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Abstract

Network-based video-on-demand (VoD) deployments are today very limited in scope. The
largest deployed libraries are just 0.7% of the global movie and TV-series catalog and peak
utilization of VoD targets are 10-15% of broadcast T'V peak viewing numbers. Recognizing
that libraries and usage may grow, service providers are intensely interested in large-scale
content delivery networks that provide content propagation, storage, streaming, and trans-
port. We focus on one of the challenges of VoD network design: resource planning. We
describe a method and design tool for the planning of large-scale VoD systems and address
the resource allocation problem of determining the number and model of VoD servers to
install in a topology such that the deployment cost is minimized. Our general design tool
provides important feedback and insights on VoD network design; we observed that the

available equipment and the topology had a significant impact on the resulting design.
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Abrégé

Le contenu disponible des services de vidéo a la demande (VoD) en place représente 0.7%
de la totalité des films et séries télévisées et le nombre d’utilisateurs aux heures de pointe
représente 10-15% de Pauditoire d’émissions télévisées. Prenant conscience de 'expansion
imminente de 'utilisation et de la bibliothéque, les fournisseurs de service s’intéressent
aux réscaux de diffusion de contenu (CDN) de grande échelle qui offre la propagation, le
stockage, la lecture en transit et le transport du contenu. Nous développons une méthode
et un outil pour la planification de systémes de VoD de grande échelle et s’attaquons au
probléme d’attribution de ressources suivant: déterminer le nombre et le modele de serveurs
VoD & installer a chaque localisation pour minimiser le cout de déploiement. Nos résultats
de simulation démontrent que le type d’équipement disponible ainsi que la topologie du

réseaun ont une grande influence sur le design final.
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Chapter 1
Introduction

Network-based video-on-demand (VoD) deployments are today very limited in scope. The
largest deployed libraries are just 0.7% (5,000 hours) of the global movie and TV-series cat-
alog and peak utilization of VoD targets are 10-15% of broadcast TV peak viewing numbers.
Recognizing that libraries and usage may grow, service providers are intensely interested in
large-scale content delivery networks that provide content propagation, storage, streaming,
and transport. Content delivery networks (CDNs) are designed to distribute content to a
set of clients, as streams or as files [1-6]. We focus primarily on the case of a streaming
CDN, in that the client is assumed to have buffering capability but not caching capability.
Nonetheless, the mathematics and the models we adopt are readily extended to the client-
cached scenario. Through approaches such as replication of content at multiple servers
(known as replicas, proxies or caches), CDNs attempt to minimize latency at the end-user
while reducing bandwidth consumption and load at the origin server. The CDN delivery
of streaming media causes new problems that did not apply to the distribution of HI'TP
objects: streaming objects are much larger than web objects and hence create much more
traffic [7]. Furthermore, it is no longer possible to assume infinite storage size at the replica
locations, which makes calculations more complicated [1]. The design of a VoD network
consists of two tasks: (i) making resource planning decisions and (ii) developing in-service
intelligent request routing, resource control policies, and performance monitoring. We focus
on the first challenge, i.e., the allocation of resources during network planning, generally
performed when planning greenfield and incremental deployments. Of particular interest

is VoD delivery across metropolitan area networks (MANS).
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1.1 Motivation

In this thesis, we describe a method and design tool for the planning of large-scale VoD
systems. Before describing the method, it is useful to underline the scale of the problem.
Today’s libraries of consmmer-accessible media vary widely in size. We compare the total
stock of media content (listed in Table 1.1) against the library sizes as advertised by service
providers. Music services (c.g., Apple i'Tunes) offer around 10% of existing music. Similarly,
services of movies on DVD by mail (e.g., NetFlix) offer around 10% of movies and TV
serics. In contrast, the largest cxisting network VoD systems (c.g., Comcast) offer only
0.7% (several thousand) of the movies and TV series genres, and only 0.002% of the back

catalog if broadcast TV is considered to be within the scope of VoD libraries.

Table 1.1 Amount of unique stock of media content produced annually, and
the accumulated unique stock. [8].

Type of content Unique stock per year Accumulated unique stock
Movies except TV movies 7350 titles (19TB) 250,000 titles(720 TB)
TV movies & series 3040 series titles (38TB) 62,000 series titles (950TB)
All forms of TV 31M hrs (70,000TB) >>100M hrs (>>200,000TB)
rf broadcast radio 70M hrs (3,500TB) >200M hrs (>>10,000TB)
Professional music recording | 90,000 albums (59TB) 1,5M albums (975TB)

The amount of video content produced annually (over 10,000 movie and series titles) and
size of the libraries of other media providers indicate that the amount of content available
to video-on-demand users will probably grow in the future. Even if this growth is only a
few percent, considering the accumulated amount of unique video titles, we expect that
an expansion of the library would make video-on-demand a real alternative to services like
DVD by mail and attract more users. Large-scale VoD systems with high storage and high
bandwidth requirements require a substantial amount of resources to store, distribute and
transport all the content and deliver it to all the clients. At a time where many companies
are considering deploying such large-scale systems, there is a real need for a design tool
used during the network planning.

Resources allocation is an important and complicated task that consists of determining
the location and number of resources to deploy such that cost is minimized whilst certain
conditions are respected. This operation is important because it is often very difficult or

impossible to adjust the chosen solution based on observations made after the deployment.
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The main challenge is to build accurate models for all the factors involved: the available
infrastructure, the network topology, the peak/average usage of the system, the popularity

of each title, bandwidth and storage requirements, etc.

1.2 Thesis Problem Statement

In the case of a video-on-demand network deployment, the resources to consider are the
equipment required at the origin and proxy video servers and the equipment required for
the actual transport between each location (switching). We assume an existing topology
with a high bandwidth capacity and focus on the equipment required at each location to
store and stream the content. A video server consists of storage devices to cache the desired
content and streaming devices to deliver the videos to the users. For this thesis, we define
and tackle the VoD equipment allocation problem that consists of determining the number
of streaming and storage devices at each location in the topology such that the deployment

cost 13 minimized.

1.3 Thesis Contribution and Organization

In Chapter 2, we review the different aspects related to the delivery of multimedia objects:
architecture and topology, caching scheme and file popularity model, delivery mechanism
and traffic modeling. Also, we present a summary of the solutions proposed in the litera-
ture: problem statements, parameters and constraints considered for the cost function and
heuristics proposed to solve the replica placement problem.

In Chapter 3, we address a simplified VoD equipment allocation problem, which focuses
on identifying the optimal number of VoD servers at a set of locations with fixed and pre-
determined streaming and storage capacity per VoD server, such that the deployment cost
of the VoD systern is minimized. Our main contributions to solving this problem are the
following. We design a parametric function for estimating the worst-case hit ratio for
given system paramecters (cache size, library size and file arrival rate). We determine an
appropriate functional form and train parameters using discrete-time simulations based
on au cxtension of the file access modcel proposed in [9]. Such a paramectric function is
essential for the interactive design tool we develop (see Section 3.2.1). We propose a cost

function based on the hit ratio, the distributed demand and the number of VoD servers
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at cach location. This differs from previous work that only takes into account transport
and storage costs without explicitly considering the cost and type of equipment installed
(see Section 3.2.2). We develop the Integer Relaxation Heuristic to generate a solution
to the problem. The heuristic relaxes the integer constraint on the number of devices in
order to identify an optimal non-integer solution, and then finds a near-optimal integer
solution by searching in the neighborhood of the non-integer solution (see Section 3.2.3).
We develop an interactive design tool that implements our cost function, hit ratio function
and heuristic. This tool allows a user to modify system parameters easily and generate new
design solutions quickly.

In Chapter 4, we extend the work of Chapter 3 by addressing the problem of determin-
ing not only the number, but also the model of the VoD servers at each potential replica
location. Iustead of fixing the streaming and storage capacity per VoD scrver at cach
site, we require the pre-specification of a set of available VoD servers and select the model
at each location that minimizes total network cost. This new problem being of greater
complexity, we adapt the Integer Relaxation Heuristic and present another algorithm: the
Improved Greedy Search. Finally, we briefly analyze the feasibility and implications of a
VoD deployment over an agile all-photonic network (AAPN) [10]

In Chapter 5, we summarize our work and discuss in more detail the results presented

in the previous chapters and conclude with proposed future work.

1.4 Published Work

Some parts of this thesis have been published or have been accepted for publication. Parts
of the literature review presented in Chapter 2 has been published as a technical report
and a summarize version of Chapter 3 on our solution to the VoD equipment allocation
problem has been accepted for presentation at the Symposium on Network Computing and
Applications (IEEE NCA).
e [*. Thouin and M.J. Coates, A review on content delivery network, Technical report,
MecGill University, Montreal, Canada. June 2005.
e [". Thouin, M.J. Coates and D. Goodwill, Video-on-demand Equipment Allocation,
Proc. IEEE Network Computing and Applications (IEEE NCA), Boston, MA. July
2006.



Chapter 2
Literature Review

Services with low system cost, like near video-on-demand (nVoD), have been available for
many years in hotcls and offcred by cable providers as pay-per-view television. In nVoD, at,
fixed scheduled times, a video is broadcast on a single channel shared by all the users who
wish to see it. This solution is simple and cost-effective, but it is not flexible and does not
allow the user to interact with the system [11,12]. True or Interactive video-on-demand
(iVoD) dedicates a single channel to each user and allows the video to be started at any
time with VCR-like controls (pause, rewind, fast-forward, etc.) [13]. While being very
user-friendly, this type of service has high bandwidth requirements and high deployment.
cost.

There is currently on-going research into optical core networks (e.g. agile all-photonic
networks (AAPN) [10]) that should be able to support applications, like iVoD, that require
substantial bandwidth. We address the challenge of minimizing the deployment cost of
a network offering iVoD. As a first step, it is valuable to review the previously proposed
solutions for the delivery of multimedia objects. This chapter serves that purpose and
is organized as follows. Section 2.1 presents architectures and topologies that have been
considered for content distribution (delivery) networks (CDNs) and VoD deployments. Sec-
tion 2.2 surveys the different caching schemes and the strategies to determine file popular-
ity. Section 2.3 covers the techniques used for content delivery, traffic modeling and routing
users’ requests. Section 2.4 describes optimization problems related to the deployment of
content delivery networks such as replica location, content allocation, storage capacity al-

location and resource allocation. We summarize the factors to consider, cost functions and
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heuristics proposed to solve these problems.

2.1 Architecture and Topology

Core network

- STB
) VS ‘//’

B-ISDN<™"| FES STB
/ A —— :

e , VB STB
@ main node

Metro network ;"

Access network

h O local node
= G G {Bs¥ household VL
(a) The transport network is divided into a core (b) Generic VoD mnetwork architecture. (Repro-
network and local metro networks. (Reproduced  duced from [13])
from [14])

Fig. 2.1 (a) In this architecture, vidco servers are installed in the motro
network to reduce the load on the core network. (b) Video library (VL) and
video servers (V8) deliver the videos to the user’s set-top box (STB). The front-
end scrver (FES) is responsible for making and maintaining the connection
between the user’s set-top box and the video server. The front-end servers can
also have a smaller video buffer (VB) to serve a fraction of the requests.

In this section, we present architectures and topologies that have been considered for
VoD networks. In general, the available network infrastructure is divided into a core net-
work and local/metro networks such as that depicted in Fig. 2.1(a) [14-21]. The core
network is typically where substantial bandwidth is both available and needed duc to
aggregated transit trallic between the origin and replicas or clients. The local/metro
network is responsible for the delivery to the users and is usually organized in a tree-
hicrarchy [15, 17, 20-22], but Wauters et al. have proposed to interconnect nodes as a
ring [14].

The deployment of a VoD network consists of placing and connecting a few elements
shown in Fig. 2.1(b). The set-top box (STB) installed at the users’ household is used to

uncompress and display streams on a standard television. The video library (VL) and
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servers (VS) are responsible for storing and streaming the video objects. The front-end
servers (FES) are responsible for the establishment and management of the connections
between the set-top box and the video server. With the presence of a video buffer, a front-
end server effectively becomes a small video server. Referring to Fig. 2.1(a), the main nodes
represent the video servers and the local nodes front-end servers.

The location and presence of these clements in the network varies between each design.
In a centralized architecture, the origin scrver is responsible for serving all the clients
(Fig. 2.2(a)). Although it is very simple, this approach has serious weaknesses: a single
point of failure and high load on both the origin server and the backbone network. Due
to these shortcomings, authors have focused on distributed approaches with proxy servers
installed at strategic location in the network (closer to the clients). The proxy servers cache
content to reduce the load on the origin, as shown in Fig. 2.2(b) [14,15,19,21,22].

Instead of deploying proxy servers in the client domain, content distribution networks
(CDNs) use proxy servers (called replicas or surrogates) on the edge of the core of the
network, as close to the user-end as possible (Fig. 2.2(c)). The purpose of a CDN is
to transmit to users the content they requested in the most efficient manner, that is,
meeting the quality of service (QoS) requirements at the lowest cost possible. Content
distribution networks, such as Akamai, achieve this by re-routing clients’ requests to their
replica scrvers [23]. Placing copies of objects at edge proxy scrvers closer to the user
minimizes the delay at the user-end while reducing the bandwidth requirements at the origin
server by serving a fraction of the requests at the proxies [24]. Furthermore, Barnett shows
that distributed approaches can solve the main problems associated with centralized design
without increasing cost [15]. However, Hefeeda et al. argue that proxy-based approaches
shift the bottleneck from the origin to the proxy servers without reducing the cost and
that CDNs are not cost-effective solutions for streaming media [16]. As an alternative,
they propose a hybrid architecture based on the peer-to-peer (P2P) paradigm to distribute
the files to the users (Fig. 2.2(d)). Ditze et al. have also considered collaborative transfers
between peers to improve the scalability of media delivery networks [20]. In P2P-based
architectures, network coding eases the scheduling and makes distribution more efficient [25,
26]. Finally, other solutions include placing proxy servers with different functionality both

inside and outside the core [17] and assigning one server for each movie [18].
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Origin Server Client
W :

(a) Centralized architecture

Origin Server Cliggnt

{c) CDN approach

Origin Server

Proxy
Server

u}
(d) Hybrid architecture

Fig. 2.2 Architectures used for media delivery. (a) In the centralized archi-
tecture, all the requests from the clients are handled at the origin server. (b)
Proxy servers located close to the user-cnd reduce the load on the origin scrver
by caching content to serve a fraction of the clients’ requests. (c) Content de-
livery network (CDN) is a third-party solution that deploys proxy scrvers in
the core of the network (close to the edge) that serve a fraction of the clients’
requests. (d) In a peer-to-peer (P2P) based approach, the pecrs share their
resources to distribute the media. Powerful peers help in routing the requests
and searching for content. (Reproduced from [16])

2.2 Content Allocation

Deciding upon the location of the proxy servers is not the only task, because the determi-

nation of the optimal content to store at each of these locations is non-trivial. The choice
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of content has an impact on the total cost (amount of storage required) and on the user
perceived quality. If the selection is poorly made, users are forced to retrieve the data from
the origin server which incrcases latency and the load on the origin server.

A content allocation strategy is server replication, which consists of placing copics of the
origin server at strategic places in the network. Server replication partitions the network,
resulting in lower bandwidth requirements at the expense of server cost. When using such
a strategy, the placcment of the servers that minimizes total cost is above the switches
that connect the users to the network; between 70% and 90% of the path length between
the origin server and the user-end [27]. However, according to Lu, content distribution
networks using cdge delivery (files arc transmitted to users via scrvers placed on the edge
of the Internet) cannot be scaled to deliver high-quality broadband video because therc
are no suflicient and affordable bandwidth and QoS on the last mile. [28]. He proposes
the inclusion of “leaf servers” in local-area networks (LLANs); these serve as second-tier
surrogate and support a relatively small number of clients. The motivation behind this
approach is that heavy traffic does not go beyond the edge servers of the core network and
LANSs have abundant and stable bandwidth, are less dependent on a sophisticated direction
system and have a higher degree of personalization.

It is not always possible to have complete replicas of the origin server because the large
size of multimedia objects leads to a high storage cost. An alternative is to store only
specific objects from the origin at the surrogate servers; upstream bandwidth is reduced
at the cost of increasing the storage for caching the most popular programs. Using the
cost model he developed, Schaffa found that overall minimum cost is achicved when 15%
of the programs are cached at 80% of the path length between origin and client [27]. The
popularity of an object changes through time and a hot (popular) file might become cold
(the number of requests falls below a given threshold) after some time. To maintain request
coverage stable for long periods, it is important to replace objects that becorme cold with
hot objects, a procedure called incremental clustering in [29)].

Schaffa suggests that program caching be performed at more than one level in the
network hierarchy [27]. The idea is to use a main cache to reduce overall system cost and a
secondary cache at a higher level for fine-tuning the performance. When the main cache is
close to the root, the cost of the system is mainly driven by the bandwidth component which
makes the secondary cache almost useless. As the main cache is placed closer to the user,

storage starts being the dominant factor and splitting the cache becomes advantageous. If
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the client request rate is high and/or proxy storage is limited, storing file prefixes rather
than (ull files significantly reduces delivery cost [30,31]. It prevents clients from experiencing
delays and jitter and reduces traffic on the origin-proxy path. Despite these advantages,
Almeida et al. argue that storage at proxies is only effective if the origin is not multicast-
enabled, the file request is low or the cost of a proxy is a small fraction of the origin
server [32].

An cfficient way to improve the performance is by sharing the content of the different
surrogate servers by grouping them into clusters [19]. Clustering avoids the duplication of
content at servers that are close to each other. In a hierarchical content routing scheme [33],
the request are served by the local server (local hit), by another server in the same cluster
(intra-cluster), by a server outside the cluster (inter-cluster), or by the original content
server. Another approach is to cluster data using correlation distance (spatial, temporal,
session clustering or popularity-based) [29].

Finally, it is worth mentioning that there are two different approaches to allocate con-
tent [29]. First, in the client-initiated approach, or pull-caching, the replica retrieves the
copy of an object in the case of a cache miss. On the other hand, in a server-initiated
approach, or push-caching, content is distributed to replicas before any requests for this
data have been made [34]. 1f we anticipate that a specific object will be very popular (c.g.
blockbuster movie release), it is advantageous to distribute the object prior to any requests

in order to avoid cache misses and longer delays.

2.2.1 Choice of Content and File Popularity

When allocating content with a program caching scheme, only the most popular files are
stored, with the aim of minimizing the storage and bandwidth needs. By using an appro-
priate popularity distribution, we can predict the hit ratio at a replica site given the set of
files it 1s hosting. The hit ratio represents the probability that a user’s request is served on
a given path (or a given replica) [1].

Previous studics exploring the distribution of multimedia files in CDNs have used Zipf’s
Law to characterize the popularity of the different files [14, 27, 30, 32, 33]. In Zipf-like
distributions, access frequency for file of rank 7 is equal to C/i*, where C is a normalization
constant and a > 0 is the distribution parameter [35]. Such distributions generate a linear

curve in a log-log plot of access frequency versus rank. In [29], the analysis of Chen
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indicates that 80% of all requests are for 10% of all Web objects. Based on a video store
rental statistics ([36]), researchers also adopt the Zipf approach [37-39] to model popularity
in video-on-demand applications. Although this data seems to fit a Zipf curve (Fig. 2.3(a))
on a linear scale, Fig. 2.3(b) shows that the part of the curve for the most popular files is

flattened and does not fit the Zipf linear curve on a log-log graph.
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Fig. 2.3 (a) The popularity distribution from a 1992 vidco rental data sct
used to justify Zipf’s law in many video-on-demand proposals, along with a
Zipf curve fit with o = 0.9, and (b) the same data set and curve fit plotted on
a log-log scale. Contrary to the assumption of many papers, video rental data
does not appear to follow Zipf’s law. (Reproduced from [9])

Gummadi et al. explain this behaviour by analyzing the characteristics of video ob-
ject access [9]. VoD system users rarely access the same file twice because the files are
not modified (fetch-at-most-once). However, new files are often added to the system. In
contrast, Web objects are accessed more than once because they are updated regularly
(fetch-repeatedly). Since the popularity of a movie diminishes in time, when new titles are
added to the system, they become the most popular titles. Hence, popularity distributions
need to be adjusted over time. To model the flattened part of the curve, Almeida et al.
used a mixture of two Zipf distributions, after noticing the log-log graph is divided in two
linear curves [40]. Although the mixture model fits the data reasonably well, there is no
explanation of why the mixture is a realistic model. Gummadi et al. propose a model
that is driven by Zipf’s Law but takes into account the “fetch-at-most-once” and “new
arrivals” factors [9]. When a client makes a second request, the previously fetched files
are removed from the distribution and access probabilities are recalculated to have a total
probability of 1. When an object is added to the system, its popularity rank is determined

from a Zipf distribution, the rank of existing files which are less popular is decreased and
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file probabilities are recalculated to normalize the distribution to 1.

Gridwodz et al. propose a model for request generation based on the long-term life cycle
of movies in the VoD context and varying user population sizes. They consider not only
day-to-day changes when estimating the popularity of a file, but also the variations of the
users’ behaviour throughout the day: children’s interests dominate during the afternoon

whereas adults’ interests dominate later in the day [22].

2.3 Content Delivery

Content delivery consists of transmitting objects from the surrogate servers (or origin
servers) to the clients. A popular technique to transmit large multimedia files over the
Internet is called streaming. It allows clients to start displaying the data before the en-
tire file has been transmitted which is useful if the user does not have fast access or the
file to send is very large. VoD is unicast in nature (there is a dedicated stream to each
user), which imposes significant bandwidth pressure on the network, but provides inter-
active VCR functions to the user. In broadcast schemes, the video is transmitted with
a pre-defined schedule on a dedicated channel that supports any number of clients with
a constant amount of bandwidth. As opposed to unicast connections, the client has no
control on the stream (when it starts or stops) and bandwidth is wasted if the popularity
of the video is low.

Another scheme is multicasting, which is a one-to-many connection where multiple
clients receive the same stream from a server by monitoring (listening) to a specific multicast
IP address [41]. Lichtenberg argues that multicasting can easily be implemented in existing
client and server structures and provides a better Quality-of-Service (QoS) while saving a
substantial amount of bandwidth [42]. An example of multicasting is batching, which
collects requests that arrive within a given time interval and then multicasts the stream
to the clients [43,44]. In patching (stream tapping), if there is no stream for a video,
then one is initiated when a client requests it [45-47]. If it already exists, then the client
simultaneously listens to the multicast stream of the video and retricves, from a proxy
server, the part of the video that was streamed before he joined the broadcast. In [13],
Lee proposes a trade-off between nVoD and iVoD called unified video-on-demand (uVoD).
This approach first tries to serve a client by searching for a channel that is multicasting the

requested movie, if none is available it assigns the first free unicast channel. Although this
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scheme shows performance close to that of iVoD, it requires additional buffering capabilities
at the user-end.

The problem with aforementioned techniques is that they all require the path between
the server and the client to be multicast-enabled (all the routers on the path must be able
to interpret Class D IP addresses), but multicast capability is far from being fully deployed
on the Internet due to its lack of support by Internet Service Providers (ISPs) [30,48].
One solution when the end-to-end network provides only unicast service is to use proxy-
assisted transmission schemes (one-to-one connection between the server and the client).
By using patching in the unicast context (which is possible because proxies can forward
one copy of the data to multiple clients), Wang et al. derived a transmission scheme that
takes advantage of prefix caching at proxy servers [30]. The proxy transmits the prefix
to the clients (if present locally) and schedules the transmission of the suffix {rom the
origin server. If a request arrives within a given interval after the transmission of the suffix
starts, the proxy can schedule a patch from the origin for the missing part of the suffix.
Application-layer Multicast provides another alternative to IP multicast [48-50]. In this
method, end hosts need to maintain a data forwarding path for nearby hosts. In [48],
Milic et al. suggest an approach called Multicast Middleware that uses a virtual network
device for capturing the traffic and forwarding it to a user application. Hsu ot al. propose
a mechanism called Active Video Delivery (AVD) that takes advantage of application-layer
multicast [51]. Although AVD does not require all the routers on the transmission path
to be multicast-enabled, it achieves the same efficiency as IP Multicast. Another way to
transmit content without requiring multicast support on the delivery path is to use peer
resources [16, 20, 25, 26].

2.3.1 Traffic Models

We are interested in modcling traffic generated by high quality video (determining the
amount of bandwidth required for a stream) for applications like VoD. Without using any
compression schemes, it would be difficult to transmit DVD-like quality videos over the
Internet because of their large bandwidth requirements. Tor that reason, compression
methods like MPEG, which can achieve high compression ratio while maintaining good
quality, are used and MPEG-encoded sources are expected to generate a large part of the

Internet traffic in the future.
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Fig. 2.4 VoD usage projections by time of day and day of week. (Reproduced
from [53])

MPEG videos are encoded using a variable bit rate (VBR) making traffic modeling a
non-trivial task. The VBR is caused by the fact that compression is performed by encoding
each {rame using one of three different schemes: intra(l), predicted(P) and bidirectional(B).
I-frames are encoded with a low compression ratio, but are independent and act as reference
points. P-frames provide a higher compression by using motion-compensated prediction
based on the previous I or P frame. Finally, B-frames achieve the highest level of compres-
sion by using both the previous and next frame in the sequence for its prediction. These
different levels of compression produce frames with different sizes and hence a variable bit
rate. MPEG movies use a group-of-picture (GOP) structure based on a (N,M) cyclic for-
mat; each sequence contains N frames (6, 8, 10, etc.) with the first one being an I-frame
and every Mth one a P-frame [52]. A full-length movie is usually encoded with one GOP
structure even though the MPEG standard allows the use of many different structures.

The variable bit rate (VBR) and high burstiness of these movies make it difficult to
predict the required resources. By reserving resources based on average rates, long delay
are experienced in case of bursts or when the source is transmitting at peak rates. Fig. 2.4
depicts projections of the usage (in terms of concurrent streams and bandwidth per sub-
scriber) of VoD during the next five years. Although these expectations are not based on
actual data, the presence of peak hours, during which bandwidth requirements are substan-
tially greater than at other times, is highly likely. If the system is designed to support the
peak rates, it will be under-utilized outside the high-usage periods [53]. On the other hand,

if it is not, the customers will experience poor service during the busy hours. One way to
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eliminate the peaks and maintain a constant rate is to request content ahead of time. How-
ever, this procedure requires users to have a device that can store the content at home. A
solution to this problem is using a stochastic process to model the dynamics of VBR video
traffic. Models of this nature take advantage of the statistical properties ol the source to
achieve higher utilization of the bandwidth. However, Wrege et al. argue that using thesc
models has several drawbacks, mainly arising from difficulty of implementation and com-
plexity [54]. Therefore, as an alternative, they suggest using deterministic models, which
provide an absolute upper bound (worst case) on the source’s arrival traffic. Empirical
evidence indicates that peak-rate allocation, which leads to low-utilization of the network
resources for bursty traffic, is not required for deterministic models [55-58]. These models
are parameterized to establish an upper-bound on the arrival rate from the source . As an
example, the token-bucket approach uses two parameters: average rate and bucket depth.
As this solution is not suitable for variable bit rate sources, Lee et al. present an improved
version of the leaky-bucket scheme by updating the parameter pair after every group-of-
picture [59]. They take advantage of the fact that I-frames and P-frames can tolerate one
extra frame delay compared to B-frames to reduce the bandwidth requirements [60]. Their
simulations show better accuracy and higher utilization than previous leaky-bucket models
or peak rate models.

The deterministic models are called data-rate models (DRMs) because they only con-
sider the rate at which data is arriving. While these models are good for predicting average
packet-loss probability, they fail to identify such details as percentage of frames lost or
incomplete [52]. Alternatively, there are frame-size models (FSMs) which generate the size
of individual MPEG frames that can afterwards be uscd to deduce the data-rate. Sarkar
et al. show, through model simulation, that even a small loss rate can decrease the video
quality substantially because loss of an I-frame (or part of it) affects an entire GOP [52].
They propose two FSMs that generate frame sizes for full-length VBR vidcos preserving
both GOP periodicity and size-hased video-segment transitions, which previously proposed
FSMs failed to do. These transitions are modeled with a Markov renewal process, an ap-
proach also adopted in [61,62]. Zhang et al. add that it is important to consider the
entire auto-correlation structure (many models deal with [, B and P frames sub-sequences
separately) [63]. Finally, Janakiraman et al. propose a proactive multicast scheme and
demonstrated that it was able to deliver VBR content over constant-rate channels with

minimal performance loss or complexity overhead [64].
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Another consideration with video on demand (VoD) when predicting the required band-
width is that several videos can be transmitted simultaneously on the same link. In that
case, cffective bandwidth per video (measure of the amount of bandwidth that a given
source will use over a given time period) is in fact much lower because the average frame-
size of a VBR video is usually different in different segments; this is known as multiplexing
gain. Zhou et al. have developed a Markov-modulated gamma (MMG)-based model to
predict the value of this multiplexing gain [62].

2.3.2 Request Routing

Request routing is a function performed by a content distribution network which consists
of directing the client requests to the best surrogate server. The objective of a request
routing algorithm is to exclude the surrogate servers that provide low performance while
avoiding overloading the others.

For a replicated server system, one of the simplest approaches is Round-Robin (RR) [65].
This algorithm selects which surrogate serves a specific request in a cyclic mode without
considering the state of the network. It means that a RR scheme can assign a surrogate that
is overloaded or out of service to handle a specific request. On the other hand, there are
many schemes which use various metrics to make a better decision than the RR algorithm.
For example, the Response Time (RT) algorithm selects the surrogate based on the response
time the user previously experienced with a particular server [66]. Although this scheme
distributes requests among the different surrogates more efficiently than the RR scheme
and provides users with low delay, it does not necessarily prevent overloading. On the other
hand, the Load scheme assigns a probability to each surrogate in inverse proportion to the
client-replica path’s current utilization [67]. So, the Load algorithm prevents overloading
by reducing the chance of a request being served by a busy server. In [65], Masa proposes an
algorithm that takes full advantage of the CDN architecture by considering latency, cluster
request rate and link load and capacity. Worst Surrogate Ezclusion (WSE) is based on
three concepts: the exclusion of surrogates with latency higher than the estimated average
system response time, the equalization of the average response time and the prevention
of overloading the surrogate servers. Based on simulation results, Masa shows how WSE
performs better than the other schemes which either consider only one metric (Load and
RT) or do not consider the network at all (RR).
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When program caching is preferred to server replication, the request routing algorithms
are different than those just described. Because surrogate servers are hosting sets of differ-
ent objects, requests cannot be simply routed according to some metric. A simple method
is the query-based scheme [33], in which a proxy broadcasts a query to other nodes in its
cluster if it does not have the requested content locally. If a node in its cluster responds
positively, the request is routed to that server. The downside of this approach is that the
queries and replies generate a significant amount of traffic. An alternative is a digest-based
scheme where each proxy maintains a list of the information stored on all others [68]. Al-
though there is no “query traffic”, these lists need to be kept up-to-date date which, again,
can produce significant traflic. One way to reduce this “update-traffic” is to centralize the
list of files hosted by each proxy on a directory server [69]. Even if this approach helps to
reduce undesired traffic, it has the disadvantage of having a single point of failure. Jian
et al. propose a solution called the semi-hashing based approach which has small routing
overhead and high efficiency [33]. Their scheme is a modified version of the hashing method
([70,71]) which uses the content’s URL, the address of the proxies and a hashing function to
redirect the request to a designated proxy. Their enhancement consists of reserving a por-
tion of storage at each proxy for local popular content. They show that even if the amount
of storage dedicated is very small (smaller than 20%), there is a significant improvement,
in performance (higher hit-ratio). The only constraint is that cooperating proxies must be

close to one another because requests are often redirected.

2.4 Optimization Problems

In section 2.1, we presented distributed architectures in which replicas are placed in strategic
locations. Placing replicas very close to the clients, in order to achieve very small delay, is
not a viable solution hecause of the storage costs it incurs. On the other hand, placing the
replicas too close to the origin requires far too much bandwidth to handle all the traffic. The
replica placement problem consists of determining the location of replicas in the network
such that the performance is maximized given an infrastructure or that the infrastructure
cost is minimized for a given quality of experience (QoE) impairment, such as delay, packet
loss, frame loss, or packet jitter. Content delivery networks are usually modeled as read-
only (or read-mostly) workloads using classic network problems like the k-median problem

or the facility location problem [72]. In the k-median problem, the objective is to select &



2 Literature Review v v 18

locations for replicas among m potential sites for a fixed k. The choice for this value of & is
not ohvious; if the value is too small, clients are forced to take a longer route (long response
time and high load on the network) whereas if the value is too large, the hit ratio becomes
smaller and hence cost of delivery is shared by fewer requests. A high number of replicas
results in a considerable traffic load to distribute the objects to the replicas. Therefore,
contrary to intuition, deploying as many replicas as possible is not always good.

A solution, to avoid this tedious task of determining a value for k, is to find the subset
of the m locations that minimizes the cost over all possible values of k, which is known
as the facility location problem [73]. The problem consists of finding the number and
location of the replica and assign customers to each such that total cost is minimized. In
the capacitated facility location problem (CFLP), each replica has a limited amount of
resources (streaming or storage capacity, etc.) and a set of customers require a certain
amount of those resources. A simplification of that problem is the uncapacitated facility
location problem (UFLP) where cach replica has unlimited resources (infinite storage and
streaming capacity). Wu et al. presented an extension of the CIFLP that allows multiple
replicas (with different capacities) at each location and a general setup cost function {74).
The cost function consists of a fixed site setup cost and replica setup cost proportional to
the number of customers served.

Determining the location of the replicas is only one of the problem involved in the design
on content distribution networks. The placement of the objects (which objects to cache
at each replica) and the allocation of streaming and storage capacity at each location arc
other problems that affect the final design. In [44], the video placement problem is defined
as identifying the number of copies of each video and their location such that capacity
usage is minimized and a specified quality-of-service (QoS) is guaranteed. Laoutaris et al.
argue that the replica and video placement problems should not be solved independently
of the resource allocation problem to avoid a suboptimal solution [75]. They define the
storage capacity allocation problem as the distribution of an available storage capacity
budget to the nodes of a hierarchical content distribution system, given known access costs
and client demand patterns. In [14], Wauters et al. address the resource allocation problem
of determining the equipment required for transport (number of ports at each server and
number of multiplexers and switch ports at each node). In this thesis, we focus on a
different resource allocation problem: determining equipment required to store and stream

the content at each location (number of streaming and storage devices).
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2.4.1 Paramecters and constraints

To solve these problems, it is crucial to first determine a good cost function which is
minimized whilst respecting appropriate constraints. An important factor to consider when
determining the cost function is the internodal distance between clients, replicas and origin
servers. Many metrics are used to represent distance such as network latency, number
of hops, or link cost (also called bandwidth cost). Another way to express distance is
transmission cost, i.e., the cost to transmit a bit on a specific path [30,76]. Bartolini et
al. propose a scheme where requests are served by the closest replica and use distance
as a means to measure the users’ perceived quality by summing the user-replica distance
over all requests [4]. In the streaming case, finding the multicast tree that minimizes the
bandwidth cost is a trade-off between minimizing distance and maximizing the number
of clients sharing a path segment (streaming and multicast are discussed in section 2.3).
Almeida et al. argue that closest server and shortest path routing do not necessarily lead
to lowest cost [77]. Instead, to calculate the delivery cost, they use the total network
bandwidth, which is expressed as the sum (possibly weighted) of the bandwidth required
for each hop on the delivery path.

Another key parameter is the storage server cost, or replication cost, of keeping a copy
of an object at a given location [4,27,76,78]. In addition to storage cost, a fixed start-up
cost or a server installation cost has been considered in [76,78]. Bartolini et al. propose an
algorithm where the location of the replica changes dynamically [4]. The start-up cost is
expressed as the addition or removal of a replica site. The server must also be able to serve
all the incoming requests for this specific file. The server cost therefore includes the cost
of the required bandwidth, which is proportional to the popularity of the file it stores. A
server that hosts very large files (high storage cost) which are not popular (like archives)
has low bandwidth requirements.

In multimedia applications, due to the size of the objects, it is not always possible
to have complete replicas of the origin server, because unacceptably large storage costs
result. Thercfore, a selection of the objects is stored at proxy servers; the choice is based
on popularity and hit ratio. The decision of whether to place a file at a replica is based
on its size and its popularity: is the object popular enough (able to maintain a given
hit ratio) to deserve the storage space it requires? As the popularity of an object can

change through time, it might be necessary to replace objects or update them. In HTTP
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applications, objects are small and the transmission cost from the origin server to the replica
is negligible. However, video objects are much larger and the distribution of a document
is only compensated by a finite number of requests from the client. Therefore, the number
of updates or replacements required is another factor to consider.

In defining the optimization problem, the constraints to impose on the possible solutions
must be considered. Depending on the given infrastructure, it might be necessary to upper-
bound the storage capacity of the servers [6,76]. Nguyen et al. add constraints on the load
capacity of the server (number of requests it can handle) and a quality of service (QoS)
threshold (maximwn delay) for each request [78]. Other rescarchers impose requircments
of the availability of any object in the system, e.g., all requests must be handled and all
objects must be available [76,78].

2.4,2 Cost functions

We divide cost functions into categories according to whether they consider a single or
multiple objects and whether they take storage into account [72]. In a single object cost
function, only the aggregate user demand is considered; the specific objects requested are
unimportant. In the case of streaming media applications, a common choice for the delivery
cost model is one that considers the bandwidth required by the servers and network as the
only factor [32,77]. An alternative choice is a cost function based simply on distance and
hit ratio [1] (Table 2.1). In a paper by Bartolini et al. the storage, or hosting cost, is part
of the so-called maintenance cost, which also includes the cost of updating the copies at
the different locations (Table 2.1) {4].

A morce complicated casce is one where there are many different objects in the system,
cach with different popularity (user demand). A proposed solution by Wang ct al. is
to minimize the transmission cost (similar to what is done in the examples above with
delivery cost) by finding the position for each object that results in the largest savings in
transmission cost (Table 2.1) [30]. However, it is often impossible to minimize the cost while
maximizing the performance because these are two conflicting objectives. Buchholz maps
the quality of the service into the cost domain by determining the amount the customers
are willing to pay for maximal performance [6]. Finally, in the case where both multiple
objects and storage are considered, the cost function is the sum of the start-up cost, storage

cost and transmission cost, as shown in Table 2.1 [27,74,76,78].
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Cs storage cost
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2.4.3 Heuristics

The cost functions presented in section 2.4.2 are often complex and obtaining the optimal
solution is impractical; solving the replica placement problem is considercd NP-hard!. The
heuristics (algorithms with no guarantee of finding a solution) presented in this section offer
near-optimal performance as a trade-off to reducing the complexity. In simpler scenarios, it
is sormetimes possible to calculate the optimal solution and use it as a reference to evaluate
the performance of heuristics.

A popular heuristic, considered by many authors [1,6,29,75,78], is greedy selection [80].
It first chooses the replica that minimizes the total cost and then selects a second replica
among the remaining sites such that the total is minimized when combined with the first
choice. Replica sites are added either until a predetermined number of sites is reached or
when adding more replicas increases the total cost [1]. Based on computational results,
Cornujelos et al. suggested the use of Lagrangian heuristics to solve large instances of
the capacitated facility location problem (CFLP) to calculate both the lower and upper
bounds of the solution where the idea is to compute the highest lower bound possible
through a Lagrangian relaxation [81]. Genetic algorithms are another approach to solve
the optimization problemns described at the beginning of this section [44, 76].

Although these methods are known to perform very closely to the optimal solution
(within a factor of 1.1-1.5), they require knowledge about the client locations in the network
and internodal distances [82]. Among the alternatives to greedy algorithms are hot-spot [1]
and max fan-out {1,82]. In the hot-spot algorithm, the traffic generated near each site is
used as the metric for selection and is expressed as the total number of requests from clients
within a given range. At each step, the algorithm selects the hottest (inaximum number of
requests) site available. This is different from the greedy scheme as the latest choice does
not depend on the combined cost with previous selections. The max fan-out algorithm
behaves similarly with the difference that the metric used is the number of input/output
terminals at each site. In both cases, sites are added until a local minimum is reached. As
routers with high fan-out are usually busy, the solution is to build a cluster of replicas as
close as possible to high fan-out routers [82]. By using the sum of distances between each

client and its replica as performance metric, these strategies usually work very well (within

The complexity class of decision problems that are intrinsically harder than those that can be solved
by a nondeterministic Turing machine in polynomial time. [79]
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1.1-1.2 of greedy placement). However, performance decreases when the number of clients
is small.

The systemn state might change through time and the quality of an originally near-
optimal configuration can deteriorate substantially. In order to adapt to system variations,
we can periodically execute any of the aforementioned static algorithms to reposition repli-
cas such that cost is minimized. However, if the period between two executions is not
chosen carefully, the replica placement determined by the last algorithm execution can be-
come poorly matched to the current network state. The dynamic algorithm proposed by
Bartolini et al. analyzes the current configuration and removes unnecessary replica(s) (if
possible) if it can support an increase in user demand [4]. If the current configuration can-
not, the algorithm adds one or more replica(s) while taking the cost of these changes into
account. When considering as performance measures (i) the average number of replicas,
(ii) user-replica average distance and (iii) the number of requests that cannot be served, the
heuristic performs within 2-4% of the optimal strategy as computed by solving the Markov

decision model.

2.5 State-of-the-art and Contributions

In this chapter, we reviewed the many aspects to consider when planning a VoD network:
the architecture, the content allocation and delivery and the location of the replicas. In
the first section, we discussed three different distributed architectures that reduce the load
on the origin server by placing replicas (proxy-based and content distribution networks) or
using peer resources (peer-to-peer) to deliver media. In section 2.2, we addressed content
allocation. The size of the media objects and the amount of storage it takes to store
entire libraries (server replication) motivates program caching (cache only the most popular
objects) and prefix caching. Gummadi et al. showed evidence that the Zipf distribution,
which is a good model for the popularity of Web objects and has been used by many authors
in the context of VoD, is not appropriate for media objects because of the access pattern
of users for movies (fetch-at-most-once and new arrivals) [9]. In section 2.3, we reviewed
delivery protocols, traffic models for video and request routing mechanisms. Although iVoD
is unicast in nature, multicast is more efficient, but it is much harder to implement because
it is not guaranteed to be supported along all delivery paths. In section 2.4, we presented the

parameters and constraints to consider when solving optimization problems related to the
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design of content delivery networks. In particular, the replica placement problem consists
of finding the location of replicas that minimizes a function that includes storage and/or
transport cost. Because minimizing the cost function is a NP-hard problem, heuristics
that produce near-optimal results have been proposed. Greedy and Lagrangian heuristic
algorithms perform the best when client locations, internodal distances and demand are
known, but algorithms such as hot-spot and max fan-out have been suggested when this
information is unknown [82].

Researchers have approached the problem of generating cost-efficient VoD network de-
signs using different optimization techniques: placement of video objects or allocation
of available resources to minimize cost. Solving the replica placement [83,84] or video
placement [44] problems independently of the resource allocation problein usually leads to
suboptimal solutions because the location of the replicas has a direct impact on the amount
of resources required. The storage capacity allocation problem [75] and the network equip-
ment allocation tool [14] hoth take all these factors into account simultaneously, but fail
to identify explicitly the required equipment (both memory and streaming devices) at each
location. In this thesis, we define and address the VoD equipment allocation problem as the
task of determining the number and model of VoD servers (which include both a storage
and streaming device) to deploy at each potential location in a network topology such that
the total demand is satisfied and the deployment cost is minimized. This optimization
problem has some similarities with the classical facility location problem which has been
studied thoroughly (many algorithms and exact heuristics have already been developed to
solve it). However, the presence of an origin server that gathers traffic from all other lo-
cations and the non-linearity in some constraints make our problem substantially different
even from the generalized form of the facility location problem proposed in recent work [74]
and thus unsolvable using available heuristics.

Solving the VoD equipment allocation problem determines the location of the replicas,
the amount of storage available to cache content, the streaming capacity available to serve
clients and the explicit specification of the equipment installed at each location. Our main
contributions to solving this problem are the following. We design a parametric function
for estimating the worst-case hit ratio for given system parameters (cache size, library size
and file arrival rate) using discrete-time simulations based on an extension of the file access
model proposed in [9]. We propose a cost function based on the hit ratio, the distributed

demand and the number of VoD servers at each location. We develop heuristics to generate
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a solution to the problem based on integer relaxation and greedy-based search. Finally, we
develop an interactive design tool that implements our cost function, hit ratio function and
heuristic. We consider an architecture in which replicas are organized in a star topology
with the origin server in the middle. This simple architecture requires no complex request
routing; requests are first handled at the replica and, only if necessary, forwarded to the
origin. The delivery to the client is performed using unicast from the replica or the origin
and each stream is dedicated a predetermined and constant amount of bandwidth. We
estimate the total load at each location by calculating the worst-case demand (during peak
hours) based on the population size and use the bandwidth available during off-peak hours
for content distribution (content update) from the origin to the replicas. In the following
chapter, we propose a solution to a simplified version of the VoD equipment allocation
problem where the VoD model is fixed for each location. We construct a cost function
based on the hit ratio that we optimize by choosing the fraction of the library to cache
at each location. We assume that the VoD software installed at each replica is capable of
determining the popularity of each movie and properly fill the cache with the most popular
ones. However, to map the size of a cache to its hit ratio, we build a function based on
data generated by simulator that implements the “fetch-at-most-once” and “riew arrivals”

factors introduced by Gummadi et al. in [9].
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Chapter 3

Video-on-demand equipment

allocation

In this chapter, we focus on resource allocation in a VoD network deployed in a metropoli-
tan area network such as the one depicted in Fig. 3.1(a). We define the VoD equipment
allocation problem as choosing the number of streaming and storage devices (depicted as
VoD servers in Fig. 3.1(b)) for each potential replica locations, such that the deployment
cost of the VoD system is minimized. We solve this problem by determining the fraction
of the total library that should optimally be stored at each location.

The remainder of this chapter is organized as follows. In Section 3.1, we express the
equipment, allocation problem as an optimization problem, and we state our assumptions.
In Section 3.2, we present our solution to this problem, developing a novel cost function,
hit ratio estimation function and heuristic. In Section 3.3, we present the VoD Equipment
Allocation Tool: an interactive design tool that implements our solution. In Section 3.4, we
apply our heuristic to three scenarios with different demand, equipment capabilities, and
topologies (or geographies). We compare the cost generated by our heuristic to a centralized
design and illustrate our method of determining when a centralized VoD deployment should
be modified to a hierarchically-distributed VoD deployment.

3.1 Problem statement

We address the problem of determining the number of storage and streaming devices needed

at each potential replica location. We require the specification of the topology of a metro-
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Fig. 3.1 (a) The topology shows the logical connectivity between the clients,
replicas and the origin. All requests originating from a group of clients are
routed to the associated replica through direct fiber. If the request cannot
be served by the replica (file not present), it is re-routed to the origin and
scrved through DWDM cquipment. (b) A replica with n; = 3 VoD servers
each with storage capacity of G; TB and streaming capacity of F; Gbps. The
total strcaming capacity n, - F; must be greater or equal to h; - M; where h; is
the hit ratio at site 7 given the storage capacity n;-G; and M; is the worst-case
demand from the attached group of clients.

arca network (MAN) indicating the set of inter-nodal distances and the specifications (cost
and capacity) of network elements and available equipment. We consider the case where
only one type of equipment (VoD server) is installed at each site but allow this equipment
type to vary from site to site. However, in Chapter 4, we relax this assumption and assume a
case where we are given a set of available VoD server models and must determine the number
and the model of servers to install at each location. We define the VoD equipment allocation
problem as choosing the equipment for each of these replicas such that the deployment cost
of the network is minimized.

As illustrated in Fig. 3.1(a}, this topology contains one origin server and a maximum of
N replicas. IBach replica is responsible for a group of clients representing a fraction of the
population; any request made by a client in that group is routed to that replica. The origin

server hosting the entire library (the complete set of objects) can be located anywhere and
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scerves all the requests that replicas are unable to fll.

This thesis docs not consider the management of the content at the replicas. We suppose
that there exists an cxternal mechanism (e.g., VoD software installed at cach replica) to
maintain the most popular files at the replicas, which can be executed during off-peak hours
when more bandwidth is availablc. Because content delivery itself is also out of the scope

of this thesis, we are assuming unicast delivery to the user-end.

3.1.1 Mathematical formulation

Let S={s;:i=1,...,N}tand 7 ={t;: 2= 1,..., N} where s; is the number of streaming
devices with capacity F; (Gbps) and ¢; the number of storage devices with capacity G; (TB)
of replica site i. Let Cror(S,7) be a strictly positive function that maps the number of
devices installed at each location to the total network cost, The objective is to determine

S and 7 to minimize total system cost:

{S*’ T*} = arg IgiTn CTOT(Sa T) (31>

This formulation is only valid when the streaming and storage devices can be deployed
independently (s; does not need to be equal to ¢;). However, in practice, the two devices
are often deployed as a joint unit called a VoD server, so that s; = ¢; (Fig. 3.1(b)). To
address this scenario, we define N = {n; : 4 = 1,..., N}, where n; is the number of VoD
servers with streaming capacity F; and storage capacity G; at location ¢. The objective in
this second formulation (used in the rest of this chapter) is to choose the number of VoD

servers at each replica in order to minimize the total cost:

Nopt = arg Hjl\ifn Cror(N) (3.2)

We denote the worst-case demand M; at replica ¢ as the total bandwidth required to
serve all client requests using unicast streaming during the peak utilization hours. We
assume that we either know M; or can approximate it from a given population size and
peak usage ratio'. We define the hit ratio h; as the smallest fraction of requests satisfied by
replica ¢ at any given time (worst-case). If the desired object is not present at the replica

or the replica does not have enough streaming capacity, the request is unsatisfied (cache

IWorst-case demand M, = population size x ratio of subscribers (clients/house) x peak usage rate
(stream/client) x bitrate (Mbps/stream)
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miss) and routed to the origin server. Although the hit ratio could be used as a measure
of service quality, we do not to add this constraint to the optimization problem because of
the imperceptible difference in quality of streaming video between the origin and a replica
in a MAN.

3.2 Proposed solution

In this scction, we present the three components of our solution: the hit ratio function,
the cost function and the heuristic (Fig. 3.2). We call our heuristic the Integer Relaxation
Heuristic (IRH). The first step of the heuristic produces an initial solution X = {X; : i =
1,..., N} where X; is the fraction of the library stored at every replica ¢ to minimize our
cost function. This value is then used to form an estimate of the hit ratio, which allows us
to calculate the number of servers needed, N;,;. The second step of the heuristic consists
of searching the neighborhood of the non-integer solution N,; to determine the integer
number of servers Njzy. We generate the infrastructure and transport cost for the entire

network by calculating the output of the cost function for Ajgy.

Heuristic  |Nii[ Heuristic
(Step1) [ | (Step2)

« Costs

|« Equipment specs
Transport and Infrastructure
o

o Cost & Capacity
o File and Library specs
B

o u

Bo....lnputs o Cost function o Outputs
e Topology r Equipment

; Demand & Distances ¢ 1 Number of servers

i w -

| /

1
H

Hit ratio
function

S

Fig. 3.2 High level overview of the proposed solution components: the
heuristic, the cost function and the hit ratio function. The inputs consists
of the worst-case distributed demand and internodal distances, the cost and
capacity of the VoD servers, network interfaces and other network components
and the number and type of objects (size and bandwidth requirements) stored
at the origin and replicas. These values, the form of the cost function and
hit ratio function are the inputs to the heuristic that produces an initial non-
integer solution A,;. A ncar-optimal integer solution Njpy is generated by
searching the neighborhood of A,; during the second step of the heuristic.
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3.2.1 Hit ratio function

The purpose of a file popularity model is to predict the access frequency of a given file,
which can be estimated by dividing the number of requests for this file by the total number
of requests. In section 2.2.1, we reviewed popularity models and file access models for
video-on-demand systems. Of particular interest are the “fetch-at-most-once” and “new
arrivals” factors introduced by Gummadi et al. in [9]. Although it is possible to estimate
the worst-case hit ratio through simulations, for the purpose of an interactive design process
where we need to modify design choices repeatedly, it is impractical and time-consuming.
Our objective is to train a parametric function that provides an estimate of the worst-case
hit ratio based on specified system parameters in a few seconds compared to the tens of

minutes required by simulations.
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Fig. 3.3 Data fitting curves to construct the form of the hit ratio estimate
H. The linear curves indicate that 7 = A + Blog(X) achieves an adequate
fit. Markers show values of H and the dashed lines (- -) show the linear fits.
We plot the hit ratio I as a function of log(X) where X is the cache sizc ratio
(Number of files in cache / Library Size). LEFT: We plot different values of
file arrival rate Z for library sizc ¥ = 2500. RIGHT: We plot different values
of library size Y for file arrival rate Z = 50.

We designed a simulation environment with a library of size Y and a cache of size X -Y

where files are accessed according to the model described by Gummadi [9]. We calculate
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Fig. 3.4 Data fitting curves to construct the form of A in H=A+B log(X).
Markers show valucs of A and the dashed lines (- -) show the our fit A =
Ky -+ KpZ + Kylog(Y) + K17 log(Y) where Y is the library size and Z is the
file arrival rate. LEFT: A as a function of the library size Y for different vaiucs
of file arrival rate Z . RIGHT: A as a function of Z for different values of Y.
the hit ratio by dividing the number of requests for objects in the cache by the total number

of requests. Let cach client’s library L; be a subset of the complete library L that excludes

all files client j has selected in the previous weeks. During each iteration (one week) of the

discrete-time simulation, the following sequence of events occurs:
1. Clients arc added to the population at a specified rate.
2. New files are added to the library L at a specified rate.
3. The cache is filled with the most popular files.
4. Bach client j selects an object from his library L.
5. The weekly hit ratio is calculated.

The uscrs’ requests are generated using a Zipf distribution with coefficient o = 1. The

probability of selecting the file at rank ¢ in library L; is given by p;(i):

pili) = s

g
iGLj ¢

Files that have already been fetched by the user cannot be selected again (fetch-at-
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Fig. 3.5 Data fitting curves to construct the form of B in = A+ Blog(X).
Markers show values of B and the dashed lines (- -) show the our fit B =
Ks+ K¢Z + K7Y + KgZY where Y is the library size and Z is the file arrival
rate. LEFT: A as a function of the library size Y for different values of file
arrival rate Z . RIGHT: A as a function of Z for different values of Y.

nce-model). After every request a user makes, the selected file is removed from his
L; and file selection probabilities are recalculated. New files are introduced in the

L and each library L; at a specified rate. The insert position of a file is determined

using a Zipf distribution (with o = 1); the ranks of existing files which are less popular are

decreased and selection probabilities are recalculated. We ran extensive simulations with

different values for the following parameters:

1.

S

Fro

Number of weeks (length of the simulation).

Size of the client population.

Number of new clients every week.

Size of the initial library of objects Y. [1000 2500 5000 6500 8000 10000]
Number of files added to the library every week Z. [0 10 25 50 75 100]

Size of the cache as a fraction (X) of the library size. [0.1 0.2 0.3 0.5 0.7 0.9]

m our simulation results, we determine that the only parameters that have a signif-

icant impact on the hit ratio are the library size Y, the number of files added every week

Z and

the cache size ratio X. We generated 864 points for the hit ratio H by running
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the simulation four times for 216 possible combinations of X, Y and Z. In Fig. 3.3, we
observe the linear behavior of H as a function of log(X) for different values of ¥ and Z
and propose the form in (3.3) for our estimate ﬁ, where 0 < X < 1, 1000 <Y < 10000
and 0 < Z < 100. We construct the bilinear functional form for A and B represented re-
spectively by (3.4) and (3.5). In Fig. 3.4 and Fig. 3.5, we show the fitting curves generated
with those functional forms with the dashed lines (- -) and the actual values of A and B
with the markers. The curves fit the markers for most of the sets depicted; the lines for the
file arrival rate Z = 0 and library size Y = 1000 in both figures do not represent the actual
value of A and B as accurately as the other curves. We consider that ¥ = 1000 represents

a library size smaller than those of interests for large-scale deployment.

o~

H = A+ B log(X) = f3(X) (3.3)
= K+ K27 + K log(Y) + K47 log(Y) (3.4)
B = Ks+ KeZ + K.Y + KgZY (3.5)

We determine the values of the coefficients K; to Ky by solving in the least squares
sense the system KV(X,Y,Z) = H obtained by substituting (3.4) and (3.5) into (3.3).
Our resulting function for h, is accurate, showing less than a 0.02 error eighty-five percent,
of the time and less than a 0.05 error ninety-nine percent of time. In Fig. 3.6(a), we show
the histogram of the error distribution for the entire dataset (1000 <Y < 10000) for our
simulations, the error is less than 0.05 ninety-nine percent of the time. In Fig. 3.6(b), we
show the histogram of a reduced dataset that focuses on the error for library sizes larger
than 2500 files. The accuracy of the function estimate for this set is much higher: the error

is less than 0.015 ninety-eight percent of the time.

3.2.2 Cost function

We can express the total cost, Cror, as the sum of the cost of infrastructure, Cr, and the
cost of transport, Cg.
Cror = Cr + Cy (3.6)

The cost of infrastructure, Cr, includes the software and start-up cost of a location (A;)

and the cost of VoD servers (B;) for every replica site i and the origin server. In (3.7), we
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Fig. 3.6 Histograms of the error H — H between our function cstimate H
and the valuc obscrved during simulations H. (a) The crror for entire datasct
generated by our simulations. The error is less than 0.05 ninety-nine percent
of the time. (b) The error of a reduced datasct where the valucs for library
sizc below 2500 are discarded. In the case of 2500 < Y < 10000, the crror is
less than 0.015 ninety-cight percent of the time.

express Cp as a function of the number of VoD servers installed at location 4, n;, and the

origin, 7.

N N
C'p = Z Ai + Bmi = f1 (TLO) + Z f1 (’I’Li) (37)
i=<1

i=0

The cost of transport consists of two components: transport from the origin to replicas

and clients, Cs,, , and transport from replica ¢ to client i, Cg,. . 1t includes the cost

of node interfaces (Crr) and of fiber (Cy). The transport from replicas to the user-end

(small distances) uses direct fiber whereas the transport from the origin to the replicas uses
DWDM connections.
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N
Cs = Y Csop +Cspe (3.8)
i=1
051&(‘;'71 = Nprc; - (2 : O/ o (,l]?(;i . C/) («39)
o TR, | o/ » dor, y .
Cson, = nor(2-Cip) -+ 2Cpwpm +dog, - Cy - (““) ' (—/LA} (3.10)
' Iw'r”/a X (Z(I‘W 17
noR,: Num. of interfaces (fibers) toward the origin.
npey,: Num. of interfaces ([ibers) toward the user-cnd.
c: Fiber capacity. (Gbps)
Crr Node switch interface cost. (3)
Cr Cost of fiber. ($/km)
Cpowpn:  Cost of DWDM equipment ($)
Winae: Number of fibers supported by DWDM equipment.
Cra: Cost of linc amplifier. (§)
Aamp: Max. distance between two amplifiers. (km)

The mumber of fibers at cach node depends on the amount of traffic on the various links,
the hit ratio at the replica and the fiber capacity. On the link between location 4 and the
clients (RC;), the traffic is equal to the demand from the user, M;. On the link between the
origin and a location i (OR;), all the requests that cannot be served by the replica (cache
misses) are handled by the origin server, generating a traffic equal to (1 — h;) - M,. Notice
that we arc using non-integer values for the number of network equipment (number of fibers
and ports) because we assume that the unused fraction can be used for other applications
and does not need to be included in the cost.

(1= M) M M;

NoR, = m’"c_— npre, =

(3.11)

The worst-case demand between location ¢ and the group of clients is fixed, so Csy,
does not depend on any of the optimization variables.However, Cs, &, indirectly depends on
n; because the hit ratio h; changes with the number of VoD serveré installed. We express
the cost of transport Cg as follows, where fy(h;, M;) is obtained by substituting (3.11) into
(3.10) and (3.9):
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N N
Cs = Z Csor, T Cspe, = Z fnor,) + f(nge,)
i=1

i=1

= ng(hi,M,‘) (312)

By substituting (3.7) and (3.12) in (3.6), we can express the total cost as a function of
the number of VoD servers installed (n;), the hit ratio (k;) and the demand (M;) at each

location:

N
Cror = fi(no) + Y filn) + fa(hi, My) (3.13)

i=1
The required number ol VoD servers is determined by cither the streaming or storage

requirement (n; = max(s;,{;)), expressed as functions of X;:

hi- M fo(X0) - M X, Y
S; 7 7 t; a (3.14)
> (1= f3(Xy) - M, Y
T (2 o — 1
So o to G (3.15)

Define f4(X) £ max(s,,t,) and f5(X;) £ max(s;,t;). By substituting (3.3), (3.14)
and (3.15) into (3.13) and assuming that the demand M; is known, we express Cror as a

function of the optimizing variable X:
N
Cror = filfa(X) + Y fi(fs(X)) + fo f3(X0)) (3.16)
i=1

3.2.3 Integer Relaxation Heuristic (IRH)

The Integer Relaxation Heuristic (described in Algorithm 3.1) consists of two steps: (i)
relaxing the integer constraint and (ii) searching the surroundings of the initial solution for
a near-optimal integer solution.

Step 1: The first step of the heuristic is to provide an initial solution, X = {X; : i =

1,..., N}, representing the optimal fraction of the library to store at each replica. We
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obtain A}, by performing a constrained nonlinear optimization on Cypop (as expressed in
(3.16)) where 0 < X; < 1, which is solved using a sequential quadratic programming (SQP)
method [85,86]. From X, we calculate Ny, the set of fractional numbers of VoD servers,

by expressing s;, t;, s, and ¢, as functions of X; with (3.14) and (3.15).

1 Obtain A},; by performing a constrained nonlinear optimization on Cror;
2 Calculate the integer values of Njgy with (3.14) and (3.15);

3 Calculate Arry from Njgy using (3.17) and (3.18);

a Set Cy = Crpy = Cror(Xjpy) and k =1,

5 repeat

6 forall locations i do

7 X = Xpy and N = Nigp;

8 for n, + 2 do

9 calculate X; with (3.17) and (3.18);
10 calculate cost Cror(X);

1 if Crop(X) < Crpy then Cipy = Cror(X), Nipy =N, Xipy = X
12 end

13 end

14 | Oy = Cipa;

15 k4 +;

16 until C, > Cy_; ;

Algorithm 3.1: Integer Relaxation Heuristic (IRH)

Step 2: The second step of the heuristic consists of searching the neighbourhood of Ny,
for a near-optimal integer solution. One iteration consists of going through each location i
and calculate the cost for integer values of n; near the initial value (n; = 2) by converting
N to X using (3.17) and (3.18). At the end of each iteration k, we compare the lowest
cost Cy with the lowest cost from the previous iteration Cj_;. We continue the search until
Ck > Ck_1, which means that there was no improvement in the last iteration.

G

_ yacy
Xsto'ra,ge = % Xstv'eaming = f3 1(hi> = f3 ' < M. ) (317)

X/ = Hlin(Xstm‘a,ge; Xstreaming) (318)
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3.3 Interactive Design Tool

Our design tool, the VoD Equipment Allocation Tool, is an interactive Graphical User
Interface (GUI) application used to plan the deployment phase of a video-on-demand (Vo))
network. The tool includes two components: the Topology Design Tool (TDT) (developed
by Vinokurov in [87]) and the optimization program. The TDT allows the user to (i) create
topologies and models of network components and VoD infrastructures and (ii) visualize the

design suggested by the optimization program (the solution we generate with our heuristic).
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Fig. 3.7 Modcl editor of the design tool. Topology of a MAN where the small
squares represent inter-connected locations. The demand and infrastructurces
(replica) installed at cach location can be customized by the user. The model
editor allows the user to create different models for VoD Servers or other
nctwork components. The models are added to a library which is loaded every
time a new project is created.

We describe the typical workflow to follow to design a VoD network with the tool. The
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Fig. 3.8 Roeplica editor of the design tool. The object editing window allows

the user to create and edit objects in the topology; for example, the user can
edit a replica object by changing the type of VoD servers available. This win-
dows also displays results from the optimization: s;, t;, n;, h; and bandwidth

available during off-peak hours.

39

first step is to create the network topology with all the locations using the TDT Wizard or

manually. The second step is to build models for network components, VoD equipment and

the VoD network itself. At least one model (cost and specifications) needs to be cracted for

each of the following components before adding infrastructures to the topology: network

interface, DWDM switch, fiber, stored file, VoD server, library server (or origin) and replica

server. [n Fig. 3.7, we show the model editor that allows the creation and modification of

all the components. When the topology and the models are created, the user can create

replicas and origin objects using the Objects Editor (shown in Fig. 3.8). The editor allows

the creation and modification of each replica and the origin server. A valid VoD network
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includes only one origin and any number of replicas (up to one per location). With a valid

network setup, it is possible to run the optimization to determine the optimal equipment.

3.4 Results

In this section we examine the results obtained from applying our heuristic to three scenarios

using our design tool.

Scenariol 20 different sets of inputs where the number of locations N in the topol-
ogy is between | and 100, the number of files in the library between
1000 and 10000 and the file arrival rate per week is between 0 and 100.
The system parameters are all uniformly distributed within the following
specified ranges: demand M (1-20Gbps), startup cost A (6-37k3), VoD
server cost B (1-53k$), streaming capacity F' (1-5Gbps), storage capacity
G (1-10TB), distance to the origin dpg (0-50km), average distance to the
client dgre (0-5km), cost of bandwidth (0-4k$/Gbps) and cost of storage
(0-3k$/TB);

Scenario2 Topology of 25 locations with the system parameters uniformly distributed
within the same ranges as in Scenariol. For cach trial, demand M; = M
at each replica, where M varies from 2.5Gbps to 50Ghps;

Scenariod Topology of 14 locations with the system parameters uniformly distributed
within the same ranges as in Scenariol. The specifications of the equip-

ment and demand at each node appear in Table 3.1.

Fig. 3.9(a) shows three different total network costs Cror for Scenariol: cost of &
centralized design (n; = 0 for all 4) and cost after the first and second step of the Integer
Relaxation Heuristic (IRH). Fig. 3.9(b) shows the percentage reduction of the cost achieved
by the Integer Relaxation Heuristic. IRH yields average improvements of 17% over the a
centralized design. The majority of the heuristic improvement comes from the first step.

In Scenario2 we illustrate the impact of the demand M on the deployment cost. In
Fig. 3.10(a), as the demand increases, the cost differential between the design generated by
our tool and a design in which no equipment is installed grows substantially. Below a certain
demand (a~ 7 — 8 Gbps), both designs are of equal cost, which means that if the demand
is too low, it is no longer cost-efficient to deploy equipment. Fig. 3.10(b) compares costs of

transport and infrastructure for a single location ¢, which has a startup cost A = 19k$ and



3 Video-on-demand equipment allocation 41

4
X,,1 P I i , 60 i
~3— Centalized 1] X Centralized to IRH(Step 2)
= = =|RH (Step1) 5ol QO IRH (Step1) to IRH (Step2) x
?|[ =@ IR (step2).
x
_ 3 40
¢ S
= e b
% T
8 £ 30¢ X x
—_ >
8 2 X
e a0} * X X
X x
10 X X O X
x
,LO00®0 000000 . ROOC
5 0 5° 10 15 20
Index of Network Configuration Index of Network Configuration
(a) Total network cosl {or different inputs seis (b) Heuristic improvement

Fig. 3.9 Scenario 1. (a) Three values for the total network cost for each of
the 20 different inputs sets are shown: placing no equipment (Centralized),
after the first step of the heuristic (IRH (Step 1)) and after the Integer Re-
laxation Heuristic (IRH (Step 2)). (b) Cost improvement from a centralized
approach and running the first step of the Integer Relaxation Ieuristic (IRH
(Step 1)) to running the entire TRH (IRH (Step 2)). Running IRH yiclds an
average improvement of 2.5% on Step 1 and a 17% average improvement on a
centralized design. In both (a) and (b), the 20 different cases are displayed in
increasing order of cost of Centralized.

where VoD servers with 3Gbps and 2T B capacity are available at 2k$. Provided “Cost of 1
VoD server” is lower than “Cost of transport (Centrlized)”, it is beneficial to cache content
at 4. If the equipment installed at the origin and i is identical and “Cost of transport
(Centalized)” is smaller than “Cost of 1 VoD server”, then it is cheaper not to install any
replica and carry the entire demand up to the origin. In the analyzed scenario, equipment
is cheaper at ¢ than at the origin, so there is one point (M = 8.3Gbps) where the heuristic
indicates that a replica should be installed even though the cost of transport is less than
the minimum deployment cost. Therefore, the demand and type of equipment not only
have an impact on the fraction of the library to cache, but also determine whether or not
caching content is even profitable.

Table 3.1 displays the values for n;, s; and t; calculated with our tool for Scenario3. The
total network cost for this equipment is 1,810k$. Looking at the table, we notice significant

discrepancies between the values of s, and ¢;,, which signifies that resources arc wasted
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Fig. 3.10 Scenario 2. (a) Total network cost with demand M; = M at
cach replica, where M varics from 2.5Gbps to 50Gbps. As M increasces, the
gain from applying the Integer Relaxation Heuristic increases. The demand
must be at lcast a 7 — 8Gbps to justify the installation of cquipment. (b)
We consider location i with the following specifications: A; = 19k$, By =
2k$, Iy = 3Gbps, G = 2I'B. As a function of the demand M; we show
the following costs: transport cost from this location when h; = 0 (Cost
of transport (Centralized)), cost of equipment (Cost of replica (IRH)) and
transport (Cost of transport (IRH)) when we apply our Integer Relaxation
Heuristic (IRH) and minimum deployment cost (installing one VoD server:
A+ BL)

because of poorly chosen equipment. For example, at location 3, the required number of
streaming devices is almost twice the number of storage devices, whereas the streaming
capacity of the equipment is half of the storage capacity. We consider the effect of making
equipment available at these locations with specifications that better match storage and
streaming needs. For example, we change the value of Fj from 1 to 3 in order to have a
closer match for s3 and {3. We repeat for the other three locations where n; # 0 (7, 10
and 11) and adjust the value of B accordingly; for example, By increases from 9k$ to 15k$
F,

to support an extra 2Gbps. All the modifications (B i, and G,,) and new results (n,,

/L'Q’
Siyy bip) are also shown in Table 3.1. We notice that the four locations where we modified
the hardware now have s;, = t;,, which indicates a better usage of resources. Moreover,
because of the savings at these locations, it is now beneficial to install more equipment at

locations 1 and 14 to achieve a minimal network cost. We also note that even though the
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Table 3.1 Scenario 3. Initial specifications of 14 locations (left). On the
right, specifications of the locations after modifying equipment (modified val-
ues arc highlighted with the surrounding box).

Location M; A; || By, F,, Gy |ny Sy ty || Bew Fiu G| ni,  Si, Tig
1 10 19012 2 20 0 o012 2 2 [4.3] [4.3]
2 13 80209 1 9]0 0 029 1 9]0 0 0
3 18 12019 1 2|18 178 11 2 |1[6]
4 5 1316 4 1/0 0 o016 4 1[0 0 0
5 9 1519 4 22 0 019 4 2|2 1.7
6 2 1502 4 3]0 0 02 4 3|0 0 0
7 19 10130 4 6 |4 45 36 4 4 4.2
8 1 15412 1 3]0 0o o122 1 3|0 0 O
9 9 18|24 2 60 0 024 2 6|0 0 0
10 19 16027 3 6|5 63 36 3 (6] [5.8] [58
11 19 190124 3 5|5 61 44 3 (6] [5.6] [5.6
12 0 629 2 8]0 0 01290 2 8|/0 0 0
13 8§ 133 2 1wW0[0 0 03 2 1wW]0 0 0
14 M 1422 4 3|1 0 o022 4 3 [4 [3.1]

value of ny has not changed, the streaming and storage requirements have increased from
0 to 1.7. This means that the initial solution is ns = 2 instead of ns = 0 and that the
value of ns is already optimal after the first step of the heuristic, it does not change from
0 to 2 during the searching step. The new total network cost for this setup is 1,580k$, a
12.5% improvement. It is important to stress that the prices and capacity used in these
scenarios are not intended to reflect the real values used in practice. However, this simple
example shows the impact of modifying the type of equipment installed at each location

on the total deployment cost.

3.5 Conclusion

Network cost is affected not only by where replicas are located, but also what equipment,
comprises a replica. We developed a design tool (that implements a cost function, hit ratio
function and heuristic) to address the VoD equipment allocation problem. There are four
principal contributions in solving that problem. We used extensive simulations to train a

parametric function that generates accurate estimates of the hit ratio for given cache size,
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library size and file arrival rate. We constructed a cost function based on the hit ratio
h;, the demand Af;, and the number of VoD servers n; at each location. We designed a
two-step heuristic, called the Integer Relaxation Heuristic (IRH), that relaxes the integer
constraint to produce an initial solution and then identifies a near-optimal integer solution
in a reduced search space. The tool that implements our cost function, hit ratio function
and IRH is truly interactive because it allows designers to create and change network models
to generate optimal designs in an efficient and timely manner.

Our key conclusions are: (i) the nature of the available server equipment has a major
impact on the design and cost of a VoD network; and (ii) it is not always beneficial to
cache content. It is profitable to install VoD servers (regardless of the library size) if the
demand at the given location is significant. On the other hand, even if the library has
tens of thousands of assets, if the demand is too low, no amount of caching can reduce
the nctwork cost. Accounting for the available equipment during the VoD network design
is critical as the choice of equipment has a direct impact on the minimum demand that
makes caching profitable. Moreover, selecting equipment that jointly matches streaming
and storage requirements at each location can result in substantial reductions in network
cost; we provide an example in Section 3.4 which illustrates that only a few equipment
changes can have a major impact.

In this chapter, we adressed the problem of determining the number of VoD servers
to install at each location when the streaming and storage capacity at cach site was fixed
prior to the optimization. In the next chapter, we relax this assumption and definc a new
problem where we are given a set of available VoD servers that can be installed at any
location. This extension of the VoD equipment allocation problem consists of determining
both the number and model of VoD servers to install at each location, such that the total

cost 1s minirmized.



Chapter 4

VoD Servers Model Selection

In Chapter 3, we presented the equipment allocation problem and our approach to solving
it based on the assumption that a fixed, single and predetermined type of Vol) server was
available at each location. As a result of making this simplifying assumption, if multiple
models are available, a network planner has to iteratively change the available server model
at various locations until the network deployment cost cannot be further decreased. We
showed how it is possible to identify which locations have suboptimal VoD server model
by inspecting the discrepancy between the number of required and installed streaming ancd
storage devices. A large difference is an indication of wasted resources, and hence of a bad
choice of server model. The exercise of identifying suboptimal VoD server models is not
trivial and can become very tedious for a large network.

In this chapter, we relax the assumption that we must pre-determine the available
type of VoD server for each location. Instead, we assume that any server model from a
given set can be chosen for each location. However, we still restrict ourselves to the case
where a single type of server is installed at each location (one cannot mix several types of
server). This is motivated by practical considerations such as the purchase (one vendor),
the physical installation (rack of same servers) or the software management (same OS) of
the servers. We formulate a new problem statement and propose two heuristics (IRH and

[GS) for finding approximate solutions.
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4.1 Problem Statement

We address the problem of determining not only the number, but also the model of the
VoD servers at each potential replica location. The assumptions for this problem are the
identical to those described in Chapter 3 (Section 3.1). To solve this problem, we also
require the specification of a set of available VoD server models W = {w, : j = 1,..., W}
where w; is a VoD server with streaming capacity F; Gbps, storage capacity G; TB and unit
cost B; k$. We define the sets N ={n;:i=1,...,N}and V={p, e W:i=1,...,N}
where 7; is the number and v; is the model of the servers installed at location 4. The new

optimization problem is expressed as follows:

{N*, V*} = arg rﬁyl\f)l OTOTV (./\/) (41)

where Cror, (N) is the total cost of the network Cror for a fixed set V.

4.2 Cost function

We adopt an approach to solving this new cquipment allocation problem different from
that presented in Chapter 3. Instead of expressing cost as a function of the fraction of
the library cached at each location X, we optimize the number of VoD servers n; directly.
Recall that the total cost Cpor is the sum of the cost of infrastructures, Cr, and the cost

of transport, Cg:

N
Cg = Z falhy, M;)
=1

Cr = filno) + ) fi(n) (4.2)

=1

N N
Cror = f1(n,) + Z filn) + Z falhy, M;)
=1 =1

To derive an expression for Cror solely in terms of n; for ¢ = 1,..., N, we resolve h;
and n, as functions of n; (M, is assumed to be a fixed parameter). We develop expressions
to calculate h; and n, for a fixed A/. The hit ratio at a location is limited by either the

streaming or the storage capacity. The demand at the replica h; - M; cannot exceed the
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streaming capacity n; - F;. We calculate the cache size ratio X; from the storage capacity
n; - G;. Using the value of X; just calculated and (3.3), the equation for q presented in the
previous chapter, we determine the maximum hit ratio h,; achievable for a given storage

capacity. We express h; as fs(n;):

] CIn
b == NI y .
' Y - file size’

i I~ n; - Gy
M

Y, Z)} = fa(n;) (1.3)

The number of servers required at the origin, n,, is also constrained by either streaming
or storage. The storage capacity n, - G, must be at least equal to the amount of storage
needed for a library of Y objects. The origin must also have enough streaming capacity
N, - F, to handle the cache misses from all the replicas equal to the sum of (1 — h;) - M,
for all locations ¢. In (4.4), we define n, as fa(n;) by substituting k; with the expression in
(4.3).

Zi]\il(l — hi) - M; Y -file size

o R = ) (1.4)

N, = Mmax

By replacing the equations for n, and h; in the initial definition of Cror, we derive a

new expression solely in terms of n;:
N
Cror = AilfsN) + > filna) + fo(fs(na)) (4.5)
=1

4.3 Description of Heuristics

The most obvious approach to find the solution that minimizes Cyop is to perform a
complete search in the solution space. However, this procedure, called Full Search (I'S),
is time consuming and not scalable. In this section, we quickly describe the full search
and present four heuristics that can determine a near-optimal solution to the equipment

allocation problem in a reasonable amount of time.

4.3.1 Full Search (FS)

The Full Search is a very straightforward approach that consists of trying all the possible

points in the solution space. We reduce this space by calculating the maximum number
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of servers it is worth installing at a given location using (4.6). We define ub = {ub; :
i=1,..., N} where ub; is the upper-bound on the number of servers that represents the

number of servers required to store the entire library and handle 100% of the requests

ub; = max <%, _):'_ﬁ_cli_s_fg) (4.6)

For a given V, the boundaries of the solution space are N' = 0 to ub where 0 =

{n;=0:7=1,...,N}. To complete the full search, all the possible combinations of V

must also be tricd. Although this procedure is guaranteed to find the optimal solution,

it is very computationally expensive and the amount of time to scarch the entire space

grows exponentially with the size of the network (complexity is discussed in more detail in
Section 4.4).

4.3.2 Central or Fully Distributed Heuristic (CoFDH)

1 Clentral = 00;

2 forall locations i do /¥ centralized design, Neentras =0 */

3 I n; = 0;

4 end

5 forall models w; € YW do /* pick model at origin */

6 Set V' 'U,;:wjforizl,...,N;

7 calculate cost Cror,, (Neentral);

8 if C'/‘OTV; (ant’ml) < O{ze’n,tv'a,l then Cce'nt'r'a,l = C’I‘OTv/ (-/\/CE’VLU‘(LI) 'd,Ild V{:(zn[.'m,l - V/ ;
9 end

Algorithm 4.1: Central Heuristic

The Central or Fully Distributed Heuristic simply calculates the cost of a centralized
design (Vi : n; = 0) and a fully distributed design (Vi : n; = ub;) for each available
VoD server model in W and picks the cheapest design. The Cental part of the heuristic
is described in Algorithm 4.1; the Fully Distributed in Algorithm 4.2. This heuristic is
straight-forward and highly suboptimal, but it provides an upper-bound that can used as

a comparison base for other approaches.
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1 C/;'[) = 00

2 forall models w; € W do

3 forall locations i do

4 v, = wy;

5 n; = ub; /* fully distributed, N =ub */;

6 end

7 calculate cost Cror , (N);

8 if CTOTV’ (NI) < C/;*D then CpD = CTOTV’ (Nl), NFD = Nl, Vp[) = V/ )
9 end

Algorithm 4.2: Fully Distributed Heuristic

4.3.3 Greedy Search (GS)

We define a topology in the discrete solution space where each solution is connected to its
neighbouring solutions. In this case, a neighbour consists of adding one server at one of
the locations or changing the server model of the origin or any location. Greedy Search
(GS) is a searching heuristic that explores all neighbouring nodes and selects the one that
yields the best solution at every iteration without considering the subsequent steps [80)].
The scarch continues until it recaches a local maximum (or minimum); no neighbours offer
a better solution than the current one. We define N/ = 0 as our initial solution, i.e., no
servers installed at any of the locations. Then, at each iteration, the algorithm tries to place
a server at each of the NV locations and selects the placement that yields the lower cost.
Because we also need to consider the server model, we adapted the greedy search to our new
equipment allocation problem by making a few modifications, as shown in Algorithm 4.3.
For each node, not only do we try each of the N locations (lines 5-7), but also the
different server models for both the origin server (lines 8-9) and the current location (lines
10-11). Therefore, each solution has NW?2 neighbours; we select the origin model v;, the
location 7 and the model at that location v; that yield the lowest cost at each iteration.
Note that with this procedure, the value of v; and v; can change at every iteration.
Typically, if it is impossible to find a neighbour yielding a better solution than the
current one, the search stops. To perform a more thorough search, we wait for more than
one (I = 3,5,10,20,etc.) iteration over which the cost does not decrease before stopping
the search. Let Cp be the minimum cost after placing k servers (k iterations), then the

search stops when C; > C;_1 Vj € k— 1+ 1...k. Finally, another tactic to explore a larger
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1 Set Cyg = 00, Ngg: ny = 0 and Vgg: v; =wy fori=1,..., N;

2 Set Cy = Cas, Nog = Ngs, Vo = Vg and k = 0;

3 repeat /* cost has not decreased for I iterations */

4 k++;

5 Set Cp =00, N = N1 and V = Vi _y;

6 forall locations i do

7 N =N,V =V,

8 n/L =n,;+ 1 /* add one server at i */;

9 forall models w; € YW do

10 v) = w,; /* model at origin */;
11 forall models w, € W do
12 ’U; = wy /* model at location ¢ */;

18 calculate cost CTOTV/ (N);
14 it Cror, (M) < Cgs then Cgg = Cror,,, Nas = N Ves =V ;
15 if CT()TV, (./\/’}) < Gk then Ck. = CT()TV,, /\/k = N/, Vk; == V’ )
16 end
17 end
18 end
wuntil C; > C_y Vjek—T4 1.k

Algorithm 4.3: Greedy Search (GS)
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part of the solution space is to perform two different greedy scarches: one where servers arc
added to an initial solution A/ = 0 and a second one that removes servers from an initial
solution A/ = ub). For the second search, line 5 of Algorithm 4.3 becomes n; = n; — 1. We

then select the solution that produces the lowest cost.

4.3.4 Integer Relaxation Heuristic (IRH)

The Integer Relaxation Heuristic presented in Algorithm 4.4 is a modified version of the
IRH presented in Section 3.2.3 of the previous chapter. As before, the first step is to find
an initial non-integer solution and the second step is to scarch its neighborhood for a near-
optimal integer solution. However, both steps have been adapted to this new problem.
In the first step (lines 1-13), we start by finding a non-integer solution for each server
model using a constrained nonlinear optimization. Then, we calculate the cost associated
with each replica (O, + Csgp, ) and determine the model that minimizes this cost for each
location. We complete the iniﬁal solution by determining the best server model to install at
the origin (lines 9-13). In the second step (lines 14-42), we perform two different searches
to find a near-optimal integer solution. In the first one (lines 14-26), we iteratively sct
n; = 0 at each location to make sure it is profitable to setup a replica. The second search
(lines 27-42) is identical to the one described in Section 3.2.3: we iteratively try to remove

or add up to two servers at each location until we find a local minimum.

4.3.5 Improved Greedy Search (1GS)

As in the Integer Relaxation Heuristic, the Improved Greedy Search is divided into two
steps: determining an initial solution and searching its surroundings for a better one. In
IGS, both steps are inspired by the greedy search. Through simulations and results from
Chapter 3, we noticed that the number of installed servers at a given location is either
none or very close to the upper-bound. During the first step of the heuristic (lines 7-17 of
Algorithm 4.5), we iteratively add servers in a greedy-fashion starting from a centralized
design by setting n;, = ub; at the location that achieves the lowest cost. We repcat this
process of adding ub; servers at a chosen location such that cost is minimized after each
iteration, until it is no longer possible to decrease the cost. This first step is repeated for
each VoD server model at the origin and the other locations (lines 1-6) and at that point, we

have determined an initial integer solution and the first step is complete. The second step
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N

[* N

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

forall models w; € W do
/ d .
Sct Vv, = w; for i = 1,... N,
Obtain Nj by performing a constrained nonlinear optimization on Cror,, ;
. - 7

end
forall locations i do
’ Set v; = w; and n; = n; such that Cr, 4+ Cs,p, is minimized;
end
Set Crpu = 00, Nirw = N
forall models w; € W do

Set v, = wy;
Calculate cost for Cror,, (NV);
if OTOTV < Cigu then Cipy = CTOTVy Vipy =V
end
set C() = CI[?.H and &k = 0;
repeat
k+ +;
Set N = Nipu;
forall locations i do
Set N = N and n; = 0;
Calculate cost Cror, (N');
if Cror,(N') < Crpg then Crpy = Cror,(N'), Nrpg =N ;
end
Cr = Crra;
until Cp, > Cy_y ;
Set CO = CII?,H and k = O;
repeat
k++;
Set N = Nipa;
forall locations i do
Set NV = N/;
for k =n; + 2 do
Set n, = k;
Calculate cost Crory, (N');
if Cror,(N') < Crryy then Crpg = Cror, (N), Nign =N ;
end
end
Cy = Crra;
until Ck Z C’k:—l s

Algorithm 4.4: Integer Relaxation Heuristic (IRH)
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10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Set C/(;g = O,
forall models w; € W do
Set V': ’U,:: = w; and calculate upper bounds ub; for e =1,..., N ;
forall models w, € W do
Set v, = wy;
Set Co =00 and [ = 0;
repeat
[+ +;
Set NV = WN;
forall locations i do
Set n; = ub; and calculate Cror,, (N
if Cror,, (N') < Crgs then Cigg = Cror,,, Nics = N Vigs=V
end
Set C) = Cigs;
until ¢} > C)_ ;
end
end
Set Co = Cras, No = Nias and Vo = Vigs;
repeat /* cost has not decreased for I iterations */
k++;
Set C, =00, N =N,_; and V = V,_1;
forall locations i do
for m = -1 and m =1 do
Set N = N and n; = n; +m;
calculate cost Cror, (N);
if Cror,(N') < Crgs then Crgs = Cror,, Nigs =N, Vigs = V' ;
if CTOTV(N/) < Ok then Ck - OTOTV” Nk = NI, Vk = V/ 3
end
end
until C; > 5 Vi €k —IT+1..korC; >CrggVi€k =21 +1.. .k

’

¥

Algorithm 4.5: Improved Greedy Search (IGS)



4 VoD Servers Model Selection 54

(lines 20-36), just like in the Integer Relaxation Heuristic, is an exploration procedure in
the neighbourhood of the initial solution. In a greedy-type approach, at iteration k we add
or remove one server to the initial solution at the location that minimizes the cost C,. We
stop the search when C; > €y Vj €k —1+1.. korwhenC; > Ciqs Vj € k—21+1.. .k
(minimum cost. has not decreased for 2I iterations). Because we increase and decrease the
number of servers, some solutions can be revisited during the searching procedure. [FFor
that reason, we add the second termination condition to guarantee the convergence of the

heuristic (to avoid a loop in the solution space topology).

4.4 Complexity Analysis

In this section, we analyze the worst-case complexity, WCC, of each of the heuristic pre-
sented in the previous section. We define the worst-case complexity as the maximum
number of operations that the heuristics can perform before terminating. The expressions
presented are functions of the number of locations N, number of VoD server models W
and the maximum of all upper bounds ub;, U, = max(ub). To further simplify thesc
expressions, we assume that ub; = U, for all locations; this is reasonable for a network

where the demand is distributed evenly among all the locations.

4.4.1 FS

In the full search, all models must be evaluated at all locations (W) for all the possible
number of servers (va ub;). When we assume ub; = U,,,, for all locations, the maximum

number of iterations for F'S is:

N
WCCrs = WY T ub, = WY . U,..Y
s H (4.7)

= (W ) Umuw)N

In the case of the full search, this expression is not the worst-case scenario, but the
actual number of iterations for every search. It is exponential in the size of the network,
N, indicating that it is impractical to use this method for most scenarios. This justifies

the development of the heuristics presented in this chapter.
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4.4.2 CoFDH

CoIFDH was written to generate an upper-bound and a comparison base for the solutions
produced by the other heuristics. It is trivial and has low complexity; running either the
central or the fully distributed heuristic only requires a number of iterations equal to W

because the value of NV is either 0 (centralized) or ub (fully distributed).
WCCeorpn =2W (4.8)

4.4.3 GS

One iteration of the greedy search of Algorithm 4.3 consists of trying each model at each
location and the origin: IV.W? operations. The worst-case scenario is that the best solution
is a fully distributed design (n; = ub; for all locations) which requires ZZV ub; iterations if

the algorithm reaches that solution.

N
WCCas =Y ubi+ (N -W?) = (N - Upga) - (N - W?)

= N*W2U,us

(4.9)

Under our simplifying assumptions, the complexity of GS is a second degree polynomial

in N and W and linear in U,,,,.

4.4.4 IRH

The first step of IRH consists of performing a constrained nonlinear optimization for cach
VoD server model. This type of optimization is performed using a sequential quadratic
programming (SQP) [85,86] algorithm which has a complexity of O(N?). With W more
operations, we determine the model at the origin. The first part of the searching step (lines
11-18 of Algorithim 4.4) of the heuristic requires going through each location once until the
cost does not decrease. The worst-case scenario is starting from a solution N with n; # 0
for all locations and finishing with A" = 0; which requires up to NV iterations. In the second
part, cach iteration requires five operations (trying each of n; + 2) for each location. The

. . : N . .
worst-case number of iterations is Y ;" ub; if we start from A = 0 and terminate the search
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with A = ub or vice-versa.

N
WCCrpn = (W - N* + W) + (N?) + 5N Z:M"" (4.10)

= N*(W + 1+ 5Upae) + W

4.4.5 1GS

Each iteration of the first step of IGS has the same complexity as a GS iteration, but the
maximum number of iterations is N because we add ub; servers at a time instead of one.
In one iteration of the searching phase, two operations are performed for each location.
The worst-case is the same as the one described in IRH: going from fully distributed to

centralized or vice-versa.

N
WCCias = (WAN?) +2N ) ub, e11)

= (W2N?) + 2N Upas

4.4.6 Worst-case heuristic comparison

We complete our analysis of the complexity by showing in Table 4.1 the WCC of all the
heuristics described in this section. From this table, it is clear that a full search approach
is unsuitable for our problem; even smaller problems such as N = &, W = 6 and U4, = 20
take on the order of 10” operations. A large value of U,,4, is an indication of large worst-case
demand M;, files of large size or that the model is simply unfit for the specific location. The
three other proposed approaches GS, IRH and IGS have reasonable worst-case complexity
even for complex problems like N = 100, W = 6 and U,,,, = 20. We note that for most
sample scenarios shown, the WCC of IRH and IGS together is still lower than running the
GS. This leads us to think that it is possible to perform both searches and choose the best
of the two solutions.

It is important to stress that the values and the expressions derived in this section
are worst-case estimates and do not show the average complexity of these heuristics. The

objectives were to provide an estimate of the maximum number of operations before con-
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Table 4.1 Worst-case complexity for given N, W and U,z

N W U WCCrs WCCeorpn WCCgs WCCran WCCros
5 2 5 100,000 4 500 202 350
5 2 20 102,400,000 4 2,000 577 1,100
5 6 5 24,300,000 12 4,500 306 1,150
5 6 20  2.4883.10° 12 18,000 681 1,900
50 2 5 1.10%° 4 50,000 20,002 35,000
50 2 20 1.2677.10% 4 200,000 57,502 110,000
50 6 5 7.179 - 107 12 450,000 30,006 115,000
50 6 20 9.1004 1093 12 1,800,000 67,506 190,000
100 2 20 110100 4 200,000 80,002 140,000
100 2 20 1.6069 - 101 4 800,000 230,002 440,000
100 6 5 515381017 12 1,800,000 120,006 460,000
100 6 20 828181027 12 7,200,000 270,006 760,000

vergence of our heuristics and confirm our intuition that the full search is unfit to solve
this problem. The actual computational requirements are different than those estimates
due to the different complexities of each iterations. In the next section, we compare the

requirements of each heuristic by measuring the CPU time used during our simulations.

4.5 Simulation Experiments

In this section, we present our simulation results obtained by applying our heuristics to
different networks. Each test network is defined by the constant variables in Table 4.2
and choosing values for the other network parameters from uniform distributions with the
ranges specified in Table 4.3. Simulations were executed on a AMD Athlon 3000+ with 1
GB of OCZ Premier Series 400 MHz Dual Channel memory.

In our first set of tests, we gencrated networks with the number of locations N €
{1,...,5} and the number server model W = 1 and another series with N = 3 and
W e {1,2,3}. We choose small networks to compare the complexity and cost of our
heuristics with the full search; other settings with larger inputs take too much time to solve
(as shown in the previous section).

In Fig. 4.1, we show the computational time in seconds on a log-scale averaged for 30

different networks with the same N and W. In both plots, we see the exponential behavior
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CPU Time (s)

Table 4.2 Values of constant vari-
ables used for the simulations.

Table 4.3 Range of the variables
used for the simulations.

Variable Value
C[[;‘ 10 k$
Cpwpm 25 k$
Cra 10 k$
C 0.006 k$/km
dw,ar 16
c 10 Gbps
MAL amp 75 km
bit rate  3.75 Mbps
duration 5400 s
file size 2.53 GB
10° :
—+3- IRH
’ :8: IS
10° GS
FFS

-
o

2

3 4

Number of locations (N) for W=1

Variable Min  Max
dogr (km) 0 50
dpe (km) 0 5
Y (ﬁles) 1000 10000
Z (files/week) 0 100
priceGbps (k§/Gbps) 0 4
priceTB (k$/TB) 0 3
A (k8) 6 36
F' (Gbps) 1 5
G (TB) 111
M (Gbps) 1 20
10°
/
10° ]
10’
A
10° | ]
10F e {

Number of models (W) for N=3

Fig. 4.1 Computational time in seconds required to find a solution by each of
the heuristics averaged over 30 runs shown on a log-scale. Computational time
of Full Search (FS) grows exponentially with the size of the network. Greedy
Search (GS), Integer Relaxation Heuristic (IRH) and Improved Greedy Search
(IGS) all provide solutions within 0.1 seconds.

of the full search whereas the other heuristics show a very small increase in CPU time. We

note that the computational time of the greedy-based heuristics (GS and IGS) is one order

of magnitude lower than the integer relaxation approach, but both are nevertheless below
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0.1 seconds for the simulated networks.

1.08

- IRH
1.07} IGS
GS

1.06¢

1.05¢

1.047¢

1.03}

Cost fraction of full search

1.027

1.01¢

2 3 4 5 1 2 3
Number of locations (N) for W=1 Number of models (W) for N=3

Fig. 4.2 Ratio between the cost of the heuristics solution and the full scarch
(optimal) solution averaged over 30 runs.

In Fig. 4.2, we show the performance of our heuristics by dividing the cost of the
solution by the optimal solution provided by the full search. For these small networks,
Integer Relaxation Heuristic and Improved Greedy Search perform within 4% of the optimal
solution. For all values of N and W, both IRH and IGS perform better than the Greedy
Search, which is within 8% of the Full Search solution.

In this next set of tests, we compare the complexity and the performance for networks
with NV = 25 to 100 potential replica locations and W = 2 to 10 server models. We
use Central or Fully Distributed Heuristic (CoFDH) to measure the performance of our
heuristics because it is impossible to determine the optimal solution with the I'ull Search.
ColFFDH produces a very simple and quick solution by choosing the best our of a fully
centralized (no replicas) and a fully distributed design.

In Fig. 4.3, we show values (averaged over 15 runs) of the ratio between the cost of
Integer Relaxation Heuristic, Improved Greedy Search and Greedy Search and the cost of
CoFDH. Whereas Greedy Search is actually very close to the cost produced by CoFFDH,
the other two heuristics generate solutions that cost 2-5% less. It is not clear fromn those

plots whether Integer Relaxation Heuristic or Improved Greedy Search performs better. By
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Fig. 4.3 Ratio between the cost of the heuristics solution and CoFFDH av-
eraged over 25 runs. TRH4-IGS is the average of the minimum value between
[RH and IGS for all runs.

combining both (choosing the best solution of the two), we obtain a slightly better heuristic
(IRHH1GS): 4-6% of CoFDH. In the left panel, we notice the downward trend of the cost
fraction as the number of locations in the network increases because more modifications to
the CoFFDH design can be made to improve cost.

For the same set of tests, we also show the complexity expressed as the computational
time in seconds in Fig. 4.4 and the number of iterations (cost function evaluations) to obtain
a solution in IFig. 4.5. As suggested by the Worst-Case Complexity analysis in section 4.4,
the greedy scarch (GS) takes many more iterations to find a solution than our other two
heuristics Integer Relaxation Heuristic and Improved Greedy Search. However, even if the
number of iterations for Greedy Search is much larger than for IRH, their computational
time is comparable in the left panel of Fig. 4.4. This is an indication that IRH’s iterations
take more time to execute than those in the greedy approaches (GS and IGS).

In Table 4.1, the WCC is lower for Integer Relaxation Heuristic than for the Improved
Greedy Search, but for the most complex network we simulated, IGS produces a solution
in less than half a minute and 50,000 iterations compared to the four minutes and 100,000
iterations taken by IRH. The Integer Relaxation Heuristic was the slowest of the tested

heuristics, but it still converges in a reasonable amount of time. Since the computation
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Number of iterations
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Fig. 4.4 CPU time in scconds for all heuristics averaged over 25 runs.
IRHA+IGS is the average of the sum of the time taken to perform both searches.

5
SX 10 '
-~ IRH
IGS
GS

A D
A Y4 AV 4 ! AV4 Y Y
25 40 55 70 85 100 2 4 6 8 10
Number of locations (N) for W=10 Number of models (W) for N=100

Fig. 4.5 Number of iterations (function evaluations) for all heuristics aver-
aged over 25 runs. IRH-+IGS is the average of the total number of iterations
performed in both searches.
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time of Improved Greedy Search is so low, we can combine IRH and IGS and obtain &

solution in a timely fashion.

1 - - 1
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Fig. 4.6 LEFT: Ratio between the number of replicas and the number of
locations (fraction of locations where content is cached). RIGHT: Avcrage hit
ratio at all the replicas. The values shown are averages of 25 runs with W = 6.

Finally, we focused on the networks with six server models (similar hehaviour was ob-
served for other values of W) to analyze the hit ratio, ratio of locations with replicas,
average demand at replica locations and load on the origin server. Fig. 4.6 and Fig. 4.7
show the results and provide interesting insights on the solution generated by the heuris-
tics. The left panel of Fig. 4.6 shows that for networks of any size where demand is not
uniformly distributed among all locations (i.e, the demand at each location is different), the
percentage of locations where a replica will be deployed is below 40% for both heuristics.
Although a case where the demand load is evenly shared among all the locations (all M; are
approximately equal) is more plausible, this result means that it is not always advantageous
to cache content. Whether it is because the demand is too low or the site is too close to
the origin, it might be more cost-effective to assume the entire load from a group of clients
directly at the origin. An impact of this low percentage is shown in Table 4.4 where we
show the number of servers installed at the origin. Because the fraction of locations wherc
replicas are installed remains constant for any value of N, the total number of sites for

which the origin must assume the demand grows as the network becomes larger.



4 VoD Servers Model Selection - 63

Table 4.4 Average number of VoD servers installed at the origin for different
number of locations N. We show the average of the results obtained with the
Greedy Search (GS) and by taking the best of the Integer Relaxation Heuristic
and Improved Greedy Search (IRH+IGS)

N 25 40 55 70 8 100
IRH+IGS 56 85 131 156 175 192
GS 81 109 133 190 244 223

1 : : : 20
—A~ IRH+IGS (Entire load)
o -A- IRH+IGS (Served)
2 (.8} —©~ GS (Entire load) —~ 16
& || -©-GS (Served) 2/
® Qe
O
o E 1
= 2 4
3 g (
I 5 YA /
g 5 Ao p.--A “A--B
Y ()]
S &
S 2 —B IRH+IGS (Rep)
8 41 -A - IRH+IGS (NoRep) |
i -©-GS (Rep)
-~ GS (NoRep)
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25 40 55 70 85 100 25 40 55 70 85 100
Number of locations (N) Number of locations (N)

Fig. 4.7 LEFT: Fraction of the total network demand supported by replica
locations. Total is the sum of the demand M; at cach location where a replica
is installed and Real is the actual part of the demand that the replica handles
(M; - hy). RIGHT: Average load on the locations where replicas arc installed
(Rep) and where no replicas arc installed (NoRep). The values shown are
averages of 25 runs with W = 6.

In the right panel of Fig. 4.6, we display the averaged hit ratio at all the locations
where content was cached. The average hit ratio of 90% suggests that the optimal number
of servers to install at a replica is often very close to ub;. This is explained by both our
popularity model and the ratio between the startup cost of a location (A) and the cost
incurred in transportation to the origin. From our popularity model, we know that it is
possible to achieve a high hit ratio with a relatively small amount of storage. Depending

on the actual demand and the type of server installed, the streaming capacity is usually
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the limiting factor, which means that storage is often available to increase the hit ratio to
the values we observe in this plot.

We display the fraction of the total network demand at the replica locations in the left
panel of Fig. 4.7. We show two lines for each heuristic: the sum of the demands M; at
cach location where a replica is installed (Entire Load) and the actual part of the load
(M, - hy;) handled by the replica (Served). For both Greedy Search and the best of Integer
Relaxation Heuristic and Improved Greedy Search (IRH4+IGS), the performance is very
similar as a result of the high average hit ratio (= 90%). We compare this ratio with
the fraction of replicas in the network (left panel of Fig. 4.6). For GS, the difference is
not significant, but in the case of IRH+IGS the percentage of the network load handled
at replicas is approximately ten-twenty percent higher. This signifies that the locations
chosen by IRH+IGS to host replicas generally have a high demand. This interpretation
is confirmed in the right panel of Fig. 4.7 in which we depict the difference between the
average demand at replica locations and locations where no caching is performed. Whereas
there is only a marginal difference in the GS case, the average demand at replica sites in the
IRH+1GS solutions is almost twice the average demand of the other locations. The solutions
generated by combining Integer Relaxation Heuristic and Improved Greedy Search have a
much lower total cost than the GS solutions, indicating that it is more cost-officient to
install replicas at locations where demand is high and transport the entire load of locations

with low demand to the origin.

4.6 VoD in AAPN

Given that we proposed a solution to the VoD equipment allocation problem, we are now
interested in validating our design choices by using the agile all-photonic network (AAPN)
topology as an example. We also look at the advantages and disadvantages of using an
AAPN as the core/backbone network to a video-on-demand deployment and describe the

design process of such a network.

4.6.1 AAPN Architecture

An AAPN is a network in which the transmission and the switching through the core are
done purely in the optical domain (all-photonic) [10,88]. It is built using an overlaid star

topology which connects all the edge nodes together using central core nodes (Fig. 4.8).
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SEL/MUX

Fig. 4.8 The threc-layer design of an agile all-photonic network (AAPN)
includes edge nodes (switches that perform the O-E-O conversion), sclec-
tor/multiplexor (Sel/Mux) devices, and all-photonic switches as the core
nodes. The edge nodes are formed into scts and each set is connccted to
one or more Sel/Mux devices. Each Sel/Mux device is connected via DWDM
equipment to onc core node. (Reproduced from [10])

An edge node is the interface between the AAPN and the opto-electronic networks outside
of the AAPN. These nodes can support a different number of wavelengths meaning that
they do not all have necessarily the same traffic capacity. However, each node must be
able to support a certain amount of traffic with every other edge node. All these edge
nodes are connected to each other through more than one core nodes (for robustness). The
core nodes are basically optical switches with an opto-electronic interface for control. The
clients are connected to a single edge node (or second one for backup) directly or through

a switch, which is the case in Fig. 4.8,

4.6.2 Analysis

The need for substantial bandwidth in the core of the network makes the AAPN topology
a sensible candidate to support an application like video-on-demand. Based on its topology

and our proposed architecture (see Section 3.1), we propose to collocate the replica servers
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with the edge nodes of the AAPN where the replica~client path is outside of the AAPN,
The origin server is deployed near an edge-node collocated with the core node. Having
the transmission path used to strcam videos across larger distances (cache misses) and
distribute (update) content at the replicas, traversing the AAPN is a clear advantage and
should result in significant improvement in performance and reduction in cost. Because
re-routing a cache miss to the origin or any other replica is equivalent in an AAPN, wc
suggest to implement a mechanism to share the load among all the replicas and the origin.

We consider two different scenarios for the design of a VoD network over an AAPN.
Ilirst, we consider the case of an existing AAPN where the edge and core node locations
have alicady been decided. In that case, VoD traflic is allocated a fraction of the overall
AAPN traffic, thereby putting a constraint on the load from the origin to the replicas.
We enforce this constraint by putting a lower-bound on the hit ratio of cach replica based
on the demand and calculate the minimum number of VoD servers to achieve such a hit
ratio. This cffectively reduces the solution space because the valid range for the number
of servers at each location is smaller. The other case is the one where the AAPN and the
VoD network are jointly designed. As it is anticipated that the video-on-demand network
accounts for a substantial portion of the AAPN traffic, it influences the location of the
AAPN cdge nodes. 'The origin servers definitely generate a large amount of traffic for the
distribution of objects to replica servers or for the delivery to users. Thus, it makes sense
to collocate AAPN edge nodes with origin servers. Also, the users for a VoD system are
mainly located in residential areas, which is typically not the main source for other types
of network traffic, so the presence of a video-on-demand service changes the traffic pattern

in the network.

4.7 Concluding remarks

In this chapter, we defined an extension of the VoD equipment allocation problem described
in Chapter 3. Instead of considering fixed and pre-determined streaming and storage ca-
pacity at each location, we require the specification of a set of available Vol) servers models.
The optimization problem consists of choosing the number and type of VoD servers to in-
stall at each potential location in the network such that cost is minimized. We modified
the total cost expression defined in Section 3.2.2 to make it a function of the number of

servers n; instead of the cache size ratio X;. Solving this problem with a complete search is
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possible, but for networks of more than five locations and a set of available models larger
than three the computational requirements render the approach impractical.

We described three heuristics to find a near-optimal solution including two greedy-type
approaches (GS and IGS) and a modified version of the integer relaxation method (IRH)
presented in the previous chapter. The Improved Greedy Search has very low complexity
in practice (less than half a minute and 50,000 iterations for large networks), but does not
always provide a better solution than the Integer Relaxation Heuristic. We showed that it
is possible to combine both by choosing the best of the two to obtain a better solution while
maintaining the computational time reasonably low (slightly more than four minutes and
150,000 iterations on average for large networks). Depending on the context, two heuristics
are available: Improved Greedy Search for a very quick solution (almost instantaneous) or
combining IRH and IGS for a better solution that takes more time.

For all our simulations, we generated network topologies where the load was different
at cach location. For such networks, we observed that the fraction of locations where it
was cost-efficient to install replicas was small (35-45% depending on network size). In
the optimal solutions produced by our heuristic IRH4IGS, the average worst-case demand
at replica locations is approximately 15 Gbps and 8 Gbps at locations where the entire
load is transported to the origin server. For networks with 100 locations, the replica sites
assume less than 45% of the total network load which results in a very large number (almost
200) of required servers at the origin that might be impossible to deploy in practice. Our
simulations indicate that the average hit ratio at the replica sites is above 85% for all
network sizes. This suggest that it is possible to have a cost-efficient solution with a higher
fraction of the network load handled at replicas and much reduced load at the origin. A
way to obtain such a solution is by using equipment (VoD server model) that satisfies the
streaming and storage requirements of most of the locations in the topology. Alternatively,
the network designer could strive to divide the demand evenly among all locations such
that it is optimal to deploy replicas at most locations using the same model of equipment.
In the next chapter, we discuss these results and possible extensions to our design tool in

more detail and describe the design process of a VoD network over an AAPN.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we focused on resource allocation during the network planning of a video-on-
demand deployment. More specifically, we addressed the VoD equipment allocation problem.
of determining the number of storage and streaming devices needed at each potential replica
location in a metropolitan-area network.

As a first step to solving that problem, in Chapter 2 we reviewed previously proposed
approaches for the delivery of multimedia objects. Depending on the network architecture,
many aspects have to be considered to deploy a complete media delivery solution. A
centralized architecture, in which a unique media server handles the entire demand, is the
most simple solution, but it has scrious weaknesses: a single point of failure and high load
on one server and the backbone network. Many proxy-based solutions have been proposed
to reduce both the latency at the user-end and the load on the origin by caching content
at servers located closer to the clients. The trade-off is the complexity of the design; we
presented solutions to the replica placement problem to determine the optimal location of
proxy servers in the topology. To solve that problem, we must determine a cost function
for the transport and storage of the media objects that depends on the content cached at
each replica, the delivery protocol and the clients’ requests handling mechanism. Due to
the size of multimedia objects, it is problematic and costly to replicate the entire library
at each site. The analysis of video rental statistics showed that a large fraction of the
requests are for only a small portion of the library. It therefore makes sense to cache

only the most popular content at the replicas. When performing program caching, it is
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important to have a proper mechanism to serve requests and to handle cache misses. When
the requested content is not present at the replica, the request is routed either to the origin
server or to another replica. Forming clusters or replica minimizes the number of requests
that arc routed to the origin, but a directory of the objects cached at each location must
be maintain to direct requosts properly. The streaming capacity at each replica depends
on the chosen delivery protocol. Using unicast delivery is the simplest approach, but it
consumes a significant amount of bandwidth. For that reason, authors have proposed to
use multicast to reduce bandwidth requirements at the replicas and on the network.

In Chapter 3, we presented our solution to the VoD equipment allocation problem. We
chose an architecture where the population is partitioned and each partition is assigned
to a specific replica. We estimate the load at each location with the worst-case demand:
the bandwidth required to serve all requests at peak hours using unicast delivery. If the
replica does not have the requested content, the origin delivers the movie to the client. To
avoid low-utilization of the resources, we use available bandwidth during off-peak hours
to distribute and update content from the origin to the replicas. We developed a hit
ratio function, cost function and heuristic integrated in an interactive design tool to solve
the VoD equipment allocation problem. We trained o parametric function that generates
accurate estimates of the hit ratio for given cache size, library size and file arrival rate and
then constructed a cost function based on the hit ratio, the worst-case distributed demand
and the number of VoD servers n; at cach location. To find a configuration that minimizes
this cost, we developed the Integer Relaxation Heuristic that produces a non-integer initial
solution and then searches its neighbourhood for a near-optimal integer solution.

Through simulations, we discovered that the model of installed equipment has a di-
rect impact on the minimum demand that makes caching profitable. For that reason, in
Chapter 4, we relaxed the assumption that the specifications (streaming and storage ca-
pacity) of the Vo) server were fixed and pre-determined before the optimization. Instead,
we require the pre-selection of a set of available VoD servers; the optimization determines
which model should be installed at each location. In Section 4.1, we generalized the VoD
equipment allocation problem as determining both the number and the model of the VoD
servers to install at each potential replica location. Due to the higher complexity of this
problem, new algorithms are required to generate a solution. We described three heuris-
tics to find a near-optimal solution including a modified version of the Integer Relaxation

Heuristic (IRH) presented in Chapter 3. The basic idea behind IRH remains the same, but
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we changed it so that the non-integer initial solution takes the set of available VoD server
models into account. The two new heuristics are based on the greedy search approach. Our
Greedy Search (GS) consists of adding one VoD server of any model at every iteration at
the location which minimizes the total cost for that particular iteration. Whereas greedy
search algorithms usually terminate when the placement of an additional server no longer
reduces cost, we allow the search to continue for more iterations to explore a larger portion
of the solution space. We developed an Improved Greedy Search (IGS) heuristic that uses
greedy search tactics to generate an initial solution and to search its neighbourhood for a
solution with a lower cost. We observed that it has lower complexity and is faster than IRH
in practice, but does not always generate a better solution. By taking the best of the Inte-
ger Relaxation Heuristic and Improved Greedy Search designs, we produce a near-optimmal

solution in a timely manner.

5.2 Discussion

In Chapter 3, we described and proposed a solution to the simplified VoD equipement
allocation problem of determining the number of VoD servers to deploy at each potential
replica location in the given topology. Our results showed that the nature of the type of
equipment installed at each location has a significant impact on the optimal design and the
deployment cost. In Chapter 4, we extended the problem to a case where a set of available
VoD server models for all locations is provided instead of having fixed and pre-determined
streaming and storage capacity at each location. For networks where the demand is not
evenly distributed among all locations, we noted that is was beneficial to cache content in
only a small fraction of the locations for a given set of available VoD server models.

This leads to the following question: should the hardware manufacturer deveiop custom
equipment or, if possible, should network engineers design topologies based on the avail-
able equipment at their disposal? From our perspective, the problem of jointly designing
the VoD network and the logical topology is a very interesting and challenging one and
represents the sensible extension to the resource allocation problem we addressed in this
thesis. This problem consists of choosing a topology that allows an allocation of resources
that minimizes the deployment cost of the network. Whereas throughout this thesis we
assumed a given set of inter-nodal distances, potential replica location positions and dis-

tributed worst-case demands, in this problem, these variables are unknown and the number
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and position of the replica locations become part of the set of optimization variables with
the number and model of the VoD servers. Not only is this a much more complex prob-
lemn to solve, but it also introduces some new issues such as establishing a request routing
mechanism and possibly forming and maintaining replica clusters.

In this thesis, we considered the scenario where the service provider does not own any
network equipment or infrastructures prior to the deployment. However, this is not always
the case because some provider might be able to transport data for free, i.e., no need to
mstall fiber, network interfaces, switches, or amplifier. For example, a provider who owns a
backbone network such as AAPN is interested in offering video-on-demand. Even if there
is no installation cost, there is still fees incurred by the usage and maintenance of the
equipment and the resources, which have to be considered when generating solutions for
this scenario.

We focused on large-scale deployments, but there is also the issue of scalability of such
deployments. We assumed a growth in the library sizes and usage on video-on-demand
services, but it is hard to predict the exact impact that this expansion will have on the
designs. As the library reaches tens of thousands of assets, the access model we assumed
changes as a larger portion of requests are located in the heavy tail of the popularity
distribution. It is unclear if this simply shifts the hit ratio curve down (more storage
needed to achieve the same hit ratio) or the function would be completely different. The
growth in usage also affects the design. During our simulations for the hit ratio function,
we determined that the impact of the varying number of users on the hit ratio is not
significant. Even if the storage requirements arc not affected, the higher loads at cach
location and on the origin server require more streaming capacity. In that case, it is
sensible to imposc a constraint on the maximum number of servers at the origin to avoid
a high load on one location (or alternatively impose a minimum hit ratio at each replica).
The reason we chose not to include these constraints in our initial problem statement was
to allow a maximum number of valid solutions. Producing the most cost-efficient solution,
whether it is feasible in practice or not, provides important feedback on the design choices
of the network planner. From our results, an infeasible design is an indication that the
equipment, was a mismatch for the given topology or, alternatively, the chosen topology

was not optimal for the available equipment.
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5.3 Future Work

We observed that it is difficult to sclect a model that matches the requirements of cach
location even when a set of many VoD server models is available. For that reason, an
extension for the design tool is to determine how the topology should be designed, how the
demand should be shared among the locations, for a given a set of available equipment. In
Section 4.6.2, we presented two scenarios to consider for the design of a VoD network over
an AAPN. We propose to adopt an iterative process for the joint design. First, we decide
nupon the location of the AAPN edge nodes hased on a prior mode! for the traffic pattern in
the network. We then solve the VoD equipement allocation problem for a specific demand.
This placement changes the traffic pattern, so we repeat the AAPN topology design step
(placement of edge nodes) for the new model of traffic demand. This process is repeated to
adjust the locations according to the performance of the prior setup until a local minimum
is reached.

In the previous section, we presented a scenario where the service provider owns infras-
tructures prior to the deployment. Our tool needs to be extended to support this scenario
by including usage and maintenance costs for bandwidth and infrastructures. To do so,
we need to either add components to the cost function to model these fees or modify it
completely such that it is expressed as the cost of using (rather than installing) equipment
for storing, streaming and transporting the data. By adding those features to the tool,
we could address other problems such as the delivery and distribution in a peer-to-peer
architecture similar to that presented in Section 2.1. In that case, no or very few replicas
are required, but the installation of equipment for transport might be required and the cost
of usage and maintenance definitely need to be included.

Because library size and usage of video-on-demand services will grow, providers arc
interested in the scalability of a deployment during the design. For larger libraries, the file
access model and popularity distribution are different and affect the hit ratio function we
designed. To asses that cffect, we redefine a file access model and popularity distribution
based on usage/rental statistics of video-on-demand services. Then, we train a new para-
metric hit ratio function by following the procedure described in Section 3.2.1. As usage
increases, the load on the origin server becomes very high and more streaming capacity is
required. The tool can be extended to impose an upper-bound on the number of servers at

the origin to share the load among all locations. This is done by modifying the heuristics
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to avoid searching the regions that are no longer in the solution space (solutions that yield
ne > upper-bound). The extended tool supports the constraints to simply flag a solution
judged infeasible, but still provides sufficient information for the user to gain better un-
derstanding of resource allocation for video-on-demand deployment, which we feel was the

main contribution of this work.
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