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Abstract

Martin, Paul Edwin Charles. M.A.Sc. Royal Military College of Canada, April, 2007.
Covert Channels in Secure Wireless Networks. Supervised by Dr. G. Scott Knight.

Covert channels are unexpected and hidden communication paths embedded within
a communication system that violate the system security policy. Covert communi-
cation occurs when a user or application deliberately manipulates and embeds in-
formation into some property of a communication system in such a way that the
embedded information is not apparent to the legitimate users of the communication
system. Internet based covert channels with low bit rates are enough to convey criti-
cal information such as network encryption keys or system access codes. This paper
discusses how the threat of covert channels can be applied to secure wireless net-
works through the design and implementation of a working covert communication
system. The resulting communication system reliably communicates private infor-
mation in the presence of noise. In this case noise is other legitimate network traffic
using the same encrypted link. The covert channel implementation presented here
has been tested on a live network with background noise traffic and demonstrates the

feasibility and limitations of the design.

Keywords: covert, channel, wireless, network.



Resumé

Martin, Paul Edwin Charles. M.A.Sc. College militaire royal du Canada, Avril, 2007.
Voies clandestines dans les reséaux sans fil sécurisés. These dirigée par M. G. Scott

Knight, Ph.D.

Les voies clandestines sont des chemins de communications inattendus et cachés,
incorporés dans un systéme de communication, et qui violent la politique de sécurité
du systeme. La communication clandestine se produit quand un utilisateur ou une
application manipule et incorpore délibérément de 'information dans une propriété
du systeme de communication d’une maniéere telle que l'information dissimulée soit
inapparente aux utilisateurs légitimes du systeme de communication. Les voies clan-
destines a faibles débits binaires, basées sur Internet, suffisent pour véhiculer de
Pinformation critique telle que des clefs de chiffrement de réseau ou des codes d’acces
du systeme. Cet article discute comment la menace des voies clandestines peut étre
appliquée aux réseaux sans fil sécurisés au moyen de la conception et I'exécution d’un
systeme de communication clandestin fonctionnel. Le systéme de communication
résultant communique 'information privée en présence d’un bruit. Dans ce cas-ci, un
bruit constitue un trafic de réseau légitime sur le méme lien chiffré. L’implémentation
de la voie clandestine présentée ici a été testée sur un réseau opérationnel doté dun
trafic de bruit de fond et démontre la praticabilité ainsi que les limitations de sa

conception.

Mots clés : voies, clandestines, sans fil, sécurisés

vi
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Chapter 1

Introduction

1.1 Thesis Summary

This thesis discusses a series of research activities that investigated how the threat
of covert channels can be applied to secure wireless networks through the design and
implementation of a working covert communication system. The resulting covert com-
munication system was comprised of two distinct and separate components namely
a software Trojan and a covert receiver. The software trojan employed aspects of
coding theory [20, 31, 35] to modulate 802.11 wireless traffic with encoded private
information from a compromised workstation. The modulated wireless traffic was
then captured by a covert receiver passively monitoring the wireless network. The
captured information was demodulated and corrected using Forward Error Correction
(FEC) techniques [20, 35] to ensure communication reliability within an inherently
noisy environment such as wireless networking. The resulting communication system
reliably communicated private information in the presence of other legitimate network

traffic over an encrypted link.

1.2 Introduction

The increased demand for easily configurable, low cost mobile computing solutions
has fuelled the recent popularity of wireless networking products based on the IEEE
802.11 standard. 802.11 based technologies offer network solutions that are highly
mobile and rapidly deployable [45, 12, 2]. This type of capability is of significant
interest to organizations with the desire to extend corporate resources to employees
operating in field conditions, especially in situations where conventional wired network
infrastructures do not exist such as developing communities, disaster areas, or war

damaged regions.



Information protection in closed private wired networks has been traditionally ac-
complished in part through the physical separation of the attacker and the targeted
media. With the introduction of 802.11 based wireless networks, private networks can
now be exposed to potential attackers anywhere within reception range of the wireless
transmission. To combat eavesdropping, the 802.11 protocol utilizes secure wireless
standards such as Wired Equivalent Privacy (WEP) and Wi-Fi Protected Access
(WPA). Although much attention has been focused on the hardening of the secure
wireless standards to prevent information interception and exploitation through eaves-
dropping, the fact still remains that the communication traffic on a wireless network

link can be passively monitored by a third party.

1.3 Motivation

Covert channels (section 2.5) are unexpected and hidden communication paths em-
bedded within a communication system that violate the system security policy. By
manipulating the property of a communication system, a covert channel can convey
information to designated recipients while remaining very difficult to detect. Even
covert channels with low bit rates are enough to convey critical information such as
access codes or security passphrases. Research into viable covert channels typically
centres around the exploitation and detection of communication systems employed for
nefarious purposes [23, 32, 47] by intentionally modifying data within legitimate net-
work protocol communication (ex. changes to TCP or IP header fields [32]) to convey
information in “plain sight”. Despite the potential for these techniques to effectively
work over open networks, many of these approaches can be controlled in closed private
networks with the application of firewall and intrusion detection technology.

The introduction of wireless network links into a closed private network environ-
ment expands the potential use of covert channels to computing assets no longer
physically located in the same location as the wired infrastructure. Since network
traffic on a wireless network link can be passively monitored by a third party, wireless
network infrastructures open new and extremely attractive attack vectors from which

hostile agencies can covertly glean sensitive network information through covert chan-



nels. Many network-based covert channel techniques deal with information hidden in
the upper layers of the TCP/IP protocol suite which are more easily concealed from
eavesdropping through the application of protocol encryption such as WPA.

The majority of previous covert channel research has been limited to wired infras-
tructure environments [32, 44| with some work in the area of wireless networks [23, 47].
Despite the previous work conducted in this field, covert channel research rarely ad-
dresses issues of error detection and correction resulting from the coexistence of covert
communication within regular network traffic. In an attempt to remain concealed
from detection, wireless network based covert channels must operate amongst the
noise of regularly expected network traffic. In addition, if a wireless covert com-
munication system is to be a reliable conduit of information, it must also be able
to accurately and consistently detect and correct the covert signal from within the
concealment of other similar network traffic. To accomplish this challenge, an error
detection and correction system must be employed in which the covert communication
signal is extracted from the background environmental noise and corrected if errors
are present.

Furthermore, the majority of attention with respect to secure wireless networking
has been focused on developing stronger ciphers, thus hardening the secure wireless
standards in an attempt to prevent information interception and exploitation through
eavesdropping. Alternatively, little attention has been given to possible threats to
secure wireless networks that originate from within the infrastructure. The security
posture of an entire wireless network could be compromised if private information
such as security passwords or access codes were divulged to an attacker from within

the secure wireless network infrastructure.

1.4 Research Hypothesis

Combining the threat of covert channels with the popularity of 802.11 secure wireless
networks, the hypothesis for this research is as follows.
The threat of low bit rate covert channels can be applied to secure wireless net-

works in order to compromise network security by passing private information such



as security passphrases or system access codes.

In order to validate this hypothesis and demonstrate the vulnerability of wireless
networks to covert channels, the research will focus on the production of a functioning
covert communication system. The resulting communication system will be required
to pass private network information from a compromised wireless computer to a covert

receiver despite the implementation of a secure wireless standard such as WPA.

1.5 The Working Scenario

The working scenario for this thesis considers an organization such as a national
military, non-governmental organization or perhaps a group which operates in an
environment in which wired network infrastructures are very limited or do not exist
such as in developing communities, disaster areas, war damaged regions. For reasons
of expediency, maintenance, cost, connectivity and survivability the organization in
question has deployed an 802.11 wireless network infrastructure for it’s mobile felid
agents working outside the confines of the main office complex. The local population
regularly organize open air markets in which technology items such as CD/DVDs,
MP3 players and memory sticks are often sold for amazingly low prices. One of the
field agents from the organization, Alice, can not resist getting a good bargain and
purchases a memory stick and immediately begins using it with the company wireless
computer.

For the purposes of this research, we assume that the memory stick contains a
software Trojan which transfers itself to the company computer upon first contact.
The software Trojan then collects private network information from the compromised
wireless computer such as the WPA encryption key. The collected key is then placed
in a covert communication channel which beacons the key information to a foreign in-
telligence collection agent eavesdropping on local wireless network traffic as depicted
in figure 1.1. Finding the signature of the covert channel in the captured network
traffic transmitted by the compromised computer, the intelligence agent is able to re-
produce the wireless network security password and gain access to the secure network.

Once the intelligence agent has secretly joined the network and overcome the link en-
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Figure 1.1: Covert Channels in Wireless Networks - Working Scenario.

cryption, any and all private information residing on the organization’s network is

available for subversion.

1.6 Research Objective

The principle goal of this research was to design, implement and test a working covert
communication system on a secure wireless Internet based system. In order to achieve
this goal, research activities were organized into three basic phases: 1) Developing an
effective coding/decoding scheme, 2) Designing a covert communication system, and
3) Implementation of the Design.

In the first phase, a coding/decoding scheme was developed based on Forward
Error Correction (FEC) techniques and validated against network traffic typical of
a wireless Internet based system. Subsequently, in the second phase, the successful
coding/decoding scheme was then incorporated into the design of a covert communi-

cation system which was designed as two distinct and separate components namely



a software Trojan and covert receiver. Finally in the third phase, the resulting two
components of the covert communication system were implemented using Microsoft
Visual C++4 and MATLAB respectively. The software Trojan was able to beacon
modulated Internet Protocol (IP) traffic with encoded private information from the
compromised wireless workstation. The modulated wireless traffic was then captured
by a covert receiver passively monitoring the wireless network. The captured informa-
tion was then demodulated and corrected to reliably reproduce the private network
information.

The ability to reliably reproduce private network information despite the presence
of protocol encryption validates the research hypothesis and exposes a security hole
in contemporary wireless computer networks. In addition to validating the research
hypothesis and achieving the overall research objective, the resulting communication
system also produced useful performance data in terms of covert communication

reliability and bandwidth in the presence of noise.

1.7 Thesis Organization

In order to appropriately articulate the successful validation of the research hypothe-
sis, this thesis is arranged into four subsequent chapters. Chapter 2 will first provide
an overview of the background material employed to investigate the problem space
defined by the threat of covert channels in secure wireless networks. Chapter 3 will
then present the theory employed to solve different aspects of the research problem.
Subsequently, Chapter 4 will take the new ideas and approaches presented in Chapter
3 and discuss how they were applied in several experiments. Furthermore in Chapter
4, experimentation results are discussed and validated in terms of the design criteria
as well as demonstrating the success of the wireless covert channel capability. Finally,
the resulting covert communication system will be further discussed in Chapter 5 in
terms of design performance and significance with respect to the research problem.
In addition, Chapter 5 will provide some thoughts into recommendations for future

work as well as concluding remarks to complete the thesis.



Chapter 2

Literature Survey

2.1 Introduction

Chapter 1 provided a introduction to the research topic area of this thesis by briefly
outlining the motivation and research hypothesis that led to the principle goal of
designing, implementing and testing a working covert communication system on a se-
cure wireless network. This chapter will further expand on the ideas and technologies
that served as a foundation for the working scenario and influenced the research into
covert channels in secure wireless networks.

The background discussion in this chapter will cover several aspects of this research
including the motivation for the working scenario, the TCP/IP and 802.11 technology
models, covert channels as well as aspects of coding theory. The unique combination
and application of these ideas and technologies will be further refined in Chapter 3

as part of the research toward designing a successful working scenario.

2.2 Fidelity of the Working Scenario

Intelligence and information collection is an activity no longer limited to the intelli-
gence services of foreign states but has also expanded to sovereign individuals who
operate in cells or on an individual basis for financial gain, glory or ideological rea-
sons [25]. Due to the very profitable exchange of private information, former Russian
and Chinese hacking experts are acting as as mercenaries selling their skills on the
black market to political and religious extremists for cash [25].

The activity of gleaning information from open or secret sources through the use
of computers or computer networks also known as Computer network intelligence
(CNI) [18], provides foreign states, criminals or terrorists with highly reliable insider
information that greatly assists in the achievement of their respective goals. Since the

dispersal of al Qaeda elements from Afghanistan in 2001, terrorist groups have turned



to the use and exploitation of IP based networks to continue their activities [5]. Not
only are terrorist groups becoming more Internet and networking technology savvy for
the purposes of planning and training, they are also educating and grooming followers
in the art of network hacking for the purposes of conducting “electronic jihad” [5,
15]. Given the relative low costs associated with modern computing resources, the
asymmetric threat of CNI posed by highly trained, mobile and determined groups is
real and significant [25].

An important aspect in the conduct of CNI operations is the requirement to
remain covert [18]. Consequently, CNI activities must be concealed amongst the
regular activates of the operating environment, and the location of the information
recipient must remain undetectable [18]. In addition, the act of transmitting captured
data must be done without creating unnatural traffic patterns and therefore must be
done slowly over longer periods of time [18]. The working scenario incorporates
these approaches by suggesting that a compromised wireless computer slowly signals
private information to a silent eavesdropping intelligence collection agent who is able
to extract the covert message from the noise of regular network traffic.

The corrupted wireless computer in the scenario gathers information through the
use of a software Trojan working on the behalf of the intelligence collection agent.
The assumption that the software Trojan is implanted on a third-party computer
through social engineering techniques is not unrealistic based on evidence [14] that
this type of activity is already occurring on a regular basis. The article [14] re-
ported that UK authorities uncovered evidence of foreign intelligence service agents
compromising UK business and government agencies with hacking tools implanted by
unsuspecting employees through the use of nefarious e-mails and USB memory sticks.
This report has also highlighted that the information targeted by nefarious groups is
not limited to government state secrets, but also included items that were scientific
and economic in nature. Therefore, the threat of CNI operations is no longer limited
to state government agencies but also extends to any organization with private infor-
mation that serves the purposes foreign states, criminals or terrorists if compromised.

Consequently, secure wireless networks provide nefarious individuals with a highly ac-



cessible means to target any group or organization with desirable information while

at the same time remain hidden from detection.

2.3 TCP/IP Protocol Suite

The 7-layer Open Source Interconnect (OSI) architecture model developed by the
International Standards Organization (ISO) in 1984 represents the foundation by
which Internet based systems are designed [45]. The OSI model (figure 2.1) employs
a hierarchical layered approach to computer communications in which each layer
provides defined communication services to the layer directly above. In addition, each
layer in the architecture is capable of employing the services from the layer directly
below. For example, a particular layer of one computer can exchange information with
the corresponding layer on another computer by utilizing the sub-layer communication

services of the OSI framework.

Figure 2.1: OSI Model from [45]

Although the 7-layer OSI model is often promoted as the standard architecture



10

oSl TCP/IP

Figure 2.2: OSl and TCP/IP model comparison from [45]

for computer communication, the vast majority of Internet based systems employ
the more simplistic 5-layer TCP/IP protocol architecture (figure 2.2) developed by
US DoD Defence Advanced Research Projects Agency (DARPA) in 1969 [45]. Subse-
quently, the collection of protocols based on this less complex architecture is generally
referred to as the TCP/IP protocol suite and represents the communication standards
for the Internet and all Internet based systems. The following sub-sections are brief
descriptions of the communication tasks contained in each of the five layers of the

TCP/IP suite.

2.3.1 Physical Layer

The Physical Layer of the TCP/IP protocol suite deals with the physical interface

between the data transmission device (e.g. network card, modem) and a transmission
medium or network. Typical information employed at this layer of the suite includes

transmission medium characteristics, signal metrics and data rates.
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2.3.2 Network Access Layer

The Network Access Layer focuses on the exchange of information between the com-
puter system and the connected network. The software employed at the Network
Access Layer is specific to the connected network and thus may change depending on
the specific standards associated with the connected network such as packet switching
frame relay, Ethernet LAN or others. Regardless of the employed software variation
at this layer of the protocol suite, the services provided to the next layer in the hier-
archy (Internet Layer) are identical. This allows software functioning at higher levels
of the suite to execute properly despite the unique characteristics of the attached

network.

2.3.3 Internet Layer

The responsibility of the Internet Layer is to provide end-to-end delivery of data
packets to a corresponding Internet Layer on another computer system. In order to
provide this service, the Internet Layer employs the Internet Protocol (IP) to define
logical network addressing and provides information routing to a remote host over

multiple networks.

2.3.4 Transport Layer

The Transport Layer of the TCP/IP suite is responsible for providing reliable host-to-
host transfer of Application Layer data. The most commonly used Transport Layer
protocol within the context of the TCP/IP suite is the Transport Control Proto-
col (TCP). TCP is a connection-oriented protocol that provides a reliable means for
the passage of application data through logical association. To establish a logical
connection between two hosts, the protocol executes a three-way handshaking proce-
dure [46, 42]. If the handshaking procedure is successful, a host-to-host connection
is established. With a host-to-host connection established, the TCP Protocol then
employs sequence numbering, acknowledgement numbering as well as window fields

to provide flow and error control to reliably transfer data.



12

In addition to TCP, another commonly employed Transport Layer protocol in
the TCP/IP suite is the User Datagram Protocol (UDP). In contrast with TCP,
UDP is a connection-less protocol that does not guarantee delivery, protect against
duplication or preserve sequence numbers for reordering upon receipt [45]. Since UDP
is connection-less, data can be sent between hosts in a “fire and forget” manor with

a minimum of protocol mechanisms.

2.3.5 Application Layer

The Application Layer is the top layer of the TCP /IP protocol suite which contains
application specific logic to support the communication needs of user applications [45].
By calling to services in the Transport Layer, individual applications in the application
layer can initiate tailored network communication activities in order to achieve the
design goals of a particular application. In the context of the thesis working scenario,
the covert communication channel established by the Software Trojan will originate

from this Layer.

2.4 802.11 Wireless Networks

The subject area of 802.11 wireless networks covers a large range of topics from Ra-
dio Frequency (RF) fundamentals, spread spectrum technology, antenna principles
to network infrastructure and protocols. In order to achieve an appreciation for the
secure wireless network component of the thesis working scenario, the following broad
overview to 802.11 wireless networks and its integration with the network communi-
cations architecture is presented.

802.11 wireless network standards were developed by the Institute of Electrical
and Electronics Engineers (IEEE) as part of the 802 family series of specifications
for local area network (LAN) technologies that focus on the lower two layers of the
OSI model [12]. The individual network specifications in the 802 family series are
identified by the decimal subcategory. For example, 802.3 is the specification for
a Carrier Sense Multiple Access network with Collision Detection (CSMA/CD) or
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Figure 2.3: |IEEE 802.11 and its relation to the OS| model from [12]

more commonly referred to as Ethernet while 802.2 specifies a common link layer and
Logical Link Control (LLC). In the case of wireless networks, 802.11 standards define
the Medium Access Control (MAC) and Physical (PHY) component specifications for
wireless connectivity of fixed, portable and moving stations within a local area [22].
Similar to Ethernet, the 802.11 MAC sub-layer interacts with the LLC sub-layer of
802.2 to form the complete Data Link Layer of the OSI model or a portion of the
Network Access Layer of the TCP/IP model. The relationships between 802.3, 802.2

and 802.11 and their respective place in the OSI model can be seen in figure 2.3.

241 802.11 Medium Access Control

The TIEEE 802.11 MAC layer is responsible for servicing higher level protocols to
reliably deliver data and apply optional security methods. Similar to other 802 link
layers, 802.11 can support any network layer protocol communications such as IP.
To accomplish the transport and delivery of higher-level protocols, the network layer
packet must be encapsulated into an 802.11 data frame. 802.11 relies on the 802.2
LLC to achieve this encapsulation on its behalf. Employing the sub-network access

protocol (SNAP), a 802.2 LLC frame is produced with the original un-encrypted IP
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packet as its payload. The resulting frame is then passed to the 802.11 MAC sub-
layer where it is then formatted into a 802.11 MAC data frame and then passed to
the PHY for transmission. A graphical representation of this relationship is shown in
figure 2.4.

If an 802.11 security method is employed, the 802.2 LLC frame is encrypted before
it forms the payload portion of the 802.11 MAC frame. This process in turn obfus-
cates all information (packet headers and payload) originating from the Network
Layer into an encrypted frame body. 802.11 supports two authentication and encryp-
tion methods, namely Wired Equivalent Privacy (WEP) and Wi-Fi Protected Access
(WPA). WEP was the original authentication and encryption method supported by
the 802.11 standard. WEP uses a pseudorandom number generator (PRNG) along
with an RC4 stream cipher to encrypt data [2]. Due to significant weaknesses in the
implementation of WEP, Temporal Key Integrity Protocol (TKIP) was implemented
as a temporary fix to WEP. TKIP would attempt to address the weaknesses in the
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WEP RC4 encryption implementation through the use of per-packet key mixing and
automatic re-keying [2]. In an attempt to develop a longer term solution to wireless
security, IEEE developed the 802.11i standard (2004) which included the WPA au-
thentication and encryption method. As well as supporting WEP-TKIP standards,
WPA also supports AES encryption which is considered more secure than previ-
ous encryption methods for wireless networks. The WPA version of the AES cipher
is implemented with the Counter Mode with CBC-MAC Protocol (CCMP) as the
mechanism to encrypt the 802.11 frames [2]. AES encryption is considered virtually
unbreakable with current computing resources [2]. Similarly, WPA with AES is cur-
rently accepted as the most secure security standard for secure wireless networks and
thus will be the focus of this research. In terms of the research goal, the proposed
covert communication system must operate despite the implementation of WPA with
AES encryption.

The 802.11 wireless MAC frame, regardless of type (Data, control, Management,
etc.) is always composed of a MAC header, optional frame body and Frame Check
Sequence (FCS) field. The sizes of each field within the MAC data frame shown in
figure 2.5 are represented in brackets and reported in octets/bytes. Although the
maximum size of a MAC data payload field is 2304 bytes, the MAC frames observed
as part of this research will most likely never reach their maximum length of 2346
bytes. This is due to the fact that IP based networks employ a TCP/IP stack that
usually implements an IP maximum transmission unit (MTU) of 1500 bytes [2]. Since
the working scenario will employ the TCP/IP suite, it is unlikely that a packet larger
than 1500 bytes will be passed to the MAC Layer. The wireless MAC data frame
is of particular interest to the research of wireless covert channels. More specifically,
research activities will focus on the resulting changes in frame attributes due to actions
taken by an automated process operating from the Application Layer of the TCP/IP

suite.
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Figure 2.5: 802.11 Data Frame from [22]

2.42 802.11 Physical Layer

The Physical Layer of the 802.11 specification deals with the RF transmission and
reception aspects of the wireless communication. Each variant of the 802.11 specifi-
cation is primarily characterized by the changes in the physical layers. The 802.11
specification currently includes five different physical layer variations within the speci-
fication. Initially, the base 802.11 specification included two physical layers consisting
of frequency hopping spread-spectrum (FHSS) and direct-sequence spread-spectrum
(DSSS). Later revisions of the 802.11 specification added a high-rate direct-sequence
(HR/DSSS) physical layer commonly referred to as 802.11b. Additionally, 802.11a
and 802.11g are characterized by their respective orthogonal frequency multiplexing
(OFDM) and extended rate PHY (ERP) physical layers. Although the 802.11 phys-
ical layer variations form an integral part of the 802.11 specification, aspects and
details of the 802.11 physical layer are outside the scope of this thesis. The research
activities of this thesis relating to 802.11 wireless networks will focus primarily on the

MAC sub-layer and it’s interaction with the higher layers of the TCP/IP suite.

2.4.3 802.11 Nomenclature

The four physical components that form the majority of all 802.11 wireless networks
are stations, access points, a wireless medium, and a distribution system as seen in
figure 2.6. Stations are the computing hosts which communicate over a network.
In the context of wireless networking, stations are typically highly mobile battery

operated laptops or hand-held computers. Although, if the infrastructure of a wired
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network does not exist or is impractical due to the working environment, stations can
also be regular desktop computers with wireless network interface cards. In terms
of the working scenario, the stations are represented by field agents who work in an
environment in which wired infrastructure is inappropriate due to the hostile working
environment.

Access points are the network devices that act as bridging tools between the wired
and wireless network infrastructure. Access points not only perform wired-to-wireless
network communication conversion, but also act as a wireless network gatekeeper by
establishing security options such as wireless access security passphrases and MAC
address list filtering. Access points also define the type of encryption, if any, that
the wireless network will employ. If a type of link encryption is selected, the security
passphrase is used to generate encryption keys particular to the selected encryption
method.

The wireless medium represents the free space between stations and access points
in which 802.11 MAC frames are passed. In order to communicate over the wire-
less medium, the 802.11 protocol employs one of the RF techniques defined in the
PHY standard to signal information to a corresponding PHY of another wireless net-
work device. Typical wireless devices can communicate over the wireless medium at
distances ranging from 100m to 300m [45].

The distribution system represents the wired “backbone” network to which the
access point is connected. Typically, the backbone network is a wired Ethernet con-
figuration [12] that connects wireless users to the Internet (via an access point) and

potentially an organization’s private resources.

2.4.4 802.11 Architecture

When the physical components of an 802.11 wireless network are combined together
as a communicating group, they form the basic building block of a wireless network
commonly referred to as a Basic Service Set (BSS). Each BSS can be further char-
acterized into one of two types of wireless networks, namely independent networks

and infrastructure networks. Independent wireless networks are formed when stations
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Figure 2.6: Components of 802.11 LANs from [12]

communicate directly with each other without the assistance of an access point. Typ-
ically, independent networks are employed when users of stations wish to create a
simple network to pass information for a short duration such as in a meeting or class
room setting. These types of networks are commonly referred to as ad hoc BBSs or

ad hoc networks [12]. See figure 2.7.

Station
Figure 2.7: 802.11 Ad hoc Wireless Network from [12]

On the other hand, infrastructure networks are BBSes that employ an access point
to assist in the communication between stations. More specifically, any communica-
tion between two stations in infrastructure networks must first go to an access point
and then be relayed to the second station as shown in figure 2.8. Although a multi-
hop transmission appears to be less efficient in terms of delay and channel capacity,
an infrastructure network can increase the communication range between stations by
acting as a radio relay effectively doubling the range between stations.

Furthermore, in an infrastructure network, a station must request an access point’s

permission to join the network in order to obtain network services. For a station to
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Figure 2.8: 802.11 Infrastructure Network from [12]

join a wireless network, it must first associate itself with the access point. The
association process in 802.11 wireless networks establishes the MAC address of the
requesting station in order to send and receive frames on a wireless LAN. Once the
station has been associated with the access point, it then must be authenticated
to establish that the requesting station possesses the authority to connect to the
network. If an infrastructure network is employing open authentication, a station
can join the network without providing any proof of authority. Although, in the case
of secure wireless networks, the authority for a station to join a wireless network
is proven through the use of a pre-established security password. Once the station
has proven its authority to join the network with the security password, the wireless
link is encrypted with one of the 802.11 security methods. For the purposes of this
research, the working scenario utilizes an infrastructure network with the strongest

security method available in the 802.11 standard WPA with AES encryption.

2.45 Wireless Eavesdropping

Wireless eavesdropping is the covert process by which a wireless computer can capture
802.11 frames from other wireless stations or BBSs that are within the reception range
of the employed antenna. The attraction with eavesdropping from an attacker’s point
of view is that it leaves no trace of the attacker’s presence since an eavesdropping
computer does not need to join or be on the targeted network to capture its MAC

frames [2]. The tools to perform an eavesdropping wireless LAN attack are widely
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available [51] and relatively simple to configure. In addition, with the use of a high
gain directional antenna, an attacker can extend the reception range of an attack far
beyond the typical ranges associated with commercial omni-directional antennas [51].
This makes the threat of an eavesdropping attack even more significant since the
attacker need not be in close proximity but instead could be positioned several kilo-
metres away from the targeted wireless network. Once again, this only reiterates the
significance of the working scenario and the exposure of wireless network traffic to

potentially malicious individuals.

Private Wired Netwark

Internet

Firowalt and Intrusion
Dotection

Havesdropping - Eve

" Fiold Wotker -Bob

Figure 2.9: Wireless Eavesdropping Scenario

2.5 Covert Channels

In order to design and implement a working covert communication system on a secure
wireless network and fulfil the principle goal of this research, a basic definition and
understanding of covert channel implementations is required. This section will provide
a working definition of covert channels and how it relates to the working scenario of

this thesis.

2.5.1 Definitions

The concept of covert channels was first introduced by Butler W. Lampson in 1973

as part of an investigation into program execution confinement within an operating
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environment. As part of his research, Lampson noted that one potential category of
data leakage from within an confined program could be classified as a Covert Channel
if the leakage “was not intended for information transfer at all, such as the service
program’s effect on the system load” [19]. Since the time of Lampson’s research which
first noted the existence of covert channels, several definitions for covert channels have
been used to further describe the hidden or indirect passage of information within a

computing environment, such as the following.

Covert Channels are the “.. indirect (covert) transmission by storage into

variables that describe resource status.” [38|

“Covert Channels, in contrast, use entities not normally viewed as data

objects to transfer information from one subject to another.” [16]

Although these definitions of covert channels are correct, they fail to explicitly
articulate the malicious intent to violate the systems security policy as part of the
transfer of information [13]. One definition which attempts to encompass the mali-

clous intent of the covert channel users is as follows.

“Given a nondiscretionary (e.g., mandatory) security policy model M and
its interpretation I{M) in an operating system, any potential communica-
tion between two subjects I(.S,) and I(S;) of I(M) is covert if and only if
any communication between the corresponding subjects S;, and S; of the

model M is illegal in M.” [48].

Although more comprehensive, the definition used at [48] is somewhat abstract. In
an attempt to employ a similar but easier to convey characterization for the purposes

of this research, the following definition was considered:

“Covert channels are a means of communication between two process that
are not permitted to communicate, but do so anyway, a few bits at a time,

by affecting shared resources.” [28]
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Merging the simplicity of the definition from [28] with the network-based envi-
ronment discussed by the authors at [23], the definition employed in this thesis when

discussing covert channels is as follows.

Covert channels are unexpected and hidden communication paths em-
bedded within a communication system that violate the system security
policy. By manipulating the property of a communication system, a covert
channel can convey information to designated recipients while remaining

very difficult to detect by the legitimate users of the system.

Although covert channels use information hiding to pass data, they should not
be confused with the very similar art of steganography. Steganographic channels
also entail the hiding of information within an environment in such a way that only
the intended recipients are aware of its existence, such as digital watermarking [6,
29, 31, 34]. Nevertheless, the one distinguishing characteristic of covert channels
is the malicious intent on the part of the parties employing the channel to violate a
system security policy [13, 33] and communicate the security measures prohibiting the
activity. If any steganographic techniques are employed with the intent of violating
a security policy, this would be considered covert channels communications. On the
other hand, a steganographic channel occurs when the two communicating parties
employing a steganographic technique are allowed to talk and communicate within
the confines of the system’s established security policy [28]. This is not to say that
nefarious characters do not employ steganographic channels. It has been reported
at [15] that terrorists have used steganographic channels to plan terrorist attacks by
hiding instructions within digital photographs on the popular auction web site e-Bay.
Despite any similarities, steganographic channels are not the focus of this research.

Since covert channels are usually very hard to detect and not the product of a
computer environment’s original design, some may still doubt their ability to exist in
a real-world context. Given the wealth of research and examples of covert channels
at [30, 39, 41, 43], there should be no uncertainty that covert channels do exist and

represent a significant security threat to organizations, business and governments.
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The following sub-sections will further define the different types covert channels and

the environments in which they exist.

2.5.2 Covert Channel Classifications
2.5.2.1 Storage and Timing Channels

Covert channels are not limited to a particular method or approach but in fact exist
in many forms. Since any communication path that violates a security policy can be
considered a covert channel, there exist a number of communication conduits that can
be classified as a covert channels despite any potential differences in the approach of
a particular exploit. Although, most covert channel exploits can be classified into two
separate scenarios that either involve storage or timing [13] to achieve a successful
implementation.

Covert storage channels transfer data between sender and recipient through the
use of storage variables [13]. The sender alters the value of a storage variable and
the recipient, observing the storage variable, detects and interprets the changes [16].
These variables may be covertly passed directly or indirectly between the sender and
receiver as long as they employ a shared resource. In addition, the storage variables
may contain overt information such as a message within a particular field [7] or
represent information for the purposes of “signalling” a message across the shared
resource [16].

Covert timing channels, by contrast, transfer data between sender and recipient
through the use of an observable system property and a common time reference [13].
The sender modulates the observable property with respect to the common time
refence with information from a covert message. The receiver then interprets the delay

or lack of delay with respect to the common time reference as the covert message [39].

2.5.2.2 Noisy and Noiseless Channels

Covert channels can be further sub-classified as noisy or noiseless channels depending

on the environment in which the exploit exists. A channel is considered noiseless if the
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data transmitted by the sender is received by the receiver with a probability of 1 [13].
In this case, the sender and receiver have exclusive use of the shared resource and do
not experience disruptions in communication that would require error detection and
correction. The noiseless channel can be considered an error-free environment.

On the other hand, a channel is considered noisy if the data transmitted by the
sender is received by the receiver with a probability of less than 1 [13]. Furthermore,
it is possible that the receiver might also contend with additional data that did
not originate from the sender. This additional data represents a type of noise that
interferes with the covert message within the channel. In this case, the sender and
receiver share the common resource with other processes which produce similar data.
Consequently, the sender and receiver in this channel must incorporate some form of
error detection and correction capability [8, 21, 52] in order to effectively recover the

covert message from the noise of the shared resource.

2.5.3 Network-Based Covert Channels

Network-based covert channels have been known to exist within several different Lay-
ers of the TCP/IP suite [43, 32, 47]. A number of them employ steganographic
techniques which piggy-back on protocols to pass information fields [4]. To be a suc-
cessful covert channel, these mechanisms (table 2.1) rely on the unauthorized passage
of information through a network firewall and intrusion detection system in order to
communicate to a remote location on the Internet. Covert channels based on network
protocol exploits that communicate to remote Internet locations can be difficult to
detect and block. The main success in mitigating such channels is by first identifying
the exploit and then translating that identity into a known signature that the network
firewall and IDS resources recognize [4, 43].

In the context of secure wireless networks, storage channels can often be defeated
with the use of encryption. In terms of the working scenario, we must identify covert
channels that exhibit promise of survivability with respect to the 802.11 MAC level
encryption. For storage channels to be effective in this context, the storage variable

must exhibit some observable property other than it’s contents (ex. variable size)
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which, despite the application of an encryption process, will represent information for

the purposes of “signalling” a covert message.

Table 2.1: Summary of Network-Based Covert Channels from [43]

l Layer | Protocol || Field ] Remarks I
Application | HTTP | HTTP request Text field
Application | HTTP || HTTP request entity-body | Text field
Application | HTTP || HT'TP response Text field
Application | HTTP || HITTP response entity-body | Text field
Transport DNS ID 16-bit field
Transport DNS QDCOUNT 16-bit field
Transport DNS ANCOUNT 16-bit field
Transport DNS NSCOUNT 16-bit field
Transport DNS ARCOUNT 16-bit field
Transport DNS QNAME Text field
Transport TCP TCP Sequence Number 32-bit number
Transport TCP TCP Ack Number 32-bit number
Network ICMP || Payload Data field
Network 1P IP Identification 16-bit field
Network IP IP Flags 3-bit field
Network P IP Options 24-bit field
Network IpP IP Padding 8-bit field

2.6 Digital Communication System

The basic function of a digital communication system is to transfer data from an
information source to a destination [24]. Based on the working scenario and the
accepted definition for covert channels, it is expected that the desired covert commu-
nication system will behave like a digital communication system and pass information
between a source and destination processes. For this reason, the basic model for a
digital communication system [9, 24, 44, 40] will be adopted as the basis for the covert
communication design. The following are brief descriptions of each component of the

model as seen in figure 2.10.
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Figure 2.10: A Digital Communication System from [24, 9]

2.6.1 Discrete Data Source

The discrete data source is a process that produces a sequence of discrete symbols from
a finite alphabet. The information source in this context is a person or process that
originates the initial message. In the context of the working scenario, the information
source will be a process that outputs the ASCII text that composes the wireless
security passphrase. The Source Encoder accepts the output from the Information
Source and converts it to a binary sequence referred to as the information sequence

u [24].

2.6.2 Channel Encoder

The Channel Encoder adds redundancy to the information sequence u and transforms
it into a discrete encoded sequence v. The purpose of this transformation is to provide
additional information within the message to allow the Channel Decoder to correct
for any errors in the encoded sequence that may have occurred during its passage

through the transmission channel.
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2.6.3 Discrete Channel

The Discrete Channel accepts a sequence of discrete symbols as an input and then
outputs a sequence of discrete symbols that may or may not be identical to the input
sequence. The Channel consists of a Modulator, Channel, and a Demodulator. The
modulator accepts symbols from the Channel Encoder and converts each symbol value
into a different waveform that is suitable for transmission. Therefore, the number of
different waveforms is equivalent to the number of different symbols. The Channel
is a physical medium that allows for the transmission of the waveform signals. As
the waveforms enter the Channel they are intermixed with the noise of other sim-
ilar waveforms. The Demodulator recovers the series of intermixed waveforms and

converts them to a corresponding sequence of received symbols r.

2.6.4 Channel Decoder

The Channel Decoder accepts the sequence r from the Demodulator and transforms it
into an estimated binary sequence #i. The term decoding in this context also includes
an error detection and correction process in addition to decoding the received encoded
symbols. This entails developing a error correction strategy based on the types of
errors that will occur in the targeted channel and melding it with a symbol decoding
process. Ideally, the resulting estimated binary sequence 1 is the same as the initial

binary sequence u.

2.6.5 Discrete Data Destination

The Discrete Data Destination is the target audience for the data sent by the Discrete
Information Source. In order to review the received data, the Source Decoder converts
the estimated sequence 1 into an estimate of the original output message from the
Information Source and delivers it to the Destination. In relation to the working
scenario, the Destination is an ASCII text display on the intelligence agent’s computer

that reveals the security passphrase for the secure wireless network.



28

2.6.6 Error Control Strategy

Another item to note from the working scenario is the unidirectional nature of the
covert communication system. This means that the eavesdropping intelligence agent
does not communicate with the software Trojan but only listens for its signal. There-
fore, if there are errors present in the received transmission, the Source Decoder must
be able to perform the error correcting process without any help from the software
Trojan. Error control in this uni-directional context must be accomplished through
the use of Forward Error Correction (FEC) [24]. FEC also allows the system to per-
form error correction on the received data without waiting for the entire sequence
of symbols that composes the message. The functionality of FEC can be achieved

through the employment of error correcting codes.

2.7 Error Control Coding

In an effort to design a covert communication system that will operate in a noisy
environment and reliably reproduce a desired message, a review of current digital
communication system terminology and error control methods is required. Inherent to
the primary research goal, the desired communication is to be “covert” thus difficult to
detect by way of concealment amongst other network traffic. Error control techniques
represent an essential component in the effort to achieve reliable communications
within the targeted wireless networking environment.

Coding should not be confused with encryption or encipherment. These techniques
are specifically used to conceal the contents of a message. On the other hand, the
term coding in this context refers to the process by which redundant information is
systematically introduced into a message prior to transmission for the purposes of
faithfully recovering the original message at the receiver despite the introduction of
errors [9]. When making reference to coding, we also refer to the area of research
known as Coding Theory or more specifically, Channel Coding, a class of Coding
Theory which deals with the minimizing of received message error by employing a

code for the purposes error detection and correction. Channel coding and the use of
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codes for error correcting techniques has been successfully implemented and used in
applications as diverse as correcting Compact Disc (CD) audio errors due to dust and
scratches to removing noise from NASA deep space mission communications with the

Voyager spacecraft.

2.7.1 Types of Codes

The two basic types of error control codes in use today are block codes and convolution
codes. The primary differences between block codes and convolutional codes lies in
the way an encoder utilizes each code type to produce an encoded message. An
encoder that employs block codes divides the binary input stream into message blocks
of k information bits each. The message block is represented by the binary k-tuple
u = (uy,u,..., u) called a message. The encoder can therefore only process 2*
different possible input blocks. As binary message u arrives in the input stream,
the encoder then independently translates the message into a corresponding binary
n-tuple v = (v1, 12, ..., v, ) from a look-up table of discrete symbols of length n bits
called code words. Each code word represents an individual symbol of an alphabet
containing 2* different output symbols. Therefore there are just as many individual
code words as number of possible input blocks. The resulting code is thus defined by
the length of the input block k£ and the length of the output symbols n as a (n, k)
block code. Table 2.2 is an example of a block code look-up table for a (7,4) block
code [24]. The rate of a block code is calculated as R = k/n where k < n. Since
the output symbol (code word) from a block code encoder depends only on the input
symbol (input message), the encoder is considered memory-less.

An encoder that employs a convolutional code also accepts k-bit blocks and also
produces an n-bit output symbol [24]. Although, in a convolutional encoder, the
encoded output symbol is not just dependent on the input symbol at the same time
reference. An output symbol of a convolutional encoder is dependant on the previous
m input symbols, where m is the order of memory within the encoder. Therefore,
the set of n-bit output symbols produced by k£ input bits with m encoder memory

registers is called a (n,k,m) convolutional code. The rate of a convolutional code is
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Table 2.2: Look-Up Table for a (7,4) Binary Block Code from [24]

Messages | Code Words
0000 0000000
1000 1101000
0100 0110100
1100 1011100
0010 1110010
1010 0011010
0110 1000110
1110 0101110
0001 1010001
1001 0111001
0101 1100101
1101 0001101
0011 0100011
1011 1001011
0111 0010111
1111 1111111

also calculated as R = k/n where k < n. Convolution codes take their name from the
linear superposition (modulo-2 addition) process of an impulse response characteristic
of the encoder. The modulo-2 (mod2) addition of time shifted impulse responses is
an overlapping process which results in a coded output symbol [20].

Another way to express how convolution encoders perform mod2 addition is
through the use of generator polynomials (g,). Since each bit of the output sym-
bol from a convolutional encoder is a result of mod2 addition from different memory
resisters within the encoder, the generator polynomial is a way of articulating which
memory register contributed to the addition of a particular bit in the output symbol
(ex. g1 = (1,1,1,1)) as seen in figure 2.11. Therefore, generator polynomials are
unique code parameters that convey the behaviour of a particular convolutional code.

Given the parameters and the generator polynomials that uniquely describe a
particular code, a look-up table can then be produced that also articulates the con-
volutional code’s unique behaviour as seen in table 2.3. The convolutional encoder
look-up table consists of four items: The Input Bit(s) to the encoder, the Current

State of the encoder, the Output Bits and the Next State of the encoder. The states
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(n,k,m) or (2,1,3) convolutional code
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Figure 2.11: Convolutional Code Encoder and Generator Polynomials

of the convolutional encoder are represented by the sequence of the bits within each
the memory registers (ex. if m;y =0, my=1,mg=1thens =0,5=1,5=1
and the current state is 011). For example, if there are 3 memory registers (m = 3),
then the encoder will possess 8 (2™) states. Thus the convolutional encoder is a finite
state machine which emits a coded symbol during each state transition. The trigger
to make the transition between states is the value input bit sequence.

A convolutional encoder can therefore be implemented with a series of memory
storage registers and mod2 addition operations or by just referencing the look-up
table. The employment of a look-up table by an encoder can simplify the design and
implementation of an encoder by reducing the requirement to perform the necessary
mathematical functions to produce encoded symbols [20]. It is expected that the
Software Trojan from the working scenario will employ a look-up table vice mem-
ory storage and adders to generate the coded symbols for the covert communication
system.

Since convolutional code output symbols are dependant on the previous receipt
of input symbols, they would appear to have a better error detection and correction
characteristic over block codes. Furthermore, the expected errors in the targeted

networking environment will be coded symbol insertions and deletions, the use of
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Table 2.3: Look-Up Table for a (2,1,3) Convolutional Encoder from [20]

Input Bit | Current State | Output Bits | Next State
I, 515283 0,0, 518283
0 000 00 000
1 000 11 100
0 001 11 000
1 001 00 100
0 010 10 001
1 010 01 101
0 011 01 001
1 011 10 101
0 100 11 010
1 100 00 110
0 101 00 010
1 101 11 110
0 110 01 011
1 110 10 111
0 111 10 011
1 111 01 111

convolutional codes would appear to more practical [44] than block codes. In addition,
having the knowledge of which symbols are expected next in a coded message based
on the previous received trend is a distinct advantage for detecting and correcting
errors.

Given that the output symbols of a convolutional encoder follow a'pattern, convo-
lutional codes possess limited self-synchronizing capability [44] and may not require
any message framing to allow for a reliable decode of the covert message. Furthermore,
since the convolutional encoder is a finite state machine for a discrete communication
system [40] the output symbols are not directly related to the input symbol such
as in block codes. Therefore, the decoding of the covert message, if intercepted by
unintended recipients, would be more challenging. Given the success potential con-
volutional codes possess to deal with the unique error modes expected in the wireless
channel along with other potential side benefits of synchronization and obscurity,
convolutional codes will be selected as the error correcting code to be used in the

design of the covert communication system.



33

2.7.2 Convolutional Code Graphical Representations

Graphical representations are often used by convolutional encoder designers in order
to get a better appreciation for the operation or behaviour of a particular convolu-
tional code. The three graphical representation methods that are often employed are:

State Diagram, Tree Diagram and Trellis Diagram.

2.7.2.1 State Digram

A State Diagram is a collection of nodes and arrows that represent the transitions
between states of a convolutional encoder as shown in figure 2.12. Each individual
state is represented by a node with the state value articulated inside. The arrows
represent the state transitions initiated by the input bits of the encoder. Typically,
the state transition arrow is annotated with the value of the input bit(s) that give

rise to the transition as well as the output bits in the form of input bits/output bits.

Figure 2.12: State Diagram Example for (2,1,3) code from [20]

2.72.2 Tree Diagram

A Tree Diagram is a binary decision tree that represents the decisions taken by the

convolutional encoder over time based on the encoder input sequence as shown in
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figure 2.13. Although this method is helpful in representing the encoder decision
behaviour based on the input bits, it was found to be of minimal use compared to the
other graphical methods in the design of the covert communication system. For this
reason, Tree Diagram representations will not be further employed in the remainder

of this thesis.

2.7.2.3 Trellis Diagram

To better appreciate the behaviour of the convolutional encoder’s behaviour over a
particular time period, the generally preferred graphical representation is the Trellis
Diagram as shown in figure 2.14. The x-axis of the diagram represents the progression
of a discrete time reference while the y-axis represents the different states of the
convolutional encoder. Lines that represent state transitions are then drawn from
a particular state to all the next possible states depending on the number of input
bits to the encoder. For any convolutional encoder with &k input bits, there will
be 2F possible transitions from the current state. Once again, each state transition
is typically annotated with the values of the input and output bits to convey which
bit(s) initiated the transition and the emitted output bits for the particular transition.
This annotation is typically in the form input bits/output bits. In addition, Trellis
Diagrams typically begin at the “zero” state and progress to any number of desired

time periods.

2.8 Summary

This chapter has presented the background material employed to design a covert
communication system. The background topics discussed in this chapter focused on
the working scenario fidelity, TCP/IP and 802.11 technology models, covert channels
as well as aspects of information theory. The combination and application of these
ideas and technologies will be further discussed in Chapter 3 as part of the research

activities toward designing a successful working scenario.
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Chapter 3

New Theory and Design

3.1 Introduction

Previously in Chapter 2, ideas and technologies that formed the foundation and moti-
vation for the research into covert channels in secure wireless networks were presented.
Chapter 3 will discuss the unique combination of ideas and technologies previously
presented along with some new theory that was utilized to design a working covert
communication system on a secure wireless network.

In an effort to design a covert channel that conceals its communication amongst
the noise of the shared wireless resource, this chapter will outline how convolutional
coding along with a new error correcting methodology can be combined to detect and
correct potential channel errors. In addition, this chapter will provide the details of
the covert communication system design and the approach used to defeat the encryp-
tion inherent to the WPA security standard. The experimentation and validation of
the design concepts presented in this chapter will be further discussed in Chapter 4 as
part of the implementation of the covert communication system on a secure wireless

network.

3.2 Wireless Network Covert Channel Model

The first step in designing a wireless covert communication system is to model the
target environment and identify the shared resource by which to communicate. Trans-
posing the generic model for a digital communication system presented in figure 2.10
to the problem space of an 802.11 secure wireless network and the working scenario,
we can make direct associations between the components of the model and resources
for each actor in the working scenario shown in figure 3.1.

The software trojan on the compromised station will perform the functions of

37
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Compromised Station

Wireless
Medium

Figure 3.1: Wireless Network Covert Channel Model

the Discrete Source, Channel Encoder and Modulator. The physical Channel will
represent the wireless passage of encrypted 802.11 MAC data frames between the
software Trojan on the compromised station and the eavesdropping station of the
intelligence agent. While the intelligence agent station conducting CNI operations
will perform the functions of Demodulator, Channel Decoder, Source Decoder and
Information Destination. The noise in this context will be the presence of other
encrypted 802.11 MAC data frames originating from the same compromised station
but generated by other legitimate processes.

In order to achieve covert communications between the software Trojan and the
covert receiver of the intelligence agent, information must somehow be imbedded
within the properties of the encrypted 802.11 MAC data frames. Since all higher
level protocol information is encrypted as part of the data frame payload body, a
covert channel technique other than steganographic must be employed to effect the
shared resource of the 802.11 MAC data frame to permit communication. The pro-

posed solution for this problem is the implementation of an appropriate covert storage
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channel. Utilizing a covert storage channel, the software trojan would signal infor-
mation to the covert receiver through changes in the sizes of received 802.11 MAC
data frames consistent with a modulated coding scheme. This signal would be uni-
directional in nature as there would be no way for the covert receiver to provide
feedback to the software trojan.

In addition, in order to achieve a certain level of activity concealment, the wireless
covert channel must also coexist amongst the noise of other legitimate communica-
tions. This means that the sizes of the encrypted 802.11 MAC data used to transfer
the encoded message must be similar to other observed legitimate encrypted traffic as
not to bring attention to its irregular activity. The proposed solution for this design
goal is to implement FEC error control coding techniques within the wireless covert
communication system in order to detect and correct for errors within the covert

message without feedback to the software trojan.

3.3 Selecting an Effective Coding/Decoding Scheme

A core idea in this research into wireless network-based covert channels is the appli-
cation of proven error control coding methods for digital communication systems to
the unique new problem of MAC Layer frame communication. Unlike regular digital
communications systems which incur error within the discrete channel at the bit level
of each individually transmitted waveform from, the noise within the covert network
channel of a 802.11 MAC Layer frame communication system is represented by the
addition or loss of frames where each frame represents a possible encoded symbol.
Therefore, the desired coding scheme must be able to detect symbol errors within the
covert channel data stream as well as take the appropriate steps to resolve the error
and reliably recover the intended covert message.

Somec of the research into channecls with insertion and deletion errors [21, 36] sug-
gest methods that implement marker or watermark codes and deal with the problems
at the bit level. Unfortunately, these methods are somewhat impractical for this
problem space. Although, the employment of marker and watermark codes in this

context could potentially improve issues of synchronization and error detection, they
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would most definitely compromise the concealed nature of the covert system with a
consistent and repetitive activity pattern.

On the other hand, convolutional codes present a viable approach to solve the
problem of concealing the transmission pattern of the message while providing error
detecting and correcting functionality. The non-cyclical nature of convolutional codes
along with the ability to perform FEC provides the covert communication system with
a reliable capability that will be harder to detect in the presence of noise.

For a convolutional code to be effective for use within a covert communication
system, the decoder employing this code must be able to detect symbol errors quickly
from within a sequence of symbols. In order to accomplish this task successfully,
a convolutional code encoder must exhibit significant memory distances to easily
distinguish breaks in the expected symbol sequence. Notwithstanding the search for
a convolutional code with large output symbol distances, one must also consider the
possible state errors identified at [44] of memory loss, equal and alternate paths and
unequal and alternate paths as an indicator of encoder performance when employing

a code in this context.

3.3.1 Memory Loss

Memory Loss in a state machine occurs when there exists the possibility for the
current state to also be the next state in a loop-back transition as seen in figure 3.2.
Since the encoded symbol emitted during this loop-back transition will always be the
same, it could potentially be emitted several times in a row depending on the input
symbol to the encoder. If this occurs, any memory of previous symbol emissions in
the sequence of encoded symbols is lost as it becomes impossible to determine how
many of the loop-back encoded symbols were noise or actually part of the encoded
message.

In addition to the simplest form of memory loss which is manifested as a single self-
loop, memory loss can also occur with loop back conditions occurring over multiple
states (figure 3.3). The state transition example State A — State B — State A

shown in figure 3.3 is also a case of memory loss due to two potential noise symbol
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Figure 3.2: State Machine Memory Loss Error - Self-Loop

insertions which returned the state machine back to State A. Once again it becomes
difficult to determine if the two loop-back encoded symbols were a result of noise
or actually part of the encoded message. Even larger loop-back memory loss cases
are possible, although the combinations of noise symbols required to manifest these
conditions become less-probable to occur randomly in the channel. For this reason,
the selected coding scheme should not contain any short loop-back state transitions

to avoid the potential for memory loss due to noise symbol insertions.

Memory
Loss

Figure 3.3: State Machine Memory Loss Error - Multiple State Loop

3.3.2 Equal and Alternate Paths

An equal and alternate path error refers to the condition in a state machine in which

the transitions which lead to a particular state can be achieved through two or more
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paths of equal length as seen in figure 3.4. This means that the legitimate sequence of
encoded symbols that leads from one particular state to another can also be replicated
with an equivalent number of non-legitimate symbols in a separate sequence. This
type of error posses a problem in the error detection and correction process of the
Channel Decoding component of the covert channel model. Short equal and alternate
paths may give way to the improper acceptance or recreation of an incorrectly encoded
symbol sequences due to insertion error noise in the channel since there is no way to
decide which path is the correct decoding. The selected encoding scheme must then
exhibit equal and alternate paths long enough to provide the decoder the flexibility

to correct for several insertion or deletion errors.
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Figure 3.4: State Machine Equal and Alternate Path Error

3.3.3 Unequal and Alternate Paths

Unequal and alternate path errors refer to the condition in a state machine in which
the transitions which lead to a particular state can be achieved through two or more
paths of unequal length as seen in figure 3.4. This means that the legitimate se-
quence of encoded symbols that leads from one particular state to another can also
be replicated with a smaller or larger number of illegitimate symbols in a separate se-

quence. This type of error also posses a problem in the error detection and correction
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process of the Channel Decoding component of the covert channel model as smaller
unequal and alternate paths may give way to the improper acceptance or recreation
of an incorrectly encoded symbol sequence due to noise in the channel. The selected
encoding scheme must then exhibit unequal and alternate paths with a significant
length to once again provide the decoder the flexibility to correct for several insertion

or deletion errors.

Ve — , |Path 1] > |Path 2)

Figure 3.5: State Machine Unequal and Alternate Path Error

3.3.4 Trellis Codes

Trellis codes, like convolutional codes, can be articulated graphically through the use
of state or trellis diagrams. Although, unlike convolutional codes, trellis codes are
not based on an impulse response or generator polynomials to define their behaviour.
Instead, a trellis code is defined by a finite state machine structure, quite often hand-
designed [44, 49|, which exhibits a behaviour that can be captured within a trellis
diagram. Trellis codes allow for the development of codes with good output symbol
memory distances while at the same time reducing the impact of the possible state
errors outlined in the previous sub-sections. In addition, a trellis code’s behaviour
can also be represented in a look-up table that is identical in structure to those of

traditional convolutional codes.
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Based on the above error criteria and a decoder’s ability to detect a symbol error
quickly, a convolutional style code will be selected for implementation within the
covert communication system. Tests results relating to the code selection will be

presented further in the following chapter 4.

3.4 Error Correction Methodology

In order to correct for symbol level errors, the Channel Decoding component must
first detect that an error exists in the sequence of encoded symbols, then take the
appropriate action to then correct for the detected error. Once the error has been cor-
rected, the estimated sequence of encoded symbols can then be decoded based on the
chosen coding strategy. This section will discuss the methodology that was employed
to correct for detected errors within the received sequence of encoded symbols.

Knowing that the errors that will occur in the 802.11 wireless covert channel will
either be the noise of additional of MAC Layer frames from other processes or the
loss of MAC Layer frames due to anomalies of the wireless channel, then the expected
errors will be either an insertion or deletion of received encoded symbols. Given that
the expected errors are symbol-level versus bit-level in nature, regular methods of
error correction for convolutional decoders must be modified to adapt to this new
environment. More specifically, we must consider a correction methodology that
accounts for the insertion and deletion of symbols versus the corruption of individual
bits from the received sequence. Therefore, another design objective for the covert
communication system was to formulate a new error correction methodology. It was
proposed that this new error correction methodology would be based on a series
inductive steps to detect and correct for expected symbol errors from the wireless
covert channel.

The first step in developing an error correction methodology was to establish a
method to detecting errors in a sequence of received symbols. One proven method
for decoding bit streams encoded with convolutional codes is through the use of a
decoder employing a Viterbi algorithm [50]. Although a Viterbi based decoder also

attempts to correct for bit-level errors based on maximum likelihood decoding, the
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use of such a decoder in this context was only to detect errors in the received encoded

symbol sequence.

3.4.1 Error Correction Assumptions

Given an established method for error detection within an encoded symbol sequence,
the next task was to develop a series of inductive steps that would attempt to correct
for symbol level errors. To accomplish this task a series of assumptions were made as
a framework from which the inductive steps could be produced.

Like the author at [36], it was assumed that all insertion and deletion errors that
occur are random events. Since the quantity of legitimate 802.11 MAC data frames
(noise) is dependant on user actions and/or communication processes active during
any period of time on a wireless computer, it was expected that the level of legitimate
802.11 MAC data frames emanating form a typical wireless computer would be fairly
low for the majority of a particular observation period. Given this expectation, the
following five assumptions were made in the development of the inductive decision

steps.

Assumption 1. The Viterbi decoder can detect single symbol deletion errors within

one encoded symbol.

Assumption 2. The Viterbi decoder can detect single symbol insertion errors within

two encoded symbols.

Assumption 8. The Viterbi decoder can detect double symbol insertion errors within

three encoded symbols.

Assumption 4. The a symbol in a sequence of symbols abcd to be evaluated is always

legitimate and in the correct position.

Assumption 5. Within a sequence of four symbols (abed), there can only exist a
maximum of two symbol errors. These errors can range from single to double

insertions errors or single deletion errors or a combination of both types of error.
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3.4.2 Inductive Steps

Next in the process of developing the error correction methodology was the devel-
opment of a series of inductive steps that would attempt to correct for symbol level
errors. The inductive steps would outline how the received sequence of symbols would
be inspected for errors as well as define the action taken to correct errors in the re-
ceived sequence based on either a pass/fail result of the inspection.

A sliding window approach of six symbols (a,b,c,d,e,f) was adopted as the basis
for the inductive step inspections. The inductive step inspections that formed a
decision tree (figures 3.6 and 3.7) focused on identifying and eliminating one to two
possible symbol errors from within a four symbol sequence of abcd in order to prove
that the symbol that followed immediately after a in a sequence abcd was in fact
legitimate and in the proper position. If this was accomplished during any step of
the decision tree, the a symbol would be added to an estimated sequence of received
symbols considered “error free” and awaiting final decode. The symbol that followed
immediately after a, that was deemed “good”, then became the new a symbol and
the sliding window was shifted to incorporate the successfully tested error correction
changes as well as to add the next symbols in the raw sequence to form a new window
of symbols abcdef. Once the sliding window has been reformed, the process restarts
with a check for errors within the new version of the abcd sequence.

The decision tree was divided into two sections based on the expectation that sym-
bol insertion errors (noise) were more likely to occur than symbol deletions (frame
losses). In addition, the process of correcting symbol insertions was considered less
costly in terms of computing resources, compared to correcting symbol deletions.
Symbol deletion correction requires that every possible symbol within the coded al-
phabet be attempted to complete one deletion verification. Thus, for a code with
a rate R = k/n, one symbol deletion may require 2* attempts. The result was a
“cost, effective” decoding strategy that first looked for symbol insertion errors (fig-
ure 3.6) and then progressed to a mix of insertion and deletion errors (figure 3.7) if

the sequence of the previous checks failed.
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In the first stage of the decision tree as shown in figure 3.6, the sequence of abcd
is decoded with the Viterbi decoder to deduce the sequence was error free. If that
check passes and proves that b is legitimate and in the proper position, the b symbol
is deemed “good” and a is added to the bank of “error free” symbols. The b symbol
then becomes the new a symbol and the process restarts with the sliding window
shifted in the sequence by one symbol. If that check fails, then the sliding window is
then reconfigured to check for a double insertion error where the d and e symbols are
considered “noise” (d and &) and removed from the window sequence. If that check
passes, then the symbol b is once again proven “good” and a is added to the bank.
In addition, the process is restarted with the sequence befg assuming the new role of
abcd. On the other hand, if the check failed then the process continues to the next

step in the tree to perform another verification.

<Start>

|
abcd
fail " ™, pass
abcf <b is good>

fail
ac?lé{ \é%aslg good>

fail .~ \,pass
abef <dis good>
fail,~” ™ pass
acef <bisgood>
fall, ~ “\ pass
abdf <cis good>
fail ~ \ pass
abce <bis good>
fail ~~  \ pass
abde <bis good>
fail ~ “\ pass
acde  <bis good>
fail "\ pass
acde  <cis good>
fail,~  \ pass
<continue checks> <¢is good>

Figure 3.6: Symbol Error Correction - Inductive Step Inspections Part 1

In the second stage of the decision tree as shown in figure 3.7, the sequence of abcd
is checked for single symbol insertions as well as possible symbol deletions (). In the

first part of this stage, the verifications focus on mixed symbol insertion and deletions
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and then progress to single symbol deletion errors. Similar to the first stage, if a check
was successful the symbol next to a was deemed “good” and a was added to the
bank. The corrected sequence then becomes the new sequence abed and the process
is repeated. If the process continually fails and the bottom of the tree is reached, then

one of the design assumptions is considered in error. If this case is reached, then the

d symbol in the sequence abed is considered the first “noise” symbol (d) in a burst
of several other noise symbols that follow in the received sequence. The d symbol is
then removed from the sequence and the process restarted with abce becoming the

new abcd.

abcie
fail " ™ pass
abide <b is good>
fail,~ \ pass
abice <bis good>

fail ~ “\ pass
abide <dis good>
fail,~~ ™, pass
aibde <b is good>
fail ~~ ™\ pass
alcde <cis good>
fail 7\ pass
aibce <b is good>
fail ™ pass
abcid  <bis good>
fail,” “\ pass
abicd  <bis good>
fail ~~ \ pass
albcd  <cis good>

fail, " “\pass
abce <¢ is good>

<Return to Start>

Figure 3.7: Symbol Error Correction - Inductive Step Inspections Part 2

Once the window reaches the end of the symbol sequence it must then adopt a
slightly different approach as seen in figure 3.8 to correct the remaining symbols in
the sliding window bedef. Due to the few remaining symbols in the sequence, the
previous error correction methodology can not be applied. Instead, this approach

checked each symbol individually along with the error-free bank for insertions () or

deletions (7) before being considered “good” and consequently added to the bank.
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If a symbol failed the initial validity check (Bank+b), a symbol deletion check was
conducted between the bank of error-free symbols and the tested symbol (Bank+b).
Upon the failure of both tests, the symbol was deleted from the sequence and the
next symbol (c¢) was tested in a similar fashion. On the other hand, if a symbol
passes either the insertion (Bank+b) or deletion (Bank+ib) test, the symbols used to
achieve a successful test (b or ib) are added to the bank and the process continues
with the next symbol (c¢). When the final individual symbol test finishes at the
end of the sliding window (f), the error detection and correction phase is considered
complete. The resulting bank of estimated “error free” symbols is then decoded with

the appropriate decoding scheme.

<Start individual Symbol Checks>
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<Continue to end of window (f)>

Figure 3.8: Symbol Error Correction - Final Window Inspection
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3.5 Covert Communication Design

The final step in the design of the wireless covert communication system is the unique
combination of all the previously discussed design concepts into one final system
based on available technology and techniques. Employing a systems approach design,
a selected coding/decoding scheme along with the error correction methodology will
be incorporated into the wireless network covert channel model (figure 3.9) with the
intention of implementation based on commercially available computing resources.
The sub-sections that follow further articulate the design and operation of the wireless
covert communication system in terms of its two principle components: Software

Trojan and Covert Receiver.

Software Trojan

Covert Receiver

1150001 11096111 ‘t

()

Figure 3.9: Wireless Covert Communication System Model

3.5.1 Software Trojan

The Software Trojan will be a software executable designed for use in a Microsoft
Windows operating system environment similar to the widely used baseline configu-
rations employed by both Canadian and US Militaries [1, 11, 10]. The Trojan will be
designed based on the model shown in figure 3.10 and implemented with Microsoft

Visual C++ software [27] using object oriented design techniques.
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Software Trojan
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Figure 3.10: Software Trojan Model

For demonstrative purposes, the Trojan will accept ASCII text from the keyboard
of the compromised computer and convert it to a stream of equivalent binary val-
ues. The individual bits of those binary values are represented in the model by the
sequence ag, a1, @z, a3. The Trojan encoder will then take the stream of binary values
and produce a sequence of encoded symbols (cg, ¢1, 2, ¢3) based on the selected cod-
ing strategy. The value of each individual encoded symbol ¢y, ¢1, ¢2, 3 is then used
by the modulator to generate a sequence of data payloads (s, s1, Sq, s3) with sizes
corresponding directly with the value of the encoded symbol. More specifically, there
is a direct mapping between encoded symbol ¢; and the data payload size s; of the
network data packet (and resulting 802.11 MAC frame size). The data payloads are
to consist of a series of ASCII characters combined in such a fashion to not bring
attention to its purpose if intercepted. The data payload will then be included in the
crafting of a Transport Layer UDP echo request [37] as the data portion of the UDP
packet !. The resulting UDP echo request packet will then be transmitted across the
wireless channel as an encrypted 802.11 MAC frame to the wireless access point of

the associated compromised station. The wireless Access point will be utilizing the

Note: We have chosen to implement the covert communication system using UDP echo packets.
However, any network packets may be used to create the desired covert storage channel and the
employment of UDP echo packets does not result in any loss of generality.
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WPA security standard with AES encryption. The sequence of UDP echo requests
that represented the modulated covert message will be proceeded and terminated by
framing symbols which are also size modulated into UDP echo requests. Since the
covert message will be beaconed in a continuous fashion once the Trojan has been
started, the framing symbols will provide the covert receiver a reference from which

to decode each iteration of the beaconed message.

3.5.2 Covert Receiver

The Covert Receiver as shown in figure 3.11 represents a collection of computing
resources used to covertly intercept and process 802.11 MAC data frames for the pur-
poses of recovering the covert message sent by the Software Trojan. This means that
the Covert Receiver need not be implemented all in one programming environment
or even all on one computer/operating system. The Covert Receiver could be a com-
posed of a series of applications and process which when combined together perform
the task of interception and reliable reproduction of the covert message. In relation
to the working scenario, it would not be unrealistic for an intelligence agent conduct-
ing CNI operations to be using a high performance antenna as well as computing
resources utilizing several different tools to recover a covert message. For the pur-
poses of this research, the Covert Receiver will be designed based on readily available
commercial computing resources.

The Covert Receiver will capture the AES encrypted 802.11 frames with a wireless
sniffing application such as Kismet [17] and a wireless network card operating in
promiscuous mode [51]. If Kismet is chosen, then a Linux operating system such as
Ubuntu [3] will be used. It is crucial that the chosen operating system contain wireless
network card drivers that operate in promiscuous mode to effectively eavesdrop and
capture 802.11 MAC frames without associating with the access point.

Once the 802.11 MAC frames are captured by the sniffing application and stored
in a capture file, the frame lengths from a targeted station can be filtered by individual
MAC addresses. This data manipulation and filtering of the captured dump file can

be accomplished with the use of a protocol analyzing application such as OmniPeek
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Figure 3.11: Covert Receiver Model

Personal [53]. The filtered MAC frame lengths of the targeted station will produce a
sequence of received modulated symbols (so, s1, s*, 52, s3) that may also include noise,
s*.

The remaining components of the covert receiver can be implemented in the MAT-
LAB [26] programming environment. The sequence of modulated symbols sg, s1, s*, s2, s3
can be loaded into MATLAB and demodulated to a sequence of encoded binary sym-
bols (cg, c1, ¢*, ¢, c3) based on MAC data frame lengths associated with the encap-
sulated UDP echo requests from the Software Trojan. Like the modulated symbol
sequence, the sequence of encoded binary symbols may contain noise symbols (c*)
which are carried forward as part of the demodulation process. The sequence of en-
coded symbols cg, ¢1, ¢, ¢a, c3 are then sent to the decoder for error correction and
decoding based on the selected encoding strategy. The decoder will use the Viterbi
decoding function resident in MATLAB to detect the error, ¢*, within the sequence.
Once the error is detected, the error correction checks specified by the correction
methodology will then be applied to the sequence to prune out the noise (¢*). The
corrected sequence of encoded symbols ¢, ¢1, ¢, c3 is then passed to the Viterbi de-
coder to translate it into the estimated binary sequence ag, a1, as,as of the covert

message based on the coding strategy used in the Software Trojan. Finally, the bi-
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nary sequence agp, i, as, as is then converted back to ASCII characters to reveal the

contents of the private information leaked from the secure wireless network.

3.6 Summary

This chapter has presented the details of the covert communication system design and
the approach used to defeat the encryption inherent to the 802.11 security standard.
In addition, this chapter outlined how trellis coding along with a new error correc-
tion methodology can be combined to detect and correct potential channel errors.
The experimentation and validation of the design concepts presented in this chapter
will be further discussed in Chapter 4 as part of the implementation of the covert

communication system on a secure wireless network.



Chapter 4

Experimental Analysis and Validation

4.1 Introduction

Earlier in Chapter 3, a unique combination of ideas and technologies utilized in the
design of a covert communication system were presented. With the intent to realize
the designs of the previous chapter, the focus of Chapter 4 will be to outline the
experimentation, results and validation that led to the successful implementation
and testing of a working covert communication system on a secure wireless network.

As part of the process to implement a working covert communication system on
a secure wireless network, several experiments were conducted to validate the design
concepts and specifications. This chapter will describe each of the experiments and
their results that led to a successful achievement of the research goal. A more com-
prehensive discussion of the resulting covert communication system’s implementation

and performance will follow in the concluding fifth chapter that follows.

4.2 Error Detection and Code Selection

The first series of experiments of this research centred on detecting a symbol error
in a sequence of encoded symbols as well as measuring the performance of a code’s
ability to assist in that task. It must be noted that the focus of this research was not
to develop a particular code for this application, but to perform a survey of available
convolutional and trellis codes and determine an appropriate code which is suited for
implementation in a covert communication system.

These initial error detection tests were conducted in the MATLAB programming
environment utilizing the MATLAB implementation of the convolutional encoder
(convenc) as well as the Viterbi decoding algorithm (vitdec) to detect the symbol
sequence errors. In order to perform the task of error detection within an encoded

sequence with these two MATLAB functions, a binary encoded sequence of symbols
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(cocicacs) would first be decoded into an estimated decoded stream of binary symbols
(Go @1 dg) with the vitdec function. The same decoded binary stream (do d; ds)
would be re-encoded with the convenc function employing the same coding strategy
to produce an estimated representation of the original encoded sequence of symbols
(é é1 ¢y é3). If both encoded sequences matched (received and estimated received)
then the original received sequence is considered error free.

On the other hand, if the two encoded sequences did not match, then there were
symbol error(s) present in the original received sequence requiring correction. As
mentioned in the previous chapter, Viterbi based decoders attempt to correct for bit-
level errors based on maximum likelihood decoding. If the Viterbi decoder is provided
with an encoded symbol sequence with errors (cpcic*cacs), the Viterbi decoder will
perform bit level error correction in order to produce an estimated decoded stream of
binary symbols (dy d4 d3) based on maximum likelihood bit error correction. When
the estimated decoded stream of binary symbols (dy dy4 ds) is re-encoded to reproduce
an estimated representation of the original encoded sequence of symbols (& é &
¢4) the two encoded sequences will not match due to the bit level error correction
performed by the Viterbi decoder. Therefore by applying the Viterbi based decoder
to a received sequence of encoded symbols, symbol-level errors can be positively

identified.

4.2.1 Single Symbol Insertion Experiment

The first experiment in this series of tests involved the detection of a single symbol
insertion error in an encoded sequence. To simulate this type of error, a string of
ASCII text (The quick brown fox jumped over the lazy dog’s back.) was initially
encoded with a particular coding strategy to produce a sequence of 416 error-free
encoded symbols abedefg.... The error-free sequence of symbols was then modified
with the insertion of an individual symbol error @, from the alphabet of 2% possible
encoded output symbols, into a position between the fifth and sixth symbols of the
encoded sequence (abcdeafy...).

The resulting sequence was then tested for symbol errors by initially testing the
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first four symbols in the sequence abcd which were known to be error-free. This initial
testing window of four error-free symbols was then increased in size by one symbol
abede and retested for errors. This process continued until the inserted error symbol
was added to the testing window (abcdea) and the window failed the comparison
check. At the point at which the window fails the comparison check, the inserted
error symbol is considered detected.

Once an error was detected, the symbol position in the modified sequence at which
the error was discovered was then compared with the actual position in the sequence
of the symbol error insertion. The difference between the two sequence positions
would then indicate the effectiveness of the code in question in detecting an error
given the symbol employed (@) for the insertion. On the other hand, if no error was
detected and the testing window reached the end of the encoded sequence, the testing
would cease for that particular inserted symbol taking note that the error was not
detected.

At the end of testing for the inserted symbol (&) in a particular position of the
sequence (6t"), that same symbol would then be inserted in the next symbol position
(7t of another error-free encoded sequence (abcdefdg...) and the entire process re-
executed. This incremental approach to symbol insertion placement and testing would
continue until the insertion was placed in a final position, 20 symbols from the end of
the sequence. The window of 20 symbols was selected to provide poorer performing
strategies the ability to detect an insertion error before reaching the end of the encoded
symbol sequence.

Once the symbol insertion tests for the first insertion symbol @ were completed,
the next symbol in the alphabet of encoded symbols was then selected to be a symbol
insertion (b) and the same series of insertion tests were re-executed starting once
again from the 6" symbol position (abcdebfy...). These repetitive series of tests would
continue until all the symbols in the 2% alphabet of encoded symbols were verified.
The error detection results for all the inserted symbols were then combined as both an
average and a worst case maximum to provide an indication of the overall performance

of the implemented code’s ability to detect single symbol insertion errors. The results
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of the single insertion tests can be seen in table 4.1.

Table 4.1: Single Symbol Insertion Error Detection

’ Code Rate I Memory [ Ave Detect in Sym | Max Detect in Sym ‘ Missed Errors | Source—l

| 15 [ 4 ] 1.063 [ 2 [ 0 1144 ]
1/4 2 N/A 147 2 [24]
1/4 3 1.125 2 0 44
1/4 7 1.136 4 0 24
1/4 9 1.146 5 0 24
1/3 9 1.332 6 0 [24]
1/3 11 1.332 6 0 [24]
1/2 9 1.999 10 0 [24
1/2 13 2.023 10 0 24
2/3 4 N/A 14 1 24]
2/3 5 N/A 12 1 24]

| 3/4 | 3 N/A | 9 | 2 | [24]

The tabulated results of the single symbol insertion error experiments appear to
form a trend in which the ability to detect symbol insertion errors improved as the
code rate was lowered from 1/2 to 1/5 rate convolutional codes. In addition, the
increase in memory depth for a particular code rate gave no significant improvement
in performance in detecting an insertion in the sequence of symbols. What is also
interesting to note is that the two top performing codes (Rate 1/5 and 1/4) from [44]
were not convolutional codes but rather trellis codes. Although the traditional convo-
lutional codes taken from [24] were considered “good” codes, many of them contained
error inducing artifacts within their respective state machines such as memory loss or
short unequal and alternate paths. These artifacts along with the proper combination
of legitimate and inserted symbols would cause cases of poor error detection, if errors
were detected at all.

The author of [44] has attempted to develop more efficient codes for use in a
network-based covert communication system based on a state machine structure.
The resulting trellis codes behave similarly to regular convolutional codes but have
been designed with a state machine structure that specifically reduces potential errors

such as memory loss, short equal and alternate paths and shorter unequal and alter-
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nate paths as previously discussed on page 41. Since the trellis codes significantly
outperformed the remaining field of convolutional codes in detecting single symbol
insertions, they were the only codes retained for further comparison in detecting po-
tential wireless covert channel errors. Furthermore, the trellis codes confirmed the
second design assumption on page 45 by consistently detecting a single symbol inser-

tion within two symbols.

4.2.2 Single Symbol Deletion Experiment

The second experiment in the series of encoded sequence error detection involved the
detection of a single symbol deletion from an error free sequence of encoded symbols.
Similar to the last experiment, a string of ASCII text (The quick brown fox jumped
over the lazy dog’s back.) was encoded with a particular coding strategy to produce
a sequence of error-free encoded symbols abcdefg.... To simulate this type of error,
the resulting error-free sequence of symbols was modified by pruning out one of the
legitimate symbols from the sequence. This removal of a legitimate symbol first
occurred with the symbol that occupied the 6" position of the sequence (abcdeg...).

This experiment also adopted an expanding testing window approach that started
with an error-free sequence of four symbols (abed). One should note that the test-
ing window of four symbols relates back to the design assumptions outlined in Sec-
tion 3.4.1. The testing window would continually expand by adding the next symbol
in the modified sequence and then repeating the error detection procedure until the
error was detected. Once the error was detected, the sequence position of the last
added symbol would be compared with the position of the known symbol deletion to
derive the detection metric in symbols.

Once the symbol error was detected in the 6'* position of the modified sequence,
a new symbol deletion was created at the 7" position (abedefh...) of an error-free
sequence and the test re-executed on the new deletion error. These tests would
continue until the last iteration of a symbol deletion tests, 10 symbols from the end
of the sequence, was completed. Once again, a window of 10 symbols was selected

to provide poorer performing strategies the ability to detect a deletion error before
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reaching the end of the encoded symbol sequence. At the end of the testing sequence,
all the detection metrics would then be combined to reflect the overall performance
of a particular code’s implementation at detecting symbol deletions from a sequence

of encoded symbols. The results of this experiment are shown in table 4.2.

Table 4.2: Single Symbol Deletion Error Detection

[ Code Rate [ Memory TAve Detect in Sym rMax Detect in Sym l Missed Errors rSOurce ’
V2 S ™ R R o
14 [ 3 | 70 | 1 o0 (4] |

Given the results of the symbol deletion experiment in table 4.2, neither trellis
code exhibited a performance significantly better than the other for detecting this type
of error. The design of both codes allows for the immediate detection of a missing
symbol from a sequence of encoded symbols. Although there is no clear winning
code for this round of experimentation, both codes performed in a fashion that is not
only desirable, but consistent with the first design assumption for the wireless covert
communication system on page 45. For these reasons, both trellis codes were once

again retained for further experimentation.

4.2.3 Double Symbol Insertion Experiment

The third and final experiment in this series involved the detection of two consecutive
symbol insertions in an otherwise error free sequence of encoded symbols. The two
symbol insertions would be a combination of 2* possible output symbols for a partic-
ular code. Therefore, this experiment would generate (2%)? possible combinations of
coded symbols which would be inserted into error-free sequences similar to the single
symbol insertion experiment. Due to the already significant number of test vectors
generated from the possible combinations of symbols, the string of ASCII text used
to produce the sequence of error-free encoded symbols was reduced to Hello World
to achieve results in a more timely manor.

The double symbol insertion error was simulated by inserting a combination of

error symbols (@a@) into an error-free sequence abcdefy... starting at the 6h position
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(abcdeaafg...). Similar to the previous experiments, an expanding testing window
approach that started with an error-free sequence of four symbols (abed) was also
employed. The four symbol window would be tested for errors and then expanded.
Once again, the next symbol in the sequence would be added to the testing window
and checked for errors until an error was detected. When the error was detected, the
symbol position in the sequence at the point of detection was then compared with
the symbol position of the first symbol insertion to calculate the detection metric in
symbols for a double insertion error.

Once the test was conducted with two symbol insertions starting at the 6* po-
sition in the sequence, the same combination of insertions were then place at the
7th position of a fresh error-free sequence (abcdefadg...) and the detection process
re-executed. This re-execution of the experiment would continue until it reached a
final insertion positon, 10 encoded symbols from the end of the error-free sequence.
Once the final double insertion test was conducted for the particular combination of
insertion symbols (@), another combination of symbols (@b) were then used to re-
conduct the experiment. This would continue until all the possible combinations of
(2%)? symbols were attempted. Once the testing was complete, the detection metrics
for all combinations of symbol insertions were then combined to reflect the detection
performance of a particular code’s implementation for this type of error. The results

for this experiment can be seen in table 4.3.

Table 4.3: Double Symbol Insertion Error Detection

| Code Rate | Memory | Ave Detect in Sym | Max Detect in Sym | Missed Errors [ Source [
5 | & [ NA 5 0
12 | 3 | N/A | 3 0 |44 |

Once again, both trellis codes performed admirably as all of the double insertion
errors were detected from the multiple combinations of test vectors. Although the
maximum detection window for this type of error was three symbols in the cases of
both codes, this is not an indication of poor performance. In fact, this metric indicates

the exact opposite since the minimum possible detection window for this type of error
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is three symbols. Since every possible combination of encoded symbol was inserted to
simulate noise, it is possible that both inserted symbols achieve a combination that is
in fact the next two legitimate symbols in the sequence. The only indication of a break
in the legitimate sequence would be upon the arrival of the next legitimate symbol
(ex. abcdefgf...). Since this type of false symbol alignment infrequently occurs for all
possible combinations of noise symbols, the average window of detection is potentially
lower. Nevertheless, for the purposes of designing the wireless covert communication
system, the maximum window of detection of three symbols will be used for this type
of error. Furthermore, the error detecting performance of the two trellis codes for this
type of error confirms the third design assumption made on page 45 of this thesis.
Both trellis codes ((4,1,3) and (5,1,4)) performed well at detecting encoded symbol
sequence errors as seen in the previous three experiments. Due to their relative
equivalence in performance for the expected environment of a wireless covert channel,
both were retained for further observation in the next round of experimentation of

integrating error detection with the error correction methodology.

4.3 Error Correction Capability

This next series of experiments focused on integrating the error detection capability
established previously with trellis coding and the inductive steps from page 47 to form
an effective symbol level error correction capability for the covert receiver portion of
the covert communication system.

The error correction experiments were once again conducted in the MATLAB pro-
gramming environment to leverage the work previously conducted in symbol sequence
error detection. In this round of experimentation, a series of test cases (table 4.4)
were derived from the expected types of symbol errors as articulated in the fifth er-
ror correction design assumption on page 45. These symbol error tests would once
again be placed in different positions within an otherwise error-free sequence of le-
gitimate symbols and the error correction capability would attempt to detect and
correct for each error type. The following subsections will compare the performance

of the error correction methodology as a function of the employed trellis code. Given
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the two remaining trellis codes being considered for implementation into the covert

communication system, two sets of results will be presented.

Table 4.4: Error Correction Tests

[Series [ Error Type | Test |
1 Error Free abcd
2 Single Insertion abcce
3 Single Insertion abbc
4 Double Insertion abcé
5 Double Insertion abbe
6 Double Insertion abbb
7 Mixed Insertion/Deletion | abéd
8 Mixed Insertion/Deletion | abbd
9 | Mixed Insertion/Deletion | acdd
10 | Mixed Insertion/Deletion | abed
11 Single Deletion abde
12 Single Deletion acde

4.3.1 Single and Double Insertion Correction Experiments

In these series of experiments, the error correction methodology was integrated with
one of the two trellis codes and subjected to a series of test vectors to verify the
performance of the resulting error correcting capability. The test vectors consisted of
several encoded symbol sequence including an error free sequence as well as sequences
that included single and double insertion errors.

The insertion error sequences, similar to the error detection experiments, were cre-
ated by modifying a sequence of error-free encoded symbols by inserting either one or
two symbols in accordance with the particular test case (ex. abcc). Each individual
test case was repeated throughout the length of the error-free encoded symbol se-
quence until the end of the sequence was achieved. In addition, each test case would
be repeated for all possible output symbols for the particular code. The resulting
corrected/estimated sequence of encoded symbols from each test vector were then
compared with the original error-free sequence to determine if the error correction

had effectively removed the fabricated error. If the estimated sequence did not match
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the original error-free sequence, the fault was recorded for the particular test case.
The results of the single and double insertion correction experiments can be seen in

table 4.5.

Table 4.5: Single and Double Insertion Correction Experiments

[ Series |  Error Type | Test | Errors using (4,1,3) | Errors using (5,1,4) |
1 Error Free abcd 0 0
2 Single Insertion abcc 0 0
3 Single Insertion abbe 0 0
4 Double Insertion abcc 8 0
5 Double Insertion abbé 33 122
6 Double Insertion abbb 8 0
| | Total Errors/Vectors | | 49/14401 | 122/56449 |

As expected, both trellis codes when combined with the error correction method-
ology, were able to inspect and properly correct all the error-free and single insertion
test vectors. On the other hand, there were some significant differences between the
performance of the two codes when they were faced with double insertion test vectors.
The (5,1,4) trellis code out-performed the (4,1,3) trellis code in the 4 - 6 test series.
Although it would appear that the (5,1,4) code had greater difficulty with the series 5
test vectors, it still achieved a failure rate of only (122/56449) or 0.216%. While the
(4,1,3) code performed marginally worse with the series 5 test case by experiencing
a (33/14401) or 0.229% failure rate. Therefore, in the case of this experiment, the

(5,1,4) code is considered superior at resolving double insertion errors.

4.3.2 Single Deletion and Mixed Error Correction Experiments

These series of experiments continued the effort to verify the performance of the error
correcting capability of the wireless covert communication system by subjecting the
trellis codes along with error correction methodology to a new scries of test vectors
that included single deletions and mixed deletion and insertion tests.

The testing methodology for these experiments remained the same as the previous
insertion error tests except the test vectors now included a symbol deletion as part of

each test. For example in series 9 test vectors, the test sequence deletes a symbol (b)
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as well as adds a symbol insertion (d) to an error free sequence of abed to eventually
become acdd. If the error correcting capability could not properly resolve the induced
errors for a series of test vectors, a fault would again be recorded for that particular
case. The results of the single deletion and mixed error correction experiments can

be seen in table 4.6.

Table 4.6: Single Deletion and Mixed Error Correction Experiments

| Series l Error Type [ Test | Errors using (4,1,3) LErrors using (5,1,4) I
7 | Mixed Insertion/Deletion | abéd 8 9
8 Mixed Insertion/Deletion | abbd 31 49
9 Mixed Insertion/Deletion | acdd 57 54
10 | Mixed Insertion/Deletion | abed 9 9
11 Single Deletion abde 0 0
12 Single Deletion acde 0 0
] | Total Errors/Vectors | |  105/1152 \ 121/2304 |

Although the error correcting faults were higher in this round of experimentation,
the (5,1,4) trellis code once again out-performed its rival trellis code with a 5.252%
fault rate (121/2304) as compared to a 9.115% fault rate (105/1152) for the (4,1,3)
trellis code. Both codes were able to resolve single deletions without fault, but both
encountered difficulty when resolving mixed insertion/deletion scenarios. Combining
these results with the previous error correction experiments, the (5,1,4) trellis code
exhibited an error correction fault tolerance of 243 faults/58753 test vectors or 0.414%.
The (4,1,3) trellis code, by comparison, exhibited a error correcting fault tolerance
of 154 faults/15553 test vectors or 0.990% which was over double that of the (5,1,4)
trellis code. Given the error correcting performance of the (5,1,4) trellis code when
integrated with the error correcting methodology, the (5,1,4) trellis code was selected
as the code to be implemented in the wireless covert communication system.

In an attempt to interpret the results of the error correcting experiments and
understand why the (5,1,4) code performed better than the (4,1,3) code we must look
to the state structures of both codes for answers (figures 4.1, 4.2).

Knowing that the error correction methodology attempts to correct for potential

errors within a sequence of symbols by suggesting alternative sequences which incor-
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Figure 4.1: (4,1,3) Trellis code from [44]

porate symbol deletions as well as fabricated insertions to couter the expected noise
and frame loss of a wireless channel, the process of making these suggestions assumes
that the state structure will be diverse enough so that an alternate path will not be
selected as part of the suggestion thus creating false positive and bogus data.

One reason the trellis codes performed better than the traditional convolutional
codes in detecting symbol insertions was that memory loss errors did not exist in the
structure and lengths of equal/unequal and alternate path errors were significantly
large. Thus the introduction of one inserted symbol could not be confused for an
alternate path through the state machine. Similarly, although the (4,1,3) code had
increased path distances between equal/unequal alternate pathways, the increases
were not sufficient. Resolving two sequence errors by suggesting two more errors often
generated a sequence with four errors that selected an alternate path and created a
false positive.

The (5,1,4) trellis code was developed to increase the alternate path lengths
through the employment of a 3-dimensional structure [44]. The state machine is
composed of two rings of eight states that are connected by a few state transitions.
This serves to isolate the majority of state transitions to one of the two rings. It

is through this isolation that the majority of sequence errors can be detected and
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Figure 4.2: (5,1,4) Trellis code from [44]

resolved. Although the (5,1,4) trellis code can fail due to the accumulation of four
sequence errors (2 x channel and 2 x correction suggestions), these cases occur less

often due to the design of the state structure.

4.4 Wireless Channel Characterization

The final stage of experimentation before the implementation of the wireless covert
communication system involved observing the wireless channel and attempting to
characterize typical noise activity within the channel. By observing the behaviour of
the 802.11 MAC data frames with respect to activity on the compromised station,
the covert communication system can be implemented in a fashion that exploits the
regular wireless network traffic for concealment as well as taking advantage of 802.11

frame encapsulation behaviour of higher-level protocol activity to communicate the
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covert message.

4,41 Noise Generation Experiment

The purpose of the noise generation experiment was to generate wireless network
traffic from a wireless computer in a fashion that is typical of an average Internet
user. Since the covert communication system will be using changes in the encrypted
802.11 MAC data frame length as a means to communicate a covert message, we
are interested in the encrypted 802.11 MAC data frame activity originating from the
wireless computer and directed at the access point. More specifically, we will observe
the variations in the MAC data frame lengths that occur based on typical outbound
Internet activity from the wireless computer.

This experiment was composed of two wireless computers: the first computer
conducted several Internet based activates that would specifically generate outbound
data traffic while the second computer eavesdropped on the first computer’s wireless
network activity. The 28 minute experiment saw the target wireless computer perform
several activities such as surf web pages, search for information from an online search
tool, send an e-mail with attachment from a web based mail provider as well as
communicate with an instant messaging tool to chat and transfer a file. Concurrently,
the eavesdropping computer covertly captured all the 802.11 frame traffic during the
test period with a wireless sniffing tool Kismet. A histogram of the observed 802.11
MAC data frame traffic by frame lengths can be seen in figure 4.3

The histogram at figure 4.3 shows 802.11 MAC data frames ranging in size from
80 to 1544 bytes. Despite the appearance of activity across the whole spectrum
of lengths, there are significant activity spikes at specific lengths. The spikes of
activity for a few lengths were so large as to make it difficult to visualize the activity
in the remainder of the spectrum of lengths. For this reason, some lengths were
manually reduced to an artificial level of 40 occurrences in order to bring up the noise
floor in the remainder of the spectrum. Most notably, the frame length of 92 bytes
was reduced from 1827 occurrences to 40 for visual purposes. Other spikes included

154 occurrences of 100 byte frames and 299 occurrences of 1544 byte frames. The
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Figure 4.3: Noise Generation - Histogram of 802.11 MAC Data Frames

distribution of the observed MAC data frames are further represented in figure 4.4.
Since the wireless covert communication system is to operate in the presence of
network traffic noise, the distribution of the MAC data frames by length as shown
in figures 4.3 and 4.4 can be used to select the alphabet of coded symbols used to
modulate the data packet lengths for use in the system. Although, despite the desire
to operate amongst the noise of regular network traffic, care should be taken not
to select overly used MAC data frame lengths. One can observe from figure 4.4
the distribution of observed MAC data frames that almost 70% of the activity was
centred around the data frames with smaller lengths. In addition in figure 4.3, the
three manually reduced frame lengths of 92, 100 and 1544 bytes composed 72.9% of
the captured frame traffic. Although the covert communication system is to co-exist
in the same channel as other legitimate traffic, these three traffic spikes would violate
the error correction design assumptions from page 45. Therefore, the remaining frame
lengths that exhibited moderate noise activity would be chosen for use with the covert

communication system.
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4.4.2 UDP Packet Size vs MAC Frame Size Experiment

This experiment was developed to determine the relationship between the size of an
unencrypted UDP echo packet and the size of the same packet encapsulated inside an
encrypted 802.11 MAC data frame. By conducting this experiment, it should become
apparent if there is a direct relationship between the two sizes or if there are variations
in the encapsulation and encryption process which will cause the transformation to
be non-uniform over a spectrum of different sizes.

Using Microsoft Visual C++-, a UDP echo packet was created with a data field
filled with ASCII text and sent to the IP address of the wireless access point. Knowing
that a UDP packet header is consistently 42 bytes in length, data fields ranging in
size from 1 to 1460 bytes would be created and sent with the UDP echo request. The
resulting series of transmitted packets would then be captured by an eavesdropping
computer to observe the effect on the 802.11 encrypted MAC data frame lengths.
In addition, one could observe if there are any significant changes in data frame
behaviour as the Microsoft Ethernet MTU value of 1500 bytes is reached. The results

of this experiment can be seen in figure 4.5.
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Figure 4.5: Observed Changes in MAC Frame Size

From figure 4.5 we can see that there is a direct relationship between a UDP
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data packet and the encrypted encapsulated 802.11 MAC data frame of that same
packet. The direct relationship indicates a consistent increase of 38 bytes from a
UDP echo request to the corresponding encrypted MAC data frame observed by the
covert receiver. Accounting for the 42 byte header of the UDP packet, we can then
devise a 80 byte direct relationship between the UDP data payload and the observed
encrypted MAC data frame. This is of significance since the covert communication
system can now modulate the size of UDP packets with specific encoded symbols
and then demodulate the received 802.11 MAC data frames with a high degree of
confidence that the received frames represent encoded symbols sent by the software

Trojan.

4.5 Wireless Covert Channel Testing

Given the previous activities that characterized and tested individual components
of the designed system, the final stage of this research combined the components
into a functional wireless covert communication system. The covert communication
system was able to take ASCII text from a compromised station and beacon that
information over the wireless channel. An eavesdropping computer listening to the
channel was then able to capture the modulated covert message in the presence of
noise and effectively reproduce the original ASCII message.

The successful implementation of the covert communication system represents
another achievement in the overall goals of this research. The following subsections
outline the testing activities conducted with the final covert communication system
in order to prove its functionality as well as to investigate the systems performance

characteristics within a noisy wireless channel.

451 Live Testing Experiment

The live testing experiment was the first end-to-end test of the wireless covert com-
munication system in which a phase of ASCII text (The quick brown fox jumped over

the lazy dog’s back!) was sent from the software Trojan over the encrypted wire-
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less channel and then received by the covert receiver capturing the traffic from that
channel.

Knowing the typical 802.11 MAC data frame lengths and frequencies of occurrence
from previous experimentation, the covert communication system was configured to
employ encrypted MAC frame lengths that were previously observed in figure 4.3 and
thought to be inactive. By employing frame lengths that did not frequently occur,
the covert system would first function with very little channel noise in order to prove
its basic functionality. Using these symbols, the covert message was beaconed for
six separate iterations and the covert receiver used to decode all six versions of the
message to observe any irregularities. A snippet of the decoded message can be seen

in figure 4.6.

Recovered Covert Text Hessage:
5

This message containz the following number of symbols:
426

The guick brown fox jumped over the lazy dog's back!

Recovered Covert: Text Message:
[

Thizs message containz the following nurker of symbols:
416

The quick brown-fox jumped over the lazy dog's back!

>

Figure 4.6: Live Test Results in Minimum Noise

Knowing that the error-free encoded symbol sequence of the covert message con-
tained 424 encoded symbols, one can see if the received sequence of symbols from
each message iteration contained either more or less symbols (noise or signal loss) as
compared to the sent massage. One can see from figure 4.6 that despite the addition
of two symbols in message #5 and the loss of 8 symbols in message #6, both messages
decoded properly and without corruption. In fact, all six iterations of the beaconed
message decoded without error. The results of this experiment provide initial proof
that the implemented wireless covert communication system can operate effectively

in the presence of minimal amounts of channel error.
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4.5.2 |Interlacing Experiments

Knowing that the implemented covert communication system can effectively operate
in the presence of minimal channel error, the next stage of experimentation would
attempt to explore the system’s capability when faced with typical channel noise.
Instead of re-conducting live capture experiments that contained noise, the typical
channel noise previously presented on page 69 would be used to cause insertion errors
in the covert message. Observing from previous experimentation the typical distribu-
tion of encrypted MAC data frame activity by length, frame lengths that exhibited
moderate noise activity were chosen for use with the covert communication system

as the new set of modulated encoded symbols.

45.2.1 Experiment #1

Employing the MATLAB programming environment, an error-free sequence of en-
coded symbols were created from the quick brown for test phrase. Each encoded
symbol was then assigned a relative transmission time of 28.3ms since this was the
average relative time between transmitted encoded symbols observed during the pre-
vious live test experiment. The sequence of error-free encoded symbols was then inter-
laced with the previously captured noise based on the relative receipt times associated
with each sequence. Since the noise capture experiment lasted for approximately 28
minutes, the interlacing of the encoded symbols sequence was repeated 144 times to
simulate the beaconing of the message. Consistent with the actual operation of the
software Trojan, a framing symbol was also used in the interlacing process to indicate
the beginning of each iteration of the beaconed message.

Of the 144 messages that were interlaced with the noise of a typical channel,
there were none that decoded improperly. The message which encountered the most
severe channel noise is shown in figure 4.7 with a total of 457 symbols in the received
message. This represents an increase of 33 noise symbols over the original error-free

size of 424 symbols and a Signal to Noise Ratio (SNR) of 12.84.
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Recovered Covert Text Message:

111

This message contains the fellowing number of symbols:
457

The quick brown fox jumped over the lazy dog's back!
Recovered Covert Text Message:
112

This message contains the following number of symbols:
441

The quick brown fox jumped over the lazy dog's back!

Figure 4.7: Test Resuits in Noise
4522 Experiment #2

Although this experiment provided some insight into the capability of the covert com-
munication system to operate in the presence of noise, it did not expose the level of
noise required in the channel to cause the decoder to fail. Therefore, another interlac-
ing experiment was conducted to test the limits of the wireless covert communication
system’s performance in the presence of noise. In the first interlacing experiment, all
the encoded symbols were sent with the minimum transmission interval of 28.3ms. In
the next interlacing experiment, the transmission interval between encoded symbols
would gradually increase to allow more noise between symbol transmissions.

Similar to the first interlacing experiment, the encoded symbols would be first
transmitted with a transmission interval of 28.3ms for the entire length of the noise
capture. The test would then be repeated with a transmission interval increased by
the minimum interval to 56.6ms. This repetitive test would continue until only one
message could be transmitted in the 28 minutes period of the noise capture.

Unlike the first interlace experiment, the encoded symbols would be created with
a string of ASCII text only 63 characters long. This represents the maximum size
of a WPA wireless security passphrase and the focus of the working scenario. Once
the second interlacing experiment finished transmitting one single 63 ASCII character

message over the 28 minute period, the phrase would be reduced by one character and
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the tests repeated. This reduction in the subject ASCII phase would continue until
only an 8 ASCII characters were tested. 8 ASCII characters represent the minimum
possible wireless security password for WPA encryption.

The resulting combinations of noise and message would be decoded and compared
with original message for potential errors. If the estimated message was the same as
the original text, the decode was successful. Otherwise, if there was an error in the
decode, the recovery was considered a failure and recorded accordingly. In addition
to the recording of success or failure of each decode, the transmission interval and
the error-free encoded sequence length for each message were also recorded.

Given the recoded metrics of each message decode in the presence of noise, we are
able to calculate several different performance measures for the covert communication
system. Similar to the first interlace experiment, we can calculate the SNR ratio for
each message knowing the encoded symbol sequence lengths before and after passage
through the wireless channel. With a SNR metric for every message decode, we can
then calculate the reliability for the covert communication system by calculating the
percentage of successful message decodes within the bin of observation for a particular
SNR. In order to achieve a statistically sound value for the system reliability at a
particular SNR, the observation bin must be large enough to contain several hundred
samples at a minimum. The wireless covert communication system’s reliably as a
function of the SNR of the covert message can be seen in figure 4.8.

The traces in figure 4.8 show the different performances characteristics of the
covert communication system when decoding small 8 ASCII character messages com-
pared to larger 63 ASCII character messages. In addition, the Average trace repre-
sents the overall performance of the system over the range of different message sizes.
As expected, the smaller message sizes have a higher probability of successful decode

in the presence of noise as compared to larger messages. Since smaller messages have

shorter sequence lengths, their exposure to noise in the channel is limited. In addi-
tion, any addition of noise will cause a significant change in the SNR ratio due in part
to the smaller length of the message. An interesting point to note here is the inability

of the covert communication system to achieve 100% decode success for the entire
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Figure 4.8: Reliability vs SNR

range of message sizes. This would seem to indicate that for larger messages at every
SNR value there is always a message that will not decode properly. Although, this
artifact should not overshadow the decoder’s ability to successfully decode messages
with a greater than 90% assurance beyond a SNR of 22.

The next performance measure compares the covert communication system’s re-
liability to decode a message as a function of the transmission bandwidth. In this
context, bandwidth is the measure of bits from the original un-encoded binary stream
of ASCII text transmitted as a function of time. In the case of the covert communica-
tion system, each encoded symbol represents one bit of information from the original
message. Therefore, to calculate bandwidth, it is the number of symbols in the en-
coded sequence divided by the sum of the transmission intervals between symbols.
Similar to the last graph of reliability, each point of reliability is a percentage of
successful decodes within a bin of observation for a particular bandwidth value. The
wireless covert communication system’s reliably as a function of bandwidth can be
seen in figure 4.9.

Upon review of the calculated results, there would appear to be two interesting

points worth noting from the reliability trace in figure 4.9. Firstly, for the conditions
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Reliability vs. Bandwidth

Probability of Successful BDecode

Bandwidth {bps}

Figure 4.9: Reliability vs Bandwidth

of the experiment the covert communication system can consistently decode messages
from a noisy channel with a success rate in excess of 80% for messages transmitted as
slow as 4 bps. This would mean that if a pause is implemented in between transmis-
sions of the modulated symbols, it should not by greater than 250ms in order to be
effectively decoded without fault given the current noise profile. Although, since mes-
sages are beaconed across the wireless channel, the aggregate information obtained
from possibly corrupted data should be enough to reconstruct the intended message.
Therefore, the rate could even be lowered to one bit per second and achieve 30%
reliability and still reconstruct the message from partial fragments of other corrupted
decodes of the same message.

And secondly, the covert communication system could still not achieve 100% de-
code success for messages that were transmitted with the minimum transmission
interval. It would appear that even given the increased transmission rates, some mes-
sages did not decode properly due to the utilized noise profile for the transmission
channel.

Finally, we look at the relationship between SNR as a function of the bandwidth.

Similar to the previous two graphs, each point of bandwidth is an average of all the
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observed bandwidths within a bin of observation for a particular SNR value. The
wireless covert communication system’s bandwidth as a function of SNR can be seen

in figure 4.10.

SNR vs. Bandwidth
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Figure 4.10: SNR vs Bandwidth

From the trace in figure 4.10 we can see that as the bandwidth of the covert mes-
sage increased, the SNR associated with that particular bandwidth did not increase
that significantly past 10bps. This relationship could be related to the effects of the
larger length covert messages transmitted through the noisy channel. In order for
a large message to be transmitted through the channel and retain a high SNR it
must be done with a higher bit rate or very small inter-symbol transmission interval
resulting in a higher bandwidth measure. Therefore, for significant increases in the
bandwidth from 15 to 35 bps, one can achieve only moderate gain in SNR.

Furthermore, it is expected that one also exposes the covert activity to detection
by increasing the bandwidth of communication. In this case, a balance must be

struck in which a reliable bandwidth value is chosen (ex. 2 bps) which also allows
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for a reliable SNR (ex. 12) and thus ensures a higher probability of a successful
decode (ex. 60%) of the covert message as seen in figure 4.11. Given the apparent
interrelationship between Reliability, Bandwidth and SNR [44], one can adjust the
design of the covert communication system by selecting a transmission bandwidth
that will ensure a successful decode of a covert message despite the presence of noise

in the channel.

40

0.4 . 20
10

Probability Successful Decade a o Bandwidth {bps)

Figure 4.11: Reliability vs BW vs SNR

4.6 Summary

This chapter outlined the research activities that utilized the unique combination
of ideas and system design concepts presented in Chapter 3 to implement a work-
ing wireless covert communication system. Furthermore, this chapter has presented
the performance test results of the of the wireless covert communication system in
fulfilment of the research goal presented in the first introductory chapter of this thesis.

The material presented in this thesis has introduced the concept of covert chan-
nels and the threat they represent to secure wireless networking. Given the possibility

that a potential security hole in wireless networking could be exploited by nefarious
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individuals, this research set out to prove it is possible to implement a functioning
wireless covert communication system by combining aspects of coding theory with a
new inductive approach to error correcting. Employing a standard model for digital
communication system design, this research integrated the new ideas into a function-
ing wireless covert communication system. Now that the principle research goal has
been achieved, the concluding fifth chapter that follows will discuss the system’s im-

plementation and performance, areas of future research and some concluding remarks.



Chapter 5

Conclusion and Future Directions

5.1 Introduction

The previous chapters of this thesis presented the motivation and significance of
researching covert channels in secure wireless networks. In addition, this thesis pre-
sented several new ideas that applied traditional coding theory concepts to detecting
and correcting symbol-level errors typical of a wireless channel environment. The
combination of these ideas led to the successful design and implementation of a work-
ing covert communication system on a secure wireless network. This final chapter will
conclude the thesis with a discussion of the resulting covert communication system’s
implementation and performance. This last chapter will also provide some thoughts

on potential areas of future work and some concluding comments.

5.2 Discussion
5.2.1 Importance of Wireless Covert Communication System

The successful implementation and demonstration of a wireless covert communica-
tion system has identified a significant security hole in the WPA authentication and
encryption method of the 802.11 security standard. This security hole raises some
serious concerns as to the possibility of such a system existing in the real world and
the potential to detect such illegal communication activity.

In order for a covert communication system to be successful in the real world,
it must operate in a concealed manor and be able to effectively pass information
across the discrete channel with a high assurance. The wireless covert communication
system that was developed as part of this research attempted to implement these
characteristics in order to demonstrate the vulnerability of secure wireless networks

to covert channels. The following sub-sections will explore the implementations of

82
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these characteristics and their significance to the overall operation of the wireless

covert communication system.

5.2.1.1 Covertness

The implementation of covertness into the wireless covert communication system as-
sumed two forms within the design, namely internal and external. The wireless covert
communication system operated on two different sides of the security policy set forth
by the WPA security standard for the 802.11 infrastructure, the un-encrypted (clear)
network communications generated by the compromised station and the encrypted
wireless link traffic. Therefore, internal covertness delt with the concealment of the
clear network traffic generated by the Software Trojan and the external covertness
which delt with the hiding of the network activity associated with the covert message
amongst the regularly expected activity of a 802.11 wireless link.

The internal covertness of the wireless covert communication system was at-
tempted through the employment of UDP echo requests. UDP traffic including UDP
echo requests occur regularly within networks based on the TCP/IP suite of proto-
cols. Although, this style of covert storage channel could have been achieved through
the use of any other protocol that occurs regularly and can implement variable packet
lengths. Based on their connection-less nature UDP packets can be transmitted across
a network with a minimum of additional protocol interaction. Furthermore, by send-
ing UDP packets only to the wireless gateway, the additional amount of clear network
activity was limited to just the wireless link thus avoiding any IDS located further
within the wired infrastructure of the network. Therefore, internal covertness was
achieved through a combination of compartmentalization and the use of commonly
expected network traffic.

Nevertheless, the use of UDP echo requests are not the only approach to produc-
ing covert communications. In fact, for this type of storage-based covert channel,
any type of network packet could be employed as long as the software Trojan could
modulate it’s size based on a selected coding strategy. Therefore, there may be other

exploits that are less obvious in clear network traffic but similarly produce the desired
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effect to 802.11 MAC data frames once encapsulated and encrypted. Furthermore,
increased covertness could potentially be achieved if the software Trojan was able to
modulate the network traffic streams produced by legitimate processes. By enabling
the software Trojan to throttle the legitimate or “natural” occurring outbound wire-
less traffic, the activity of the covert communication system would not only be difficult
to detect in the clear (internal covertness), but would almost be impossible to notice
once transformed into encrypted 802.11 MAC data frames (external covertness).
The wireless covert communication system achieved external covertness by mod-
ulating the encoded symbols to use packet sizes that would result in an encrypted
802.11 MAC data frame of similar sizes to those regularly expected as MAC data
frames. By employing frame lengths that mimicked regular wireless traffic, the com-
munication activity of the Software Trojan would be concealed as normal wireless
traffic. A level of measure for this aspect of covertness was the SNR values obtained
through experimentation in the previous chapter. The lower the SNR value, the more
concealed the covert message was amongst the noise floor of the regularly expected
traffic. The implemented covert channel was able to reliably produce the covert mes-
sage with a 50% probability with SNR values as low as 8 for smaller messages. Even
when the reliability descended below 50%), it is expected that the wireless covert chan-
nel could recover the message from the fragments of the beaconing message. Given
this level of external covertness, the network activity generated by the software Tro-
jan would be very difficult to detect by just looking at a capture of the 802.11 MAC

data frames.

5.2.1.2 Bandwidth

The initial implementation of the wireless covert communication system modulated
and transmitted encoded symbols continuously without delay to achieve a maximum
bandwidth of approximately 35 bps. Although this level of bandwidth is desirable for
the passage of large passphrases, the network activity at 35 bps is so significant that
it can no longer be concealed by regular activity and the covertness of the system

could be compromised. In addition, by operating the Software Trojan at such a high
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rate, a denial service attack situation is created in which the access point is flooded
with UDP echo request packets. To reduce the network activity generated by the
Software Trojan for the purposes of remaining internally and externally covert, an
inter-packet delay was added between modulated encoded symbols. Thus, the final
implementation of the wireless covert communication system incorporated the ability
for the Software Trojan to throttle the modulation of the encoded sequence and induce
a delay between modulated symbol transmissions.

The results obtained from Chapter 4 indicate that the bandwidth of the imple-
mented covert communication system could be reduced to 2 bps (500ms inter-packet
delay) for a SNR of 12 and still achieve an 60% reliability that the message will decode
properly. This noteworthy result indicates the implemented wireless covert communi-
cation system can conceal its activity by reducing its bandwidth and still be effective
in passing the covert message. At this rate the maximum size WPA passphrase of 63
ASCII characters which translates into 504 encoded symbols would require 252 sec-
onds or 4.2 minutes to pass from the Software Trojan to the Covert Receiver. Given
the noise generation experiment in Chapter 4 lasted almost 30 minutes, a five minute
transmission of the covert message would produce six iterations of the same message
and facilitate partial message reconstruction if required. A wireless traffic capture
of 30 minutes is considered well within the capability of an attacker conducting CNI
operations and thus reiterates the significance of the wireless covert communication
system’s performance.

Another aspect that could affect bandwidth would be to modify the code rate R
(R = k/n where k < n) of the coding strategy implemented by the system to translate
one input symbol to one output symbol. In the current implementation of the covert
communication system, decreasing the code rate by increasing the length of the output
symbol (n) of the trellis code would not decrease the systems bandwidth. Since each
UDP echo request represents one encoded symbol, increasing n would not change the
bandwidth of the system but only increase the number of possible encoded symbols
to be used for FEC. On the other hand, by increasing the length of the input symbol

(k) one could directly increase the bandwidth of the covert communication system.
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Since the bandwidth of the covert communication system was measured in terms of
the transmission of covert message bits per second, increasing k also increases the
transmission of the covert message to & bits per encoded output symbol. Therefore,
one could capitalize on potential gains in FEC by significantly increasing n while at
the same time moderately increasing & to achieve a desired increase in bandwidth.
Combining these changes to the values of £ and 7 in this context would lower the
code rate R while at the same time increase the effectiveness of the wireless covert

communication system in terms of FEC and bandwidth.

5.2.1.3 Reliability

The implemented wireless covert communication system proved to be extremely reli-
able as a method to pass private information from the Software Trojan to the Covert
Receiver despite WPA AES encryption and the presence of other legitimate network
traffic. As seen in Chapter 4, the reliability of the system to successfully decode a
covert message did not start significantly decreasing until the transmission bandwidth
was reduced to a value below 4 bps given the employed noise profile.

Although, the ability for the covert communication system to reliably decode a
covert message depends on the noise conforming to a pattern consistent with the
design assumptions made on page 45. Given the noise profile of the typical noise
generation experiment of Chapter 4, we can see that network traffic is bursty by nature
and occurs with spikes of activity directly related to specific activities or processes (ex.
web surfing versus file transfers). When the covert message was exposed to bursty
activity, the design assumption would be violated and the decoder would most likely
produce a faulty result. Therefore the selection of the encoded symbol lengths from
the spectrum of 802.11 data frame lengths is important to ensure a highly reliable
decode of a covert message yet remain concealed by the noise within the channel.

Finally, a major contributor to the reliability of the wireless covert channel was the
development of an effective error detection and correction strategy. Despite the great
performance of the selected trellis code combined with the error correction methodol-

ogy proposed in Chapter 3, the decoder was limited in its ability to effectively correct
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for all possible errors due to increased noise levels within the channel. As previously
mentioned, if the channel noise exceeded the design assumption of a maximum of two
errors within a four symbol window the methodology would fail and the decode would
be faulty. However, a typical wireless channel is rarely active with significant traffic
volumes for any prolonged period of time. More specifically, the volumes of 802.11
MAC data frames originating from the compromised station and destined for the
wireless access point were noticeably low during idle user periods. The wireless chan-
nel only experienced brief high intensity periods during very specific user initiated
communication activities. Therefore, if the wireless covert communication system
was implemented on a typical wireless station, it would experience a reliability well
in excess of 80% due to prolonged periods of user inactivity during a regular daily

cycle.

5.2.2 Impact of Research

The successful implementation of the wireless covert communication system serves
as another example that covert channels are possible and can exist in a real-world
context. Furthermore, this research has expanded the knowledge of network-based
covert communications over noisy channels by implementing a successful error cor-
rection and detection methodology. Moreover, by implementing a functional wireless
covert communication system, the performance metrics obtained during experimenta-
tion will serve to assist in the future research of this topic area as a baseline measure.

In addition, the threat of covert channels to secure wireless networks is real and
potentially very costly to organizations who are deciding to implement wireless net-
works for the passage of private information. The gained mobility at the expense of
exposure of sensitive information may be too great a cost for some to tolerate. Given
the identified security hole in the WPA authentication and encryption methods of the
802.11 security standard through the application of covert channels, organizations
should review their security policies and practises to defend against the implanta-
tion of a software Trojan as well a monitoring for irregular network activity from

unauthorized processes. This research has shown that with a little social engineering,
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a strong cipher will not protect against intrusions by nefarious individuals seeking

information.

5.2.3 Areas for Future Research

With the successful demonstration of 802.11 wireless network’s vulnerability to covert
channels, several areas of possible future research include investigations into improv-
ing the capability of the software Trojan, enhancing the capability of the covert
receiver to decode messages in the presence of increased noise as well as defending
against covert channels.

It was assumed that the private information transmitted by the software Trojan
was readily available on the compromised computer. For demonstration purposes,
only user keyboard input was implemented in the current design of the wireless soft-
ware Trojan. Future research could investigate other ways to extract private infor-
mation from either the system registry or other input devices in order to compromise
network security.

In addition, the software Trojan in this research employed UDP echo requests as a
mechanism to signal a message to the covert receiver. Although the UDP echo request
was effective in this demonstrative context, it may not be the most covert exploit in
comparison to other legitimate Internet activity. Another area of future research could
pursue developing an exploit for the Software Trojan that more effectively conceals
the beaconing activity within regularly expected network traffic. This would entail
the development of other timing-based or more effective storage-based covert channels
who’s regular activity would be harder to detect from legitimate traffic. Examples of
new storage based covert channels could include HTTP request packets with variable
sizes to the creation of multiple mail messages of variable sizes using the Simple Mail
Transfer Protocol (SMTP).

The Covert Receiver employed specific methods for detecting as well as correcting
errors using a trellis code as the basis of the coding strategy. Further research to
enhance the capability of the covert receiver could include the development of a

more sophisticated method for coding the covert information to recover from greater
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numbers of channel errors. In addition, this newer coding scheme may also require
the development of a decoder that is not based on a Viterbi algorithm but a different
approach to reconstructing the correct encoded symbol sequence based on the selected
coding scheme.

Finally, another area of potential research would focus on the detection and de-
fence against such covert channels in secure wireless networks. This work could in-
volve the development of software that would enhance the creation 802.11 MAC data
frames to ensure constant frame length or random transmission intervals to protect
against storage or timing-based covert channels. In addition, this research could also
investigate the detection of the irregular network activities that would produce such

communication systems.

5.3 Conclusion

The increased demand for easily configurable, low cost, mobile computing solutions
in situations where conventional wired network infrastructures do not exist has fu-
elled the recent popularity of wireless networking products based on the IEEE 802.11
standard. The employment of wireless networks based on 802.11 technology also
introduces a potential security risk to an organization by exposing network traffic
to potential attackers anywhere within reception range of the wireless transmission.
To defend against eavesdropping, the 802.11 protocol supports the WPA security
standard with AES encryption. Despite the security policy introduced by the WPA
standard, the radio frequency transmissions from 802.11 secure wireless networks
present a shared resource that could be exploited by a covert channel. Covert chan-
nels are unexpected and hidden communication paths between two processes that are
not permitted to communicate, but do so anyway by affecting a shared resource. By
applying the concept of covert channels to a securc wircless environment, one could
potentially compromise the security posture of the entire network by leaking out pri-
vate information such as the wireless security password to an attacker conducting

CNI operations.
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The principle goal of this research was to design, implement and test a work-
ing covert communication system on a secure wireless network. The research goal
was achieved through a series of activities that focused on the development of an
error detection and correction strategy as well as the design and implementation of
a covert communication system based on a digital communication model. Initially,
a coding/decoding scheme was developed based on FEC techniques and validated
against network traffic typical of a wireless Internet based system. Subsequently,
the successful coding/decoding scheme was then incorporated into the design of the
covert communication system which existed as two distinct and separate components,
namely a software Trojan and covert receiver. The resulting two components of the
covert communication system were then implemented using Microsoft Visual C++
and MATLAB respectively to produce a functioning wireless covert communication
system. The resulting system was then tested against conditions typical of a wireless
channel to demonstrate overall performance characteristics.

The resulting covert communication system was able to pass private network in-
formation from a compromised wireless computer to a covert receiver despite the
implementation of a secure wireless standards such as WPA. This demonstration of
capability by the covert communication system marked the successful achievement
of the principle research goal. Furthermore, by demonstrating the vulnerability of
wireless networks to covert channels, the research hypothesis outlined in Section 1.4
of this thesis was successfully validated.

The major contributions of this thesis are: 1) The implementation of a convo-
lutional trellis code to provide improved stealth and reliability to a network based
covert communication system, 2) The creation of a complete covert communication
system on a 802.11 secure wireless network and 3) The identification of a security hole
in the WPA authentication and encryption method of the 802.11 security standard
by applying the threat of covert channels.
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