGTA at the above concentration, thus EGTA was not avoided. 

3.3.2.1.2 EROD, PROD in mink liver microsomes 

No fluorescent signals were detected in the blank and negative control samples, 

whereas significant peak areas of resorufin were present in both EROD and PROD assays, 

indicating there were no interferences from either substrates or microsomes and, 
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furthermore, that the mink hepatic microsomes were still active after one freeze-thaw 

cycle. In order to ensure the mink hepatic microsomes were valid for each following 

metabolism experiment, THE PROD assay was used as the positive control to represent 

all other P450 isozymes. 

3.3.2.2 Mink hepatic microsomes 

3.3.2.2.1 Metabolism of PBDEs by mink hepatic microsomes 

Some dissipation of BDE congeners was observed in negative controls. Because 

hepatic microsomes in negative controls were heat-inactivated, the dissipation of PBDEs 

must have been due to physical loss processes, such as binding to the plastic vials. In 

order to quantify the effect of enzyme-mediated biotransformation, the average fraction 

of congener remaining in negative controls was set arbitrarily to 1. The percent congener 

remaining for BDE 47, 99, and 154 was 0.89 ± 0.10, 0.95 ±0.13, and 0.66 ± 0.14 (mean 

± SD), respectively (Figure 3-4). However, statistical analysis demonstrated that BDE 47 

and BDE 99 were not significantly depleted by mink hepatic microsomes. Under the 

same conditions, 0.34 of BDE 154 was significantly depleted (p < 0.05). No lower 

brominated congeners or methoxylated PBDEs were observed in any of these samples. 
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Figure 3-4: Fraction of BDE congener concentrations remaining after a 24-h incubation 
with mink hepatic microsomes. Error bars represent ± standard deviation for replicate 
assays (n = 3). * Statistically significant depletion (p < 0.05 with a one-tailed Student's t-
test). 

After analysis for parent, debrominated, and methoxylated PBDEs, the triplicates 

from the incubation of each congener were combined, derivatized by diazomethane, and 

concentrated for analysis of hydroxylated metabolites including OH-PBDEs and 

bromophenols. No OH-PBDEs were found for BDE 47 and 99, whereas two peaks were 

detected in the BDE 154 samples that were not present in the negative controls (Figure 3-

5). Based on the mass-to-charge (m/z) ratio (m/z 673.5 and m/z 671.5 for confirmation), 

these two peaks very likely corresponded to OH-hexa-BDEs, although no standard was 

available for confirmation. The larger peak was also detected in mink tissue extracts 

(peak M in the liver extract, Figure 2-4). Bromophenols were monitored in the present 

study by their expected m/z ratios: m/z 186 for mono-bromophenols, m/z 266 for di-

bromophenols, and m/z 343 for tri-bromophenols. Although peaks corresponding to 

bromophenols were detected in PBDE samples, they were not above the response 

detected in negative controls. Therefore, we cannot conclude the formation of 
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bromophenols in the present study methods. Clean-up procedures may help to eliminate 

these interferences having the same m/z ratio as bromophenols. 
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Figure 3-5: GC/MS chromatograms (SIM) of diazomethane derivatized extracts from an 
in vitro depletion assay of BDE 154 with mink hepatic microsomes. (A) Derivatization 
efficiency of internal standards was comparable between the sample and negative control 
in terms of the peak intensities. (B) Two peaks representing OH-hexa-BDEs, pointed out 
by arrows, were eluted in the derivatized sample but not in the negative control. 
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No significant depletion of BDE 47 and 99, and lack of any detectable metabolites, 

suggested that these two congeners were not metabolized by mink hepatic microsomes 

within 24 h under the present experimental conditions. Optimized buffer conditions for 

P450 activity was used for the present study. However, this condition may not be 

appropriate for other enzymes such as deiodinases which have been proposed to be able 

to debrominate higher brominated PBDEs [17] and which are present in several organs, 

including the liver [15]. Indeed, under an optimized buffer condition for deiodinases 

(inclusion of 10 mM of DTT), BDE 99 was significantly debrominated to BDE 47 in carp 

hepatic microsomes [14]. 

The previous mink in vivo study (Chapter 2) suggested that the significant increase of 

BDE 47 in mink tissues, relative to their feed, was likely due to the debromination of 

BDE 99. Consequently, I suggested that optimized buffer conditions for deiodinases 

should be developed and applied with mink hepatic microsomes to complement the 

current data reported here. In addition, intestinal cells were also suggested to be 

responsible for the debromination of PBDEs, thus intestinal microsomal studies should 

also be conducted for debromination under the same optimized buffer conditions for 

deiodinases. Similarly for BDE 154, hydroxylation may be only one of the possible 

metabolic elimination pathways, and debromination may occur under suitable 

experimental conditions. 

A semi-quantitative mass balance of BDE 154 was performed in the following 

manner. In each replicate, 1.4 x 10"" mol of BDE 154 was added, and the average 

depletion rate was 34%; therefore, 4.6 x 10"12 mol of BDE 154 was metabolized in the 

average assay. Assuming the two OH-hexa-BDEs present the only fate for BDE 154, 
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their mass could be equated to 4.6 * 10 mol of OH-hexa-BDEs. Because we combined 

triplicate incubations for analysis, the concentration of OH-hexa-BDEs increased by a 

factor of 3. Therefore, the final concentration of derivatized OH-hexa-BDE was 93 ng/ml 

in the final extract that was analyzed by GC/MS, similar to the concentration of the 

internal standard. Accounting for the fact that the response in GC/MS decreases with 

increasing degree of bromination (I assumed one order of magnitude decrease from tetra 

(i.e. the internal standard) to hexa BDEs), the combined peak area of these two OH-hexa-

BDEs is still an order of magnitude smaller than the internal standard. Therefore, it is 

reasonable to suggest that there is a lack of mass balance in our study, and thus that other 

metabolic routes are operative for BDE 154. 

The lack of mass balance in studies of PBDE depletion by hepatic microsomes has 

also been observed in beluga hepatic microsomes whereby the peak height of the OH-di-

BDE metabolite of BDE 15 was only 1.6-fold higher than the detection limit (1 ng/ml) 

when 63% of BDE 15 was metabolized [11] (theoretical concentration assuming 100% 

conversion would be 91.5 ng/ml of the OH-di-BDE). These authors used a chemical 

ionization source for MS detection, hence they attributed the lack of mass balance to 

undetectable metabolites which were fully debrominated via hydroxylation to non-

detectable (i.e. non-halogenated) fraction. However, this was not the case in the present 

study, because we used an electron ionization source with the same detection limit for 

OH-PBDEs (1 ng/ml), and neither debrominated, and nor any hydroxylated or oxidative 

debrominated BDEs were detected. Therefore full debromination was unlikely the cause 

of the lack of mass balance during the metabolism of BDE 154 in the present study. 

Neither could it be attributed to the phase II metabolism by UDPGTs because no 
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glucuronide substrate was added. However, we cannot rule out the possibility that 

endogenous glutathione [14] may have conjugated some of the epoxide intermediate 

(Figure 1-5). Non-extractable metabolites that are covalently bound to macromolecules 

such as lipids or proteins [18] present in hepatic microsomes may also result in the lack 

of mass balance here. 

3.3.2.2.2 Selective metabolism of PBDEs in different species 

Differences in PBDE profiles have been observed between different species exposed 

to PBDEs in laboratory studies. For example, following DE-71 exposure in the diet, body 

congener profiles of PBDEs were different between mink and rats (Chapter 2). This may 

result from the species dependent selective uptake or elimination of certain PBDE 

congeners. Elimination involves both excretion and metabolism. Selective excretion of 

certain PBDEs has previously been demonstrated [7, 19, 20], and the present study 

further provided evidence that selective metabolism of certain PBDEs can also play a role 

in altered tissue congener profiles relative to the ingested food. 

Such in vitro results are useful for explaining observations in the real world. For 

example, from beluga whales to their primary prey (cod) [21] all congeners (including 

BDE 99, 100, 153, and 154) except BDE 47 increased their relative concentrations 

(Figure 3-6) [22, 23]. Disregarding differential uptake and elimination pharmacokinetics, 

this result was consistent with the observation in vitro, with beluga whale hepatic 

microsomes whereby only BDE 47 was significantly metabolized. 
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Figure 3-6: Relative concentration of PBDEs in beluga whale [22] (black columns 
represent means, and bars represent standard error of the mean) and cod [23] (white 
columns represent means). 

Similarly, as we mentioned in the Chapter 2, the most significant changes with regard 

to the congener profile change in mink was the divergent behaviour between two hexa-

BDEs, BDE 153 and 154 (Figure 2-1 D and F). The significant metabolism of BDE 154 

observed in the present work provided evidence that, indeed, selective metabolism of 

BDE 154 could lead to the low accumulation of BDE 154 relative to BDE 153 in vivo. 

We would, however, need to repeat the current experiments with BDE 153 to be 

absolutely certain of this. 

3.4 Conclusions 

No significant biotransformation processes were observed in the microfloral study. 

However, no solid conclusion can be elucidated based on this result because of the weak 

positive control and lack of viability and activity data. The most significant finding of 
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this study was that BDE 154 can be significantly depleted by mink hepatic microsomes, 

and that two OH-hexa-BDEs were found as its metabolites, one of which matched the 

one detected in vivo. Under the same conditions, BDE 47 and 99 were not significantly 

depleted and no metabolites were observed. The lack of mass balance in BDE 154 

metabolism may have been due to epoxidation and the phase II metabolism by 

glutathione-S-transferases using endogenous glutathione as the cofactor. Two more 

aspects need to be studied further: i) the study of intestinal microflora mediated 

biotransformation needs an effective positive control study or elseintestinal anaerobic 

bacteria may be purified and concentrated for the study, and ii) the buffer conditions need 

to be optimized for debromination, catalyzed by deiodinase enzymes, in hepatic and 

intestinal microsomes. 
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Chapter 4: Conclusions and future work 

Taking the sentinel species, mink, as the study subject, this thesis has demonstrated 

the whole-body bioaccumulation, disposition, and metabolism of a commercial penta-

BDE mixture (DE-71). Further, the thesis research also addressed possible metabolic 

pathways of polybrominated diphenyl ethers (PBDEs) including debromination and 

hydroxylation by in vitro methods using mink intestinal microflora and hepatic 

microsomes. I review these contributions in section 4.1. In section 4.2,1 describe several 

areas for future work. 

4.1 New findings and their implications 

4.1.1 Biomagnification factors of PBDE congeners 

The bioaccumulation of PBDEs has been studied for years, and many field studies 

have suggested PBDEs are bioaccumulative in animal tissues. Studies in the present 

thesis (Chapter 2) have, for the first time, quantitatively estimated BMFs of individual 

PBDEs in a controlled experiment with an environmentally relevant species, and 

demonstrated that PBDEs are accumulative on a whole-body basis. This validated the 

observations from many field studies that PBDEs are accumulative in animal tissues. The 

accumulation potential varied between individual PBDEs; lower brominated congeners 
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were generally more bioaccumulative than higher brominated congeners, with the 

exception of BDE 153. 

4.1.2 Hydroxylation of PBDEs by mink hepatic microsomes 

Hydroxylation of BDE 154 by hepatic microsomes is, for the first time, demonstrated 

in the present thesis (Chapter 3). BDE 154 was significantly depleted by mink hepatic 

microsomes, and two hydroxylated BDE 154 metabolites were generated. Because the 

incubation buffer was optimized for cytochomones P450, these enzymes were most likely 

responsible for the biotransformation (i.e. oxidation) of BDE 154. 

4.2 Future work 

Exploring metabolic pathways was one of the objectives of this thesis, and I have 

demonstrated hydroxylation of BDE 154 by hepatic microsomes. However, 

debromination and hydroxylation of other BDE congeners was not observed. The 

following two sections detail several improvements in experimental design for future 

debromination and hydroxylation studies. 

4.2.1 Reductive debromination study 

A reductive debromination study by intestinal microflora was described in Chapter 3. 

However, appropriate incubation conditions for intestinal anaerobic bacteria may still 

need to be optimized. The major concern was the viability or activity of intestinal 

microflora. Therefore, a test of the viability or activity of intestinal microflora is 
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considered to be necessary before conducting metabolism studies to aid the final 

interpretation. Because the complex components accompanying intestinal microflora 

which may interfere with common bacteria viability tests, the positive control (TCB) 

used in the studies described in Chapter 3 may still be good for demonstrating the 

viability of intestinal microflora, especially anaerobic bacteria responsible for 

dehalogenation. TCB may not be a good quantitative positive control because it 

partitioned out of the aqueous homogenate. However, the detection of di- or mono-

chlorobenzenes, the presumed dehalogenated metabolites of TCB, would nonetheless be 

indicative of viable bacteria capable of dehalogenation. 

Several improvements in the optimization of anaerobic incubation need to be 

considered. First, mink large intestinal content (can be obtained from intestines after 

cecum) should be used instead of rat cecal content to minimize the difference in 

metabolic profiles between species. Second, the incubation medium may include more 

nutrients (other than inorganic salts contained in VPI buffer) for intestinal anaerobic 

bacteria growth (i.e. yeast extracts, bactopeptone, and glucose) [1]. The concentration of 

PBDEs should be kept low so as not to cause toxic effects or to impede bacterial growth. 

Third, in order to minimize the dilution of bacteria, the dilution of intestinal content may 

be waived, and larger amounts of intestinal content may be added to the incubation 

medium. Fourth, dithiothreitol (DTT), serving as an electron donor, may be included in 

the incubation medium to mediate the reductive process of debromination. If 

debromination is achieved in future intestinal microfloral studies, isolation of the specific 

intestinal bacteria that metabolize PBDEs may be conducted by adding PBDEs as one of 

the ingredients in a selective plate culture [1]. 
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Besides intestinal microflora, intestinal microsomes may also be studied for 

debromination of PBDEs. Optimized buffer conditions for deiodinases should be 

developed and applied, and reverse triiodothyronine may serve as the positive control for 

activity of the deiodinases [2]. Again, DTT as the electron donor should be included in 

the incubation buffer. 

4.2.2 Hydroxylation study 

Although I have successfully demonstrated hepatic microsome mediated 

hydroxylation of BDE 154 (a hexa-BDE) under the present study conditions, several 

improvements and complementary studies are still necessary. First of all, as depletion of 

PBDEs in negative controls was observed in the present study (Chapter 3), materials 

other than plastic, such as Teflon® or glass, may be considered for the reaction vessels, to 

minimize the interaction between plastic and PBDEs. Second, complementary studies to 

explore the lack of mass balance may examine the following aspects. Metabolic pathways 

other than hydroxylation, such as phase II metabolism (formation of glutathione 

conjugates), cleavage of the ether bond (formation of bromophenols), and hydroxylation 

associated with debromination (hydroxylated lower brominated BDEs) may also be 

examined. The present study (Chapter 3) suffered interferences while trying to identify 

bromophenols in samples and negative controls. Therefore the analytical method (i.e. 

performing a clean-up procedure) may be specifically optimized for determination of 

bromophenol. Determination of phase II metabolites, especially glutathione conjugates, 

may explain the lack of mass balance. Because of the good solubility of glutathione 
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conjugates, development of an analytical method based on high performance liquid 

chromatography coupled with tandem mass spectrometry is necessary. 

Furthermore, the metabolic manner may be studied by paired BDE congeners having 

similar bromine substitution. For example, BDE congeners having uncompleted meta-

para bromine atom substitution (e.g. BDE 47) may be compared to BDE congeners 

having full meta-para bromine atom substitution (e.g. BDE 77) to test the hypothesis that 

the meta-para substitution of bromine atoms in BDE 153 makes it more recalcitrant to 

metabolism than BDE 154 (Section 2.3.6). 
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Appendices 

Appendix I: Concentrations of PBDEs in the atmosphere. 

Time Region Status EPBDEs 
(PS/™3) 

BDE 209 
(PS/™3) 

EPCBs Ref. 

High volume 
94-95 Dunai, Canada 

Alert, Canada 
Tagish, Canada 

remote 
remote 
remote 

14 
240 
428 

<0.1 
<0.1 
<0.1 

sive diffusion 
00 Poland 

Iceland 
Russia 
Finland 
Netherlands 
Sweden 
EIRE 
Germany 
Italy 
Italy 
Spain 
UK 
UK 

remote 

urban 
rural 

rural 
urban 

4.97 
1.65 
2.45 
3.4 
6.12 
3.27 
1.6 
1.7 
10.13 
2.3 
4.47 
8.03 
25.61 

34 

18.69 
10.53 
197 
19.68 
32.48 
62.11 
4.76 
22.36 
135.71 
52.43 
23.49 
12.3 
140.22 

[1,2] 

97-99 

01 
00 
00 

00-01 
01-02 

01 

01-02 
02-03 
02-03 

04 

05 

the Great lakes region 
the Great lakes region 
Chicago, USA 
the Baltic Sea 
Peterborough, Canada 
England, UK 
England, UK 
Tokyo, Japan 
incineration plant, UK 

Torna, UK 

Birmingham, UK 
Birmingham, UK 
Chicago, USA 
Lake Michigan, USA 
Cocodrie, USA 
Guangdong, China 
Guangdong, China 
Ispra, Italy 

remote 
rural 
urban 

rural 
remote 
urban 

outdoor 
indoor 

urban 
industrial 

5.5 
11 
52 
3.7 
295 
12 
2.6 
15 
6.3 

3.5 

18 
726 
31 
14 
12 
88.8 
229.6 
91 

<1.0 
<1.0 
0.3 
6.1 

10.4 

6.5 

71 
1.8 
3.8 
263.8 
749.8 
5 

140 
595 
3199 
7.4 
315 

[3] 

[4] 
[5] 
[6] 

[7] 
[8] 

[9] 

[10] 

[11] 

[12] 

[13] 

00-01 Alert, Canada 
Toronto, Canada 

remote 
urban 

4 
27 

14 
670 

[14] 
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Time 

00-01 
02-03 

Region 

Toronto 
Ottawa 

Status 

outdoor 
indoor 

EPBDEs 
(pg/m3) 
15 
2.2 
120 

BDE 209 
(pg/m3) 

EPCBs 
(Pg/m3) 
n.a. 

Ref. 

[15] 
[16] 

04 China 
China 
Singapore 
Korea 
Japan 

rural 
urban 

7.29 
2.55 
3.74 
1.75 
3.81 

9.29 
18.82 
4.21 
7.01 
12.53 

[17] 

Estimated 
01 

Time 

Vacuum 
dust 

02-03 
04 
n.a. 

Toronto, Canada 

Region 

Ottawa, Canada 
Washington, DC, 
Dallas, USA 

USA 

outdoor 
indoor 

Status 

indoor 
indoor 
indoor 

4.8 
42.1 
IPBDEs 
(ng/g) 

900 
2816 
1842 

Octa-BDE 
(ng/g) 

84 

BDE 209 
(ng/g) 

630 
1350 
665 

[18] 

Ref. 

[19] 
[20] 

[21] 
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Appendix II: Concentrations of PBDEs in sediments, sewage sludge, and soils. 

Time 

Sediments 
87 
98 
99 
99 
00 

00 

00 
n.a. 

01 
02 
02 
03 

n.a. 
n.a. 
04 
04 
95 
04-05 
n.a. 

Location 

Sweden 
High Arctic, Canada 
Indiana, USA 
the Netherlands 
Demark 

Atlanta, USA 

Greenland 
Portugal 

the Netherlands 
Spain 
Spain 
Northern Norway 

Ireland 
Pearl River Delta, China 
Hong Kong, China 
Korea 
Visda River, Sweden 
Lake Maggiore, Italy 
India 

Sewage sludge 
87 Sweden 
n.a. 
97-98 
99 
n.a. 
n.a. 
02 
n.a. 

Soil 
00 

00 

Germany 
Sweden 
the Netherlands 
USA, several states 
California, USA 
Kelowna, Canada 
Denmark 

Sweden, agricultural land 

Atlantic coast, USA 

Status 

marine 
marine 
lake 
n.a. 
freshwater 
marine 
pond 
stream 
lake 
river basin 
coastal 
estuary 
river 
river 
marine 

harbor 
marine 
marine 
marine 
river 
lake 
wetland 

ref. site 
fertilized 
polluted 

LPBDEs 
ng/gdw 

2.9 a 

0.122 
7 
2.05 
0.92 
0.25 
0.25 
17.2 
0.012 
1.68 
0.37 
22 

5.2 
0.25 

1.75 
3.62 
10 
0.1 
26a 

5.2 
0.62 

38 a 

8.37 
200 
22 
1564 
2198 
2429 
238 

0.103 
0.68 
13.6 

BDE 209 
ng/gdw 

0.046 
30 
22 
2.5 
2.2 

272 
5.47 
3.9 

0.42 
<0.1 

0.18 
4.26 
75 a 

0.5 

220 
350 
368 
1183 
In ZPBDE 
248 

EPCBs Ref. 

[22] 
[23] 
[24] 
[25] 
[26] 

[27] 

0.177 [28] 
[29] 

[30] 
[31] 
[32] 

[2] 

[33] 

[34] 
[35] 
[36] 
[37] 
[12] 
[38] 

[22] 
[39] 
[40] 
[25] 
[41] 
[42] 
[43] 
[44] 

0.865 [45] 
2.55 

[27] 
00 Sweden, agricultural land ref. site 0.076 0.076 [46] 
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Time 

n.a. 

Location 

UK, rural/remote 

Norway 

Status 

fertilized 
woodland 
grassland 
woodland 

EPBDEs 
ng/gdw 
0.2 
2.5 
0.61 
0.97 

BDE 209 
ng/gdw 
0.62 

EPCBs Ref. 

[47] 

n.a. not available. unit: ng/g ignition loss 
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Appendix III: The concentrations of EPBDEs (sum of tri-hepta BDEs), BDE 209, and 
partial SPCB concentrations (the number of summed congeners varied between studies) 
in wildlife including invertebrates, fish, frogs, birds, terrestrial mammals and marine 
mammals from North America, Europe, Asia, and the Arctic region. 

Species 

Porpoise, dolph 

porpoise 

porpoise 
harbor 
porpoise 
finless 
porpoise 
spinner 
dolphin 
pacific white-
sided dolphin 
humpback 
dolphin 
long-finned 
pilot whale 
melon-headed 
whale 
Stejneger's 
beaked whale 
beluga whale 

Tissue Time 

ins, and whales 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

91-93 

96-99 

99 

00-01 

90-92 

99 

00-01 

94 

01 

00-01 

98 

Region 

costal BC, 
Canada 
UK 

North Sea 

Hong Kong, 
China 

India 

Japan 

Hong Kong, 
China 
Faroe Island, 
Atlantic 

Japan 

Japan 

Svalbard 

Status 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

EPBDEs 
ng/glw 

530 

642 

1534 

380 

6.8 

690 

1600 

1610 

320 

530 

161 

BDE 209 
ng/glw 

<DL 

< DL 0.5 

< DL 0.5 

<DL 

< DL 0.5 

< DL 0.5 

EPCBs 
Hg/glw 

10 

1.6 

8.7 

72 

24 

19 

Ref. 

[48] 

[49] 

[50] 

[51] 

[52] 

[52] 

[51] 

[53] 

[52] 

[52] 

[54] 

beluga whale B 

fur seal B 

St. Lawrence 
Estuary, M 
Canada 

92-93 

97-99 

22 

111 

485 

91 

94 

97 

98 

Sanriku, 
Japan 

M 49 

53 

28 

30 

<DL0.5 

< DL 0.5 

< DL 0.5 

<DL0.5 

3.4 

2.7 

2.6 

2.2 

[55] 

killer whale B 05 Hokkaido, 
Japan 

M 320 <0.5 44 [56] 

Seals 

grey seal 

grey seal 

B 

B 

79-85 

81-88 

Baltic Sea 

Baltic Sea 

M 

M 

690 

468 

[57] 

[58] 

[59] 

ringed seal 

ringed seal 

ringed seal 

ringed seal 

B 

B 

B 

B 

01 

81 

99 

03 

East 
Greenland 
Svalbard 

Svalbard 

Svalbard 

M 

M 

M 

M 

36 

48.7 

18.3 

59.08 

n.m 0.84 [60] 

[57] 

[54] 

[61] 

139 



Species 

ringed seal 

harbor seal 

grey seal 

ringed seal 

Tissue 

B 

B 

L 

L 

Time 

81-

99 

81-

81-

88 

88 

88 

Region 

Baltic Sea 

North Sea 

Baltic Sea 

Baltic Sea 

Status 

M 

M 

M 

M 

EPBDEs 
ng/glw 
379 

323 

18 

43 

BDE 209 
ng/glw 

EPCBs 
ufi/g lw 

Ref. 

[58] 

[50] 

[58] 

[58] 

Polar bears 

polar bear 

polar bear 

polar bear 

polar bear 

P 

A 

A 

A 

02 

02-03 

02 

99-01 

Svalbard 

Svalbard 

Svalbard 
East 
Greenland 

M 

M 

M 

M 

533 

30 

49.8 

69.6 

0.09 

<0.05 

<0.05 

[62] 

[61] 

[63] 

[63] 

Fish 
shorthorn 
sculpin 
shorthorn 
sculpin 
whiting fish 

whiting fish 

common sole 

common sole 

Arctic char 

brown trout 

Arctic char 

herring 

herring 

salmon 

whiting fish 

whiting fish 

common sole 
anadormous 
arctic char 
whitefish 

Arctic char 
trout (Salmo 
trutta) 

pike 

rainbow trout 

carp 

L 

L 

L 

L 

L 

L 

L 

L 

L 

MU 

MU 

MU 

MU 

MU 

MU 

MU 

MU 

MU 

MU 

MU 

MU 

MU 

01 

00 

99 

01 

01 

92 

00 

01 

01 

01 

81-

00 

91 

99 

01 

01 

01 

86 

87 

88 

95 

99 

99 

88 

East 
Greenland 
Southern 
Greenland 
North Sea 

North Sea 

North Sea 
costal BC, 
Canada 

Greenland 
mountain 
lake, Europe 
mountain 
lake, Europe 
Baltic Sea 

North Sea 

Baltic Sea 

North Sea 

North Sea 

North Sea 
East 
Greenland 
Sweden 

Sweden 

Sweden 

Visda River, 
Sweden 
Washington 
State, USA 
Indiana, 
USA 

M 

M 

M 

M 

M 

M 

M 

M 

FW 

FW 

M 

M 

M 

M 

M 

M 

M 

FW 

FW 

FW 

FW 

FW 

FW 

7 

18.6 

108 

145 

21 

22 

70 

23 

55 

16 

15 

61 

298 

51 

90 

36 

10 

22.2 

464 

270 

275 

4150 

1630 

n.m 

trace 

<175 

0.115 

0.352 

0.18 

[60] 

[26] 

[50] 

[64] 

[64] 

[48] 

[65] 

[65] 

[65] 

[58] 

[50] 

[58] 

[50] 

- rfi.ii 
LD4J 

[60] 

[66] 

[66] 

[66] 

[37] 

[67] 

[24] 
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Species 

brown trout 

Arctic char 

Arctic char 

Tissue 

MU 

MU 

MU 

Time 

01 

01 

01 

Region 

mountain 
lake, Europe 
mountain 
lake, Europe 

Greenland 

Status 

FW 

FW 

M 

SPBDEs 
ng/glw 

34 

14 

41 

BDE 209 
ng/glw 

EPCBs 
Hg/glw 

Ref. 

[65] 

[65] 

[65] 

whiting fish MU 92 

95 

00 

92 

00 

Columbia 
River, 
Canada 

FW 66 

615 

628 

56 

154 

lake trout W 97 Lake 
Superior 
Lake Huron 
Lake Erie 
Lake 
Ontario 

FW 1973 

204 

94 

362 

[68] 

salmon 

salmon 

polar cod 

polar cod 

smelt 

smelt 

salmon 

W 

W 

W 

W 

W 

W 

W 

99 

99 

01 

03 

94 

95 

99 

Baltic Sea 

Atlantic, 
Norway 

Svalbard 

Svalbard 

Lake 
Superior 
Lake 
Ontario 
Lake 
Michigan 

M 

M 

M 

M 

FW 

FW 

FW 

49 

13 

3.55 

1.25 

150 

240 

2440 

0.2 

<24 

<21 

43.1 

[69] 

[69] 

[54] 

[61] 

[24] 

[24] 

[70] 

[71] 

large mouth 
bass 

carp 

bluegill 
sunflsh 

Crab, Mussels, 

crab 

crab 

crab 

mussel 

blue mussel 

shrimp 

shrimp 

W 

W 

W 

shrimp, 

SA 

W 

99 

99 

00 

Detroit river, 
MI, USA 
Detroit river, 
MI, USA 
mid-
Altlantic 
region, USA 

and sea stars 

94-95 

01 

99 

00 

02 

01 

99 

costal BC, 
Canada 

North Sea 

North Sea 

Denmark 

Southern 
Greenland 

North Sea 

North Sea 

FW 

FW 

FW 

M 

M 

M 

M 

M 

M 

M 

163 

40.7 

1333 

320 

48 

56 

11.9 

5.5 

6.7 

53 

[72] 

[72] 

[27] 

[48] 

[64] 

[50] 

[73] 

[26] 

[64] 

[50] 

sea star PC 99 North Sea M 35 [50] 



Species Tissue Time Region Status EPBDEs 
ng/glw 

BDE 209 
ng/glw 

SPCBs 
Hg/glw 

Ref. 

Frogs 

frog L 98-00 Sweden T 4074 [74] 

Birds 

glaucous gull 

osprey 

starling 

glaucous gull 

cormorant 

cormorant 
common 
buzzard 
sparrowhawk 

owl 

sparrowhawk 

little owl 

common 
buzzard 
guillemot 

guillemot 

cormorant 
black 
guillemot 

P 

MU 

MU 

L 

L 

L 

L 

L 

L 

L 

L 

L 

W 

W 

egg 

egg 

04 

82-86 

87 

99 

99-00 

00 

01-03 

01-03 

01-03 

04-06 

04-06 

04-06 

99 

99 

00 

01 

Svalbard 

Sweden 

Sweden 

Bear Island 

UK 

Japan 

Belgium 

Belgium 

Belgium 
Beijing, 
China 
Beijing, 
China 
Beijing, 
China 
Baltc Sea 
Atlantic, 
Norway 
Japan 
East 
Greenland 

M 

M 

T 

M 

FW 

FW 

T 

T 

T 

T 

T 

T 

M 

M 

FW 

M 

1338 

1940 

44 

54 

580 

1400 

70 

12 

250 

3313 

1933 

20 

231 

76 

930 

80 

24 

<DL 

<DL 

249 

96 

71 

24 

20 

1.64 

[62] 

[66] 

[66] 

[75] 

[49] 

[76] 

[77] 

[77] 

[77] 

[78] 

[78] 

[78] 

[69] 

[69] 

[76] 

[60] 

guillemot egg 71 
76 

85 

89 

96 

01 

Baltic Sea 

Baltic Sea 

M 

M 

95.1 
656 

1348 

1225 

1307 

101 

[57] 

peregrine 
falcon 

egg 91-99 Sweden M 4070 110 [79] 

peregrine 
falcon 

egg 87-88 Greenland 

92 

99-00 

M 813 

2037 

2690 

6.85 

8 

11 

[80] 

little owl egg 98-00 Belgium 110 2.6 [81] 

herring gull egg 

herring gull 

83 

88 

96 

00 

83 

Lake 
Ontario 

Lake 

FW 

FW 

101 

2110 

3337 

5307 

189 

[82] 

[82] 



Species Tissue Time Region Status EPBDEs BDE 209 
ng/glw 

EPCBs Ref. 

Michigan 

96 

00 

6950 

6804 

13058 

herring gull 83 

88 

96 

00 

Lake Huron FW 324 

940 

3990 

6684 

[82] 

Terrestrial mammals 

moose 

raindeer 

red fox 

rodents 

MU 

suet 

A 

MU 

85-86 Sweden 

86 Sweden 

03-04 Belgium 

01 Belgium 

T 

T 

T 

T 

1.7 0.396 [83] 

0.51 0.05 [83] 

2.2 <3.7 [84] 

7.1 [84] 
Note: B=Blubber, L=liver, P=plasma, A=adipose; P=plasma, MU=muscle, W=whole body, SA= soft 
abdomen, PC= pyloric caeca, M=marine; FW=freshwater, T=terrestrial 
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Appendix IV: Solar light degradation of PBDEs. 

Congeners 

BDE 209 
(deca-) 

BDE 208 
(nona-) 

BDE 203 
(octa-) 

BDE 183 
(hepta-) 

BDE 154 
(hexa-) 

BDE 99 
(penta-) 

BDE 47 
(tetra-) 

Solvent 

Hexane 

Tetrahydrofuran 
(THF) 

MeOH 

MeOH/water 
(80:20, v/v) 

Water 

MeOH/water 
(80:20, v/v) 

MeOH/water 
(80:20, v/v) 

MeOH/water 
(80:20, v/v) 

MeOH/water 
(80:20, v/v) 

MeOH/water 
(80:20, v/v) 

MeOH/water 
(80:20, v/v) 

Light source 

Sunlight (summer) 

Sunlight (winter) 

UV light within 
sunlight region 

UV light within 
sunlight region 

UV light within 
sunlight region 

Artificial light in 
sunlight region 

UV light within 
sunlight region 

UV light within 
sunlight region 

UV light within 
sunlight region 

UV light within 
sunlight region 

UV light within 
sunlight region 

UV light within 
sunlight region 

Decomposition 
rate constant 
kxlO-5 (s"1) 
186 

111 

83 

65 

40 

17 

3.7 

0.67 

0.33 

0.3 

0.07 

Half-life 
(h) 

0.1 

0.2 

0.2 

0.3 

0.5 

30-40 

1.1 

5.0 

29 

58 

64 

290 

Ref. 

[85] 

[85] 

[86] 

[86] 

[86] 

[87] 

[86] 

[86] 

[86] 

[86] 

[86] 

[86] 
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Appendix V: Extracted ions for quantification and confirmation. 

PBDE type 

tri-BDEs 

tetra-BDEs 

penta-BDEs 

hexa-BDEs 

[13C]hexa-BDEs 

m/z 

405.8a 

407.8 

483.7 

485.7a 

563.6 

565.6 

403.8a 

641.5 

643.5 

405.8a 

655.6 

495.6a 

m/z identity 

M+2 

M+4 

M+2 

M+4 

M+4 

M+6 

[M-2Br]+ 

M+4 

M+6 

[M-2Br]+ 

M+6 

[M-2Br]+ 

Theoretical Abundance0 

0.333 

0.326 

0.225 

0.329 

0.278 

0.272 

n.a.b 

0.211 

0.275 

n.a.b 

0.211 

n.a.b 

a Peak areas of these ions are integrated for quantification, while other ions are used 
for confirmation. 
b [M-2Br]+ is a fragment of the molecules; its theoretical abundance depends on the 
ionization energy. 
c The theoretical abundance is expressed as a fraction to 1. 
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Appendix VI: Theoretical ion abundance ratios and QC limits. 

PBDE type 

tri-BDEs 

tetra-BDEs 

penta-BDEs 

hexa-BDEs 

m/z forming ratio 

(M+2)/(M+4) 

(M+2)/(M+4) 

(M+4)/(M+6) 

([M]+)/([M-2Br]+)b 

(M+4)/(M+6) 

([M]+)/([M-2Br]+)b 

Ratio 

1.03 

0.70 

1.03 

lower QC 
limit 

0.88a 

0.60a 

0.88a 

upper QC 
limit 

1.18a 

0.81a 

1.18s 

The peak areas are acceptable when the 
relative standard deviation of these ratios (n 
> 3) is less than 10%. 

0.77a 0.65a 0.89a 

The peak areas are acceptable when the 
relative standard deviation of these ratios (n 
> 3) less than 10%. 

This criteria is defined in EPA Method 1614 as ± 15% 
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Appendix VII: GC/MS chromatograms (SIM mode) for OH-tetra-BDEs (m/z of [M+] is 
513.7), OH-penta-BDEs (m/z of [Mf] is 595.6), and OH-hexa-BDEs (m/z of [M+] is 673.5) 
in the derivatized extract of liver, feces, and pooled plasma from the control groups. 
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