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A few useful quotations
“Science may set limits to knowledge, but should not set limits to imagination.”
Bertrand Russell (1872 - 1970)

“The difference between a successful person and others is not a lack of strength, not a
lack of knowledge, but rather in a lack of will.”

Vince Lombardi (1913 - 1970)

“There are no great limits to growth because there are no limits of human intelligence,
imagination, and wonder.”

Ronald Reagan (1911-2004)
“A man should look for what is, and not for what he thinks should be.”

Albert Einstein (1879-1955)
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Abstract
Quercetin-3-glucoside (Q3G) is a natural product with strong antioxidant activity. In
human neuroblastoma SH-SY5Y cells, H,O, mediated oxidative stress leads to decreased
cell viability, increased intracellular reactive oxygen species and cell death. Pretreatment
with Q3G reverses these effects of oxidative stress. Although Q3G and related
compounds are well documented cytoprotectants, the mechanism responsible for this
beneficial effect is unclear. Gene expression profiling using cDNA microatrays was
performed to document transcriptional changes resulting from exposure to either just
Q3G or the effects of pretreatment with Q3G on the genomic response to oxidative stress.
Only in cells pretreated with Q3G and then exposed to oxidative stress was there a large
increase in the number of genes associated with cholesterol biosynthesis as well as an
elevation of cholesterol levels. Mevastatin, an inhibitor of cholesterol biosynthesis,
reversed both the elevation of cholesterol and cytoprotection produced by oxidative stress
in cells pretreated with Q3G. These findings suggest that pre-incubation with Q3G
increased resistance to-the injurious effects of H,O, by enabling SH-SYS5Y cells to mount

a protective response to oxidative stress by elevating cholesterol synthesis.
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Chapter I: Introduction

Brief History Of Free Radical Research

Free radicals are a naturally occurring chemical species that are highly reactive
oxidizing agents capable of causing wide range biochemical damage. These chemical
species are formed by the hemolytic cleavage of a chemical bond between two unlike
atoms producing an extremely volatile molecule or atom with an unpaired electron
(Lehnert et al., 2001). Significant amounts of energy, kilojoules / mole, are required to
produce the hemolytic cleavage necessary to form a free radical (Lehnert et al.,2001).
Although free radical generation is a common biological phenomenon, the fleeting
existence of free radicals has made them difficult to identify. In 1900, Moses Gomberg
became the first chemist to correctly identify an organic free radical, triphenylmethyl
radical (Tomioka et al., 2001). Most types of free radicals are extremely volatile, but a
few are remarkably stable. These species are stable due to 7 conjugation by phenolic
rings (stable radical) and steric hindrance around the radical centre preventing reaction
with other chemicals (persistent radical) (Nishinaga and Komatsu, 2005). Chemically,
free radicals are well documented to cause polymerization by propagating chemical
reactions that produce more free radicals with the addition of monomers into a growing
polymeric chain (Motyakin et al., 2006). Free radicals produced from
chlorofluorocarbons (CFCs) by solar ultraviolet radiation destroy ozone in the

atmosphere that leads to the depletion of the ozone layer (Maugh, 1984).



Biochemically, free radicals are important in combustion and intracellular
signaling. Within the cell, free radicals are produced during mitochondrial respiration,
where oxygen’s double bond is enzymatically broken producing intermediate oxygen
free radicals that ultimately form metabolic water as part of the Krebs cycle (Adam-
Vizi, 2005). Nitric oxide, an important second messenger involved in intracellular
signaling, is also a free radical though its half life is short lived (Engelhardt, 1999).
Although free radicals play an important role within the cell, excessive concentrations
result in a state known as oxidative stress that can compromise cellular integrity by
oxidizing lipids (Festjens et al., 2006). With oxidative stress, the acyl chains of
phospholipids become more unsaturated thus introducing kinks into the chain that may
lead to pore formation within the plasma membrane thus disrupting cellular integrity

(Borunov et al., 1986).

Pathophysiology Of Oxidative Stress

Oxidative stress is a term used to describe the physiological state that occurs
when pro-oxidants such as free radicals and reactive oxygen species exceed the ability
of antioxidant chemicals and proteins to neutralize them (Figure 1). Oxidative stress
plays a role in a number of pathological states such as ischemic-reperfusion injury
(Halestrap et al., 1998) several neurodegenerative diseases (Beal, 1996) and sepsis
(Gutteridge and Mitchell, 1999). Moreover, the generation of reactive oxygen species
(ROS) may contribute to cellular changes associated with ageing (Lenaz, 1998). This is
because our ability to scavenge free radicals decreases with age, causing oxidative

stress that leads to tissue degeneration implicated in several chronic diseases such as



cataracts (Pendergrass et al., 2006), diabetes and various types of neurological and
cardiovascular disorders (Rice-Evans, 2004). Mitochondria represent the major source
of intracellular ROS production. Even under resting conditions between 2 and 5% of
molecular oxygen consumed by mitochondria is partially reduced by the electron
transport chain to form superoxide and subsequently hydrogen peroxide (Powers et al.,
2004). Furthermore, mitochondrial ROS may inhibit one or more of the components of
the respiratory chain, further accelerating the rate of superoxide formation (Turrens and
Boveris, 1980). Pathological events triggered by mitochondrially-derived ROS are
thought to include lipid peroxidation (Montine et al., 2004), ion channel modification,
DNA damage and protein oxidation as demonstrated in models where the effects of

exogenous oxidizing agents have been studied (Gutteridge and Halliwell, 2000).

Mammalian cells, such as neurons, are highly dependent on aerobic metabolism
to generate ATP and neurons are particularly susceptible to oxidative stress because of
the high concentrations of oxygen required to supply the brain. While the brain
constitutes only 2-3% of the body’s total mass it consumes 20% of all the oxygen in the
circulatory system (Halliwell, 2006). The high levels of oxygen present in the brain
coupled with the presence of catalysts that generate free radicals such as free metals
and excitotoxic amino acids can give rise to increased levels of ROS that may severely
damage the brain (Halliwell, 2006). Moreover, the central nervous system (CNS)
contains relatively low levels of antioxidant proteins and chemicals (Gilgun-Sherki ez

al., 2004) by comparison to most other organs in the body. The high concentration of



mitochondria within the CNS further contributes to oxidative stress in the CNS as 2-5%

of the total oxygen used by the mitochondria forms ROS (Powers et al., 2004).

Oxidative Stress In Animal Models Of Neurodegenerative Disorders

Studies performed using genetically modified mice support a role for oxidative
stress in neuronal cell death associated with neurodegenerative disorders such as stroke,
Alzheimer’s disease, multiple sclerosis and Parkinson’s disease. For example,
transgenic mice that overexpress the antioxidant protein superoxide dismutase display
smaller brain infarcts than control mice after cerebral ischemia (Kamii et al., 1996;
Ying et al., 2000). Additionally, it has been shown that superoxide dismutase knockout
mice have increased brain infarct volumes compared to control mice after cerebral
ischemia (Murakami et al., 1998). Similarly genetic inactivation of the antioxidant
proteins hemeoxygenase-2 and metallothionein in mice elevated neurotoxicity
following transient focal neocortical ischemia resulting in greater brain damage in
knockout mice compared to wild-type littermate controls (Namiranian ef al., 2005).
Tg2576 mice, a murine model for Alzheimer’s disease, have decreased levels of
metallothionein 3, an immunomodulatory antioxidant protein as well as increased
nNOS activity, an enzyme that generates neuronal nitric oxide (NO) (Martin et al.,
2006). Excessive production of NO has been linked to brain injury associated with a
breakdown of the blood-brain barrier. Furthermore, it has been shown in experimental
autoimmune encephalomyelitis (EAE), a model of multiple sclerosis that antioxidant
proteins such as heme oxygenase-1 and metallothioneins are increased and play a role

in the eventual resolution of EAE by limiting free radical damage (Chakrabarty ef al.,



2003). These results not only implicate oxidative stress in neurodegenerative disorders,
but also suggest that elevating concentrations of antioxidant proteins may be
neuroprotective. The CNS has several free radical scavenging chemicals such as
vitamin C (ascorbic acid), vitamin E (tocopherols & tototrienols), and coenzyme Q
(Gilgun-Sherki et al., 2004). Mice lacking the sodium-vitamin C cotransporter-2 die
shortly after birth from brain hemorrhage as a result of an inability to control the
increase in free radicals associated with birth related hyperoxia (Sotiriou ef al., 2002).
Coenzyme Q is able to prevent the loss of substantia nigra neurons triggered by
administration of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) (Ebadi ef al., 1996; Shults, 2003). Furthermore, high doses
of the anti-oxidant a-tocopherol increase the cognitive ability of patients with
Alzheimer’s disease although the mechanism is not yet clear (Sano et al., 1997,
Grundman, 2000). Thus, altering concentrations of either antioxidant proteins or
chemicals within the body leads to corresponding changes in antioxidant defense that
render an organism either less or more resistant to the injurious effects of oxidative

stress.

Cellular Defense To An Oxidative Insult

Cells have evolved a sophisticated defense system to cope with the oxidative
stress caused by free radicals (Linford ef al., 2006). This defense system relies on
maintaining modest levels of antioxidant proteins and chemicals, but also on the use of

sets of repair enzymes to fix damaged proteins, DNA and lipids.



Reactive oxygen species (ROS) can oxidize DNA causing damage at both the
base and sugar moiety. Damage to the base commonly leads to addition or loss of a
hydrogen atom. ROS produce 8-0x0-7,8-dihydrodeoxyguanosine triphosphate (8-oxo-
dGTP) by oxidizing guanine to 8-0x0-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG)
potentially resulting in an A-G mismatch (Sestili ez al., 1998). When ROS react with
the sugar moiety it produces abasic sites, and both single and double strand breaks may
occur. DNA repair endonucleases are responsible for replacing / repairing DNA bases
at abasic sites after oxidative stress (Powell ef al., 2005). If the base is damaged, it is
repaired; however, if more severe damage occurs the base is replaced. At the abasic
site, endonucleases remove the backbone and ligate the strand back together (Blainey ez
al., 2006). Antioxidant compounds are able to effectively protect DNA from oxidative
damage and breakage by directly absorbing free radicals (Ahearne et al., 1999; Ahearne

et al., 2000).

Oxidative injury to proteins usually results in damage to the amino acid
methionine because it is the most sensitive amino acid to oxidative stress (Ding ef al.,
2006). Oxidative stress alters the redox chemistry around the sulfur atom of
methionine giving rise to methionine sulfoxide (Imlay, 2003). The repair enzyme
methionine sulfoxide reductase is able to convert methionine sulfoxide back to
methionine (Grimauld ef al, 2001). Subcellular localization studies of methionine
sulfoxide reductase indicate that this enzyme is associated with mitochondria, where
the majority of cellular ROS are produced (Hansel ef al., 2002). Large oxidative insults

may produce irreversible damage resulting in the oxidized protein being targeted for



elimination by proteasomal degradation (Davies, 2005). The 20 S proteasome is able to
identify and degrade oxidized proteins (Shringarpure et al., 2001), even in the absence
of ubiquitin conjugation (Shringarpure et al., 2003) while the 26 S proteasome is
ineffective in degrading oxidized proteins, even in the presence of a functional

ubiquitination system and ATP (Davies, 2001).

Because of their high degree of unsaturation and their stoichemetric abundance
in membranes, lipids are at the highest risk for damage as a result of oxidative stress.
Unlike DNA or protein damage, lipid peroxidation is a self-propagating event that will
continue until the intermediate oxidative species is terminated (Davies, 2000). Lipid
peroxidation leads to structural damage of membranes and produces oxidized products
that may react with other membrane components resulting in further damage
(Balestrieri et al., 2003). Damaged lipids are cleaved from the membrane by
phospholipase A, and destroyed (Halliwell, 2006). Although no lipid-specific cellular
defense system has been identified, numerous studies have shown that antioxidants,
such as flavonols (Rodrigeuz et al., 2001; Gavino et al., 1981) and strictinin (Zhou et
al., 2004) are able to prevent lipid peroxidation and oxidation of low density lipoprotein

(Hou et al., 2004; Jeong et al., 2005) by directly scavenging free radicals.

Antioxidant Chemicals & Nutritional Antioxidants

Antioxidant chemicals ranging in complexity from small ions to structurally
large carbon-containing compounds can be found in various foods and beverages.
Since antioxidants are found in many plant species, they are consumed within the

human diet. The major role of antioxidant chemicals is to directly scavenge free



radicals before oxidative damage is done to the cell. Vitamins A, C and E are all well
known water soluble antioxidants found in a variety of foods. Vitamin cofactors such
as coenzyme Q10 and selenium have been shown to prevent oxidative damage
produced by elemental zinc and manganese (Virmani et al., 2005). Increasing levels of
free radical scavenging compounds within cells has been shown to be protective against
oxidative damage and may be a useful therapeutic strategy (Joshi et al., 2004). Among
the most potent free radical scavengers identified to date are a class of large
polyphenolic compounds known as flavonoids that are found in wine, berries and teas

(Rice-Evans and Spencer, 2004).

Flavonoids As Cytoprotective Agents

Flavonoids are naturally occurring phytochemicals produced as secondary
metabolites by many plant species that provide the plant with pigmentation and protect
against microbes and insects (Walgren et al., 1998). The polyphenolic backbone
characteristic of this chemical family consists of 15 carbon atoms arranged into 3
phenolic rings (Figure 2). The degree of unsaturation and substitution of various side
groups of the backbone gives rise to the subfamilies and the biological activities of
these compounds. The major dietary sources of flavonoids in the Western diet are
fruits, vegetables and black tea; yielding about 1 gram (g) per day of flavonoids
(Spencer et al., 2004). Quercetin is the most abundantly consumed flavonoid in the diet
reaching levels of 30-40 mg per day (Spencer et al., 2004). The therapeutic properties
of flavonoids are extensive with cardioprotective, neuroprotective, anti-inflammatory
and chemoprotective properties having been attributed to various types of flavonoids.

One theory to explain the diverse biological activities of flavonoids is that during their



synthesis they have developed a chemical structure that interacts with a specific fold or
shape found on many proteins (Breinbauer ef al., 2002). This is analogous to a lock
and key: where a specific protein fold in the biosynthetic enzyme (lock) forms the
flavonoid chemical structure (key) and then the flavonoid (key) is able to interact with
proteins that have this same fold (similar lock) post synthesis. This ability of flavonoids
to bind many different types of proteins in a precise manner suggests that natural

products may have evolved to bind to proteins (Breinbauer e al, 2002).

The free radical scavenging abilities of flavonoids are well documented, with a
catechol group on the B ring increasing the antioxidant potency (Mandel and Youdim,
2004). On a mole for mole basis, flavonoids are more potent free radical scavengers
than ascorbic acid (vitamin C) and coenzyme Q (Mandel and Youdim, 2004).
Flavonoids also have the ability to inhibit a variety of kinases including cyclin
dependent kinases (cdks) (Zapata-Torres et al., 2004), protein kinase B, protein tyrosine
kinases, MAP kinase kinase and SEK1 (JNKK) (Williams ef al., 2004). Flavopiridol
shares the same chemical skeleton as flavonoids and is a potent cdk5 inhibitor in phase

III clinical trials for the treatment of human neoplasms (Senderowicz, 2003).

Epidemiologically, studies have linked consumption of a single glass of red
wine daily with physiological changes thought to be associated with a reduced risk of
cardiovascular disease such as increased circulating high density lipoproteins (HDL),
reduced cholesterol (Racek et al., 2004), elevated antioxidant glutathione containing

proteins and a decrease in oxidation protein products (Racek et al., 2004). The French
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paradox supports these findings as France shows a decreased risk of ischemic and
cardiovascular diseases compared to industrialized nations in the West (Constant, 1997;
Renaud, 1994). A large study that followed 34, 000 middle aged men in France found
that consumption of 48 g of alcohol per day, mainly wine, decreases mortality from
cardiovascular diseases by 30% establishing a paradox that consumption of wine may
actually be good for you (Klatsky, 2002). Some reports suggest that this phenomenon
results from elevated levels of resveratrol, a phytochemical found in red wine that is
able to activate the estrogen response element, an event that has been linked to the

cardioprotective effects of estrogen (Kopp, 1998).

Research Design

SH-SYSY cells, a human neuroblastoma cell line, have been used in many in vitro
models of neurodegenerative disorders such as Parkinson’s disease (Sheehan et al,
1997), Alzheimer’s disease (Li et al., 1996) and stroke (McCarthy et al., 2004). SH-
SY5Y cells are a commonly used in vitro model for studying the effects of oxidative
stress on neuronal survival (Macleod et al., 2001). These cells have low levels of
antioxidants and are highly sensitive to oxidative stress (Andoh et al., 2002). SH-
SYS5Y cells can be differentiated into neurons by addition of retinoic acid (Lopez-
Carballo er al., 2002) and differentiated into astrocytes by growing them in co-culture
(Yu and Zuo, 1997). As SH-SY5Y cells contain biochemical and morphological
characteristics of both astrocytes and neurons they can be used to model defense

responses present in both cell types (O'Neill ef al., 1994).
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Hydrogen peroxide (H,O5) will be used in the present study as a model pro-oxidant to
induce oxidative stress in the SH-SY5Y cells (Cullen ef al., 1997) as this model offers
an advantage over iron induced oxidative stress because it removes the possibility of
chelating agents preventing the induction of oxidative stress (Zaman et al., 1999).
Oxidative stress harms crucial biomolecules due to excess generation of reactive
oxygen species and has been shown to lead to cell death (Tsugunobu et al.,, 2002). The
H,0, induced oxidative stress model is well characterized in SH-SYSY cells
(Tsugunobu et al., 2002) and data from our laboratory show a 500 uM insult for 15
minutes produces a kill suitable for studying cytoprotective effects of various putitaive

neuroprotectants.

Although several research groups have reported that the bioactive compound quercetin
is cytoprotective against H,O, induced oxidative stress, the exact mechanisms by which
it prevents loss of cell viability are not well understood. Here it is demonstrated that a
glycosylated derivative of quercetin, Q3G is cytoprotective against HO, induced
oxidative stress by examining the effect of this compound on loss of cellular viability,
cell death and generation of intracellular reactive oxygen species in SH-SYSY cells.
Comparison to a several compounds that exert a protective effect will be done to gauge
the protective capabilities of Q3G. Tetra-butyl hydroquinone (tBHQ) is a potent
inducer of the transcription factor Nrf2 and leads to an induction of cellular antioxidant
proteins (Hara et al., 2003). Vitamin C is a well known antioxidant and free radical
scavenger (Lovat et al, 2003) and erythropoietin is a potent neuroprotectant with

strong antiapoptotic effects on SH-SY5Y cells (Um and Lodish, 2006). After
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confirming the cytoprotective effect of Q3G a human 14K ¢cDNA microarray chip was
used to elucidate the protective actions of Q3G by examining the changes in gene
expression that occur after either pretreatment with Q3G or Q3G pretreatment followed
by exposure to HO, induced oxidative stress. These studies suggested pretreatment
with Q3G primes SH-SHS5Y cells in such a way that they were able to mount a
protective response to oxidative stress characterized by elevated cholesterol synthesis.
This finding was confirmed by measuring cholesterol levels and using an inhibitor of
cholesterol synthesis, mevastatin (Bi et al, 2004), to establish the role of this

membrane component (cholesterol) in mediating the cytoprotective effects of Q3G.



13

Chapter I1: Materials and Methods

Cells And General Reagents
Cell Culture

SH-SYS5Y cells, a Homo sapien neuroblastoma cell line, that is a subline of the
parental neuroblastoma cell line SK-N-SH, were obtained from the American Tissue
Culture Collection (ATCC). Cells were maintained at 37°C in 95% humidity with 5%
CO, and grown in Dulbecos Modified Eagle’s Medium (DMEM, Hyclone)
supplemented with 10% FBS (Hyclone), 1 mM sodium pyruvate, 2 mM L-glutamine
and the antibiotics penicillin (100 U/ml) and streptomycin (100 pg/ml). Cells were
seeded at a density of 5 x 10° cells/ml in T-75 flasks (Corning) containing 20 mL and
passaged when 80% confluency was reached. All cells were within 15 passages and in
the logarithmic growth phase. The doubling time for these cells is approximately 48

hours (ATCC).

General reagents
All chemicals and reagents were obtained from Sigma-Aldrich and was of
molecular biology grade unless otherwise indicated. All plasticware was obtained from

Corning and was of tissue culture grade unless otherwise indicated.
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Determination Of The Cytoprotective Activity Of Q3G:
Identification Of Protective Concentration Of Q3G Using The MTT Cell Viability
Assay

Cell viability was measured using a 3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT, Sigma) assay for cell viability. Cells were plated
in 96 well plates at a density of 1 X 10* cells per well (100 uL). After 24 hours, 1 pM,
10 uM or 100 uM Q3G (dissolved in 0.05% DMSO) was added to the cells for 24
hours. The media was changed the following day and the cells were washed with PBS
prior to being subjected to a 500 pM H,O; insult for 15 minutes. After the conditioned
culture media was removed, MTT at a final concentration of 0.5 mg/mL was added to
the cells and incubated at 37°C for 4 hours. Solubilizing buffer (0.1 N HCI and 10%
SDS) was added to all the wells and incubated at 37°C for 1 hour to dissolve the
formazan particles that were quantified using an ELx800,, microplate reader (Bio-tek
instrument Inc.) at 562 nM. Blank wells containing just media alone were subtracted
from the readings and the results presented as a percentage of control cell viability

(those receiving vehicle treatment [0.05% DMSO] and no HO; insult).

Identification Of Protective Compounds Using Cell Death ELISA

Cell death ELISA kit (Roche) measures the generation of nucleosomes
produced by the cleavage of nuclear DNA between adjacent nucleosomes (DNA and
histone proteins) that are associated with cell death. On day one, SH-SYSY cells were
seeded in a 24 well plate at a density of 5 X 10* cells per well (500 uL). On day two,

Q3G 10 pM, erythropoietin (EPO) 10 pg, or tetra-butyl hydroquinone (tBHQ) SuM
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was added to different cell cultures and incubated overnight. On day three, the cells
were washed with PBS to remove the compounds prior to the H,O, insult (500 uM for
15 minutes). Next, the cells were washed with PBS and allowed to recover in normal
media for 24 hours. The cells were then counted and normalized before being lysed in
500 pl incubation buffer (Roche) for 30 minutes at room temperature (25°C). ELISA
plates were prepared by the addition of 100 pl of 1X coating solution (containing
monoclonal anti-histone antibody) to each well and incubated for 1 hour at room
temperature. Cell lysates were centrifuged at 20,000 g at 4°C for 10 minutes. Then 500
pl of hypertonic solution (10 M Tris, pH 7.4, 5 mM CaCl,, 400 mM NaCl and 10 mM
MgCl,) that produces massive DNA fragmentation and nucleosome generation was
added to SH-SY5Y cells and these lysates were used as a positive control, while lysates
from cells receiving no pretreatment and no insult were used as a negative control.
Next 100 pul of cell lysates, approximately 10* cell equivalents per ml, were added to
each well and incubated for at room temperature 1.5 hours. After washing the wells
three times with wash buffer, 100 pl of 1:10 peroxidase conjugated monoclonal anti-
DNA antibody was added to the wells and incubated at room temperature for 1.5 hours.
Following the antibody incubation the wells were washed and 100 ul (1 mg/ml) of
detection reagent, 2,2’-azino-di-[3-ethylbenzthiazoline sulfonate()] (ABTS), was added
for 15 minutes at room temperature. Absorbance was measured at 405 nm using an
ELx800,, microplate reader (Bio-tek instrument Inc.) with the substrate solution
(ABTS) as a blank. Data were expressed as enrichment factor defined as the ratio of

absorbance of the dead / dying cells to that of the control non-insulted cells.
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Determination Of Intracellular Reactive Oxygen Species (ROS)

Generation of intracellular ROS was measured using a substrate, 5-(and-6)-
carboxy-2,7’-dichlorodihydrofluorescein diacetate, DCFH-DA (10 pM, Molecular
Probes) that is oxidized to a fluorescent product in the presence of ROS. SH-SYSY
cells were seeded at a density of 5 x 10° cells per well in a 24 well plate (500 pL) in
DMEM phenol red free media supplemented with 10% FBS, 1 mM sodium pyruvate
and 2 mM L-glutamine. Cells were incubated with quercetin-3-glucoside (Q3G), tetra-
butyl hydroquinone (tBHQ), Vitamin C (ascorbic acid) at 5 uM and 10 pM or
corresponding vehicles for 24 hours (0.05% DMSO for Q3G, 0.005% DMSO for tBHQ
and vitamin C). The cells were washed with PBS to completely remove compounds.
Cells then were exposed to (500 pM) H,O, and 0.11 mg/ml horseradish peroxidase
(dissolved in PBS) for 15 minutes. The cells were then washed and maintained in
standard growth medium. DCFH-DA, (10 pM, dissolved in 0.005% DMSO) was added
immediately to the cells for 15 minutes at 37°C. Cells were then washed twice with
PBS to completely remove DCFH-DA. Next, the cells were lysed by addition of 10
mM Tris-HC1 (pH 7.2) buffer supplemented with 0.5% Tween 20. Lysates were
centrifuged at 10,000 x g for 10 minutes and placed in an opaque 96 well plate (Costar).
Fluorescence was measured using a microplate fluorescence reader, Flx 800 (Bio-tek
instruments Inc.) with an excitation wavelength of 485 nm and an emission wavelength
of 528 nm using culture medium as the blank. ROS was expressed as fold induction

compared to non-treated cells that did not receive an oxidative insult.
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Determination Of The Putative Mechanism(S) Responsible For The Protective
Effects Of Q3G:
¢DNA Microarrays And Analysis

Isolation Of Total RNA.

This study compared alterations in gene expression between (A) SH-SYSY cells
pretreated with either 0.05% DMSO (solvent used to dissolve Q3G) or 10 pM Q3G for
6 hours and (B) SH-SYSY cells pretreated with either vehicle or 10 pM Q3G for 6
hours then washed to remove the vehicle or Q3G followed by exposure to a 500 uM
H,0, insult for 15 minutes. After washing to remove HO, cells were allowed to
recover in normal media for 6 hours. In both experiments A and B, SH-SYS5Y cells
were plated at a density of 5 X 10° cells/mL in a 6 well plate (3 mL) and maintained in
an incubator at 37°C with 5% CO,. At the conclusion of experiments A and B, total
RNA was extracted using RNeasy mini kit (Qiagen) (Figure 3). mRNA (> 200 bases)
was enriched for by using a silica membrane in the spin cup. Cells were trypsinized
and centrifuged at 300 x g for 5 minutes. The supernatant was removed and 350 uL of
lysis buffer RLT (containing guanidine thiocyanate and 1% B-mercaptoethanol) was
added, the cells were then mixed by vortexing and homogenized. Next 350 uL of
ethanol was added to the lysate, then mixed and placed in a mini column with a
collection tube. The mixture was centrifuged at 8,000 x g for 15 seconds. Then 700 pL
of wash buffer, RW1, was added to each column and centrifuged at 8,000 x g. After
that 500 uL of purification buffer, RPE, was added to each column and centrifuged at
8,000 x g, this was done twice. RNA was eluted by adding 50 uL of RNase free H,O

onto the silica membrane and centrifuged at 8,000 x g for 1 minute. The quantity of
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total RNA was determined by UV spectrophotometer and quality was assessed by the
A260/A280 ratio, with all samples used for microarray analysis having ratio values in
excess of 1.9. To ensure RNA integrity, RNA samples were run on a 1% formaldehyde
agarose gel and DNAasel (Qiagen) was added to the samples to degrade genomic DNA
prior to microarray experiments (Gilbert ef al., 2003). This RNA was then exported to
the University of Calgary for subsequent cDNA synthesis & purification, chip

hybridization and scanning.

¢DNA Synthesis & Purification

The remaining cDNA microarray experiments were carried out by the Southern
Alberta Microarray Facility (SAMF,
http://microarray.myweb.med.ucalgary.ca/SAMF_Home.html) at the University of
Calgary. H14K 70mer oligo genomic DNA arrays (spotted cDNA) were generated in
house by the Southern Alberta Microarray Facility. A fairplay microarray labeling kit
(Stratagene) was used to synthesize and label cDNAs. Subsequently, 1 ug of 500 ng/pl
d(T)12.13 was added to10 pg of resuspended RNA incubated at 70°C for 10 minutes and
then cooled on ice. A reaction mixture containing 2 pl of 10X StrataScript reaction
buffer, 1.5 pl of 0.IM DTT, 1 pl of 20X dNTP mix (containing amino allyl-dUTP) and
0.5 ul of RNase Block (40 U/ul) was made and the RNA containing the annealed
primer added. ¢cDNA synthesis was carried out by adding 1 pl of 50 U/ul of
StrataScript RT and incubating for 25 minutes at 48°C. To ensure sufficient cDNA
synthesis, another 1 pl of 50 U/pl of StrataScript RT was added and further incubated at

48°C for 35 minutes. After this incubation 10 ul of 1M of NaOH was added at 70°C for
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10 minutes to hydrolyze the RNA. The reaction was cooled to room temperature and
after a brief spin, 10 ul of 1M of HC! was added to neutralize the solution. cDNAs
were purified by addition of 4 ul of 3M sodium acetate (pH 4.5), 1 ul of 20mg/ml
glycogen and 100 ul ice-cold ethanol and incubating at -20°C overnight. The solution
was then centrifuged at 13,000x g for 15 minutes and the supernatant removed. The
pellet was washed with 0.5 ml of ice-cold ethanol and spun at 14,000x g for 15 minutes

at 4°C, supernatant was removed and the pellet air dried.

Dye Coupling Reaction, Purification And Hybridization

¢DNAs were evenly labeled by incubating the pellet in with 5 ul of 2X coupling
buffer at 37°C for 10 minutes and then adding 5 ul of Cy 3 or Cy 5 fluorescent dyes,
mixing by pipetting up and down and incubating for 1 hour at room temperature in the
dark. The fluorescent Cy dyes react with amino groups present on the amino allyl-
dUTP effectively and evenly labeling the cDNA. The labeled cDNAs were purified by
adding a wash solution containing 90 ul of DEPC H,O to the cDNA and 100 pl of
DNA binding solution and 100 pl of 70% ethanol then pipetting forcing the cDNA into
the aqueous solution and contaminants into the organic solution. The solution was then
transferred to a microspin cup with receptacle tube and centrifuged at 15,000x g for 30
seconds. The cDNAs were washed twice by the method described above and a second
set of washings done by adding 750 pl of 75% ethanol to a microspin cup and
centrifuging at 15,000 x g for 30 seconds, this was done twice. cDNAs were eluted
from the columns by addition of 50 pl of 10 mM Tris base (pH 8.5) and incubating at

room temperature for 5 minutes then centrifuged 15,000 x g for 30 seconds. To ensure
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the maximum amount of cDNA was recovered the flow through was placed back into
filter cup incubated at room temperature for 5 minutes then centrifuged 15,000 x g for
30 seconds. Samples were then placed into a vacuum centrifuge and the volume
reduced to 3 pl. Hybridization solution consisted of 90 pl of DIG Easy Hyb (Roche), 5
ul yeast tRNA (Promega) and 5 pl salnion sperm DNA (Promega) heated at 65°C for 2
minutes and then cooled to room temperature before use. Then 70 ul of total volume
(64 ul of hybridization solution and 6 pl of combined labeled cDNAs) were placed on a
14K microarray slide and the slides hybridized face to face for 18 hours at 37°C in a
humidified chamber and washed three times the next day with saline-sodium citrate

(SSC) buffer to remove any non-specific binding.

Microarray Analysis

For statistical analysis a balanced design was used for the experiments with
each biological treatment completed in duplicate (Gilbert et al., 2003). A dye swap
method was used for each biological set to account for Cy3/Cy5 dye labeling bias.
Both experiments A and B were performed in duplicate yielding two biological samples
(total RNA) that were run in duplicate (dye swap) for each biological sample.
Therefore, 4 determinations were used for calculating the changes in gene expression
for each treatment condition (i.e. 2 microarrays/replicate (dye swap) x 2
replicates/group, N = 4).

A ScanArray 500 microarray scanner (Perkin-Elmer) was used to scan the
microarray slides at 550 nm (Cy3) and 649 (Cy5). QuantArray 3.0 software (Perkin-

Elmer) was used to capture and analyze images, saved as TIFF image files and then the
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resultant data (QuantArray files and images) transferred to GeneTraffic Duo 2.5
microarray analysis/database package (http:/Iobion.com). This data was then sent back
to our laboratory for analysis and annotation. GeneTraffic was used for spot flagging,
filtering, annotation and normalization of the data. After determining valid spots,
Statistical Analysis of Microarrays, SAM, (http://www-

stat.stanford.edu/tibs/SAM/index.html) was performed on elements using the following

criteria: one class analysis, median centre arrays and 100 permutations. Multiple T-
tests are performed by SAM to identify genes whose expression was significantly
altered. In addition to the multiple T-tests, SAM calculates a false discovery rate
(FDR) that is indicative of type I error allowing for differing degrees of confidence in
the data obtained. In our procedure, a FDR < 8% was used to ensure a high degree of
confidence that the genes we chose to further explore were actually altered before
determining the genetic basis for the protective effects of Q3G.

Gene ontology and potential linkages between genes with significantly altered
expression were examined using PathwayArchitect (Stratagene)

(http://www.stratagene.com/products/displayProduct.aspx?pid=733 ), a software

package that assists interpreting experimental results in the context of signal
transduction pathways, gene regulation networks and protein interaction maps.
Significantly upregulated and downregulated genes were transferred into

PathwayStudio and interaction networks generated.
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Confirmation Of Array Results Measuring Gene And Protein Expression:
Cholesterol Assay

cDNA microarray experiments indicated alterations in pathways associated with
cholesterol biosynthesis. These results were confirmed by measuring changes in
cholesterol levels. Cholesterol levels were measured using a cholesterol assay kit
(Biovision). SH-SY5Y cells were plated at a density of 5 X 10° cells per well ina 6
well plate (3 mL). Then 24 hours later 10 pM Q3G and vehicle were added to the
media for 6 hours. Compounds were then removed and the cells washed with PBS
before being subjected to a 500 pM of H,O, for 15 minutes. The cells were allowed to
recover for 6 hours and then removed by scraping the cells and 8.5 X 10° cells counted.
Lipids were extracted by adding a 2:1 chloroform-methanol mixture to the cells and
centrifuging at 10,000 x g for 10 minutes and dried overnight at room temperature
(25°C). Dried lipids were then re-dissolved in 20 pl of 2-propanol containing 10%
Triton X-100. Next 2 ul of sampxle was added to 48 pl of cholesterol reaction buffer
and 50 pl of reaction mix (44 ul cholesterol reaction buffer, 2 ul cholesterol probe, 2 pl
enzyme mix and 2 pl cholesterol esterase) were added to the sample. Samples were
incubated at 37°C for 60 minutes protected from light. Absorbance was measured at
562 nm using an ELx800,, microplate reader (Bio-tek instrument Inc) using a
cholesterol reaction buffer as a blank. Sample absorbance levels were compared to
those generated by a standard curve and cholesterol levels determined by comparison to

the standard curve.
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Cholesterol Inhibition And Cell Viability

Cell viability was measured using an MTT assay for cell viability. Cells were
plated in 96 well plates at a density of 1 X 10* cells per well. After 24 hours, 10 uM
Q3G was added to the cells for 6 hours, the media was then changed and the cells were
subjected to a 500 uM H,O insult for 15 minutes. After the H>0O; insult, 1 uM
mevastatin (LKT laboratories) was added to the cells for 18 hours. After the
conditioned culture media was removed, MTT at a final concentration of 0.5 mg/mL
was added to the cells and incubated at 37°C for 4 hours. Solubilizing buffer (0.1N
HCI and 10% SDS) was added to the cells at 37°C for 1 hour to dissolve the formazan
particles that were quantified using an ELx800,, microplate reader (Bio-tek instrument
Inc.) at 562 nM. Blank wells containing just media alone were subtracted from the
readings and the results presented as a percentage of control cell viability (those

receiving vehicle treatment and no HyO; insult).

Membrane Integrity

Membrane integrity was assessed by measuring lactate dehydrogenase (LDH)
release from the cell. Cells were plated in 96 well plates at a density of 1 X 10* cells
per well in phenol red free DMEM supplemented with 5% FBS, 1 mM sodium pyruvate
and 2 mM L-glutamine. After 24 hours, 10 uM Q3G was added to the cells for 6 hours,
the media was then changed and the cells were subjected to a 500 uM HyO, insult for
15 minutes. After the H,O, insult 1 pM mevastatin was added to the cells for 18 hours.
On day 2, 10X lysis buffer (formulation under patent) was added to the cells for 45

minutes to rupture the cell membrane (positive control). The plates were then
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centrifuged at 250 x g for 4 minutes at room temperature and 50 pl of media was
removed and placed into empty 96 well plates. Then 50 pl of substrate solution
containing 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl-2H-tetrazolium chloride (INT)
salts and diphorase was added to the media, mixed, and incubated for 30 minutes at
room temperature and protected from light. After incubation 50 pl of stop solution
(formulation under patent) was added to the wells to halt further reaction. Absorbance
was measured at 490 nm using an ELx800,, microplate reader (Bio-tek instrument
Inc.). Background values (media only and non insulted cells) were subtracted from the
readings and the results presented as a percentage of positive control LDH release

(those receiving 10X lysis buffer for 45 minutes).

Statistical Analysis

Data are expressed as mean + SEM from at least three independent experiments
performed in quadruplicate (3 independent experiments * 4 determinations per
experiment = 12 determinations). Statistical analysis was performed using GraphPad
Prism software by one-way ANOVAs. If significant, group comparisons were
performed using Tukey’s test. Probability values were considered significant at P <

0.05.
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Chapter III: Results

Q3G Pretreatment Reduces Loss Of Cell Viability After An Oxidative Insult

To determine the effects of increasing concentrations of Q3G on the viability of
SH-SY5Y cells exposed to an oxidative insult, cells were incubated for 24 hr with 1
pM, 10 uM and 100 uM of Q3G. Cell viability was measured after the H,O, insult
using MTT, a compound that is broken down by the enzyme succinate dehydrogenase
in viable mitochondrial to purple formazan particles. Exposure to HO; (500 uM, 15
minutes) resulted in decreases in viability ranging from 40%-60% with the mean being
50% relative to vehicle-treated cells. Pretreatment with 1 or 10 uM Q3G before HyO,
exposure increased viability by approximately 40% (1 pM) and 55% (10 uM) relative
to cells treated with H,O, alone (Figure 4). Treatment with 10 uM Q3G alone did not
significantly alter cell viability relative to control cells that did not receive flavonoid
and the oxidative insult. These results indicate that of 10 pM Q3G provided maximal
protection from the loss of viability produced by the H>O, insult and that Q3G was not

cytotoxic nor did it alter the rate cell division.

Q3G Pretreatment Reduces Cell Death

To determine the cytoprotective effects of Q3G, a cell death ELISA was
performed. Various reports have shown that flavonoids, most specifically quercetin
have the ability to prevent loss of viability produced by an oxidative insult such as
H,0,. Although the ability to prevent loss of viability is important, the cell is not
necessarily dead and many repair mechanisms may be under way to halt cell death.

Measuring nucleosomes that have been cleaved by proteases from cellular DNA are a
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more definite measure of cell death. Q3G, tBHQ and EPO were added to SH-SY5Y
cells for 24 hours, the next day conditioned culture media was removed and the cells
subjected to 500 uM H,O, for 15 minutes. Cells were lysed and the ELISA performed
as described in the Methods. Pretreating SH-SYSY cells with Q3G (10 uM) caused a
significant reduction in cell death compared to the hypertonic treated (positive control,
PC) and non-pretreated H,O, insulted cells as measured by cell death ELISA (Figure
5). The level of cytoprotection from cell death achieved by Q3G is comparable to that

of the well known neuroprotectant EPO.

Q3G Pretreatment Reduces Intracellular ROS

Quercetin is well documented to be a free radical scavenger, however, little is
known about the free radical scavenging abilities of the glycosylated form of quercetin,
Q3G. Q3G (5 uM and 10 uM), tBHQ (5 pM and 10 pM), a compound documented to
induce antioxidant genes, and vitamin C (5 uM and 10 uM), another well documented
free radical scavenger were added to SH-SYS5Y cells for 24 hours. The next day the
cells were washed and ROS production induced by the addition of H>O; (500 uM) and
horseradish peroxidase (0.11 mg/ml) for 15 minutes. Cells were lysed and intracellular
ROS levels measured by DCFH-DA. Pretreatment with Q3G (5 pM and 10 uM)
significantly reduced the induction of free radicals as did tBHQ (5 pM) while vitamin C
(5 uM and 10 uM) had no effect (Figure 6). Pretreatment with SuM of Q3G almost
returned intracellular ROS levels to those of cells not exposed to the oxidative stress.
Vehicle treated samples reduced intracellular ROS levels, as DMSO is able to
chemically react with free radicals, though the reduction was not statistically

significant. Since Q3G produced a greater decrease in intracellular ROS levels than did
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vitamin C and tBHQ, we reasoned that other factors are responsible for the ability of
Q3G to reduce hydrogen peroxide-induced cell death. To obtain some insight into the
processes that might mediate Q3G-induced cytoprotection, we conducted microarray
experiments to examine changes in gene expression produced by Q3G alone or

pretreatment with Q3G followed by exposure to oxidative stress.

Q3G Treatment Alone Does Not Alter Gene Expression

Microarray experiments were conducted by exposing SH-SYS5Y cells to 10 uM
of Q3G or equivalent vehicle (0.05% DMSO) for 6 hours. The 6 hour time point was
chosen because we hypothesized that any changes in gene expression resulting in the
protective nature of this compound would take place soon after uptake of the
compound, estimated to be 6 hours after addition to the media. RNA was extracted
using the RNeasy mini kit and mRNAs reverse transcribed to cDNAs labeled using
fluorescent Cy 5 and Cy 3 dyes. Treatment with Q3G alone did not alter gene
expression in SH-SH5Y cells compared to those treated with vehicle (Figure 7). Only
the expression of one gene, histone 2B was significantly altered with a standard error of

20.6%.

Q3G Pretreatment Alters The Genomic Response To Oxidative Stress

Another microarray experiment was conducted to compliment the Q3G or
vehicle alone array by adding an oxidative insult (500 pM HO,, 15 minutes) to cells
pretreated with Q3G or vehicle. This microarray experiment yielded 28 candidate
genes with altered gene expression, 25 genes were upregulated and 3 down regulated

(Figure 8). Many of the genes with elevated expression (Table 1) were functionally
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categorized (Figure 9) as belonging to a family that serves a critical role in cholesterol
biosynthesis. Putative functional linkages between the significantly altered genes were
identified using a program called Pathway Architect (Figure 10). Since 16 out of the 25
(62%) significantly upregulated genes are involved in cholesterol metabolism or lipid
metabolism, we hypothesized that the protective effects of Q3G may be mediated by
cholesterol biosynthesis thus preventing or repairing damage due to lipid peroxidation.
Q3G Pretreatment Results In Elevated Cholesterol Biosynthesis After Oxidative
Stress

Since many of the upregulated genes are involved in cholesterol biosynthesis, a
cholesterol assay was performed. SH-SYS5Y cells were treated with 10 uM Q3G,
vehicle (0.05% DMSO) or control (no treatment) for 6 hours, then exposed to 500 pM
H,0, for 15 minutes. After the oxidative insult the cells were allowed to recover for 6
hours and lysed and the assay performed as described in the Methods. Absorbance
values were compared to those of a standard curve and cellular cholesterol levels
determined (Figure 11). Cells treated with vehicle and then exposed to oxidative stress
did not show an increase in cholesterol biosynthesis over control cells exposed to
oxidative stress (Figure 12). By contrast, cells pretreated with Q3G and then exposed
oxidative stress showed a significant increase of cholesterol levels, approximately 35%,
over vehicle treated cells exposed to the oxidative insult (Figure 12). These findings
were consistent with the microarray results indicating elevated cholesterol biosynthetic

capacity in cells pretreated with Q3G and subjected to oxidative stress.
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The Effects Of Cholesterol Biosynthesis On Cell Viability

Having demonstrated that cholesterol biosynthesis was increased in cells
pretreated with Q3G and exposed to oxidative stress, next the role of elevated
cholesterol biosynthesis on the ability of Q3G to reduce cell loss produced by oxidative
stress was determined. Cells were treated with Q3G (10 uM) for 6 hours, exposed to
H,0;, (500 uM) for 15 minutes and then a 3-hydroxy-3-methylglutaryl CoA (HMG-
CoA) reductase inhibitor mevastatin (1 pM) added as described in the Methods.
Pretreatment with Q3G followed by exposure to H>O, decreased the loss of cell
viability produced by H,O, by about 25%, (Figure 13). This protective effect of Q3G
was reversed by addition of mevastatin after the H,O, insult (Figure 13). Mevastatin at
the concentration used (1 pM) was did not alter cell viability after the H,O; insult, nor

did it alter the viability of cells when added on its own (Figure 13).

Q3G Pretreatment Prevents Loss Of Membrane Integrity Due To H2O, Insult
After confirming that cholesterol biosynthesis was essential for the ability of
Q3G to prevent the loss of cell viability triggered by oxidative stress, we sought to
determine the effects of this process on membrane integrity as assessed by release of
the intracellular enzyme LDH. Since cholesterol is a major constituent of the plasma
membrane and contributes to membrane integrity, elevated cholesterol biosynthesis
post insult may protect against oxidative stress-induced cell death. Cells were treated
with Q3G (10 uM), exposed to H,0; (500 uM) for 15 minutes and an HMG-CoA
reductase inhibitor mevastatin (1 uM) added as described in the Methods. Pretreatment

with Q3G reduced the increase in LDH release produced by H,O,, by approximately



30

66% relative to those cells exposed to H,O, alone (Figure 14). Addition of mevastatin
partially reversed the protective effects of Q3G pretreatment. Mevastatin at the
concentration of 1 uM after H,O, insult resulted in a substantial loss of membrane
integrity (35%) compared to the positive control (lysis buffer), while mevastatin alone

did not result in a substantial loss of membrane integrity (Figure 14).
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Figure 1: A schematic diagram showing the causes and effects of free radicals.
Various sources such as inflammation, the electron transport chain, toxicity, ischemia,
X-rays and air pollutants can generate free radicals that alter the redox balance within a
cell resulting in oxidative stress. Oxidative stress leads to undesirable events such as
lipid peroxidation, protein modification, and DNA damage that can ultimately trigger

cell death.
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Figure 2: The 15 carbon polyphenolic backbone characteristic of the flavonoid family
is composed of 3 rings: A, B, and C. Alterations in the degree of saturation of the C
ring and side group substitution of these rings gives rise to the various subfamilies and
determines the biological activity of these compounds. Quercetin-3-glucoside: R6, R8,

R3’ = H, R7, R4’, R5’ = OH, R3 = glucose (CsH1206)
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Figure 3: A schematic representation of the microarray protocol. A) SH-SYSY cells
were plated at a density of 5 X 10° cells / mL in a 6 well plate and 10 uM of Q3G or an
equivalent vehicle (0.05% DMSO) for 6 hours. B) Compounds were removed and the
cells were washed with PBS and total RNA extracted using an RNeasy mini kit. C)
Fluorescent Cy labeled cDNAs were then synthesized using reverse transcriptase and
Cy 3 and Cy 5 dyes coupled to amino allyl-dUTPs. To control for effects related to dye
labeling bias, dye swapping was employed. D) 14K human microarray chips contained
13,972 spots of cDNA respectively synthesized by the University of Calgary
Microarray Facility. E) Equal amounts of cDNAs derived from total RNA from each
treatment group were hybridized to the chips for 18 hours and then the chips were
washed. F) Chips were scanned using a ScanArray 500 microarray scanner. G) Data

analysis was performed using QuantArray 3.0 and Gene Traffic Duo 2.5 software.
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Figure 4: A MTT assay measuring cell viability after H,O, insult in SH-SYS5Y cells.
SH-SY5Y cells were pretreated with vehicle (control), 1 pM, 10 uM, or 100 uM of
Q3G for 24 hours. After the incubation the conditioned culture media was removed
and replaced with fresh media. The cells were then exposed to 500 uM HO; for 15
minutes. The next day cell viability was assessed by a MTT assay. Data are expressed
as % viability compared to control cells receiving no Q3G and no insult. Each bar is
representative of the mean + S.E.M. of 20 determinations performed over 3
independent experiments. P*<0.001(1 way ANOVA, Tukey post hoc test) versus H,O,
treated cells. Cells receiving just 10 pM Q3G showed no significant changes in
viability, thus 10 uM Q3G for 24 hours is not cytotoxic, nor did it alter cell

proliferation.
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Figure 5: A cell death ELISA measuring DNA fragmentation in SH-SYS5Y cells.
SH-SYSY cells were pretreated with either 10 uM Q3G, or 5 uM tBHQ, or 10 pg EPO
for 24 hours. After the incubation the cells were washed with PBS and exposed to 500
uM H,0, for 15 minutes. After 24 hours, cells were lysed and the ELISA performed as
described in the Methods. A hypertonic solution was used as a positive control (PC)
and all are data represented as fold increase over control cells receiving no pretreatment
with compounds and not subjected to oxidative stress. The data shown are the mean +
S.E.M. from 12 samples in 3 independent experiments, P*<0.05 (1 way ANOVA,

Tukey post hoc test), versus H,O, non-treated cells.
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Figure 6: Reactive oxygen species (ROS) produced in SH-SYSY cells immediately
after exposure to 500 uM H,0; and 0.11 mg/ml horseradish peroxidase for 15 minutes.
SH-SYS5Y cells were pretreated with quercetin-3-glucoside (Q3G), tert-
butylhydroquinone (tBHQ) and Vitamin C (ascorbic acid) or vehicles for 24 hours.
ROS levels were measured immediately after insult using 5-(and-6)-carboxy-2,7’-
dichlorodihydrofluorescein diacetate, DCFH-DA. Each bar is representative of the
mean + S.E.M. from 12 samples in 4 independent experiments, P*<0.05, P**<0.01 (1
way ANOVA, Tukey post hoc test) versus H,O, treated cells. ROS production is
expressed as the fold elevation compared to SH-SY5Y cells that were not exposed to

oxidative stress.
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Figure 7: Significance Analysis of Microarray (SAM) plot of all the genes examined
after treatment of SH-SY5Y cells with quercetin-3-glusoside (10 uM, 6 hrs) versus
vehicle treatment (0.05% DMSO, 6 hrs). With a standard error value equal to 20.6%
and a false discovery rate equal to 0%. Only 1 gene, histone 2B, displayed significantly

altered expression (upregulated, red dot).
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Figure 8: Significance Analysis of Microarray (SAM) plot of all the genes examined
after treatment of SH-SY5Y cells with quercetin-3-glusoside (10 pM, 6 hrs) plus 500
uM H,0, insult (15 minutes, 6 hr recovery time) versus vehicle treatment (0.05%
DMSO, 6 hrs) plus 500 uM H,0; insult (15 minutes, 6 hr recovery time). With a
standard error value equal to 23.5% and a false discovery rate equal to 7.31%. It was
determined that 28 genes had significantly altered expression, with 2 false positives.
Significantly upregulated genes (25) are indicated as red dots and significantly

downregulated genes (3) are indicated as green dots.
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Table 1: Genes whose expression was significantly altered as a result of exposing SH-
SYS5Y cells to quercetin-3-glusoside (10 pM, 6 hrs) plus 500 pM H,O, insult (15
minutes, 6 hr recovery time) compared to cells treated with vehicle (0.05% DMSO) and
500 pM H,0, insult (15 minutes, 6 hr recovery time). Data are expressed as fold
increase / decrease over mRNA levels of SH-SYSY cells exposed to vehicle treatment

(10 uM equivalent, 6 hrs) plus 500 uM H,0O; insult (15 minutes, 6 hr recovery time).
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Table 1
Gene name [Gene Accession [Function Fl-'old change
Symbol [No
Upregulated
Stearoyl-CoA desaturase SCD AB032261 |Fatty acid biosynthesis  [2.81
Farnesyl-diphosphate DFT1 X 69141 ICholesterol biosynthesis [2.76
farnesyltransferase 1
Cytochrome P450 family 51, “C'ﬂ’éilAl 723942 holesterol biosynthesis [2.63
subfamily A, polypeptide 1 [L 'C
[Sterol-C4-methyl oxidase-like [sc4MOL [U60205  [Sterol biosynthesis 2.62
Squalene epoxidase [SQLE  [D78130  [Sterol biosynthesis 2.42
3-hydroxy-3-methylglutaryl- “HMGCSI X 66435 Enoiesterol biosynthesis [2.42
Coenzyme A synthase 1 ipid metabolism
Isopentenyl-diphosphate delta D11 X17025 [ékmiesterol and 2.38
isomerase 1 oprenoid biosynthesis
Unknown [L00352 2.24
Fatty acid desaturase 2 fFADSZ AF126799 Eam acid biosynthesis 2.1
nd desaturation
7-dehydrocholesterol reductase |tDHCR7 AF034544 ||Cholesterol biosynthesis [1.94
3-hydroxy-3-methylglutaryl- [HMGCR NM_OOOSSd‘Choiesterol biosynthesis ]1.88
Coenzyme A reductase
Unknown IAB016247 1.71
RAB3A interacting protein RAB3IL.1 [NM 013401 1.669
(Glutamate receptor, ionotropic, N- IGRIN1 13266 egulation of synaptic 1.651
methyl D-aspartate 1 lasticity
Unknown [U96876 1.651
Isocitrate dehydrogenase 1 IDH1 [AF020038 |Carbohydrate metabolismi{1.61
Transmembrane protein 97 ITMEM97 [1.19183  [Regulation of cell growth [1.589
[Fatty acid synthase [FASN [U29344  [Fatty acid biosynthesis _ 1.57
Farnesyl diphosphate synthase [FDPS [D14697 holesterol and 1.5
soprenoid biosynthesis
Zinc finger protein 364 ZNF364 |ALO79314 1.464
Jun D proto-oncogene JUND [X56681 Transcription 1.43
Unknown [D85606 1.36
Potassium voltage-gated channel, [KCNH7 |AF035290 [Signal transduction and |1.358
subfamily H otassium ion transport
Unknown AF077754 1.28
Downregulated
Sestrin 1 SESN1 IAF033122 |Negafive regulation of cell}-1.61
cyele
Methyltransferase like 74 METTL7AJALO50159 [Transferase activity -1.42
Ectodermal-neural cortex IENCI IAF059611 Kevelopment and -1.51
Neurogenesis
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Figure 9: Pie chart showing the functional distribution of the 25 genes significantly up
regulated in response to 6 hours of 10 uM Q3G treatment plus 500 uM H,O, insult of
15 minutes, with a 6 hr recovery time compared to cells treated only with vehicle and
500 uM H,0, insult. Significantly altered gene expression was identified by microarray
analysis using Gene Traffic software and SAM. Note: The summation of the
categories in each graph does not equal the number of significant genes as some genes

fall into more than one category.
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Figure 10: A pathway assist diagram showing potential functional linkages and signal
transduction pathways between genes upregulated after treatment with quercetin-3-
glucoside (10uM, 6 Hrs) plus 500 pM H,O, insult (15 minutes, 6 hr recovery time).
The red circles in the diagram are a set of proteins involved in cholesterol biosynthesis
whose transcription is increased by Q3G pretreatment and H,O, insult. The blue circles
are proteins not examined in the array that connect to the increased genes. Green
circles are small molecule intermediates (enzyme substrates, enzyme products) that link
the proteins. Green squares on arrows indicate regulation, blue squares indicate
binding, and purple diamonds indicate metabolism. For abbreviations in red circles

consult Table 1.

Blue circles: NOVA1 = neuro-oncological ventral antigen 1, ITGAM = integrin aM,
MAX = Myc associated factor X, ONECUT1 = one cut domain family member 1, E2F4
= E2F transcription factor 4, TAF1 = TATA box associated factor 1 RNA polymerase

II, HNF4A = hepatocyte nuclear factor 4.

Green circles: A =2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17-hexadecahydro-1H-
cyclopenta[a]phenanthren-3-ol, B = [2~(6-aminopurin-9-yl)-5-[[[[5-(5-carbamoyl-1-
pyridyl)-3,4-dihydroxy-tetrahydrofuran-2-ylJmethoxy-hydroxy-phosphoryl]oxy-
hydroxy-phosphoryl]Joxymethyl]-4-hydroxy-tetrahydrofuran-3-ylJoxyphosphonic acid,
C = 17-(1,5-dimethylhexyl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-
dodecahydro-1H-cyclopenta[a]phenanthren-3-ol, D = ¢cGMP, E = 2-amino-5-[1-

(carboxymethylcarbamoyl)-2-mercapto-ethyl]Jamino-5-oxo-pentanoic acid.
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Figure 11: A standard curve of cholesterol concentration versus absorbance at 562 nm
for the cholesterol assay. Cellular cholesterol levels were determined by fitting sample
absorbance to the line and using the equation Y = AX + B to determine the level of

cholesterol.
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Figure 12: The level of cholesterol in SH-SYSY cells was measured using a cholesterol
assay kit. Q3G and vehicle were added to the cells and incubated for 6 hours, then cells
were subjected to 500 pM H,O, for 15 minutes and allowed to recover for 6 hours.
Cells were then equalized to 8.5 X 10° cells and lipids extracted by addition of a
chloroform-methanol solution. Following a 15 minute incubation the solution was
centrifuged and the organic phase collected and evaporated. The lipids were re-
dissolved in 20 puL of 2-propanol. Afterward 2 uL of sample was added to 48 pL
reaction buffer and 50 pL of reaction mix was added (44 pl cholesterol reaction buffer,
2 ul cholesterol probe, 2 pl enzyme mix and 2 pl cholesterol esterase), samples were
incubated at 37°C for 60 minutes. Absorbance was measured at 562 nm and the amount
of cholesterol present was determined by fitting the absorbance values to the standard
curve. Each bar is representative of the mean = S.E.M. from 12 determinations in 3
independent experiments. P* <0.001 (1 way ANOVA, Tukey post hoc test) versus

H,0; treated cells.
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Figure 13: Cell viability after addition of mevastatin, a HMG CoA reductase inhibitor.
Cells were plated in a 96 well plate at a density of 1 X 10* cells per well. After 24
hours quercetin-3-glucoside was added to the wells for 6 hours. The conditioned media
was removed and the cells subjected to 500 uM of H,O, for 15 minutes, 1 uM of
mevastatin was added to the cells for 18 hours and cell viability assessed by a MTT
assay. Data are expressed as % viability compared to control cells receiving no Q3G
and no insult. Each bar is representative of the mean + S.E.M. from 20 determinations
in 3 independent experiments. P*<0.001(1 way ANOVA, Tukey post hoc test) versus
H,0, treated cells. P+<0.001(1 way ANOVA, Tukey post hoc test) versus Q3G + H,0,

treated cells.
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Figure 14: SH-SY5Y cell membrane integrity after H,O, insult and addition of
mevastatin, a HMG CoA reductase inhibitor. Cells were plated in a 96 well plate at a
density of 1 X 10* cells per well. After 24 hours quercetin-3-glucoside was added to
the wells for 6 hours. The conditioned media was removed and the cells subjected to
500 uM of H,O, for 15 minutes, 1 uM of mevastatin was added to the cells for 24
hours and the membrane integrity was assessed by examining lactate dehydrogenase
(LDH) release. Data are expressed as % LDH release compared to positive control
cells receiving incubation with lysis buffer. Each bar is representative of the mean +
S.E.M. from 24 determinations in 4 independent experiments. P*<0.001(1 way
ANOVA, Tukey post hoc test) versus H,O; treated cells. P+<0.001(1 way ANOVA,

Tukey post hoc test) versus Q3G + H,O; treated cells.
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Figure 15: A schematic of the proposed mechanisms for the cytoprotective effects of
quercetin-3-glucoside. Q3G is able to enter the cell and activate SREBP after H,O,
stress leading to increased expression of several proteins such as sterol co-A desaturase
1, HMG-CoA synthase and HMG-CoA reductase that are involved in cholesterol
biosynthesis resulting in an overall increase in cholesterol. Q3G can associate with and
enter cholesterol enriched membranes protecting them from oxidative stress. These
effects were reversed in cells treated with the HMG CoA reductase inhibitor,

mevastatin.
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Chapter IV: Discussion

General Discussion Of Data Obtained

A major finding of the present study was that the flavonoid Q3G protected SH-
SYS5Y cells from injurious concentrations of H,O, that otherwise trigger cell death by
creating excessive oxidative stress. Moreover, a novel mechanism for the
cytoprotective effects of Q3G was elucidated (Figure 15). This mechanism involved
the ability of Q3G exposure to prime the cell for a cytoprotective response that is
triggered by H,O, insult. Evidence was presented that this adaptive response consisted
of increased expression of genes responsible for cholesterol biosynthesis that may
increase plasma membrane integrity by reducing lipid peroxidation and enhancing the

availability of structural components necessary for membrane repair after oxidative

injury.

Initial experimentation presented in this study showed that pre-treatment of SH-
SYS5Y cells with Q3G followed by exposure to H,O, reduced the loss of cellular
viability normally seen after the H,O, insult. Many other investigators have reported
that quercetin is able to reduce cell death resulting from oxidative stress (Su et al.,
2003; Choi et al., 2003; Cesquini ef al., 2003). Quercetin is able to protect against cell
death triggered by excessive oxidative stress as demonstrated in the present study by
decreased nucleosome fragmentation and LDH release (loss of membrane integrity),
markers of cell death. As reported here using SH-SYSY cells and by others using

cultured chicken spermatogonial cells, quercetin, and chemically related compounds
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reduces necrotic cell death by preventing lipid peroxidation thereby maintaining
membrane integrity (Zhang, 2005). Quercetin may also prevent H,O, induced
apoptosis by decreasing caspase-3 activation in H9¢2 cardiomyoblasts (Park ef al.,
2003) and increasing levels of heme oxygenase 1, an antioxidant protein found in brain
and macrophages (Chow ef al., 2005). Both of these mechanisms were examined in the
present study and neither was found to be responsible for the cytoprotective effects of

Q3G against oxidative stress in SH-SYS5Y cells (data not shown).

Similar to the findings of other studies, we have linked the protective cellular
effects of quercetin to its free radical scavenging ability. The ability of quercetin to
directly absorb free radicals and form complexes with metal ions, that promote
oxidative stress, enable the compound to protect against single stand DNA breaks, lipid

peroxidation and protein damage (Jeong et al., 2005; Chow et al., 2005).

Quercetin can be incorporated in the plasma membrane of cells where it is
intercalated between the acyl chains of phospholipids (Movileanu et al., 2000). This
action is mediated by the hydrophobic nature of quercetin. The degree of membrane
intercalation for quercetin can be altered by changing the pH of the media (Lopez-
Revuelta et al., 2006). For example, at acidic pH, the hydrophobicity of quercetin is
elevated enabling this compound to intercalate to a higher degree in the plasma
membrane. Another study has implicated pi-pi interactions, a noncovalent interaction
between organic compounds containing aromatic moieties, enabling quercetin to enter

the lipid bilayer in a cholesterol-dependent fashion (Saiji et al., 1995). Membranes
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enriched in cholesterol achieve greater levels of quercetin incorporation, thus increasing
resistance to lipid peroxidation (Saiji et al., 2003). Conversely, membranes depleted of
cholesterol display increased lipid peroxidation and an elevated loss of membrane
integrity (Lopez-Revuelta et al., 2006). Similar effects were observed in the present
study where cholesterol depletion after an oxidative insult resulted in increased loss of

membrane integrity and decreased cell viability.

Others have performed cDNA microarray experiments to profile changes in
gene expression that occur after exposure to quercetin, however little research has been
done on the effects of quercetin exposure on gene expression in SH-SYS5Y cells. Using
the prostate cancer cell lines PC-3 and DU-145, several cDNA microarray studies have
implicated genes related to the control of cell cycle and cell growth in the
chemotherapeutic effects of flavonoids (Nair et al., 2004). In line with these findings,
quercetin has been reported to alter the transcription of genes involved in apoptosis,
cell-cycle control and xenobiotic metabolism in the colon-carcinoma cell lines CO115
(Murtaza et al., 2006) and Caco-2 (van Erk et al., 2005). In addition to the alterations
in the expression of genes that regulate cell division, there is also some evidence that
the transcription of tumor suppressor genes is upregulated by quercetin (van Erk et al.,
2005). However, by comparison to the present study, all of these studies used
significantly higher concentrations of quercetin (50 uM -100 pM) and none of them
subjected the cells to an oxidative insult or examined the ability of quercetin to
influence the transcriptional response to oxidative stress. Although SH-SYSY cells

were derived from a neuroblastoma cancer cell line, in the present study changes in the
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expression of genes relating to either cell division or tumor suppression following
exposure to Q3G were not present. Moreover, significant alterations in gene expression

were only observed in cells after an oxidative insult in cells pre-treated with Q3G.

Plausible Mechanisms For Cytoprotection

Cholesterol biosynthesis is highly regulated and entails numerous enzymatic
processes. At the heart of this synthetic pathway are two transcription factors, sterol
regulatory element binding protein 2 (SREBP-2) and SREBP-1 that can be alternatively
spliced giving rise to SREBP-1a and SREBP-1¢ (Kuhn et al., 2004). Both transcription
factors are anchored to the endoplasmic reticulum membrane in a hairpin like structure
with their amino and carboxyl termini exposed to the cytosol (Loewen and Levine,
2002). To become transcriptionally active, SREBPs must be cleaved by a SREBP
cleavage-activating protein (SCAP) releasing the NH, terminal ends of these proteins
into the cytoplasm where they can dimerize via basic helix-loop-helix leucine zipper
motifs following which translocation to the nucleus occurs (Loewen and Levine, 2002).
Once in the nucleus, SREBPs bind to sterol regulatory element (SRE) triggering the
transcription of genes necessary for cholesterol biosynthesis. When cholesterol
biosynthesis is required, an endoplasmic reticulum (ER) bound protein that monitors
cholesterol levels called Insing activates SCAP resulting in the cleavage and activation
of SREBPs (Loewen and Levine, 2002). To date, there are no reports in the literature
demonstrating that flavonoids or polyphenolic compounds can alter the activities of

SCAP or Insing. However, the ability of Q3G pre-treatment to prime SH-SYS5Y cells
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to increase the expression of cholesterol biosynthesis after exposure to H,O, implicates

SCAP and Insing in this Q3G-mediated cytoprotective response to oxidative stress.

Many of the genes found to be increased in the present cDNA microarray
studies are under control of the transcription factor SREBP-2, that is continuously
synthesized by the cell and degraded via ubiquitin mediated proteasome degradation. A
few studies have demonstrated that treatment with polyphenolic genistin plus a H,O,
insult increases levels of mSREB-2, the membrane cleaved form of SREBP-2 (Mullen
and Shay, 2004; Mullen et al., 2004). The polyphenol epigallocatechin gallate has been
reported to increase levels of SREB?-I though this leads to a lowered cellular

cholesterol concentration by promoting cholesterol efflux (Bursill and Roach, 2006).

Alternatively, ester containing polyphenols, such as Q3G, may increase the
expression of many proteins involved in cholesterol biosynthesis such as SREBP-2 by
inhibiting proteasome mediated protein degradation leading to increased levels of
cholesterol (Mullen et al., 2004). Inhibition of proteasome mediated protein
degradation has already been proposed as a mechanism for establishing neuroprotection
because many compounds such as morphine (Rambhia ez al., 2005), lactacystin (Nam
et al., 2001), reversatrol (a polyphenolic compound found in grapes and red wine) are
able to inhibit the proteasome leading to reduced levels of amyloid-beta peptides
implicated in Alzheimer’s disease (Marambaud ef al., 2005). In cultured cerebellar
granule neurons that are dependent on depolarizing concentrations of potassium (50

mM) in the media to survive, proteasome inhibitors reduce the death of these neurons
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when extracellular concentrations of potassium are lowered (Canu et al., 2000). These
proteasome inhibiting compounds must be added at the time potassium reduction
occurs to be neuroprotective because they are no longer effective if added 3 hours after
exposure. Animal studies have also supported a protective action of proteasome
inhibition against the injurious effects of cerebral ischemia (Phillips ef al., 1999;

Phillips et al., 2000).

An oxidation sensitive subunit exists in the 26 S proteasome identifying it as a
protein sensitive to oxidative stress (Reinheckel et al., 1998). Under electrophilic
induced oxidative stress, proteasome activity is decreased in SH-SYSY cells (Shibata et
al., 2003). Oxidative damage to the 26 S proteasome that reduces enzymatic activity of
this complex combined with subsequent inhibition of the proteasome with polyphenolic
compounds would further reduce the ability of the 26 S proteasome to degrade proteins
suggesting this combination may be the mechanism for cytoprotection. It is also
possible that Q3G must undergo reaction with H>O; and glutathione (GSH) to produce
a pro-oxidant quinoid species (Pinto and Macais, 2005) that may mediate the
cytoprotective effects of Q3G shown in the present study. This is supported by the fact
that no alterations in gene expression occurred when Q3G was incubated with SH-

SYSY cells that were not subjected to subsequent oxidative stress.

Inhibition of the proteasome is thought to mediate the ability of the drug
bortezomib to eliminate cancerous myeloma cells by inhibiting degradation of the

cyclins, cyclin-dependent kinases, tumor suppressors, and nuclear factor-kB thereby
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arresting cells in the M/G, growth phase and sensitizing them to apoptosis (Joazeiro et
al., 2006). Bortezomib has gained Food and Drug Administration FDA approval for
the treatment of myeloma and second generation compounds such as NPI-0052 and PR-
171 are undergoing clinical testing (Joazeiro et al., 2006). Although inhibition of the
proteasome produces apoptosis in cancer cells, this appears to be a dose dependant
effect since quercetin protects cardiomyocytes from anoxia-reoxygenation at a low

concentration but induces apoptosis at a higher concentration (No listed author, 2006).

Both the SREBPs must be phosphorylated at key serine and threonine residues
by glycogen synthase kinase-33 (GSK3p) (Sundqvist ef al., 2005) to attract the
ubiquitin ligase Fbw7 that ubiquitionates these proteins and targets them for
proteosomal degradation (Minella er al., 2005). Given the large polyphenolic structure
of Q3G of approximately 400 g/mol and the fact that flavonoids are able to inhibit
various kinases it is possible that the cytoprotective effects observed in the present
study may be mediated by inhibition of GSK3f leading to increased levels of SREBPs

that initiate elevated cholesterol synthesis.

An enzyme complex known as p300/CBP is able to associate with SREBP and
acetylate the lysine residues in the transcription factor complex thereby blocking the
ubiquitation process leading to a longer survival rate of p300/CBP/SREBP and higher
cholesterol biosynthesis (Giandomenico et al., 2003). Promotion of acetylation via
stabilization of the p300/CBP/SREBP complex or increasing the acetylation ability of

this complex could be potential mechanisms for the effects of Q3G on cholesterol
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biosynthesis seen in this study. By contrast, curcumin, a structurally distinct
polyphenolic compound that is thought to exhibit similar effects as quercetin, has been
shown to inhibit the p300 acetyltransferase (Marcu et al., 2006) which would yield

lower levels of cholesterol biosynthesis.

Epidemiological & Pharmacokinetic Studies Supporting Future Research
Epidemiological evidence supports the cytoprotective effects of quercetin.
Following ingestion, Q3G is absorbed by the gut where it is converted into free
quercetin (Crespy et al., 1999). Three hours after ingestion, concentrated red grape
juice elevated the antioxidant capacity of the plasma, increased HDL, while reducing
concentrations of oxidized LDL, apolipoprotein B-100 and LDL-cholesterol in blood of
the peripheral circulatory system (Castilla et al., 2006). In a randomized trial of male
smokers, consumption of dealcoholized red wine significantly reduced urine levels of
F2-isoprostane, a marker of lipid peroxidation (Caccetta et al., 2001). Similarly in a
placebo controlled study, lyophilized grape powder reduced plasma LDL, cholesterol,
plasma triglycerides, apolipoproteins B and E and F2-isoprostane in pre- and post-

menopausal women (Zern et al., 2005).

Black tea is the major source of flavonoids in the Western world. The
Rotterdam study examined the effects of black tea consumption on the incidence of
myocardial infarction in 4807 subjects 55 years or older. The findings of this study
suggested that the relative risk for myocardial infarction decreased in patients who

consumed more than 375 ml of tea daily (Geleijnse et al., 2002). Likewise,
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epidemiological data from the Zutphen study that followed 552 men aged 50-69 for 15
years suggested total dietary flavonoids, mainly quercetin, consumed from black tea

reduced the incidence of stroke in a manner inversely proportional to tea intake (Keli et

al., 1996).

By contrast, a large study of 38,445 women generated findings at odds with
these studies by reporting that there was no significant positive correlation between
flavonoid intake and cardiovascular disease (Sesso et al., 2003). Nonetheless, this
study showed that roughly 3% of women consuming greater than 946 ml of tea daily

were at a reduced risk for adverse vascular events.

Pharmacokinetic studies in humans show that glycosylation of quercetin leads
to a higher bioavailability of this flavonoid and that only glycosylated products, not free
quercetin, could be detected in serum (Graefe ef al., 2001). Similar results were found
in a study of pigs that were fed flavonoids as glycosylated flavonoids proved to be more
abundant in serum samples than unglycosylated flavonoids (Cermak et al., 2003).
Furthermore, consumption of a high fat diet may increase quercetin levels in the serum
following oral administration of this flavonoid (Lesser et al., 2004). Other studies have
shown that incubation of glycosylated quercetin products with human saliva caused the
breakdown of these products into free quercetin within minutes (Walle ez al., 2005).
However large inter-subject variability was reported in the ability to break down

glycosylated quercetin into free quercetin.
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Quercetin but not glycosylated forms of this flavonoid show high apical to
basolateral permeability in Caco-2 cells, an in vitro model of intestinal absorption
(Walgren et al., 1998). Methylated quercetin shows 8 fold higher apical to basolateral
permeability than quercetin. Methylated flavonoids also show reduced levels of hepatic
metabolism making them more metabolically stable thereby increasing oral
bioavailability (Wen and Walle, 2006). Rat feeding studies showed that the intestinal
tract contained 94-100% unmetabolized quercetin, but intestinal tissues contained 11
different metabolites of the parent compound (Graf et al., 2006). Tissue distribution
studies of quercetin in rats and pigs show high levels of this flavonoid in rat lungs, pig
liver and kidney but low levels in brain and spleen of both species (de Boer et al.,
2005). Taken together, these studies suggest that oral consumption of Q3G may exert
superior cytoprotective effects compared to quercetin by increasing bioavailability. In
summary, the results of the present study suggest that dietary supplementation with
Q3G may reduce the risk of cardiovascular disease such as stroke by enhancing

membrane repair associated with oxidative stress.
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Chapter V: Conclusions

1. Quercetin-3-glucoside is cytoprotective against H,O, induced oxidative stress in
SH-SYS5Y cells at a concentration of 1 uM and 10 uM.

2. Under H,0, induced oxidative stress, quercetin-3-glucoside elevated the
expression of several genes involved in cholesterol biosynthesis.

3. The increase in expression of these genes involved in cholesterol biosynthesis is
essential for maintaining cell viability, and membrane integrity following
oxidative stress.

4. Inhibition of cholesterol biosynthesis prevented the cytoprotective effects of

Q3G.

Future Work

In order for quercetin-3-glucoside to become a therapeutic, work needs to be
done in finding the exact molecular mechanism that leads to an increase in genes
controlling cholesterol biosynthesis after exposure to this compound. Once the
mechanism is found, enzymatic and cell based screens may be used to identify other
compounds that are cytoprotective against oxidative insults in primary neuronal cell
cultures before moving to in vivo models. Therapeutic potential in the field of
neuroprotection exists for quercetin-3-glucoside because it appears to be a safe natural
product that is consumed daily in various food products. Studies have shown that
structurally similar flavonoid compounds such as amentoflavone (30 mg/kg) are

neuroprotective in neonatal models of hypoxic-ischemic brain injury (Shin ef al., 2006).
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Although quercetin-3-glucoside is very hydrophobic, a novel microemulsion drug
delivery system containing clove oil, Tween 20 and water is able to encapsulate

quercetin and thereby enable effective delivery of this drug in vivo (Gupta et al., 2006).
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