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Abstract 
 
Interest in the presence of environmental contaminants in the Canadian arctic and sub-arctic 
arises in part over concerns that Aboriginal people residing in these regions continue to rely 
on subsistence harvesting. Organochlorines (OCs) are a type of persistent organic pollutant 
(POP) that have a unique chlorine-carbon bond; this bond facilitates their unprecedented 
environmental longevity, lipophilicity and hydrophobic nature. OCs have been found in both 
the biotic and non-biotic compartments of northern ecosystems.  

 
 
This study examined patterns of differences with respect to body burden of organochlorines 
(lipid-adjusted) between the residents of the Ontario First Nations of Fort Albany (the site of 
MCRL Site 050), Kashechewan (no radar site), and Peawanuck (the site of MCRL 500) to 
assess whether geo-proximity to abandoned radar sites influenced organochlorine body 
burden with respect to the people of Fort Albany and Peawanuck.  
 

Correspondence analysis (CA-1) revealed people from Fort Albany had relatively higher 
pesticide concentrations (β-HCH and DDT, but not Mirex) and relatively lower CB (156 and 
170) body burdens when compared to participants from Kashechewan and Peawanuck. CA- 2 
revealed Peawanuck residents had relatively higher concentrations of CB180, DDE and 
hexachlorobenzene and relatively lower levels of DDT and mirex compared to participants 
from Kashechewan and Fort Albany. Results are suggestive but not conclusive that MCRL 
Site 500 may have influenced body burdens of Peawanuck residents.  
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Chapter 1.0 Introduction 
 

1.1. Background 

 

Interest in the presence of environmental contaminants in the Canadian arctic and sub-arctic 

arises in part over concerns that Aboriginal (Inuit, First Nations and Metis) people residing in 

these regions continue to rely on subsistence harvesting (Evans et al. 2005). Since the early 

20th century, persistent organic pollutants (POPs) have been used ubiquitously for a multitude 

of purposes ranging from agricultural to manufacturing processes (Dallaire et al. 2004). 

Organochlorines (OCs) are a type of POP and are a family of compounds that contain carbon, 

chlorine, and hydrogen atoms (Macdonald et al. 2000). All OCs are synthetic and it is for this 

reason why biological degradation processes struggle to compromise the chlorine-carbon 

bonds; thus, giving them their unprecedented environmental longevity (Braune et al. 2005). 

In addition, OCs are highly insoluble in water and have a high affinity to fatty molecules 

which allows them to bond to lipid substances (e.g., adipose tissue, cell membranes) of 

organisms that are exposed to them (Dallaire et al. 2004). This family of compounds includes 

chlorinated pesticides (e.g., dichlorodiphenyltrichloroethane [DDT], mirex, and trans-

nonachlor) and industrial compounds (e.g., hexachlorobenzene [HCB] and polychlorinated 

biphenyls [PCBs]; Dallaire et al. 2004).  

 

Organochlorine contamination has recently been documented at Mid Canada Radar Line 

(MCRL) stations located throughout the Canadian sub-arctic (ESG 1999a). These abandoned 

military radar bases were constructed in the mid-1950s to serve as advanced warning stations 

for impending nuclear threats from Russia (Huebert 2000). After seven years of operation, 

the radar stations were closed and improperly decommissioned (Thorne 2003; ESG 1999a). 

The presence of contaminants in the subsistence environments of First Nations people is a 

subject of critical concern. The present study examined OCs in human plasma of First 

Nations people residing in the Hudson Bay region of northern Ontario, Canada, in an attempt, 

to elucidate the relationship between human OC body burden and proximity to abandoned 

MCRL sites. In this first chapter, I will give a brief review of OCs in the context of 
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contamination of MCRL sites in Ontario. The second chapter of this thesis will describe my 

actual project; while, the third chapter will offer recommendations for future endeavours.   

 

1.2. Ecosystem Approach to Health  

 

The ecosystem approach to health is the guiding theoretical framework driving this study, as 

it recognizes the important links between human health and the biophysical, social, and 

economic environments (Lebel 2003). This approach to human health recognizes the 

importance of positive action toward the environment through sustainable economic and 

social behaviour, which will in turn, improve the communal well-being and health of the 

ecosystem (Lebel 2003). 

 

Assumptions of the ecosystem approach to health suggest all systems and sub-systems of the 

ecosystem and/or biosphere are interrelated, intertwined, and more importantly, are not 

mutually exclusive of one another (Rapport and Mergler 2004). Moreover, this approach 

argues that all trophic levels or networks of the ecosystem are interconnected in ways that 

allows for each individual or environmental variable to influence other individuals regardless 

of their respective trophic level (Lebel 2003). The key recognition of this framework 

suggests that the increasing imbalances of the ecosystems are producing situations of 

increasing human vulnerability to disease, such as, malaria, cholera, dengue fever and many 

others (Rapport and Mergler 2004). Furthermore, the build up of toxic substances from 

sources, such as agricultural pesticides and environmental contaminants (e.g., industrial 

processes, mining sites, etc.) are commencing the slow alteration of physiological and 

psychological functions amongst the human populace (Rapport and Mergler 2004). These 

toxic substances are transmitted via complex pathways (e.g., soil, air, and water) and are 

commonly passed from mother to fetus during embryological development and breast-

feeding as well as during lifestyle pursuits (i.e., the traditional diet), resulting in significant 

human health complications (Rapport and Mergler 2004).  

 

The premise of this framework assumes that the strategy for maintaining healthy human 

populations can be accomplished through the rehabilitation of compromised ecosystems 



 3

(Rapport and Mergler 2004). The ecosystem approach attempts to identify and assess the 

determinants of a healthy ecosystem as well as the health of the populace inhabiting the 

specific ecosystem (Forget and Lebel 2001). 

 

1.3. OCs 

 

Organochlorines include a wide array of industrial compounds and pesticides that are 

chemically persistent and semi-volatile (Macdonald et al. 2000). Because of their low cost 

and generic efficacy, OCs have been in use throughout a large part of the globe since the 

1950s through to the present (Macdonald et al. 2000). Although banned in many parts of the 

world, OCs continue to be used predominantly as pesticides and dielectrics and hydraulic 

fluid in developing regions of the world (Macdonald et al. 2000). Though OCs are diverse in 

their chemical structure, they all share common characteristics, such as, low water 

solubilities, high lipophilicity (affinity to fatty molecules) and resistance to biodegradation 

(AMAP 1998; Braune et al. 2005). These combined traits facilitate their uptake and 

accumulation in fatty tissues of living organisms (AMAP 2002). Organochlorines used as 

pesticides were typically toxic to non-target organisms as well as the targeted pest (AMAP 

1998). Examples of such pesticides are DDT, hexachlorocyclohexanes (HCHs), chlordanes, 

aldrin, mirex, toxaphene, and HCB (AMAP 1998). Since OCs have relatively high vapour 

pressures, this characteristic allows these compounds to cycle between condensed and 

gaseous states in the environment, allowing OCs to travel great distances (Macdonald et al. 

2000). These “multi-hop” contaminants are differentiated from other contaminants in that 

once emitted into the atmosphere, transported and deposited, they can re-enter into the 

atmosphere through the process of volatilization (AMAP 1998). This process is known as the 

“grasshopper effect” (Wania and Mackay 1996).  

 

Organochlorines were first isolated in the Canadian arctic freshwater and anadromous fish in 

the early 1970s (Reinke et al. 1972). The presence of OCs in the Canadian north is largely 

attributed to long-range contaminant transport; however, abandoned radar line sites in 

northern Canada are also acting as point sources of contamination (e.g., ESG 1999a,b; Tsuji 

et al. 2005a,b,c; 2006). Specifically, many MCRL stations were constructed adjacent to or in 
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close proximity to First Nation communities (Peawanuck, Fort Albany; AMAP 1998). For 

this reason, it is important to understand the relationships between FN proximity to 

abandoned MCRL sites and FN organochlorine body burden. Organochlorines that have been 

found relevant to the above issues are briefly described below.   

 

1.3.1. PCBs – Industrial Products 

 

The Monsanto Chemical Corporation introduced the world to PCBs in 1929; PCBs were 

subsequently manufactured in the USA, Japan, the former Soviet Union and eastern and 

western Europe under various names (e.g., Aroclor, Clophen, Phenoclor; AMAP 1998). From 

1929 to 1977, approximately 40 000 tonnes of PCBs produced in the United States were 

imported into Canada (ESG 1999a). PCBs are a family of OCs that were used ubiquitously in 

North American industry from roughly the 1950s to the late 1970s (Macdonald et al. 2000). 

Though the manufacturing of PCBs in North America ceased in the later portion of the 

1970s, they continue to be present in landfills, ocean and lake sediments, fish, and wildlife 

(Safe 1994; AMAP 2002). The production and sale of PCBs was restricted in the mid 1970s 

due to legislation (see AMAP 1998, for a review); however, many PCBs are still present in 

many of the transformers and capacitors in use today (Dallaire et al. 2004). These chemically 

stable compounds are still being released into the environment because of improper storage 

and disposal, and their ongoing use in other parts of the world (Dallaire et al. 2004). PCBs 

are mixtures of up to 209 individual chlorinated compounds (known as congeners) that take 

the form of oily liquids, solids (colourless to yellow) and can exist as vapour in the 

atmosphere (Dewailly et al. 1993). The positioning of the rings as well as the number of 

chlorine molecules influences the physical properties and biological activity of PCB 

congeners (AMAP 1998). The “half-lives” of PCB congeners can vary from weeks to years 

in air and often up to decades in biota (AMAP 1998). It is estimated that PCB congeners with 

low molecular weight have half-lives ranging between 6-21 years (Evans et al. 2005). Half-

lives in biota can vary; de Boer et al. (1994) examined PCB half-lives in adult fish and found 

that CB156 had a half-life of more than ten years in adult eels.  
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There are no known natural sources of PCBs, meaning all PCBs found within the 

environment are the result of industrial and related processes (Dewailly et al. 1993). Prior to 

their regulation in the1970s, PCBs were used heavily in industry as heat transfer chemicals in 

electric transformers and capacitors as well as in hydraulic fluids and lubricants in heavy 

electric equipment because of their heat resistant properties (Muckle et al. 2001). Some 

examples of household products that contained PCBs prior to the 1970s are as follows: 

fluorescent lights, electrical devices with capacitors, microscopes, hydraulic oils, etc. 

(Dewailly et al. 1993). Therefore, prior to their prohibition, they were used in numerous 

commercial and residential products (Dewailly et al. 1993).  

 

Polychlorinated biphenyls (PCBs) enter the biosphere in many ways, including 

manufacturing usage, disposal, accidental spills and leaks during transport and improper 

storage and disposal (Macdonald et al. 2000; Dewailly et al. 1993). Once released into the 

environment at middle and lower latitudes, PCBs reach the arctic and sub-arctic via long-

range atmospheric transport, waterways, and ocean currents (AMAP 2002; Barrie et al. 

1992). There are three pathways in which PCBs can move in the environment; these are by 

leaching, through run off, or through the atmosphere (Poland et al. 2001). PCBs have shown 

to travel several kilometres away from their original source (Bright et al. 1995). This is 

known as the “halo effect” and can result in contaminant dispersion in all cardinal directions 

(Bright et al. 1995). It is generally accepted that PCBs are not readily volatilized into the 

atmosphere, but more commonly are carried on water or soil particles to which they are 

attached (Poland et al. 2001).  

 

1.3.2. HCB – Industrial Product 

 

The compound HCB is a by-product resulting from the production of a large number of 

chlorinated products (chlorinated benzenes, pesticides, fungicide; AMAP 1998). HCB enters 

atmospheric pathways as flue gas generated by waste incineration processes as well as from 

metallurgical industries (AMAP 1998). HCB has relatively high bioaccumulation potential 

(high lipophilicity), has an estimated field “half-life” of 2.7-5.7 years and has a long half-life 

in biota (AMAP 1998; Howard 1991; Niimi 1987). Further, HCB has amongst the highest 
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concentrations recorded in the atmosphere, which is the principal medium for transport 

(AMAP 1998). 

 

1.3.3. Chlordane – Chlorinated Pesticide 

 

Production of chlordane in North America began in 1947 and peaked at 5000 tons/year by 

1974 (Van Oostdam et al. 2005). In Canada, chlordane was first registered as a pesticide in 

1949 and was prohibited in 1995 (Van Oostdam et al. 2005). Technical grade chlordane is a 

mixture of over 120 compounds, with the major constituents being cis-chlordane, trans-

chlordane, cis-nonachlor, oxy-chlordane and trans-nonchlor (AMAP 1998). Oxy-chlordane 

and trans-chlordane are both metabolites of chlordane. Chlordane was used extensively as a 

termiticide in the United States where it is estimated that over 30 million houses were treated 

with it (Van Oostdam et a. 1998). Chlordane has an estimated half-life in soil of 1-4 years 

and compared to other chlorinated pesticides, it is readily volatilized from water and soils 

(AMAP 1998).  

 

1.3.4. HCH – Chlorinated Pesticide 

 

Hexachlorocyclohexane consists of numerous isomers; specific to this study is ß-HCH 

(AMAP 1998). HCH isomers (Lindane is still in use throughout the northern hemisphere) 

have been used as insecticides for hardwood logs and lumber, seeds and on vegetables and 

fruits (AMAP 1998). HCH is much less bioaccumulative than other organochlorines because 

of its relatively low lipophilicity and short half-life in biota (Niimi 1987). However, HCH 

isomers are extremely volatile compounds capable of long-range transport in the atmosphere 

(AMAP 1998).  

 

1.3.5. Mirex – Insecticide and Fire Retardant 

 

Prior to its prohibition, mirex was used as an insecticide and as a fire retardant, largely in 

Canada and the USA (AMAP 1998). Mirex is a highly volatile compound and is extremely 

persistent in soils and sediment with an estimated half-life of five to ten years (AMAP 1998). 
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The presence of mirex in the arctic is consistent with its high volatility and persistence 

(AMAP 1998). 

 

1.3.6. DDT - Insecticide 

 

Though restricted in Canada, the USA and Western Europe for nearly four decades, DDT 

remains a prominent contaminant in the Canadian arctic and sub-arctic (AMAP 1998). It 

remains in use in southern Asia, Africa and Central and South America and may be still used 

in Russia and China (AMAP 1998). Introduced in 1945 as an insecticide, DDT was used 

liberally to combat invertebrates and subsequent infectious diseases (e.g., malaria). Both 

DDT and its metabolite DDE are highly persistent organic compounds, have a long half-life 

in biota and detrimentally influence the nervous system and the liver (AMAP 1998; ESG 

1999a). In the Canadian north, DDT was used extensively as a chemical spray to combat 

mosquitoes and black flies (ESG 1999a).  

 

1.4. Long-Range Transport and Point Sources    

 

The Canadian arctic and sub-arctic may appear as a pristine environment unscathed by 

industrialization; however, research over the past several decades suggests otherwise (Evans 

et al. 2005). Though remote, the Canadian arctic and sub-arctic are intricately connected to 

the rest of the world by the currents of the atmosphere and oceans (Macdonald et al. 2000). 

The first indication of anthropogenic contaminants in the arctic occurred in the 1950s when 

pilots started reporting haze; this haze was later understood to be contaminants from 

industrial emissions and was coined “arctic haze” (Macdonald et al. 2000). Pathways of 

contaminant transport to the Canadian sub-arctic and arctic regions of Canada have long been 

attributed to long-range transport (Gamberg et al. 2005). Atmospheric transport, rivers and 

ocean currents deliver contaminants to northern regions from southern and/or industrialized 

regions (Gamberg et al. 2005). Airborne contaminants are removed from the atmosphere by 

wet and dry deposition and are subsequently absorbed by snow, water, soil, sediment and 

plant surfaces (Gamberg et al. 2005). Ocean currents and northward flowing rivers deposit 

the more hydrophobic contaminants (i.e., organochlorines) after years to decades in solution 
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(Gamberg et al. 2005). Only a small fraction of the chemicals released in the mid to low 

latitudes reach the Canadian arctic, however, this sometimes results in significantly high 

contaminant concentrations that exceeds levels in temperate regions (Macdonald et al. 2000). 

The pathways followed by an individual contaminant molecule are complex (AMAP 1998). 

 

When considered on a global or continental scale, local point sources of OCs are considered 

to be only minor contributors to contamination of terrestrial and aquatic environments 

(Gamberg et al. 2005). On a local scale, research by the Environmental Sciences Group 

(ESG; 1999a,b) and others have attributed abandoned military stations as point sources for 

OC contamination (Tsuji et al. 2005a,b,c; 2006). For example, Reimer et al. (1993a,b) 

examined soil-plant-lemming (Dicrostonyx groenlandicus) relationships in the sewage outfall 

and background areas at the Cambridge Bay radar site (Distance Early Warning [DEW]; 70th 

parallel) to examine bioavailability of PCBs. Soil PCB concentrations in the sewage outfall 

area were significantly greater than background values with averages, in some cases, 

differing by an order of magnitude or more (Reimer et al. 1993a,b). Indeed, plant-herbivore 

biomagnification (see below) was at a 6.5-fold increase in PCB concentration between 

lemming’s average whole body and plants (Reimer et al. 1993a,b). Although Reimer et al. 

(1993a,b) report on the abandoned DEW line, this research elucidates the complex 

relationship between environmental contaminants and abandoned military radar stations in 

the north.  

 

In summation, abandoned military radar stations are point sources for contamination (Reimer 

et al. 1993a,b; ESG 1999a,b; Tsuji et al. 2005a,b,c; 2006). Studies examining bioavailability 

and biomagnification suggest contaminants from abandoned military sites are influencing 

body burden concentrations of organisms in the surrounding area (Reimer et al. 1993a,b). In 

addition, abandoned radar stations are located in close proximity to Aboriginal communities 

in the Canadian arctic and sub-arctic and FN residents have reported hunting and gathering 

activities in proximity to abandoned radar buildings (Sistili et al. 2006). Therefore, 

examining radar stations-environmental contaminants-traditional diet relationships has 

become indispensable. 
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1.5. Trophic Level, Bioaccumulation and Biomagnification 

 

Trophic levels are assigned to species by ecologists based on their main source of nutrition 

and energy uptake; thus, making every ecosystem a dynamic and interconnected web of 

energy transfers (Campbell and Reece 2002). In every ecosystem, the trophic level that 

ultimately supports all other organisms are called the autotrophs or primary producers, that is, 

organisms that can derive their own energy from the sun that rely on water, soil, nutrients and 

solar radiation to produce organic molecules (Braune et al. 2005). The remainder of the 

ecosystem is classified as heterotrophs (i.e., organisms that consume other organisms in order 

to fulfill their metabolic energy needs) and as a result, energy is passed from lower trophic 

levels (e.g., plants and algae [Chlorophytes, Cryptophytes, etc.]) to higher trophic levels (e.g., 

insects, birds, large carnivores; Fisk et al. 2005). Both energy and non-biotic compartments 

are transferred and cycled between organisms through photosynthesis and dietary 

relationships in an ecosystem (Bright et al. 1995). Meaning, organisms in an ecosystem are 

not mutually exclusive of one another and organisms that have limited feeding associations 

can significantly influence one another (Bright et al. 1995). Primary producers (e.g., 

Chlorophytes) uptake OCs which then flow in an ascending motion from one trophic level to 

the next, until reaching top-predator species (e.g., humans; Braune et al. 1999). As OCs 

ascend through the various trophic levels, OCs accumulate (i.e., OCs bioaccumulate [are 

stored] in fatty/adipose tissue; AMAP 1998). In other words, bioaccumulation occurs when 

organisms are exposed to OCs (e.g., ingestion) and the OCs are retained within the cells of 

the organism (Ayotte et al. 2003; Klaassen 2001). Exposure routes generally consist of the 

external environment (e.g., air, water) and from food consumption (Klaassen 2001). High 

lipophilicity and resistance to biodegradation allow OCs to concentrate in lipid tissues of 

organisms (Ayotte et al. 2003). Once bound to high lipid tissues, metabolism and elimination 

of OCs is often slow, which leads to a temporal net increase of the contaminants in the 

organism (AMAP 1998).  

 

Biomagnification is a phenomenon in which top-predator organisms incur body burden 

concentrations of environmental contaminants that are magnified relative to lower-trophic 

level organisms (Muir et al. 1999). Johansen (2003) notes that POPs, such as, PCBs and DDT 
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biomagnify “along the food chain, sometimes to thousands of times their original [concentration], 

posing special perils to animals, including human beings, who eat meat and fish”. This occurs 

because OCs are retained in the fatty tissue of organisms regardless of their position in the 

food web and are subsequently sequestered during energy pathway transfers from one trophic 

level to the next, until reaching top-predator organisms (e.g., humans; Muir et al. 1999). 

Colborn et al. (1996) demonstrates biomagnification by following an example of a POP that 

has lodged itself in lake sediment. The cycle begins when the POP is sequestered by a single 

celled organism which in turn is consumed by zooplankton (Acartia tonsa); the zooplankton 

is then eaten by mysids (Neomysis americana) which are consumed by lake trout (Salvelinus 

namaycus; Colborn et al. 1996). Finally, by the time the lake trout is consumed by a top-

predator (e.g., humans), its body burden may contain 25 million times the concentration of 

the pollutant found in the initial sediment (Colborn et al. 1996). Thus, as a result, top-

predator organisms serve as depositories for OCs that have accumulated in lower trophic 

levels and consequently, top-predators have significantly higher body burden concentrations 

of contaminants (Braune et al. 1999a). The processes of bioaccumulation and 

biomagnification are of concern to First Nations people because they continue to subsist on 

country foods (i.e., wild fauna and flora), making them susceptible to the contaminants that 

accrue in the foods they consume (Braune et al. 1999a).     

 

In addition, spatial trends from research conducted in the 1990s have demonstrated that 

organisms inhabiting the arctic and sub-arctic realms of North America have significantly 

elevated levels of OCs relative to organisms inhabiting mid and lower latitudes of the 

western hemisphere (Braune et al. 1999a). The unique characteristics of the Canadian sub-

arctic and arctic provide more conducive (than temperate regions) circumstances in which 

OCs bioaccumulate and/or cause stresses in biota that may make them more vulnerable to the 

effects of OCs (AMAP 1998). Briefly, the most notable characteristics of northern 

ecosystems compared to temperate regions are described below.  

 

Cold conditions in northern latitudes influence the physical characteristics of the abiotic 

environment, the chemical and physical characteristics of contaminants, the metabolic rates 

of biological processes and a large number of physiological and behavioural adaptations of 
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biota to colder temperatures (AMAP 1998). Of critical importance to the survival of biota 

over the relatively elongated winters (compared to temperate regions) is the metabolic 

adaptation of lipids as an energy source and as stored energy (AMAP 1998). As a result, 

large amounts of lipids are exchanged during energy transfers between different trophic level 

categories and often included in this exchange are OCs (AMAP 1998). This metabolic 

adaptation amongst biota in the Canadian north is the most important factor relating to OC 

accumulation and biomagnification (AMAP 1998). The opportunity for biomagnification in 

southern human populations is significantly reduced compared to human populations in 

northern latitudes who subsist significantly on these organisms (AMAP 1998).  

 

 Because of recent and repeated glaciations, low absolute biological productivity and a 

relatively short evolutionary history of ecosystems has resulted in relatively low species 

diversity in northern latitudes (AMAP 1998). As a result, low species diversity renders many 

food chains in the arctic very simple and short, for example, the lichen-caribou-wolf food 

chain in the Canadian sub-arctic and arctic (AMAP 1998). This chain is of importance 

because many northerners rely on caribou as a major source of food (AMAP 1998). 

Individual species in the arctic tailor their feeding habits, growth rates, migration patterns and 

reproductive characteristics according to climatic factors or the availability of food (AMAP 

1998). Consequently, low species diversity significantly limits the type of country food 

available for northerners (AMAP 1998).    

 

Growing parameters associated with low levels of solar radiation and low levels of nutrient 

input are responsible for low biological productivity in the Canadian arctic and sub-arctic 

(AMAP 1998). Low productivity can result in slower growing and longer-lived 

poikilotherms than in temperate climates (AMAP 1998). As well, fish and invertebrates may 

be exposed to OCs for a long period of time before being consumed by higher trophic level 

organisms in the next category of the food web (AMAP 1998).  
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1.6. First Nations People – Subsistence harvesting 

 

The First Nations people of the Hudson-James Bay region of northern Ontario can be 

characterized as ancestors of individuals who inhabited North America prior to European 

colonisation (Evans et al. 2005). First Nations people that participated in this study are Cree 

and continue to subsist to a large extent on the land (Evans et al. 2005; Van Oostdam et al. 

2005).  The Cree for generations have used this land for traditional purposes and 

consequently, traditional pursuits have brought the First Nations people of this region into 

contact with the military sites during their construction, operation and abandonment (ESG 

1999a).  

 

A traditional diet can broadly be defined as using the “land” to maintain one’s health through 

hunting, fishing, trapping and/or gathering of wild flora and fauna (Van Oostdam et al. 2005; 

ESG 1999a). In FN Cree populations, living organisms are an integral part of their lifestyle as 

plants and animals supply both food and medicine as well as help them maintain their 

spiritual attachment to the land (Evans et al. 2005; Van Oostdam et al. 1999). Berkes et al. 

(1994) reports on the major type and frequency of food harvested by FN hunters from the 

Hudson James Bay Lowland (Table 1). Specifically, hunters from Kashechewan and 

Peawanuck FN harvest similar quantities and genre of foods (except fish), while Fort Albany 

FN hunters, in most cases, harvested relatively less reported game. Frequency of 

consumption can play an important role in OC body burden, as the variation of OC body 

burden in country food is well documented (e.g., skin and fat of waterfowl can be a 

significant source of PCBs; Tsuji et al. 2008). The consumption of local food is beneficial to 

Canadian arctic and sub-arctic indigenous people for three primary reasons: traditional food 

is more nutritious than food imported from southern Canada; cash resources are limited and 

indigenous food production is a more economical investment than the purchase of store 

bought foods; and the sharing of indigenous foods is critical to the social relationships and 

indigenous cultures (AMAP 1998). The nutritional benefit of country food includes relatively 

more protein, iron and zinc when compared to diets based on more southern-market foods 

(Van Oostdam et al. 2005). Further, subsistence harvesting (hunting, fishing and gathering) 

for northern Aboriginals is a deeply rooted source of cultural identity, through the processes  
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Table 1       

Mean catch per harvester among harvesters from Peawanuck, Kashechewan and Fort Albanya

              

Communities  Moose Caribou Waterfowl Trapping Small Game Fishing 
       
Fort Albany 1.8 7.4 50.7 12.2 15.9 63.3 
       

Kashechewan 1.7 3.9 139.7 63.3 90.9 100.8 
       

Peawanuck 1.2 7.8 170.6 64.6 101.6 235.5 
 aBerkes et al. 1994.                
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of harvesting, consumption and distribution of foods and other products (AMAP 1998). The 

cultural dynamics of exchanging country food in northern communities involves a complex 

set of social and cultural rules and procedures that pertain to the structure and organization of 

these societies (Van Oostdam et al. 2005).  The traditional diet of First Nations people has 

facilitated their success as a culture for millennia and continues to be practiced as a means of 

survival in the sub-arctic and arctic regions of Canada (AMAP 1998). However, research 

over the past several decades has indicated that subsistence foods in the Canadian north 

contains elevated levels of OCs; this finding is of concern to northern communities (Evans et 

al. 2005). Further understanding the relationships between human OC body burden and the 

traditional diet is imperative to the health and wellness of FN individuals who continue to 

rely on subsistence (Evans et al. 2005).  Moreover, because First Nations people have 

reported conducting traditional pursuits in close proximity to abandoned radar sites, it is of 

pressing concern to further understand the relationship between OC body burden and 

proximity to abandoned MCRL base stations (Tsuji et al. 2005c). 

 

1.7. Mid-Canada Radar Line – 1957-1965 

 

During the Cold War there was a perceived threat of an impending nuclear attack from the 

former Soviet Union (Myers and Munton 2000). In 1954, fear of a nuclear attack heightened 

after the Soviets heralded they had a functional hydrogen bomb (Huebert 2000). Because the 

most direct route from Russia to North America was over the arctic, it was deemed prudent 

to build an early warning defence system in the arctic and sub-arctic as a means of protecting 

populated areas in North America (Myers and Munton 2000). Therefore, a series of radar 

stations were built along the 49th   (Pine Tree Line), 55th (Mid-Canada Line), and 70th parallel 

(Distant Early Warning) to detect any unidentified aircraft entering the arctic region of North 

America (Myers and Munton 2000). Once detected by a radar station, American fighter jets 

would intercept the incoming Soviet bombers and destroy them before they reached striking 

distance of large American cities (Sistili et al. 2006). Together, the Mid-Canada Line sites 

included 264 permanent buildings, a multitude of airstrips and helicopter pads, 370 towers 

and radio masts, 16 larger scatter dishes, 322 diesel alternator units and thousands of tonnes 

of radar and radio equipment (ESG 1999a).  
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The Mid-Canada Radar Line (MCRL) stretched across the 55th parallel and consisted of eight 

Sector Control Stations and 90 unmanned radar stations spaced approximately 48 km apart 

stretching 4320 km from Dawson, British Columbia to Hopedale, Newfoundland (ESG 

1999a). Numerous radar stations were integrated within FN communities and in surrounding 

areas (Sistili et al. 2006). The MCRL was solely a Canadian endeavour funded and 

constructed by the Canadian federal government, costing in excess of 200 million dollars 

(Sistili et al. 2006; ESG 1999a). After two years of construction and only seven years of 

service, the MCRL was rendered redundant for economic and strategic reasons and the radar 

stations were subsequently abandoned (Sistili et al. 2006). Once rendered redundant, the base 

stations and associated paraphernalia (e.g., fuel tanks, electrical equipment, drum barrels, 

etc.) were abandoned and remain at the radar stations to this day (except Site 050 which has 

been remediated; ESG 1999a). The improper decommissioning has left a legacy of 

contamination of the MCRL sites and prompted concern among FN communities (ESG 

1999a). Thus, the relationship between FN OC body burden, MCRL sites and the traditional 

diet needed to be addressed. 

 
1.8. Mid-Canada Radar Line Site 050 – Fort Albany First Nation 

 

Site 050 was a medium-sized station located on Anderson Island near the community of Fort 

Albany FN (ESG 1999a). In 1991, Fort Albany FN community leaders reported the presence 

of PCBs in and around the MCRL base buildings and expressed concern for the health and 

safety of FN members (Sistili et al. 2006). Empirical measurements ensued and in 1999, the 

ESG (1999a) reported that abandoned MCRL sites were indeed point sources of chemical 

contamination. Elevated levels of PCBs and other OCs were reported in soils and plant 

material surrounding numerous MCRL sites (ESG 1999a). Specifically, soil and vegetation 

analyses surrounding Site 050 found PCB contamination levels that exceeded 21 000 parts 

per million (ppm) in soil and up to 500 ppm in vascular plant tissue (ESG 1999a). This 

finding was of considerable concern because substances containing concentrations greater 

than 50 ppm are considered hazardous waste in Canada (ESG 1999a). In Canada, material 

that contains over 50 ppm PCBs is regulated under the Canadian Environmental Protection 
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Act (CEPA) and soil contamination exceeding this concentration represents a legal 

contravention (ESG 1999a). To further complicate matters, Site 050 is located in proximity 

to the village proper of Fort Albany FN (ESG 1999a).  In addition, it was documented in a 

land use study that Fort Albany FN community members had been involved in activities 

(e.g., swimming, harvesting [plants, berries, fish, small game], collecting drinking water, 

etc.) on and around the area of Site 050, on Anderson Island (Tsuji et al. 2005c).  

 

1.9. Mid-Canada Radar Line Site 500 – Weenusk First Nation  

 

It should be mentioned that the FN community of Winisk was originally located near the 

mouth of the Winisk River near Hudson Bay (ESG 1999a). In 1986, a catastrophic ice jam 

and subsequent flooding forced community members of Winisk to relocate 32 km up-river on 

higher ground at the village now known as Peawanuck (ESG 1999a). Similar to Fort Albany, 

community members of Peawanuck have voiced their concerns with respect to contaminants 

originating from an abandoned MCRL – in this case Site 500 - that was located in close 

proximity to Winisk (ESG 1999a).  

 

The Winisk Control Station (Site 500) was built at the mouth of the Winisk River across the 

river from the Cree community of Winisk (ESG 1999a). Site 500 was the largest Mid-Canada 

Radar Line site in Ontario and can be divided into five distinct areas: 1. Airport Area – with a 

1525 m runway, five buildings, a communications dish, the vehicle dump, domestic dump 

and barrel dump; 2. Town Site – with 12 buildings; 3. Flagstaff Point – with three large 

vertical petroleum, oil and lubricant (POL) tanks and 16-20 horizontal 5000-gallon (22 000 

L) tanks; 4. Pumphouse – with a single deteriorating building; and 5. Tank Farm – with nine 

large POL tanks. Sections of Site 500 are still being used by residents of Peawanuck and/or 

hunters and tour groups from the south (ESG 1999a). Specifically, the airstrip is used to fly 

people in and out and the old barracks at the Town Site has been converted into a Goose 

Camp (mid-1980s; ESG 1999a). Hunters use the Goose Camp for a three-to-four week period 

in both the spring and fall (ESG 1999a). It is estimated that approximately 150-300 visitors 

from Canada, Europe, Japan and the USA visit Winisk and are active in and around the 

abandoned buildings (ESG 1999a). The station site is littered with debris and dilapidated 
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buildings dominate the immediate and peripheral area of the abandoned station (ESG 1999a). 

For example, the barrel dump area contains an estimated 40 000 45-gallon barrels (ESG 

1999a). Despite the deplorable state of the area, the ESG (1999a) study concluded that 

relatively little chemical contamination (e.g., PCB, DDT) other than total petrol 

hydrocarbons had occurred at Site 500 and that the cleanup would consist largely of dealing 

with physical structures and debris rather than the decontamination of soil and plant material 

(ESG 1999a). Paint chips at two different locations in the vicinity of Winisk airport found 

PCBs concentrations of Aroclor 1254 at 2200 ppm and 1800 ppm, respectively (ESG 1999a). 

Samples taken from both soil and plant material failed to record concentrations exceeding the 

detection limit for chlorinated pesticides (ESG 1999a). Nevertheless, there exist concerns 

regarding contamination from the abandoned radar buildings.   

 

1.10. Human Exposure 

 

Food is the primary route of exposure for most contaminants in any population whether in a 

northern or southern location (Van Oostdam et al. 2005). Since, Aboriginal peoples subsist 

largely on traditional/country food, Aboriginals have greater risk of OC exposure than non-

Aboriginal peoples who do not consume fish and/or wild game (Van Oostdam et al. 2005). 

Accordingly, First Nation peoples are exposed to low-doses of contaminants throughout their 

life history, which places them at a significant risk to health complications associated with 

OC contamination (Van Oostdam et al. 2005).  

 

There is a dearth of studies dealing with contamination in the Canadian sub-arctic region 

relative to the arctic region, although this situation is improving (Tsuji et al. 2006). As well, 

there are limited data pertaining to human exposure to contaminants originating from 

abandoned radar stations in Canada’s north (Tsuji et al. 2006). As the ESG (1999a) 

suggested, the potential exists for human exposure to contaminants originating from 

abandoned MCRL sites. Ontario-wide studies conducted by Health Canada in the 1980s 

regarding plasma PCB levels in First Nation communities revealed that communities in 

proximity to abandoned radar sites often had elevated PCB levels in their blood. The 

community of Winisk (MCRL Site 500) which has since been renamed Peawanuck, reported 
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the highest plasma PCB levels in the western James Bay region (Peawanuck FN; n = 22; 

Aroclor 1254; range: 2-82 µg/L; Health Canada 1999). In addition, numerous other 

communities (i.e., Attawapiskat FN; n = 49; Aroclor 1254; range: 4-88 µg/L; Moose Factory 

FN; n = 50; Aroclor 1254 µg/L; 2-32 µg/L; Health Canada 1999) potentially influenced by 

being close to or having abandoned radar sites in their traditional territories demonstrated 

plasma PCB levels significantly higher in comparison to other Canadians (the Canadian 

average is 2.0 µg/L; Health Canada 1999). However, the 1980s studies should be interpreted 

with caution because PCBs were expressed as different mixtures and were analyzed by 

different laboratories (Tsuji et al. 2005c). Nonetheless, the 1980 studies reported invaluable 

preliminary information with respect to FN communities PCB body burden.   

 

Tsuji et al. (2005c) compared plasma OC concentration (unadjusted for total lipids) 

frequency distribution data for Fort Albany (MCRL Site 050), Kashechewan (a neighbouring 

community without a radar installation), and Hamilton, a city in southern Ontario, Canada. 

Employing a two-state log-linear model (using detectable and non-detectable OC frequency 

data) and a four state log-linear model (using OC, quartile concentration-frequency data), 

organochlorine body burdens were compared between the three communities and revealed 

significant differences in detectable and non-detectable organochlorine frequency data (Tsuji 

et al. 2005c). Differences were based only upon location with no sex differences being noted: 

people from Hamilton generally had significantly higher than predicted frequencies of 

detection in the first quartile (low concentrations) for most organochlorines analyzed 

compared to the FN communities (Tsuji et al. 2005c). Concentrations (wet-weight, ug/L) of 

PCBs and sum of DDT (DDE + DDT) for Fort Albany and Kashechewan females were 

respectively, similar or greater than values reported for Inuit females living in the central 

Northwest Territories, Canada (Tsuji et al. 2005c). Frequency of detection of many 

organochlorines (excluding ß-HCH) for Kashechewan males scored significantly greater than 

expected in the fourth quartile (higher-concentration; Tsuji et al 2005c).  

 

A follow-up study (Tsuji et al. 2006) that compared lipid-adjusted body burden of OCs 

between the same residents of Fort Albany, Kashechewan, and Hamilton found the 

following: 1. Fort Albany and Kashechewan subjects had elevated PCB and DDE-plasma 
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levels relative to Hamilton participants. 2. PCB and DDE-plasma levels in FN women were 

at comparable concentrations to those reported for Inuit women living in the west/central 

Northwest Territories (this is unusual as Inuit FN consume sea mammals which have 

characteristically higher levels of contaminants). 3. Significantly lower DDE/DDT ratios 

were observed for Fort Albany, indicating higher levels of DDT compared to Kashechewan; 

the likely source of DDT exposure for Fort Albany people would be the contaminated soil 

surrounding buildings of Site 050. 4. People from Hamilton had relatively higher pesticides 

and lower PCB body burdens, while subjects from the FN communities had relatively higher 

PCBs and lower pesticide levels. 5. The presence of Site 050 on Anderson Island appears to 

have influenced organochlorine body burden of the people of Fort Albany. 6. Results of 

DDE/DDT ratio data and congener 187 suggest that Site 050 did influence organochlorine 

body burden of people from Fort Albany (Tsuji et al. 2006). In addition, Tsuji et al. (2005b) 

found that the PCB congener composition (with respect to body burden) in Fort Albany 

samples closely resembled Aroclor 1260, the prevalent PCB mixture identified at MCRL Site 

050 (Fort Albany; ESG 1999a,b); however, the other two communities (Kashechewan and 

Hamilton) also most closely resembled Aroclor 1260.  

 

The present study builds on the described body of work and will further elucidate the 

relationship between proximity to MCRL sites and OC body burden in First Nations people 

by assessing OC body burden in people from Peawanuck. This study used OC body burden 

data for Kashechewan and Fort Albany FN published in a previous study conducted by Tsuji 

et al. (2006) as well as reported on new plasma OC data for the people of Peawanuck and 

examined the patterns of differences with respect to OC body burden (lipid-adjusted) 

between these three populations: Fort Albany FN, the site of MCRL Site 050; Kashechewan 

FN, the control site; and Peawanuck, the site of MCRL 500. This study will provide FN 

community leaders with more data to make informed decisions concerning the prioritization 

of MCRL sites for remediation as well as hunting and gathering decisions with respect to 

their communities.  
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Chapter 2. Abandoned Mid-Canada Radar Line Site 500 in the western Hudson Bay 
region of sub-Arctic, Canada: A source of organochlorines for the people of 
Weenusk First Nation? 

 
2. Introduction 
 

During the Cold War there was a perceived threat of an impending nuclear attack from the 

Soviet Union (Huebert 2000; Myers and Munton 2000). As the most direct route from Russia 

to the U.S.A. was over the northern portion of North America, it was deemed prudent to 

build an early warning defence system in the arctic and sub-arctic as a means of protecting 

populated areas in North America (Poland et al. 2001). Thus, a series of radar stations were 

built along the 49th   (Pine Tree Line), 55th (Mid-Canada Line), and 70th parallel (Distant Early 

Warning) to detect any unidentified aircraft entering the arctic and sub-arctic region of North 

America (Poland et al. 2001; Myers and Munton 2000). If anything was detected, American 

fighter jets would be launched to intercept the incoming aircraft at a safe distance from 

populated areas (Sistili et al. 2006). 

 

The Mid-Canada Radar Line (MCRL) stretched across the 55th parallel and consisted of 98 

manned and unmanned radar stations that spanned from Dawson, British Columbia, in the 

west to Hopedale, Newfoundland in the east; many radar stations were located in close 

proximity to First Nation communities and/or their traditional hunting territories (Sistili et al. 

2006). The MCRL was an entirely Canadian endeavour funded and constructed by the 

Canadian federal government (Sistili et al. 2006; Environmental Sciences Group [ESG] 

1999a). After only seven years in operation, the MCRL was considered redundant for 

strategic (and economic) reasons and the radar stations were subsequently “decommissioned” 

(Sistili et al. 2006). Since, the decommissioning of the radar stations were not regulated, 

concerns regarding abandoned MCRL stations acting as point sources of contamination were 

first voiced by FN people of the western James Bay region in the late 1980s (Sistili et al. 

2006). Field studies ensued and in 1999, the ESG (1999a) reported that abandoned MCRL 

sites were indeed point sources of chemical contamination. Elevated levels of 

polychlorinated biphenyls (PCBs) and other contaminants were reported in soils and plant 

material surrounding numerous MCRL sites (ESG 1999a). Specifically, PCB contamination 

surrounding Site 050 (near Fort Albany FN) was reported to have exceeded 21 000 ppm in 
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soil and up to 500 ppm in vascular plants (ESG 1999a). As well, paint chips at two different 

locations in the vicinity of the airport at Winisk (Site 500) were reported to contain high 

levels of PCBs: 2 200 and 1 800 ppm of Aroclor 1254 (ESG 1999a). In Canada, material that 

contains over 50 parts per million (ppm) PCBs is regulated under the Canadian 

Environmental Protection Act and any material exceeding this concentration represents a 

legal contravention (ESG 1999a). The findings of the field studies were of critical concern 

because FN members from both Fort Albany and Weenusk First Nation communities 

participated in traditional pursuits on and/or in the vicinity of these abandoned MCRL sites 

(ESG 1999a). Indeed, it has been documented in a land use study that people of Fort Albany 

FN have participated in harvesting (e.g., plants, berries, fish, small game), collecting (e.g., 

water) and recreational activities on Anderson Island (where MCRL Site 050 is located) 

(Tsuji et al., 2005a).   

 

In a study by Tsuji et al. (2005c), they compared plasma organochlorine frequency-

distribution data using log-linear contingency modelling for inhabitants of Fort Albany FN 

(MCRL Site 050), Kashechewan FN (a neighbouring FN community without a radar 

installation), and Hamilton, a city in southern Ontario, Canada. Employing a two-state log-

linear model (using detectable and non-detectable organochlorine frequency data) and a four 

state log-linear model (using organochlorine, quartile concentration [µg/L] - frequency data), 

organochlorine body burdens were compared between the three communities and revealed 

significant differences in detectable and non-detectable organochlorine frequency data (Tsuji 

et al. 2005c). Differences were based only upon location with no sex differences being noted: 

people from Hamilton generally had significantly higher than predicted frequencies of 

detection in the first quartile (low concentrations) for most organochlorines analyzed 

compared to the FN communities (Tsuji et al 2005c). In addition, body burdens of PCBs and 

sum of DDT (DDE + DDT) for Fort Albany and Kashechewan females were similar or 

greater than values reported for Inuit females living in the central Northwest Territories, 

Canada, respectively. This finding is of interest as the Cree of the western James Bay region 

do not consume marine mammals (which contain relatively large amounts of 

organochlorines) while the Inuit of the central Northwest Territories do occasionally 

consume marine mammals (Berkes et al. 1994; AMAP 1998; Tsuji et al. 2005c). A follow up 
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study (Tsuji et al. 2006) examined the patterns of differences with respect to body burden of 

organochlorines (lipid-adjusted, µg/kg) for the same residents of Fort Albany, Kashechewan 

and Hamilton to further elucidate whether the presence of Site 050 influenced organochlorine 

body burden with respect to the people of Fort Albany. Briefly, it was found that Fort Albany 

and Kashechewan participants had elevated PCB and DDE-plasma levels relative to 

Hamilton participants; while, significantly lower DDE/DDT ratios were observed for Fort 

Albany compared to Kashechewan and Hamilton (Tsuji et al. 2006). The lower DDE/DDT 

ratios reported in Fort Albany were the result of relatively higher body burdens of DDT in 

comparison to DDE for people from Fort Albany; the likely source of DDT exposure for Fort 

Albany people would be the DDT-contaminated soil (Tsuji et al. 2006) that has been 

documented to surround buildings on Site 050 (ESG, 1999a,b). The presence of Site 050 on 

Anderson Island appears to have influenced the body burden of DDT for the people of Fort 

Albany; however, PCB body burdens were not significantly different between Fort Albany 

and the control site Kashechewan, as the PCB contribution of the traditional diet could not be 

discounted.  In addition, Tsuji et al. (2005b) found that the PCB congener composition with 

respect to body burden in Fort Albany, Kashechewan and Hamilton all most closely 

resembled Aroclor 1260, the prevalent PCB mixture identified at MCRL Site 050 (Fort 

Albany; ESG 1999a,b).  The present study extends the previous work of Tsuji et al. (2005b, 

c; 2006) in examining whether First Nations people residing in close proximity to abandoned 

MCRL sites have different body burdens of organochlorines than First Nations people not 

living by and/or active on abandoned MCRL sites, as it is not entirely clear how these factors 

impact organochlorine body burden in First Nation Cree of the Mushkegowuk Territory 

(western James Bay and south-western Hudson Bay).  

 

2.1. Methodology 

 

2.1.1. Study Sites 

 

In 1987, an ice-jam on the Winisk River and subsequent flooding devastated the village of 

Winisk and forced the community (Weenusk FN) to relocate upstream to what is now known 

as Peawanuck (55°15’N, 85°12’W; ESG 1999a). Prior to the relocation of Winisk, MCRL 
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Site 500 was located adjacent to the village proper. Fort Albany FN (52°15’ N, 81°35’ W) is 

located on Sinclair Island in the southern channel of the Albany River in the western James 

Bay region of northern Ontario, Canada (Tsuji et al. 2001). Most members of Fort Albany 

FN live on Sinclair Island but some reside on Anderson Island (the location of MCRL Site 

050 which was remediated in 2001) and the nearby mainland (Tsuji et al. 2001; Fig. 1). The 

islands and mainland are connected via gravel roads (Tsuji et al. 2005c). Kashechewan FN is 

located approximately 20 km north of Fort Albany on the mainland, north of the northern 

channel of the Albany River; this community is not located in close proximity to an 

abandoned radar base and will therefore be used as the control community for this study.   

 

All three communities are remote fly-in communities accessible only by air year-round, by 

barge during late spring to early fall, and by ice-snow road in the winter (Tsuji et al. 2006). 

Peawanuck is the smallest of the three communities with a population of approximately 180 

people; Fort Albany with 850 people; and Kashechewan with the largest population of 1,400 

people (Tsuji et al. 2006). All three communities still consume fish and wild game. 

 
 
2.1.2. Sample collection 
 

This study incorporates plasma sample data for Kashechewan and Fort Albany FNs collected 

for a previous study conducted by Tsuji et al. (2005b,c; 2006) as well as new plasma sample 

data for Peawanuck. A detailed account of sampling protocol for Kashechewan and Fort 

Albany participants can be found in Tsuji et al. (2005b,c; 2006). For the present study, only 

adults (≥18 years old) were recruited from Peawanuck (Weenusk FN). A total of 20 

Peawanuck community members (females, n=10, males, n=10) participated in the study. A 

consent form was signed after the study details had been reviewed with the participants; Cree 

interpreters were used when required. The consent form and study were approved by the 

McMaster University Research Ethics Board. Prior to blood collection, participants were 

advised verbally not to eat or drink anything after midnight on the day prior to collection 

unless the person was diabetic; these participants were advised to eat something in the 

morning as long as it did not contain fat. Blood collection commenced in the morning and 

prior to blood collection, participants were questioned on food and beverage consumption  
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Fig. 1. The communities of Peawanuck (Mid-Canada Radar Line Site 500), Kashechewan 
First Nation (no radar site) and Fort Albany First Nation (Mid-Canada Radar Line Site 050), 
Ontario, Canada. 
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prior to the sampling. Any participants that had consumed lipids were rescheduled and the 

importance of fasting was re-emphasized (Tsuji et al. 2005c). Participants were also asked to 

complete a lifestyle questionnaire in an interview format.   

 

Blood samples to be analysed for organochlorines were collected in 10 ml glass vacutainers 

(containing the anticoagulant, EDTA, Becton-Dickinson). Immediately following blood 

collection, the blood was gently mixed with the anticoagulant and then centrifuged at room 

temperature for 10 minutes. Once the plasma was separated, it was transferred from the 

vacutainer with polyethylene pipettes (Baxter) to pre-cleaned (with hexane) glass vials 

(Supelco) and sealed with Teflon coated lids. The plasma samples were then frozen at –20°C 

and shipped in insulated coolers with frozen gel packs to the Centre de toxicologie du 

Quebec, Quebec, for analyses (see Tsuji et al. 2005c for a detailed explanation).   

 

2.1.3. Sample Analyses 

 

Plasma concentrations of total PCBs have been expressed as the sum of 14 PCB congeners 

(28, 52, 99, 101, 105, 118, 128, 138, 153, 156, 170, 180, 183, 187). Other organochlorines 

that were quantified included DDT (and DDE), aldrin, ß-hexachlorocyclohexane (ß-HCH), α-

chlordane, γ-chlordane, cis-nonachlor, hexachlorobenzene [HCB], mirex, oxy-chlordane, and 

trans-nonachlor. This suite of organochlorines is part of the standard organochlorine screen 

of the Arctic Monitoring and Assessment Programme.   

 

Plasma samples were thawed overnight at 4°C and then a 2 mL aliquot was extracted with 

hexane. Lipid extracts were then cleaned-up on Florisil columns and adjusted to a final 

volume of 100 µL. Organochlorine concentrations were quantified using gas chromatography 

(HP-5890 series II, dual capillary columns, dual Ni-63 electron-capture detectors) as 

described in Tsuji et al. (2005c). Detection limits were as follows: 0.02 µg/L for PCB 

congeners 28, 52, 99, 118, 138, 153, 180 and for chlorinated pesticides HCB and DDE; 0.01 

µg/L for PCB congeners 156, 170, 183, 187 and for chlorinated pesticides mirex, aldrin, α-

Chlordane, trans-nonachlor and ß-HCH; and 0.005 µg/L for γ-chlordane, DDT, cis-nonachlor 

and oxy-chlordane. The percent recoveries for reference standards were >90% for all 
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organochlorines. Enzymatic methods were used to measure total free cholesterol, 

triglycerides and phospholipids on the Technicon automatic analyser (RA-500) with 

appropriate testpaks (Tsuji et al. 2006). Plasma total lipids were estimated using the 

summation method; the lipid percentage for each Peawanuck study participant is presented in 

Table 2 (Patterson et al. 1991). As well as the routine use of laboratory standards, the quality 

assurance and control protocol also included participation in intra- and inter-laboratory 

comparisons, and the use of a “control-performance chart” described in Nadkarni (1991).  

For a detailed description of protocols refer to Tsuji et al. (2005c; 2006). 

 

2.1.4 Statistical Analyses 

 

Prior to statistical analyses, the organochlorine dataset for participants from Peawanuck was 

combined with the organochlorine dataset for Fort Albany and Kashechewan. As described 

in Tsuji et al. (2006), frequencies of detectable concentrations were used to determine which 

of the organochlorines were examined in greater detail. Only organochlorines with a 

frequency of detection >90% (see Tsuji et al. 2006, for an explanation) were analyzed (i.e., 

PCBs congeners [118, 138, 153, 156, 170, 180, 187], sum of 14 PCB congeners [for 

congener concentrations <DL, zero was used in the summation], DDT, DDE, HCB, oxy-

chlordane, trans-nonachlor, mirex, hexachlorobenzene, and ß-HCH). If an organochlorine 

was undetectable, an imputed value of ½ DL was assigned for these and subsequent analyses. 

It should be noted that when the Peawanuck dataset was combined with the Fort Albany and 

Kashechewan dataset - the combined dataset was harmonized with respect to DLs - the lower 

of the two DLs was adopted as the DL for the combined dataset and used in the imputation of 

concentrations <DL. Organochlorine data were then lipid adjusted. Arithmetic means and 

standard deviations of organochlorines were calculated for both genders at Peawanuck. The 

ratio DDE/DDT also was calculated for both males and females at Peawanuck, Fort Albany 

and Kashechewan and analyzed by ANOVA and appropriate post-hoc tests.  

 

Organochlorines with >90% detectability were summarized in lower dimensionality using 

correspondence analysis (CA). This eigen analysis model reduced the large number of 

intercorrelated variables to four, more easily examined, variables (Gauch 1982; Thioulouse et  
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al. 1997). The new CA variates were examined in a multivariate analysis of variance 

(MANOVA) of location and sex differences. If there was a significant (p≤0.05) LOCATION 

x SEX interaction for a CA axis, this axis was excluded from further analyses. To determine 

if age adjustment was necessary, the new CA variates were examined by MANOVA for 

location and age differences. As the interactive term AGE x LOCATION was significant for 

CA-1 (p=0.027) and CA-2 (p=0.000); heterogeneity of slopes existed between locations for 

these variables. Thus, pair-wise ANCOVA analyses of the three locations was performed to 

determine if the slope coefficients for age on CA-1 and 2 differed significantly by 

LOCATION. To examine the differences in age slopes between locations, pair-wise 

comparisons were performed and tested at a Bonferroni corrected p-value to maintain a 

constant experiment-wise error rate of p=0.017. The reasoning for the pair-wise comparison 

is to determine which combinations of communities have heterogeneous or homogeneous 

slopes.  If specific community pairs reported homogenous slopes, the effects of age could be 

controlled in ANCOVA with age as the covariate. In contrast, the interactive term AGE x 

LOCATION was not significant for CA-3 (p=0.412) revealing that the slopes were 

homogeneous. Thus, for CA-3 the effect of LOCATION was examined using ANCOVA to 

adjust for variation in AGE. Following ANCOVA, all three locations for CA-3 were 

compared (i.e., post-hoc pair-wise tests adjusted for multiple comparisons) to determine 

which communities differed significantly in contaminant mixtures as described by CA-3. 

 

2.2. Results 

 

2.2.1. Descriptive Statistics 

Descriptive statistics are presented for organochlorines with >90% frequency of detection 

(Table 3). Aldrin and γ-chlordane were not detected in any of the samples. Arithmetic means 

for DDE/DDT ratios were 36.3 (females) and 38.9 (males) in Fort Albany; 46.6 (females) 

and 92.8 (males) in Kashechewan; and 374.8 (females) and 1238.5 (males) in Peawanuck. 

Post-hoc tests between locations (Tamhane’s T2 test, protected for multiple comparisons of 

data with heterogeneous variances) revealed that the DDE/DDT ratios were significantly 

different between all three communities: Fort Albany and Kashechewan (p=0.001), Fort 

Albany and Peawanuck (p=0.006), and Kashechewan and Peawanuck (p=0.008).   
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Table 2   
Total Plasma Lipids for Peawanuck 
study participants  
      
ID # Sex Lipid % 

5001 Female       52.0
5002 Female       25.0
5003 Female       69.0
5004 Female       41.0
5005 Female       62.0
5006 Female       23.0
5007 Female       54.0
5008 Female       67.0
5009 Female       63.0
5010 Female       59.0
5500 Male        67.0
5501 Male        25.0
5502 Male        71.0
5503 Male        42.0
5504 Male        66.0
5505 Male        58.0
5506 Male        70.0
5507 Male        38.0
5508 Male        24.0
5509 Male        54.0
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Table 3       
Statistical characteristics of organochlorines (µg/kg lipid) from males and females from Peawanuck, Ontario, 
Canada.      
       
Arithmetic Statistics       
  Sex of Subject N Mean S.D. Minimum Maximum 
       
  
ß-HCH (µg/kg lipid) Female 10 8.1 9.7 0.9 33.9 
 Male 10 6.2 2.2 2.7 9.7 
Congener 118 (µg/kg lipid) Female 10 49.1 42.5 4.2 109.1 
 Male 10 19.9 17.4 3.3 61.1 
Congener 138 (µg/kg lipid) Female 10 94.1 79.2 7.3 238.1 
 Male 10 62.8 61.5 7.9 208.3 
Congener 153 (µg/kg lipid) Female 10 247.1 231.5 14.7 730.2 
 Male 10 173.9 180.6 18.9 611.1 
Congener 156 (µg/kg lipid) Female 10 36.0 40.7 0.9 134.9 
 Male 10 27.2 28.5 2.5 94.4 
Congener 170 (µg/kg lipid) Female 10 66.1 71.3 2.9 238.1 
 Male 10 51.1 53.0 4.7 175.0 
Congener 180 (µg/kg lipid) Female 10 274.0 308.4 12.2 1032.0 
 Male 10 215.9 225.8 16.1 750.0 
Congener 187 (µg/kg lipid) Female 10 88.1 92.2 2.9 301.6 
 Male 10 57.3 63.9 4.9 213.9 
Sum of 14 CBs (µg/kg lipid) Female 10 897.5 872.4 53.6 2846.5 
 Male 10 636.2 647.1 72.5 94.4 
p'-DDE (µg/kg lipid) Female 10 1312.9 1184.3 122.0 3809.5 
 Male 10 836.2 706.2 122.2 2333.3 
p'-DDT (µg/kg lipid) Female 10 10.9 11.8 0.4 37.5 
 Male 10 3.5 6.6 0.3 18.0 
p'DDT + DDE (µg/kg lipid) Female 10 1323.7 1191.8 122.5 3822.1 
 Male 10 839.7 709.7 122.6 2351.4 
DDE/DDT (µg/kg lipid) Female 10 374.8 519.4 61.1 1760.0 
 Male 10 1238.5 1122.6 35.8 3080.0 
Hexachlorobenzene (µg/kg lipid) Female 10 90.2 56.3 20.3 190.0 
 Male 10 69.8 59.6 15.2 222.2 
Mirex (µg/kg lipid) Female 10 62.0 63.7 0.8 189.1 
 Male 10 61.0 104.2 1.7 333.3 
Oxy-chlordane (µg/kg lipid) Female 10 25.0 16.9 2.5 47.5 
 Male 10 21.1 13.6 5.0 47.2 
Trans-nonachlor (µg/kg lipid) Female 10 49.1 33.7 3.9 98.1 
  Male 10 40.2 28.1 6.4 94.4 
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2.2.2. Correspondence Analysis 

 

Four Correspondence Analysis (CA) axes were extracted from the matrix of log10 (x+1) 

transformed original variables. These CA axes accounted for 82.14% of the variance in the 

original matrix (CA-1, 44.73%; CA-2, 19.41%; CA-3, 9.76%; and CA-4, 8.24%; Table 4). A 

MANOVA of the CA scores revealed significant differences with respect to location and sex. 

A significant (p<0.05) effect was seen for the LOCATION x SEX interaction only for CA-4 

(p=0.016). For the individual variates, ANOVA followed by post-hoc multiple comparison 

tests (Bonferroni, or Tamhane’s T2 for heterogeneous variances) showed the following for 

CA-1: Kashechewan-Peawanuck (p=0.34), Kashechewan-Fort Albany (p=0.01), Peawanuck-

Fort Albany (p=0.00); CA-2: Kashechewan-Peawanuck (p=0.00), Kashechewan-Fort Albany 

(p=0.33), Peawanuck-Fort Albany (p=0.00), and CA-3: Kashechewan-Peawanuck (p=1.00), 

Kashechewan-Fort Albany (p=0.00), Peawanuck-Fort Albany (p=0.67). Statistical results 

between males and females in each respective community is as follows: CA-1: Kashechewan 

(p=0.001), Fort Albany (p=0.010), Peawanuck (p=0.693); CA-2: Kashechewan (p=0.050), 

Fort Albany (p=0.839), Peawanuck (p=0.205); CA-3: Kashechewan (p=0.370), Fort Albany 

(p=0.492), Peawanuck (p=0.301); CA-4 could not be further analysed because a significant 

interaction was observed.   

 

Regression analysis of CA-1 found the following slopes: Peawanuck (-0.51), Kashechewan  

(-0.65) and Fort Albany (-0.62; Table 5). The three communities were compared in a pair-

wise fashion to determine homogeneity of slopes (AGE x LOCATION) using ANOVA 

(Bonferroni adjusted significance is at the 0.017 level for an experiment-wise error rate of 5 

percent). Homogeneity tests of slopes for CA-1 revealed that no significant differences (p-

protected value of 0.017 for multiple comparisons) of slopes existed between any of the three 

possible pairs of communities (Peawanuck-Kashechewan (p=0.056); Kashechewan-Fort 

Albany (p=0.026), Peawanuck-Fort Albany (p=0.372). Thus, ANCOVA was performed 

separately on the three pair-wise comparisons with the following results: Peawanuck-Fort 

Albany (p=0.000); Peawanuck-Kashechewan (p=0.599); Kashechewan-Fort Albany 

(p=0.000).   
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Table 4         
Correspondence analysis (CA) scores of 14 organochlorines at >90% frequency of detection (relatively large negative and 
positive scores appear in bold). 
    
         
Organochlorine                
   Correspondence Axis CA Axis- 1 CA Axis-2 CA Axis-3 CA Axis-4
      Variance Explained 44.73% 19.41% 9.76% 8.24% 
Congener 118 (µg/kg lipid)   -0.015 -0.022 0.085 0.022 
Congener 138 (µg/kg lipid)   0.000 0.015 0.001 -0.012 
Congener 153 (µg/kg lipid)   0.002 0.034 -0.010 -0.015 
Congener 156 (µg/kg lipid)   -0.139 -0.006 0.036 -0.031 
Congener 170 (µg/kg lipid)   -0.111 0.011 0.036 -0.035 
Congener 180 (µg/kg lipid)   -0.048 0.040 -0.014 -0.027 
Congener 187 (µg/kg lipid)   -0.100 0.005 0.018 -0.036 
p'DDE (µg/kg lipid)    0.127 0.059 -0.049 0.017 
p'DDT (µg/kg lipid)    0.194 -0.248 -0.025 -0.080 
Hexachlorobenzene (µg/kg lipid)   0.095 0.072 -0.044 0.000 
Mirex (µg/kg lipid)    -0.186 -0.103 -0.088 0.100 
Oxy-chlordane (µg/kg lipid)   -0.009 -0.009 0.034 -0.001 
Trans-nonachlor (µg/kg lipid)   0.000 0.015 0.014 -0.011 
ß-HCH (µg/kg lipid)       0.172 -0.030 0.123 0.125 
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Table 5           
Standardized and Unstandardized Coefficients for Age - Correspondence Analysis Axis 1 and 2   
  Std. Coefficients   Unstd. Coefficient.   95% CI for B   

CA Axis 1   Beta t Sig. B R Sq. Y-int Lower Bound Upper Bound
 Peawanuck -0.51 -2.5 0.022 -0.003 0.258 0.096 -0.005 0 
 Kashechewan -0.65 -8.3 0 -0.005 0.428 0.251 -0.007 -0.004 
 Fort Albany -0.62 -7.8 0 -0.004 0.386 0.219 -0.005 -0.003 
            

CA Axis 2 Peawanuck -0.67 -3.8 0.001 -0.004 0.449 0.359 -0.007 -0.002 
 Kashechewan -0.22 2.2 0.031 -0.001 0.049 0.034 -0.001 0 
  Fort Albany -0.39 -4.1 0 -0.001 0.149 0.053 -0.002 -0.001 
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For CA-2, regression analysis of CA-2 revealed the following slopes: Peawanuck (-0.67), 

Kashechewan (-0.22) and Fort Albany (-0.39; Table 5). As with CA-1, the three communities 

were further analysed for CA-2 in pair-wise tests to determine homogeneity of slopes. The 

results indicated that the slopes of CA-2 with AGE for the comparison Peawanuck vs. Fort 

Albany were significantly different (p=0.002), as were the slopes for the Peawanuck vs. 

Kashechewan comparison (p<0.0001); whereas, Kashechewan vs. Fort Albany were not 

significantly different (p=0.106; Table 6). ANCOVA results for Fort Albany and 

Kashechewan revealed no significant difference between locations (p=0.106; Table 6). 

 

CA-3 was further examined in MANCOVA with age as the covariate to examine differences 

between locations without the influence of age. Pair-wise post-hoc comparisons between 

locations were as follows: Peawanuck-Kashechewan (p=0.814), Kashechewan-Fort Albany 

(p=0.000) and Peawanuck-Fort Albany (p=0.057; Table 6).  

 

CA axis-1 illustrates a location effect whereby residents of Fort Albany were significantly 

different by MANOVA (and ANCOVA, adjusted for age by single pair-wise comparisons) 

than people from Kashechewan and Peawanuck. People from Fort Albany had relatively 

higher pesticide concentrations (β-HCH and DDT, but not Mirex) and relatively lower CB 

(156 and 170) body burdens when compared to participants from Kashechewan and 

Peawanuck (Fig. 2a; Table 4). Significant sex differences were noted for Fort Albany and 

Kashechewan, but not Peawanuck (Fig. 2a). Specifically, females from Fort Albany and 

Kashechewan have relatively higher levels of DDT and ß-HCH, and lower levels of mirex 

and CBs (156 and 170) compared to their males counterparts (Fig. 2a). 

  

Analysis of CA-2 scores by MANOVA and post-hoc pair-wise comparisons (and ANCOVA, 

adjusted for age for the pair-wise comparison of Fort Albany vs. Kashechewan) revealed that 

people from Peawanuck were significantly different than inhabitants of Fort Albany and 

Kashechewan. Peawanuck residents had relatively higher concentrations of CB180, DDE and 

hexachlorobenzene and relatively lower levels of DDT and mirex compared to participants 

from Kashechewan and Fort Albany (Fig. 2b; Table 4). Sex differences were only apparent 

for Kashechewan where males had relatively higher levels of CB180, DDE, and 
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hexachlorobenzene than females from Kashechewan (Fig. 2b). Further differentiation on CA 

axis-2 indicates that participants from Peawanuck have a larger range of contaminant body 

burden relative to participants from Kashechewan and Fort Albany (Fig. 2b). 

 

MANCOVA (adjusting for age) of CA-3 scores revealed significant location effects between 

Fort Albany and Kashechewan but not Peawanuck. Participants from Fort Albany had 

relatively higher concentrations of CB 118 but relatively lower levels of DDE, 

hexachlorobenzene and β-HCH than people from Kashechewan (Fig. 2c). No significant 

differences were observed between sexes in any of the three communities (Fig. 2c). 
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Table 6             

CA results for MANOVA and ANCOVA (age-adjusted)   

             

CA Axis 1     MANOVA  P Value DF F Ratio ANCOVA                                 P Value DF F Ratio 

Peawanuck-Kashechewan NSD 0.34 2 7.765 NSD (pair-wise comparison) 0.60a 1 0.278 

Fort Albany-Kashechewan SD 0.01 2 7.765 SD (pair-wise comparison) 0.00a 1 14.27 

Fort Albany-Peawanuck SD 0.00 2 7.765 SD (pair-wise comparison) 0.00a 1 13.65 

             

CA Axis 2             

Peawanuck-Kashechewan SD 0.00 2 43.16 Age could not be adjustedb    

Peawanuck-Fort Albany SD 0.00 2 43.16 Age could not be adjustedb    

Fort Albany-Kashechewan NSD 0.33 2 43.16 NSD (pair-wise comparison) 0.11a 1 2.64 

             

CA Axis 3             

Peawanuck-Kashechewan NSD 1.00 2 6.10 NSD   0.81 2 7.22 

Peawanuck-Fort Albany NSD 0.67 2 6.10 NSD   0.057 2 7.22 

Fort Albany-Kashechewan SD 0.00 2 6.10 SD   0.00 2 7.22 

                          
aAdjusted p values (p=0.017).              
bAge could not be adjusted because heterogeneity of slopes was observed.            
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Fig. 2. Means for correspondence analysis scores of organochlorines, by location and sex. 
Within any plot, locations sharing the same upper case letter (A, B, or C) do not differ 
significantly in correspondence axis score. Sexes sharing the same lower case letter (a or 
b) at a location do not differ significantly in correspondence axis score.  
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2.3. Discussion  

 

2.3.1. Qualitative comparison to other studies 

 

With the exception of DDT, oxy-chlordane, and ß-HCH, organochlorine plasma levels in 

Peawanuck females were comparable or considerably higher relative to Inuit women living in 

the west/central Northwest Territories and in other arctic communities (Table 7). For 

example, plasma levels of DDE for females from Peawanuck were nearly six times greater 

than the levels reported for Inuit females from the Northwest Territories study and were 

considerably higher than the DDE levels reported for other females living in arctic 

communities (Table 7). This finding was unexpected because people of Peawanuck have 

been reported (Prevett et al. 1983; Berkes et al. 1994) not to consume marine mammals and 

rarely consumed piscivorous birds (a source also high in organochlorines; AMAP 1998); 

while, the Inuit of the Northwest Territories occasionally consume marine mammals (a 

source known to be heavily contaminated with organochlorines). Nevertheless, the 

consumption of traditional foods by women of Peawanuck may impact the body burden of 

DDE found in their plasma. 

 

At the mouth of the Winisk River (where Peawanuck FN members have reported fishing 

activities), DDE was detected only in trace amounts in samples from northern pike (Esox 

americanus; n = 5; mean concentration: 0.004 µg/g wet tissue), not detected at all in common 

white sucker (Catostomus commersoni; n = 3; detection levels not quantifiable; McCrea and 

Fischer 1983), and at low concentrations in whitefish (Coregonus clupeaformis; n = 15; 

range: 0.150-0.979 µg/kg wet tissue; Tsuji et al. unpublished data); all are species consumed 

by the people of Peawanuck (Berkes et al. 1994). In migratory waterfowl of the western 

Hudson and James Bay region, DDE has been detected frequently in geese (Canada goose, 

Branta Canadensis; snow goose, Chen caerulescens caerulescens; 66-86%; n = 80, range: 

0.001-3.280 µg/kg; Tsuji et al. 2007) and dabbling ducks (mallard duck, Anas platyrhynchos; 

northern pintail duck, Anas acuta; >90%; n = 56, range: 0.001-8.046 µg/kg; Tsuji et al. 

2007). However, the concentration of DDE is minimal in these birds and more specifically, 

the concentrations found in birds from the Winisk area are at trace levels (n = 30, range:  
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Table 7          
Female blood plasma levels of persistent organic pollutants (geometric means, µg/kg lipid) all analysed 
at the Centre de toxicologie du Quebec. 
      

Canada      
NWTb FAc  Kashd Peawanucke Greenlandf Swedeng Norwayh Icelandi Russiaj

 (n=67) (n=48) (n=48) (n=10) (n=117) (n=40) (n=60) (n=40) (n=51)
Organochlorinea                   
p'p-DDE 133.0 306.0 316.0 796.60 407.0 84.0 79.4 113.2 411.9
p'p-DDT 7.9 10.5 8.6 3.9 15.0 2.4 3.0 4.0 48.3
Hexachlorobenzene 55.1 19.1 22.4 71.7 97.6 15.6 23.1 41.0 62.8
Oxy-chlordane 27.8 11.3 11.3 17.0 60.8 1.9 3.7 6.6 3.3
Trans- 30.5 13.5 15.6 32.2 110.0 3.8 6.8 12.2 11.5
nonachlor          
Mirex 4.5 12.4 21.5 28.6 9.1 1.1 1.4 1.9 1.4
ß-HCH 9.3 6.9 5.6 4.5 18.5 9.2 8.1 32.1 222.5
Aroclor 1260  439.0 421.0 463.0 1005.9 1577.0 606.0 458.0 590.0 570.0
CB 118 8.8 13.8 16.4 27.63 33.7 11.4 10.5 16.2 31.3
CB 138 29.6 31.8 37.0 56.70 118.0 47.4 35.1 45.7 49.8
CB 153 54.7 50.2 53.6 137.0 185.0 69.3 53.0 67.8 59.8
CB 156 5.0 7.7 9.8 17.0 15.4 8.6 6.3 8.0 9.0
CB 170 9.7 14.0 15.1 34.75 34.4 18.6 12.1 16.4 10.0
CB 180 26.6 32.8 40.6 140.70 82.5 34.1 25.3 34.4 20.5
CB 187 10.2 14.9 18.4 44.9 41.3 11.0 10.3 13.3 8.1
Sum of 14 CBs 167.0 165.0 186.0 505.5 571.0 222.0 173.0 230.0 231.0
aOrganochlorines detected >90% of the samples in the present study.        
bInuit women (child bearing) from west/central Northwest Territories (AMAP 1998). 
cFirst Nation women from Fort Albany, Ontario (Tsuji et al. 2006).      
dFirst Nation women from Kashechewan, Ontario (Tsuji et al. 2006).      
eFirst Nation women in the present study from Peawanuck, Ontario (Tsuji et al. 2006).     
fWomen (child bearing) from the Disko Bay region (AMAP 1998).      
gWomen (child bearing) from Kiruna (AMAP 1998).       
hWomen (child bearing) from Hammerfest and Kirkenes (AMAP 
1998).       
iNo further data given (AMAP 1998).        
jWomen (child bearing) from Nikel (AMAP 1998).        
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0.001-0.004 µg/kg; Braune et al. 1999); thus, making this dietary source an unlikely factor in 

explaining the observed DDE levels in Peawanuck subjects.  

 

It should be noted that DDT was used extensively in and around Site 500 primarily to combat 

mosquitoes and black fly populations during the construction and operational years of Site 

500 (ESG 1999a). Since, DDT has a variable half-life of around 10 years and that DDE is the 

metabolite of DDT (AMAP 1998), it is conceivable that the elevated DDE levels in the more 

elderly Peawanuck females may be the result of extensive DDT use in the late 1950s and 

early 1960s (ESG 1999a), as the range for DDE concentration in plasma is large (122.0-

3809.5 µg/kg lipids). It is clear, however, that more comprehensive research is needed to 

identify DDE levels in other fish species and other wild game in the Peawanuck-Winisk area 

to further understand the source of human contamination.  

 

Similar to DDE, concentrations of PCBs in Peawanuck females were relatively elevated. 

Recent studies of breast tissue (pectoral muscle) in migratory waterfowl (Canada goose and 

lesser snow goose) of the Hudson and James Bay region report relatively low concentrations 

of PCBs (n = 131, sum of PCB congeners; range: 0.0001-2.842 µg/kg; Tsuji et al. 2007). 

However, concentrations of PCBs were much higher in the intra-abdominal fat and skin of 

migratory game birds of the region, with the skin and fat of dabbling ducks (mallard and 

northern pintail duck) being an important source of PCBs (n = 39, range: 0.015-47.469 

µg/kg; Tsuji et al. 2008). By contrast, McCrea and Fischer (1983) found only trace levels of 

PCBs in northern pike (n = 5; sum of PCB congeners; mean concentration: 0.01 µg/g wet 

tissue) and common white sucker fish (n = 3; sum of PCB congeners; mean concentration: 

0.01µg/g wet tissue) samples collected from the mouth of the Winisk River; while, low 

concentrations of PCBs were present in whitefish collected by MCRL Site 500 (whitefish; n 

= 15; sum of PCB congeners; range: 0.12-1.6 µg/kg wet weight; Tsuji et al. unpublished 

data). As well, animal tissue captured in proximity to MCRL Site 500 demonstrated low 

concentrations of PCBs (Sum of 16 CBs; Table 8). 

 

Differences were also observed when comparing Peawanuck FN female body burden of OCs 

to that found in Kashechewan and Fort Albany FN females (Table 7); the Peawanuck females 
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typically had relatively high concentrations of all OCs except for DDT and β-HCH (Table 7). 

This finding was unexpected because all three communities subsist on similar foods; 

however, the more northerly communities (Kashechewan and Peawanuck) ate more 

traditional foods on a community basis (Table 9). Briefly, the mean catch-per-harvester in 

Peawanuck was similar to Kashechewan except for fish; while these two communities had 

larger mean catch-per-harvester than that of Fort Albany (Berkes et al. 1994).  

 

It is worth noting that males from Peawanuck did not consistently have relatively higher 

concentrations of OCs than men from Fort Albany and Kashechewan (Table 10), as did the 

women from Peawanuck when compared to females from Fort Albany and Kashechewan 

(Table 7). For some OCs (DDE, HCB, trans-nonachlor), males from Peawanuck were found 

to have higher concentrations than males from Fort Albany and Kashechewan, but the 

relationship was reversed for DDT (Table 10). Oxy-chlordane and ß-HCH were of 

comparable magnitude for the three groups of males. No consistent pattern was seen for total 

PCBs. 

 

The DDE/DDT ratios reflect time since last exposure to DDT, because DDT is metabolized 

to DDE; low ratio values indicate relatively recent DDT exposure (Tsuji et al. 2006). The 

significantly lower DDE/DDT ratio observed for Fort Albany participants indicates exposure 

sources that have relatively high levels of DDT compared to Kashechewan and Peawanuck 

participants. As DDT has not been used in Ontario for almost forty years (Frank et al. 1993), 

it is plausible that the high DDE/DDT ratio expressed for Peawanuck participants is the result 

of historical exposure to DDT during the operational years of MCRL Site 500 and its 

breakdown to DDE. Another explanation relates to the people of Peawanuck being exposed 

to large amounts of DDE through a traditional diet and little DDT through a traditional diet 

and other environmental exposure routes.   
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Table 8       
Sum of 16 CBs for animal tissue (ng/g wet weight) from Site 500 (Winisk)   

        
Organisma   Range - Sum of 16 CBsbc    
Goose Tissue (n=5; Branta candensis interior)  0.12-0.20     
Muskrat Tissue (n=5; Ondatra zibethicus)  0.17-0.35     
Fox Tissue (n=1; Alopex lagopus) 2.6233     
Caribou Tissue (n=1; Rangifer tarandus)  0.15478     
Rabbit Tissue (n=1; Lepus arcticus)  0.14116     
Greater Yellow-legs Tissue (n=1; Tringa melanoleuca) 3.5377     
Common Snipe Tissue (n=1; Gallinago gallinago)   3.4519         

        
aMuscle Tissue.          
bSum of 16 CBs (52, 83+99, 105, 118, 128+166, 153+168, 156+157, 170, 180+193, 183, 187)    
cCongeners 28, 101,  and 138 were not measured.    
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Table 9       

Mean catch per harvester among harvesters from Peawanuck, Kashechewan and Fort Albanya

              

Communities  Moose Caribou Waterfowl Trapping Small Game Fishing 
       
Fort Albany 1.8 7.4 50.7 12.2 15.9 63.3 
       

Kashechewan 1.7 3.9 139.7 63.3 90.9 100.8 
       

Peawanuck 1.2 7.8 170.6 64.6 101.6 235.5 
 aBerkes et al. 1994.                
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Table 10     

Male plasma levels of persistent organic pollutants  
(geometric means, µg/kg lipids) all analysed at the  
Centre de toxicologie du Quebec  
     
 FAb Kashechewanc Peawanuckd  
 (n=48) (n=48) (n=10)  

Organochlorinea     
     
p'p-DDE 331.1 410.9 561.7  
p'p-DDT 9.9 7.4 0.9  
Hexachlorobenzene 21.3 28.6 53.9  
Oxy-chlordane 13.2 17.5 17.0  
Trans- 17.5 25.4 30.1  
nonachlor     
mirex 19.7 37.3 19.0  
ß-BHC 7.4 4.4 5.8  
CB 118 10.9 15.0 13.7  
CB 138 38.6 60.2 40.6  
CB 153 64.9 92.1 106.6  
CB 156 9.8 16.8 15.6  
CB 170 19.0 26.3 30.6  
 CB 180 47.1 78.5 121.1  
CB 187 19.0 33.0 31.6  
Sum of 14 CBs 237.3 360.1 391.6  
          
     
aOrganochlorines detected >90% of the samples in the present study. 
bFirst Nation men in the present study from Fort Albany, Ontario. 
cFirst Nation men in the present study from Kashechewan, Ontario.  
dFirst Nation men in the present study from Peawanuck, Ontario.  
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2.3.2. Correspondence analysis 

 

Analysis of correspondence axes scores revealed significant differences between 

communities. On CA-1, Fort Albany was unique; while, on CA-2, Peawanuck was unique. 

On CA-3 none of the communities were unique. It is interesting that the only community that 

was not unique on any of the CA axes was the control community of Kashechewan.  

 

CA-1 results suggest that people of Peawanuck were not exposed to DDT through their diet 

or other environmental routes as body burden of DDT was relatively small. As little DDT 

contamination at Site 500 has been recently reported (ESG 1999a), the low body burdens of 

DDT in people of Peawanuck were not unexpected. However, CA-2 scores suggest that DDE 

body burden is relatively high in residents of Peawanuck which is likely related to the more 

traditional diet of this community compared to the other two First Nation communities (Table 

1). Perhaps past exposure to DDT (and subsequent metabolization to DDE) on MCRL Site 

500 may be another factor, as previously suggested.  

 

What is interesting when both CA-1 and 2 are examined together is that Fort Albany and 

Peawanuck are significantly different from each other on these axes and this separation of 

communities is partially based on the relative amounts of PCB congeners 156 and 170 (CA-

1) and PCB congener 180 (CA-2). The significant differences between these two groups may 

be related to exposure to different sources of PCBs at MCRL sites: most of the PCB 

contamination (soil and vegetation) at MCRL Site 050 has been characterized as Aroclor 

1260 (ESG 1999a); while at Site 500 there was little soil contamination with the main PCB 

source of contamination being the paint chips which were characterized as Aroclor 1254. 

PCB source identification can be accomplished through the use of PCB congeners and 

multivariate statistics and should be contemplated in the future to clarify this matter.    
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Chapter 3. Conclusions   

 

3.1. Methodical Issues 

 

Conducting research in sub-arctic Ontario poses many challenges that can be associated with 

weather, travel, cultural differences, and other logistical issues. The successful attributes of 

past studies similar to this project were incorporated into this study to ensure that the above 

challenges would be minimized. Participation among First Nation communities can be 

extremely problematic; however, this can often be overcome with direct and frequent 

interaction with the community leaders, study participants and the health care providers that 

are facilitating the collection of samples. Further, explaining the significance of the project 

and the overall importance concerning the health and wellness of fellow community 

members can ensure healthy participation, which allows researchers to overcome this barrier 

(e.g., Tsuji et al. 1999; 2006). Past research conducted by Tsuji et al. (1999, 2006), suggests 

that FN people are highly motivated and cooperative when the importance of the study is 

lucidly explained and the reliability and trust of the researcher (s) is grounded within the 

communities. 

 

Because of the confounding nature of the traditional diet, human organochlorine body burden 

results may not be entirely representative of the surrounding study sites. It should be 

understood that because of the dynamic nature of the biota inhabiting this region, external 

factors such as migratory routes of animal species might influence the results with respect to 

analyzing geo-proximity to abandoned radar sites. For example, all three communities 

consume caribou (Rangifer tarandus). Caribou are herbivorous species that migrates 

hundreds of kilometres annually throughout the arctic and sub-arctic landscape (AMAP 

1998). Because of this phenomenon, caribou that are hunted in the study region may not 

accurately represent the study site conditions because they consume primary producers 

located throughout a vast region. Therefore, migratory species in the study region may not 

accurately represent the localized conditions surrounding each respective study community.  
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All three communities rely on traditional methods of food acquisition (i.e., hunting and 

gathering) and their dietary consumption behaviours are very similar (i.e., they don’t rely on 

marine mammals; Table 9). Therefore, although the three communities are isolated from one 

another and are located in different geographical areas, their environments and hunting 

behaviours are relatively comparable with one another, allowing for valid comparisons 

between these communities. It should be noted that the Peawanuck sample size (20) is 

considerably smaller than the sample sizes from Kashechewan (98) and Fort Albany (99) and 

as a result, statistical power when comparing the three communities is compromised. The 

reason for the small sample size is because Peawanuck FN is a much smaller community. 

However, proportionally speaking, the Peawanuck sample size represents roughly 11% of the 

community while the Kashechewan and Fort Albany sample size represents 7% and 12%, 

respectively. Therefore, although statistical power is lost with the small sample size from 

Peawanuck, it is proportionally equivalent to the sample sizes from the other two 

communities.  

 

3.2. Qualitative Conclusions  

 

The qualitative analysis component of the study suggests body burdens of OCs for females 

from Peawanuck participants were unique when compared to Fort Albany and Kashechewan.  

With the exception of DDT and ß-HCH, Peawanuck females had considerably higher levels 

of organochlorines than that of females from Fort Albany and Kashechewan. Qualitative 

analysis suggested that female study participants from Peawanuck had considerably elevated 

levels of CBs 118, 138, 153, 170, 180, 187, sum of 14 CBs, Aroclor 1260, DDE, 

hexachlorobenzene, and trans-nonachlor compared to females from Kashechewan and Fort 

Albany. Conversely, females from Peawanuck had relatively less DDT and ß-HCH than 

females from Fort Albany and Kashechewan. In comparison to Aboriginal women from a 

Northwest Territory study, Peawanuck female plasma levels were considerably higher for 

CBs 118, 138, 153, 156, 170, 180, 187, sum of 14 CBs, Aroclor 1260, DDE, 

hexachlorobenzene, and mirex. Internationally, Peawanuck females were shown to have 

higher body burdens of DDE, CB 180 and mirex compared to a past study from Greenland. 

In comparison to female plasma levels from other circumpolar locations (i.e., Sweden, 
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Norway, Iceland and Russia), Peawanuck females reported considerably higher levels of 

DDE, hexachlorobenzene, oxy-chlordane, trans-nonachlor, mirex, Aroclor 1260, CBs 153, 

170, 180, 187, and sum of 14 CBs.  

 

Qualitative intra-study comparison revealed that Peawanuck males had relatively elevated 

plasma levels of DDE, hexachlorobenzene, CB 153 and 180 and sum of 14 CBs than males 

from Fort Albany and Kashechewan. For DDT, males from Kashechewan and Fort Albany 

had as much as seven-times the amount than that of males from Peawanuck.  

 

3.3. Quantitative conclusions 

 

Analysis of correspondence axes scores revealed significant differences between 

communities. Results are suggestive but not conclusive that MCRL Site 500 may have 

influenced body burdens of Peawanuck residents. As both Fort Albany and Peawanuck were 

associated with MCRL sites, it is surprising that these two communities were never grouped 

together as being different from Kashechewan, the control community. As suggested by Tsuji 

et al. (2006), it is difficult to tease apart the input from point sources of OCs and the 

contribution of OCs from a traditional diet unless a unique signature is involved.      

 

3.4. Recommendations 

 

It is recommended that FN residents of Peawanuck do not harvest and/or hunt in proximity to 

MCRL Site 500 until more conclusive data concerning source of contamination becomes 

available. Existing wildlife data does not explain the elevated levels seen in Peawanuck 

blood plasma; therefore, issuing a warning against the consumption of specific foods is not 

possible. However, Tsuji et al. (2008) did report that the skin and fat of dabbling ducks from 

the western James Bay and south-western Hudson Bay region could be a source of PCB 

contamination; reducing the consumption frequency of fat and skin from dabbling ducks is 

recommended.   
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Further research concerning organochlorine concentrations in wildlife and fish is needed in 

the Hudson-James Bay Lowland area to identify potential sources of contamination. As well, 

future research needs to closely examine the community of Peawanuck to understand why it 

reported the OC levels in which it did. The suggested research should examine behavioural 

(e.g., specific genre and quantity of food consumption, specific [swimming, hunting, etc.] 

activity around Site 500, etc.) and lifestyle (e.g., smokers, exercise frequency, etc.) patterns at 

the individual level; in an attempt, to identify variables associated with elevated plasma 

levels of OCs. Furthermore, a more comprehensive examination of the soil and plant material 

in and around MCRL Site 500 needs to be undertaken. Further examining water quality in the 

region may be of importance in further understanding all potential sources of contamination. 

Without sufficient data pertaining to wildlife contamination, it is difficult to speculate on the 

source of OC contamination that has been manifested in the body burden of Peawanuck study 

participants. 

 

The construction of the Mid Canada Radar Line was entirely a Canadian endeavour (ESG 

1999); therefore, it is the responsibility of the Canadian government. To this day, Site 050 is 

the sole radar station to be successfully remediated; it is recommended that all MCRL sites 

are remediated in the near future. To achieve this, it is recommended that the Canadian 

government establish a political framework that would seek to promptly remediate all MCRL 

sites.     
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