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ABSTRACT

According to current cosmological models, the majority of the matter in the universe
is not visible. Only a small fraction of the total matter consists of visible baryonic
material, the remainder is dark matter. A promising candidate for dark matter
is an exotic particle left over from the early Universe. While there are numerous
theoretical models supporting this view, there has never been a definitive detection of
any such particle. Nonetheless, there are currently over 20 terrestrial-based detection
experiments in operation or under construction around the world searching for dark
matter of this type. The majority of these experiments are designed, and their
analysis is based, upon the simple assumption that dark matter will be smoothly
distributed throughout the Milky Way, and in particular, in the solar neighbourhood.
However, this assumption has not been rigorously tested, and if incorrect, could lead
to inefficient detector design, and even improper analysis of the data.

Two techniques are developed to investigate the distribution of dark matter in
the solar neighbourhood. The first involves combining N-body simulations with
analytic models to build a high-resolution picture of the dark matter distribution.
The second technique takes advantage of the reversibility of collisionless systems to
obtain a very high-resolution picture of the dark matter distribution in the vicinity
of the Earth. This new “reverse-run” method improves the velocity resolution at a
particular point in the simulation by many orders of magnitude. In both the semi-
analytic models, and the reverse-run technique, it is found that the dark matter
distribution is not smooth. Applying the reverse-run technique to a simulation of the
formation of the Milky Way and M31 indicates that the velocity-space distribution
of dark matter close to the solar neighbourhood has a wealth of substructure.

The effects of this substructure on dark matter detection experiments is signif-
icant. In particular, it can shift the energy and direction of the highest detection
rates from what would be expected due to a smooth halo. It is also shown that the
seasonal variation of the detection spectra can introduce characteristic signatures of
velocity-space substructure.

The traditional smooth halo assumption does not withstand careful analysis. The
dark matter distribution is found to have a considerable amount of structure which
would have a significant impact on terrestrial dark matter detection experiment.
This substructure must be taken into account when designing and analysing dark
matter detection experiments.

il
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1. INTRODUCTION

1.1 Dark Matter

Over the last several decades a growing body of evidence has indicated that we
understand the properties of only a small fraction of the total matter in the universe.
The first piece of the puzzle was found by Zwicky (1933) when he noticed that the
velocity dispersion in the Coma cluster of galaxies was much higher than could be
explained by the visible mass present. He concluded that a significant portion of
the mass in the cluster must be in some form which is not visible to observers. Over
the years, many more observations have confirmed the result that a large fraction
of the matter in the universe is non-luminous (see for example, Bergstroem (2000)).
A classic indicator of the presence of dark matter is the rotation curve of spiral
galaxies. If all the matter is luminous, one would expect the rotational velocities

~1/2 sutside the visible regions. However, the observed

of gas and stars to fall like r
rotation speed (symbols in Figure 1.1) is roughly constant out as far as observations
can be obtained. Estimates from the velocity dispersion of clusters and rotation
curves indicate that as much as 90% of the total matter in the galaxies and clusters
must be “dark”.

Observations of the Cosmic Microwave Background (CMB) provide an inde-
pendent means to determine the dark matter component of the universe. These
measurements are based on the calculation of the growth of perturbations in the
early epoch of the universe. For a review, see White et al. (1994). The most recent

results indicate that the universe consists of approximately 5% normal (baryonic)

matter (O, ~ 0.05), and 25% dark matter (Qgm ~ 0.25). The remaining 70% of the



1. Introduction 2

29“ AL S A R R A LI | B
i NGC 6503 |
g i
b =
% =
aeaic®

" g b e g g bowow g

o 10 20 3

Rading {kpe)

Figure 1.1: Rotation curve of NGC 6503 from Begeman et al. (1991). The dashed and
dotted lines are the rotation due to the mass of the visible stars and gas
respectively. The dash-dot curve is the contribution that must be due to dark

matter to agree with the observed rotation (symbols).

mass is even more mysterious than the dark matter and is thought to be in the form
of a cosmological constant or dark energy (25 ~ 0.70)(Spergel et al., 2003; Lange
et al., 2001; Stompor et al., 2001). (A review the parameters and definitions used
when discussing cosmology and cosmological models can be found in Appendix A.)

While there are numerous theoretical candidates for dark matter, none has yet
been definitively detected. Nonetheless, there are currently over 20 detectors around
the world that are in operation or under development, all on a quest to identify the
nature of the dark matter component of the universe. While progress in detector
design and sensitivity has improved greatly over the past several years, detailed
predictions have yet to be made regarding what these detectors expect to see. The
vast majority of all theoretical predictions have made the simple assumption that
the Milky Way’s dark-matter halo has a smooth, almost featureless distribution.
The validity of this assumption has never been rigorously tested. In order for these

detectors to be designed optimally and to correctly interpret any results, it is nec-
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essary to develop an accurate model of the distribution of dark matter in the solar
neighbourhood. Such predictions require a detailed understanding of the mecha-
nisms involved in the formation of structure in the universe as well as knowledge of
the nature of dark matter and detection techniques.

The remainder of this Chapter introduces the basic dark matter candidates, de-
tection techniques and the effects of dark matter on structure formation. Chapter 2
covers the numerical techniques that will be used in the subsequent chapters to in-
vestigate the dark matter distribution in the solar neighbourhood. The integrity and
stability of phase-space structures in numerical simulations, of crucial importance
for terrestrial detection experiments, will be investigated in Chapter 3. Chapter
4 introduces semi-analytic techniques that can be used to study the dark matter
distribution around the Earth, and draws some preliminary conclusions about the
nature of the distribution. To further probe the phase-space distribution of dark
matter, a novel “reverse-run” method is introduced and tested in Chapter 5, and
is applied to a realistic simulation of the Milky Way in Chapter 6. The results
from Chapters 4, 5, and 6 are applied to a detailed study of detection experiments
in Chapter 7. Finally, a summary of the work completed and the primary con-
clusions are presented in Chapter 8. Appendices A and B provide some technical
background and derivations for cosmological models and linear theory of structure

formation respectively.

1.2 Structure Formation in the Universe

While it is believed that the universe is homogeneous and isotropic on large scales,
observations show that this in not the case on small scales. Galaxies appear to
be preferentially collected into groups and clusters. On larger scales, these groups
and clusters then appear to be associated into supergroups and superclusters. It is
currently unknown how far this hierarchy extends.

The formation of this hierarchy is seeded by small density fluctuations in the
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early universe which arise due to random quantum perturbations. However, the
spectrum of the density perturbations itself is not sufficient to predict how struc-
ture in the universe forms. The nature of the dark matter itself also directly affects
how the cosmological hierarchy forms. If, in the early universe, the dark matter par-
ticles are relativistic, structure forms from the “top down”. Large objects form first
and then fragment into smaller pieces (Primack and Gross, 2001). For example, a
cluster-size object would fragment and form individual galaxies. This top-down for-
mation occurs because the relativistic dark matter can easily escape from any small
gravitational potential well which then reduces the depth of the well. This prevents
any small overdense region from collapsing. Only overdensities that are large com-
pared to the mean free path of the dark matter particles can undergo gravitational
collapse. Since these particles are dynamically hot in the early universe, this type
of dark matter is called hot dark matter (HDM).

In contrast, if the dark matter is non-relativistic, structure will form from the
“bottom up” (Peebles, 1982). Galaxies form before clusters, with smaller objects
merging into larger entities. In the early universe, these particles have small ve-
locities and can be gravitationally captured in small density perturbations causing
these regions to collapse on relatively short time-scales. The mass in these small
regions becomes gravitationally bound and later merges into larger clumps. Dark
matter particles which are non-relativistic in the early universe are called cold dark

matter (CDM).

1.3 Dark Matter Candidates

In order to study the signal that would be observed in Earth-based detectors, it is
necessary to investigate what the dark matter could be. While the dynamical and
CMB evidence indicates that dark matter exists and plays an important role in the
universe, it can tell us very little about the exact nature of the dark matter. Since its

initial introduction there have been many proposed dark-matter candidates. These
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range from the rather mundane such as cold gas (Pfenniger et al., 1994) to the
more exotic such as microscopic black holes (Ivanov et al., 1994). However, the
leading candidates are particles which arise from extensions to the Standard Model

of particle physics.

1.3.1 Massive Neutrinos

One early dark matter candidate was a massive neutrino. The original neutrino
was proposed by Pauli in 1931, and was first detected by Reines and Cowan (1953).
While the neutrino was originally thought to be massless, there is a growing body
of evidence that indicates that it does have a mass (Groom et al., 2000). In par-
ticular, the difference between the measured flux of solar neutrinos and the flux
predicted from solar models requires that the neutrino has a non-zero mass (Groom
et al., 2000). Recent measurements from the Sudbury Neutrino Observatory, taken
in conjunction with Super-Kamiokande results (Toshito and The Super-Kamiokande
Collaboration, 2001), and tritium beta decay experiments (Bonn et al., 2001) in-
dicate that the total mass of all three neutrino flavours (electron neutrinos, muon
neutrinos, and tau neutrinos) is constrained to 0.05 eV < >;m,, < 8.4 eV (Ahmad
and et al., 2001).

Two problems arise when the attempt is made to solve the dark-matter problem
with neutrinos. First, recent constraints on the upper mass limit of the neutrino
coupled with production rate estimates in the early universe place an upper bound
on the total mass in the form of neutrinos. This contribution is significantly below
the mass required to account for all of the dark matter. With the mass restrictions
from above, the cosmological neutrino density is restricted to 0.0001 < ©, < 0.18
(Ahmad and et al., 2001), with the lower end of the range being favoured.

The second problem is that since neutrinos are so light, they would be a form
of hot dark matter. A comparison of numerical simulations of HDM models with

observation indicates that top-down formation does not yield structures similar to
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those that are observed in the universe today (Primack and Gross, 2001). This
distribution of sizes and ages of galaxies formed in HDM models differ significantly
from observations. Any dark matter candidates must be dynamically cold in the

early universe.

1.3.2 Weakly Interacting Massive Particles

A broad class of dark matter particles is a Weakly Interacting Massive Particle
(WIMP). Since WIMPs are (by definition) massive, they would be non-relativistic in
the early universe and a form of CDM. Therefore, WIMPs could provide consistency
between numerical simulations and observations.

The most likely WIMP candidates arise from supersymmetric extensions to the
Standard Model (Groom et al., 2000). Supersymmetric models introduce an ad-
ditional property, R parity, which can have values of only *1, to particles in the
Standard Model. This symmetry adds a partner for every particle in the Standard
Model which has equal charge but differs in spin by 1/2. This spin difference in su-
persymmetric models unites the fermionic and bosonic components of the Standard
Model.

The additional R parity is important with regard to the stability of supersym-
metric particles. The traditional Standard Model particles have R = +1 while their
supersymmetric partners have R = —1. For example, an electron has R = 1 and its
supersymmetric partner, a selectron, would have R = —1. R parity is multiplicative
and must be conserved when a particle decays. A Standard Model particle could
then decay into any number of other Standard Model particles, but must decay
into an even number of (or zero) supersymmetric particles. On the other hand, if a
supersymmetric particle decays, there must be at least one supersymmetric particle
left to maintain R = —1. Therefore, supersymmetric particles cannot completely
decay away into traditional Standard Model particles. Instead there could be an

accumulation of the lightest supersymmetric particle (LSP) which could no longer
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decay. Such a particle has not been definitively observed in either particle accelera-
tor experiments, or in cosmological searches, so the mass of the LSP must be much
larger than the mass of currently known particles. While these masses are above
the production capabilities of current particle accelerators, they would have been
produced in abundance in the early universe.

The lightest supersymmetric particle in many models is the neutralino, x. This
neutral massive particle would interact only very weakly with normal matter. Cur-
rent experimental limits require that m, 2 35 GeV (Groom et al., 2000). While
supersymmetric models can explain some of the weaknesses of the Standard Model,

there is currently no compelling evidence to support them.

1.3.3 Axions

One of the problems with the Standard Model is the lack of charge-parity (CP)
violation in strong interactions (Groom et al., 2000). The strong force Lagrangian
contains a free dimensionless parameter, 8, which determines if CP violation occurs
or not. If § # 0, the Lagrangian violates CP conservation. If § = 0, it does not.

While the Standard Model provides no reason to expect that 6§ = 0, experimental
measurements of the neutron electric dipole moment indicate that § < 2x107°. The
question of why 6 is so small is known as the Strong CP Problem.

In order to avoid the fine-tuning of @, Peccei and Quinn (1977) proposed an
additional symmetry (PQ symmetry) to the Standard Model. When this new sym-
metry is broken it forces § = 0. Unfortunately, the introduction of such as symmetry
also introduces a new particle — the axion. The axion couples most strongly with
photons yielding two possible interactions. The first is when axions spontaneously
decay into two photons,

a—y+7y (1.1)

The second process is the conversion of axions to photons through Primakoff pro-

cesses (Sikivie, 1983) where an axion couples with a strong magnetic field and is
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converted into a photon. There is also an equal chance that a photon could be
converted to an axion.

a7y (1.2)

The likelihood of these processes occurring is proportional to both the strength of
the electric and magnetic fields and their relative alignment in the region of interest.

Current axion models do not provide any stringent constraints on the mass of
the particles. However, some constraints can be obtained for the mass of the axion
from some unexpected sources. An upper limit can be derived from stellar models
(Groom et al., 2000). Current models of stellar evolution successfully describe the
evolution of stars over almost their entire life. These models do not include any
Primakoff production of axions in the stellar cores. Therefore, if axions exist, they
must have a sufficiently small effect as to not significantly alter the evolution of
stars. If axions are too massive they would carry a large amount of energy out of
the stellar interior and thus alter the star’s evolution. Such considerations place an

upper limit on the mass of the axion of
me < 107%eV (1.3)

A lower limit on the axion mass can be obtained from cosmological considera-
tions. If the energy scale of PQQ symmetry breaking is less than 108 GeV, axions
would have a sufficiently short lifetime that their decay should be observable. Such
decays would manifest themselves as monochromatic lines in the spectra of distant
galaxies. This has not been observed (Bershady et al., 1991). Therefore, it is likely
that the PQ energy scale is greater than 10® GeV. At such energies, the mechanisms
for axion formation would produce non-thermal axions — the axions would be dy-
namically cold. In this situation, the cosmological axion density, €2,, is inversely

proportional to the axion mass (Turner, 1986, for example):

Q, oc m 117 (1.4)

a
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where the proportionality constant is dependent upon the details of the cosmological
model. Consideration of the total mass density of dark matter in the universe limits
the axion mass to be

mg > 107 %V (1.5)

1.3.4 Massive Compact Halo Objects

A different type of dark matter candidate is a Massive Compact Halo Object (MA-
CHO). Unlike WIMPs or axions, MACHOs consist of standard baryonic matter, but
are simply too small or dark to be easily observed from the Earth. MACHOs include
a wide variety of small, but possibly very massive, objects including brown dwarf
stars (stars which are not massive enough to support fusion within their core) and
small black holes. There are several observational searches for MACHO signatures
(Afonso et al., 2003; Alves et al., 2002; Wozniak, 2000; Alcock et al., 2000) and all

indicate that MACHOs cannot account for a significant portion of the dark matter.

1.4 Detecting Dark Matter

While observations of the dynamical behaviour of galaxies and clusters indicate
that dark matter must exist, they cannot distinguish between the various CDM
candidates. In order to determine what the dark matter is, it must be detected
directly on Earth. This could be done through high-energy accelerator experiments
which aim to detect signs of dark matter candidates, or through efforts to detect
any dark matter still present from the early universe. The efforts to detect WIMPs
have primarily focused on bolometric and scintillation detectors. However, since the
mass of axions is much smaller than WIMPs, different techniques, such as detectors

based upon Primakoff conversion, must be used.
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1.4.1 Bolometric Detectors

Bolometric detectors attempt to measure the energy deposited when a WIMP in-
teracts with a nucleus in the detector. If a WIMP of mass m, scatters elastically

with a nucleus of mass my, the nucleus recoils with an energy of

Q= (mfzﬂ) (1 —cosf%) (1.6)

my

where m, = mym,/ (my + m,) is the reduced mass, v is the speed of the WIMP
relative to the nucleon, and 6* is the scattering angle in the centre-of-mass frame
(Jungman et al., 1996). Note here and throughout, the speed of light, ¢, is set to
1. Only a fraction, ¢, of this recoil energy is observed in the detector. However,
since the value of ¢ is a function of detector design, it is more convenient to discuss
detection rates in terms of the recoil energy rather than the quenched values. The

differential detection rate per unit detector mass can then be written

Q) [T fw) (1.7)

a—@ N 2m2m,, min

where oy is the scattering cross-section, py, is the local WIMP density, F/(Q) is a form
factor for the WIMP-nucleon interaction, and vy, = (Qmy/ 2mz)1/ 2 (e.g., Jungman
et al. (1996)). Here fi(v) is the normalized distribution of WIMP speeds in the
rest frame of the detector, obtained by integrating the three-dimensional velocity
distribution f(v) over all angles. In general, F(Q) depends upon the coupling
between the WIMP and nucleus but for simplicity F/()) = 1 will be assumed here.

Many detectors, such as the Cold Dark Matter Search (CDMS) (Gaitskell, 2001)
use germanium targets. Therefore, unless otherwise stated, calculations involving
bolometric detectors will assume that the detector is germanium with a nucleon

mass of my = 68.5 GeV.

1.4.2 Directional Sensitive Detectors

One disadvantage of bolometric detectors is that they cannot determine any infor-

mation about the direction of the incoming WIMP. Directional sensitivity would
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% » Scattered WIMP

Cathode  Fiectric Field
Figure 1.2: Schematic of the DRIFT detector. (From the DRIFT website at
http://www.shef.ac.uk/uni/academic/N-Q/phys/research/pa/DRIFT.html)

greatly improve the usefulness of dark matter detectors. Directional correlations
could be used to reduce background signals and yield information about the full
three-dimensional velocity distribution of dark matter rather than simply the speeds.

The basic idea behind directional WIMP detectors is to track the recoil path of
a nucleus after a scattering event. Generally, this involves following the ionization
path of the scattered nucleus. For example, in the Directional Recoil Identification
From Tracks (DRIFT) experiment (Martoff et al., 1999), a low pressure carbon
disulphide gas chamber is used to determine the trajectory of the recoil. Figure 1.2
shows a schematic of the operation of the DRIFT detector. As the recoiled nucleus
travels through the gas, it ionizes surrounding material. The free electrons are
captured by the carbon disulphide (since it is electronegative) creating negatively
charged ions. These ions drift under the influence of an electric field to the detection

array at one end of the chamber. From the observed recoil path, the direction of
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the incoming WIMP can be constrained, but not uniquely determined due to the
random scattering angle. In addition, as the ions drift towards the detection array,
they will diffuse, resulting in an imperfect measure of the recoil path. However, one
major advantage of the DRIFT experiment is that the size and shape of the detected
paths can be also used to discriminate true WIMP recoils from background events.
This results in a very high signal to noise ratio. Robust conclusions can be drawn
from only hundreds of WIMP detections. Currently DRIFT is in its first stages of
operation in the Boulby Mine in the U.K.

1.4.3 Axion Detectors

The techniques for detecting axions are very different from those for WIMPs. Since
the energy of an individual axion is very small, bolometric techniques would be
inappropriate. Instead, the primary technique for axion detectors is to use Primakoff
conversion to transform axions into detectable photons. The energy of the detected
photons corresponds to the total energy (rest mass plus kinetic) of the axions.

Several such detectors are in operation or under development including the MIT-
Livermore axion search (Daw, 2001) and PVLAS (Cantatore et al., 2001). Several
other detectors are also looking for axions produced in the core of the Sun. These
axions would be highly collimated as they pass though Earth-based detectors and
provide an excellent target for study though it should be noted that they would be
significantly more energetic than cosmological axions. Detectors looking for solar
axions include the SOLAX Collaboration (Avignone et al., 1999) and CAST (Zioutas
et al., 1999).

1.5 Dark Matter Detection Spectra

The experimental spectrum of energies that any dark matter experiment may detect
will naturally depend upon the true distribution of energies. However, in order to

design efficient and useful detectors, one must make assumptions about this true
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distribution. Additionally, the interpretation of any experimental signatures will

depend upon any assumptions made of the true dark matter distribution.

1.5.1 Smooth Dark Matter Distributions

While the observable universe is homogeneous on very large scales (& 100 Mpc),
it is very clumpy on galactic scales. However, if the Milky Way has evolved very
quiescently in its recent history, it is possible that the dark matter distribution has
been thoroughly virialized and is quite smooth. It is then convenient to assume that
the dark matter has a Maxwellian velocity distribution (Jungman et al., 1996, and

references therein):

1
f(VDG)d3UDG - W3/2U3€_U%G/vgd32)pc (1.8)

where v p¢ is the dark matter velocity relative to the Galaxy, and v, ~ 220 km s~ is

the two-dimensional halo velocity dispersion. (Some authors (Jungman et al., 1996,
for example) apply a cut-off at the local escape speed; however, it has a negligible
effect (Freese et al., 1988).) The Sun is orbiting the centre of the Galaxy at roughly
230 km s~! and the velocity of interest is that of the Earth-based detector relative to
the dark matter distribution. A transformation to the frame of the Earth is simply
Vpe = Vpg + Ver where the subscripts denote the dark matter (D), the Galaxy

(G), and the Earth (F). Therefore, the correct velocity distribution to consider is

1 —|V v v,
f(VDE)d3UDE = 7{3/21)36 vbet+vEec)?/ ‘2’d3UDE (1_9)

where vgg is the velocity of the Earth relative to the Galaxy. Integrating over all

directions yields the speed distribution (Freese et al., 1988):

filvpr) = YDE (exp [_Q’D_E'_‘_Z’_PZG_)EJ —exp [_MD (1.10)

VEGU.NT v2 v2
Under such assumptions it is straightforward to analytically calculate the expected

detection spectra for the various dark matter candidates.
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Figure 1.3: Axion detection rate for a Maxwellian velocity distribution in terms of a)

energy, where m,, is the rest mass of the axion, and b) speed.

For axions, detectors are sensitive to the photons that correspond to the total
energy of the axion. The total energy is simply the rest mass of the axion, m,, plus its
kinetic energy. Therefore, the energy spectra detected for axions are directly related
to the speed distribution with a lower cutoff at the axion mass. For example, Figure
1.3 shows an ideal axion spectrum in terms of its energy and speed. Notice the very
narrow energy range over which axions would be detected E/mg, — 1 < 4 x 1076,
This requires that axion detectors have very high energy resolution.

The modelling of WIMP detection events is considerably more involved than
for axions. In particular, in bolometric detectors the amount of energy deposited
depends upon a random scattering angle. If a certain amount of energy is detected
it could have come from a WIMP with only slightly more energy and almost total
energy transfer (§* ~ 7) or it could have come from a WIMP with considerably more
energy where only a small amount of the energy is transferred (8* ~ 0). Therefore,
the expected detection rates involve an integral over all scattering angles. Figure
1.4 shows an ideal WIMP detection rate spectrum in terms of the energy detected.
Note how the peaked speed distribution is observed as a monotonically decreasing

spectrum in the energy detection rates. A WIMP mass of 50 GeV and detector
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Figure 1.4: WIMP detection rate for a Maxwellian velocity distribution in terms of the
recoil energy. A WIMP mass of 50 GeV and a detector nucleon mass of 68.5

GeV are assumed.

nucleon mass of 68.5 GeV are assumed.

1.5.2 Non-Uniform Dark Matter Distributions

The Sagittarius dwarf galaxy provides compelling evidence that the Milky Way
is still undergoing merger and accretion events (Ibata et al., 1995). Therefore, it
is unlikely that the dark-matter halo is completely virialized and hence smooth.
Furthermore, recent high resolution numerical simulations tend to indicate an ever-
increasing amount of substructure at progressively smaller scales (see for example
Moore et al., 2001). The assumption of a smooth dark matter halo for modelling
dark matter detection events must now be questioned.

To see the effects of non-uniform dark matter distributions on detection exper-
iments, consider the admittedly contrived situation where the local dark matter
consists of n streams each with a density of pr/n, where py is the mean density
of dark matter in the solar (local) neighbourhood. The average density would be
the same as for a smooth halo but the velocity distribution would be significantly

different. This complex velocity distribution could give rise to very different detec-
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Figure 1.5: Axion detection rate for a velocity distribution consisting of 10 randomly ori-
ented streams of dark matter in terms of a) energy where m,, is the rest mass
of the axion, and b) speed. Note the significant features in the spectra due to

the non-uniformity of the dark matter distribution.

tion spectra. Figures 1.5 and 1.6 show the ideal axion and WIMP spectra if the
local dark matter distribution consisted of n = 10 identical streams with random
orientations. The spectra are significantly different than those from a Maxwellian
distribution. Note that this distribution is simply designed to be illustrative and
does not necessarily have any physical motivation. =~ However, this difference be-
tween the uniform and non-uniform dark matter distributions presents an enormous
challenge for dark matter detector design and analysis. In order to correctly inter-
pret results and optimize detector design and operation, an accurate picture of the

dark matter distribution in the solar neighbourhood is required.
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of 68.5 GeV are assumed.
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1.6 Determining the Local Phase-Space Distribution of
Dark Matter

With so many dark matter detection experiments in progress or development, it is
necessary to test the assumption upon which many are based: that the dark matter
in the solar neighbourhood is smoothly distributed. As illustrated in the previous
section, a non-Maxwellian distribution can significantly alter the observed spectra.
In order to make accurate predictions, one needs to have an accurate knowledge of
the local phase-space distribution of dark matter.

The most straightforward approach is to simply use a numerical simulation which
resembles the formation of the Milky Way and environs and look at the distribution
of particles in the solar neighbourhood. Unfortunately, the resolution required to
obtain accurate statistics is well beyond the computational limits imposed by today’s
technology. For example, consider a simulation with N particles in a cube with sides
of length L. If one is interested in the velocity-space structure at a point which has
a density of ¢ times the mean density, the number of particles in a cube with sides
«L is approximately n = o®6N. Using typical numbers of a large present-day
simulation, N = 10°, L = 1 Mpc, oL = 1 kpc, and § = 1000, one obtains n = 1000.
This number of particles is not sufficient to accurately map out the velocity space
at that point, especially if there is significant structure in velocity space. A larger
value of a could be chosen, but this could blur the velocity-space distribution by
averaging over too large an area. To obtain the equivalent resolution in phase-
space (or local velocity-space) to that of configuration-space requires an increase in
N of many orders of magnitude. Such a simulation is well beyond the bounds of
current simulations simply due to the excessive computational resources that would
be required. Therefore, alternative techniques must be applied to investigate the

phase-space distribution of dark matter in the solar neighbourhood.



2. NUMERICAL TECHNIQUES

In order to determine the expected density of dark matter in the solar neighbour-
hood, it is necessary to use numerical techniques. Analytic models describing the
evolution of dark matter can only deal with broad, general characteristics of the dis-
tribution. For example, in cosmological spherical collapse models the average den-
sity, p, inside a sphere at maximum expansion compared to the average background
density of the universe, py,, can easily be determined (Peebles, 1982). Consider a
spherical density perturbation that has a mass M, and radius r. It would evolve

according to

" GM
= (2.1)
The solution for r(¢) can be expressed parametrically:
r = A(l—cosb) (2.2)
t = B(6—sinb) (2.3)

with the constraint that A3 = GM B?. At maximum expansion, § = 7, r = 24 and

t = wB. The mean density of the perturbation is then

3
= 2.
P~ 3anGBe (24)
The mean density of the surrounding universe evolves as
- (25)
e = 6rCe2 )
Therefore, when t = 7B,
_ 9n? (2.6)

19



2. Numerical Techniques 20

However, while such general properties can be analytically derived, the density
at a specific point and time is not easily determined. If the spherical symmetry is
even slightly broken, analytic techniques lose their effectiveness. In order to accu-
rately investigate such situations in sufficient detail, numerical simulations must be
used. These simulations use particles to trace the evolution of the inital distribution
function as systems evolve. A variety of numerical techniques have been developed
in order to improve the efficiency of simulations. This chapter presents the nu-
merical tools and methods that will be used throughout the remaining chapters to
investigate the local distribution of dark matter. First, the problem of cosmological
simulations is reduced from a full general relativistic problem to a much simpler
Newtonian model. Three different N-body algorithms are then presented — mesh
codes, treecodes, and multipole codes — with advantages and disadvantages of each

discussed.

2.1 Newtonian Approximation

Dark matter is of fundamental importance on cosmological scales. It is inseparably
linked to the eventual fate of the universe — whether the universe eventually col-
lapses or continues to expand forever. However, in most situations, the evolution
of dark matter can be modelled in a strictly Newtonian framework. In regions of
space where the densities are relatively low and velocities small, the full equations

of General Relativity can be approximated to yield (Peebles, 1982)
V20 = 471G <p + —g) _y\ (2.7)

where ® is the gravitational potential, G is the gravitational constant, p is the den-
sity, p is the pressure and A is the cosmological constant. In cases where pressure is
negligible, such as with collisionless dark matter, p = 0. Additionally, when matter
is present, generally 47Gp > A. For example, in a virialized system the matter den-

sity is roughly 200 times the cosmological background density and 47Gp ~ 300HZ.
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This dominates the cosmological constant term, A ~ HZ, which can therefore be

neglected. We are then left with Newton’s classical formulation of gravity:
V20 = 47Gp (2.8)

It is only in situations where the weak-field approximation breaks down that one
must consider general relativistic effects. These situations, such as dynamics very
close to a black hole, are generally the study of much more detailed simulations
(see for example Yo et al., 2002; Shibata and Urya, 2002). On scales of galaxy
and cluster formation, these effects are ignored, or approximated when modelled in

larger systems (e.g. considering black holes as simple point masses).

2.2 N-Body Simulations

Numerical simulations play a crucial role in our understanding of structure forma-
tion. While analytic techniques can yield general information about the overall
evolution of a system, they lack the ability to make detailed and specific predictions
of complex systems. In contrast, numerical simulations provide a detailed realization
of the system in question with an accuracy limited only by the available computa-
tional resources. However, in order to make the most efficient use of the computers,
it is necessary to develop optimized algorithms for the calculation of gravitational
forces. In the simplest N-body code implementation, forces of the N particles are
simply calculated pair-wise between all particles. The computational requirements
of this method are of order O(N?). For small particle numbers such as N = 1000,
this technique is acceptable. However, the time taken to compute the forces for
larger values of N rapidly becomes prohibitive. Therefore, several specialized algo-
rithms, which will be discussed in the following sections, for computing the forces
between particles have been developed which scale as O(N log N) or better.
However, once the forces are known, the positions and velocities of the particles

can be updated. Frequently a “leap-frog” integration scheme is used where the
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updating of the phase-space coordinates of a particle is split into three stages. For

a given particle, the position, &, and velocity, v, are updated using:

Tny1/2 = Un+@lAt)2 (2.9)
:i:'n—{—l = fn -+ T_fn+1/2At (210)
27n+1 = 'Ijn_,_l/g + 6n+1At/2 (211)

where the subscripts indicate the timestep (ie. at t = nAt), At is the time step
of the simulation, and @ is the acceleration of the particle. While this integration
algorithm is quite simple it has the fortunate property of being sympletic which
gives it better numerical stability than many higher-order, more complex integration
schemes (Hut et al., 1995). However, in any N-body simulation, the most difficult

task is the calculation of the accelerations.

2.3 Mesh Based Codes

One approach to speed up the force calculation is to calculate the potential at a set
of points throughout the simulation and extrapolate the forces from the potential
(Hockney and Eastwood, 1988). Poisson’s equation must be solved to determine the
potential:

V2®(F) = 4nGp(Z) (2.12)

An efficient method to solve this equation is through Fourier transforms. Taking
the transform of Poisson’s equation yields

&(F) =~ o(F) (2.13)

Therefore, if the Fourier transform of the mass distribution, ﬁ(E), can be calculated,
$(Z) can readily be determined from the inverse transform of equation (2.13). How-
ever, in N-body simulations, the mass distribution is represented by a set of discrete
points, rather than a continuous field p(Z). Therefore, the discrete Fourier trans-

form must be used. It can be applied most efficiently when the sampled points are
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uniformly distributed. Unfortunately, the particles in gravitational simulations are
not uniformly distributed and each particle must be assigned to a grid point. The
simplest method, in which one assigns all the mass of a given particle to the nearest
grid point, is quick and simple but the resulting forces lack sufficent accuracy. An
alternative technique involves distributing the mass to all eight corners of the grid
cell according to the particle’s location in the cell. Higher order weighting schemes
are also frequently used.

The potential at the location of the j*" mesh point in a N, x N, x N, mesh is

given by
3
O(z;) = % '—:—ETP(%) (2.14)
i=1,i#j |Z; — @i

This is simply a convolution of two functions
d=XxY (2.15)

where X = Gz~! and Y = p(Z). Application of the convolution theorem yields

&= XY (2.16)
Once the potential is calculated at the grid points, the acceleration of the particles
can be interpolated. X can be calculated once at the beginning of the simulation and
efficient algorithms exist for performing the Fourier transforms. As a result, forces
from this technique can be calculated in O(N,log, N,) time. However, the use of
Fourier transforms implicitly applies periodic boundary conditions to the simulation.
It is possible to adapt this method to work with isolated conditions though its
performance is degraded and memory requirements are significantly increased. In
addition, the simulation resolution is determined by N, not just the number of

particles used.
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Figure 2.1: The initial particle distribution on the left can be geometrically divided re-
cursively until each particle resides in its own cell. This division can be rep-

resented as the tree structure show on the right.
2.4 Treecodes

For isolated systems, treecodes are generally better suited. Unlike mesh codes,
treecodes calculate forces directly rather than interpolating from the potential. The
basic idea of a treecode, introduced by Barnes and Hut (1986), is that groups of other
particles sufficiently distant from the particle of interest can be combined together
and only the centre of mass (and possibly the higher moments) of that group need
to be considered. For example, consider the 2-dimensional particle distribution
illustrated in the left of Figure 2.1. The geometric extent of the particle distribution
is divided into 4 equal areas. Each of these new regions is looked at in turn and if it
has more than 1 particle in it, it is subdivided again. This process repeats until each
particle resides in its own cell. This subdivision of particles can be represented by a
tree structure as illustrated in Figure 2.1. In three dimensions, since each “parent”

cell would have up to 8 “children” cells, the tree structure is commonly called an
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“oct-tree”.

To calculate the force on particle A, one starts at the top of the tree and computes
the angle ¢ subtended by the current cell. In the case that the particle is inside the
cell, it could be considered to subtend 360°. If the angle is greater than a pre-defined
value, 0y, then that cell is near enough that it must be looked at in more detail. If
is less than 6y, the cell is sufficiently distant that;in the simplest algorithm, it can be
considered a point particle with the total mass of the cell situated at the cell’s center
of mass. Higher order moments of the cell are frequently included in more advanced
versions of the algorithm for increased force accuracy. This process is then repeated
for each of the child cells that must be examined more closely. This technique
effectively reduces the O(N?) force calculation to O(Nlog N). For simulation of
N = 10° particles, a relatively small simulation by today’s standard, this represents
a speed up of roughly 10° compared to the direct summation method. Note that the
coefficients for the scalings are of the same order of magnitude but will be slightly
larger for O(N log N) algorithms due to additional time required to construct the
tree. Therefore, for a very small number of particles, direct summation may still be
faster. By varying the value of 3, one can trade between speed and accuracy. A
small value of 8y yields more accurate forces, but takes considerably longer than a
larger value of 8. The prototypical implementation of this algorithm is provided by
J. Barnes (http://www.ifa.hawaii.edu/~barnes/treecode/treeguide.html) and was
the base code for the simulations described in Chapter 4. A simple improvement
to the basic algorithm can be obtained by allowing more than one particle in the
smallest cells of the tree. Forces between particles in the same cell are computed
pairwise, but since grouping the particles reduces the number of cells in the tree, a

net increase in efficiency can be obtained.
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2.5 Multipole Expansion

While treecodes provide a very significant improvement over direct summations,
they do not take advantage of the inherent symmetry of N-body interactions. The
acceleration of each particle is calculated individually by traversing the entire tree
structure, and depending upon its structure, the forces between pairs of particles
are not guaranteed to be equal but opposite in direction. Tl-lis imbalance leads
to the well-known lack of momentum conservation inherent to treecodes. Dehnen
(2000) has developed a new technique based upon the Cartesian Taylor expansion of
gravitational forces which conserves momentum and is O{N) instead of O(N log N).
The basic idea is similar to that of a treecode, but instead of only considering the
separation between a given particle and a distant region, this algorithm considers
the separation between two regions. If two regions (or nodes, in the language of the
algorithm) are sufficiently separated, the force of each node on each other can be
approximated from the Taylor expansion of the gravitational force.

This algorithm is based on an oct-tree as discussed in Section 2.4. The primary
difference between this algorithm and a standard treecode is the manner in which
the tree is traversed. Instead of simply considering particle-particle and particle-cell
interactions as in the standard treecode, cell-cell interactions are also considered.
Consider the interaction between two cells (possibly the same cells) in the tree.

There are three possible cases:

1. Self-Interaction The interactions between all of the children cells are calcu-

lated. This yields up to 36 new interaction pairs.
2. Well-separated The approximate forces between the two cells can be calculated.

3. Not well-separated The interactions between the smaller cell and the children

of the larger cell are examined. This yields up to 8 new interaction pairs.

The tree traversal starts by looking at the self-interaction with the top-most cell.
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Dehnen provides a version of this algorithm for public use. Unfortunately, the
method of implementation he chose is not suitable for the tasks required for the
studies in Chapter 3 and 5. In particular, it does not allow massless test particles,
and is not guaranteed to be reversible. As will be discussed, these two requirements
are essential for the techniques to be presented later. Additionally, the implemen-
tation by Dehnen only handled isolated systems. It could not deal with periodic
boundary conditions. Therefore, a new implementation of this algorithm, which
allows for both isolated and periodic systems, was implemented. In order to develop

such a code, a detailed understanding of the technique is required.

2.5.1 Well-Separated Regions

To calculate the interaction between well-separated regions, consider two regions,
A, and B with centres of mass at Z4 and Zs respectively. If Z is the location of a
particle in A, and ¢ is the location of a particle in B, the potential between these
two particles, g(Z — ), can be expanded in a Taylor series about R=274— 25
0= 0) = 3 i == B 0 V() 4 R, 2.17)
where p is the order of the expansion and R, is the remainder term. The notation
used is that of Dehnen (2002) and references therein. Z(™ indicates the nt® outer
product, while ® is the inner product.
The potential at position Z in region A due to all particles in region B is given
by (Dehnen, 2002):
P o1
®pa(®) & — 3 —(F-2)™ 0 CEly (2.18)

m - n+m D n
B = z%w *™g(R) © Mg (2.19)

n=0

Mg = Y mi(fi — Zs)™ (2.20)

HEeB
Since the expansion is based about the centres of mass, the dipole moment M!

vanishes. Typically a third-order expansion is used. For higher accuracy, it is
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generally more efficient to introduce more stringent separation criteria rather than
increase the order of the expansion, though there are exceptions to this (Dehnen,

2002). In the p = 3 case, the coefficients for the expansion are:

1 L1 3
C% = Mgg(R)+ —2-Ding - ED,-,.,chg’c (2.21)
1 .
Ci® = MpDi+ 5DiyMy (2.22)
CH? = MgDy; (2.23)
Cf;i = MpDjj (2.24)
where the fact that M = 0 was used and
D, = 99(r) (2.25)
9z |-
Pg(F)
I 6!1?,81'] =R ( 6)
&g(r)
Dy = 2.2
ik &cz&cﬁxk P=B ( 7)

(Note that a switch from tensor product operators to the summation convention
was used.) Combining to give the potential at Z due to the well-separated region B

yields

O(F) = —Mpg|g(R) -+ 3Dy M — YD MJ* + d* (Di + LDy M)

- - (2.28)
+3d'di Dy, + Ldidid* Dy

where d = & — Z4 and M¥ = M#% /M, and M%* = M /M. The acceleration of

particles in region A due to the mass distribution in region B is then
7 Lp . 5% & @ 1 ik
ai(7) = Mg [(Di + 5 Duge M ) + Dy + dld Dijk] (2.29)

Once the derivative tensors are calculated, the acceleration of each particle in region
A can be updated. Note that M3 does not enter into the acceleration, only the
potential. Therefore, if one is only interested in the acceleration, the M? term can

be neglected for improved speed and reduced memory requirements.
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The real advantage of this technique becomes apparent when considering the
acceleration of particles in region B due to particles in region A. This effectively
changes R to —R. From the symmetry properties of the Green’s function, g(ﬁ) =

—

g(—R). Similar properties exist for the derivatives:

Dy(R) = -Di(-R) (2.30)
Di;(R) = Dy(—R) (2.31)
Dyx(R) = —Diu(—F) (2.32)

Therefore, the majority of the computationally intensive terms for calculating the
accelerations of particles in region B due to region A are already computed allow-
ing for very fast reciprocal force calculations. It is this ability that increases the
efficiency of multipole expansions over that of standard treecodes by reducing the
number of interations by approximately a factor of 2. This also has the appealing
feature that momentum conservation is guaranteed to be conserved since reciprocal

forces are calculated correctly.

2.5.2 Calculation of Forces

In the algorithm described above, the acceleration of particles in well-separated
nodes were updated immediately. This could result in a single particle having its
acceleration calculated many times. While it is a straightforward application of the
multipole expansion technique, it can be further improved by noting that the centres

of Taylor expansion can be moved from a parent node, P, to a child node, C.

d = T—2+(7 -2 (2.33)
= d+AZ (2.34)

where 7 is a particle’s position, d is its position relative to node’s centre of mass, z.

The " indicates the value is for the child node. Substituting into (2.28) and (2.29)
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yields

O(z) = —Ms [g(R') n %Dijz\?_rg - %Dijk 1% 4 AZ, (Di + %D,-jkMg’“)
+—;—AZZ~AZ]~D@-J~ + éAZiAZjAZkD,-jk] — (@), (2.35)

w(®) = My|(Di+ SDeltE) + (d + AZ) Dy + 585 + AZ;)(dy + AZ) Dig

1 - 1
1

Therefore, the values of the Taylor coefficients from parent nodes can be propagated
down into child nodes. This can be applied starting from the top of the tree down
each branch until the particles are reached. Though this requires more memory
to store all of the Taylor coefficients, it is significantly faster than applying the

coefficients to each particle in a node every time it is involved in an interaction.

2.5.3 Test Particles

In the implementation of this multipole algorithm by Dehnen (2002), massless test
particles were not supported. As will be discussed in Chapter 5, test particles will
play an important role in the new techniques used to improve velocity space reso-
lution. Test particles can be handled in almost the same way as massive particles,
except they are ignored during the tree-building phase and then placed in the appro-
priate cell after the tree is constructed. In the limiting case where all test particles
are in the same, bottom-most node of the tree, the computation could approach
O(NZ,,). For large Ny this is unacceptable. This can be avoided by the careful
ordering of the particles in the tree-building stage by listing all massive particles
before any test particles. If the forces are calculated starting at the top of the list,
all test-test interactions will be at the end of the interaction list. Therefore, once
the first test-test interaction is encountered, the remainder of the interactions can

be skipped.
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2.5.4 Non-periodic Potential

So far, no mention of the exact nature of the Green’s function has been discused.
While it will result in standard Newtonian gravity, the Green’s function for periodic
and non-periodic systems are different. For a non-periodic system, the Green’s

function is simply
1

9 = 7 (2.37)

The derivative tensors are

g(R) = |RI™ (2.38)
D; = —RyR|™® (2.39)
Dy = (3R;R;— 0,]RP)|R)™ (2.40)

Dij = =3 (5RiRij — (64 Ry + 0u R + 5ij4)|RI2) || (2.41)

2.5.5 Periodic Potential

The Green’s function for gravity subject to periodic boundary conditions is much
more complicated than for the non-periodic case. A straightforward Fourier solution

to Poisson’s equation for a single point mass yields the Green’s function for a periodic

cube:
— 1 7 —
9(@)=>" ﬁcos(k - T) (2.42)
k0
Its derivatives are
ki . -,
D; = Z__];i sin(k - Z) (2.43)
£#£0
kik; -,
Dy = > — 2 cos(k - ¥) (2.44)
E£0
kikjkw . >
Dijm = %?sm(/ﬁ-x) (245)

While the expressions have a compact elegance to them, the convergence properties

are so poor that they are not useful. Figure 2.2 shows D,,, for |E| < 100. The
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i x=(1.0, 0.4, —0.3) i
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Figure 2.2: The poor convergence properties of equation (2.45) at two randomly chosen

points in a cube with sides L = 27.
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sum widely oscillates between large positive and negative values. An alternative
technique is to use Ewald summation (Hernquist et al., 1991). The basic idea is
to consider the potential due to an infinite set of repeating cubic volumes. If one
attempts to directly sum the contribution from all cubes, the sum will still converge
very slowly. However, Ewald summation involves breaking this sum into two parts;
one part which converges quickly in real space, the other part which converges
quickly in Fourier space. This yields a new form which converges quite rapidly.
(Note that Hernquist et al. (1991) has several typographical errors in their equation
(2.14b) though their previous equation (2.11) is correct.) The Green’s function for
periodic gravity in Ewald form is

9 erfc a[x —nLll) 1 1 2|k 2m -
- - = - _h -
9(1: 0.’2L3 = ’nLI L ,go ,n-lhl2 €Xp ( a2l? Ccos ( 7 .’E)
(2.46)

where L is the size of the periodic cube, and « is a convergence parameter effectively
determing where the inital sum is split. Typical values which yield good accuracy
are o = 2/L, | — fiL] < 2.6L and |h|> < 8 (Hernquist et al., 1991). The required

derivative tensors are

20|% — L)

D = le—niw[ NG

R\ . (2m (27
Ao () (A G)n en
i = ‘Eja-x;p exp (—?2P) [z (3 + 202 |21%) ~ 3 aF]
erfc(a{i'})(i’)zlzj 8:;121%)
—Z

2|2 2>\ (212
h;éo |h|2 (_ a2r? ) °% (fhx) (f) ih; (2.48)

Dijk = — ; _\77?‘!;_1—4 exp (—QQ'ZP) X

exp (——a2|a? - ﬁle) + erfc (a|T — ﬁLl)]

HNER

l:(&jzk + 5,'ij + Jszl)(?) -+ 2&2‘212) — ZiZjZk ( + 100_’ + 4(14'212)}

212
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3 Sz:z:2k
+@erf0(alﬂ) [6ijzk + dinzj + Ojkzi — -—l—z:.%——}
1 1 2R\ | y2r- O\ /213
L2 i ™ (_ ) (T502) (T) ot (2:49)
R#0

where Z =& — 7iL.

Though these terms converge much more quickly than equation (2.42), the com-
putational time required to calculate these terms is still prohibitive. The solution is
to tabulate the values and use interpolation to quickly calculate the require terms.
However, it is difficult to interpolate in regions near |Z] = 0 due to the rapid di-
vergence near the singularity. The solution is to multiply out the divergences and

tabulate these values instead.

T, = rD; (2.50)
T; = 7Dy (2.51)
T%jk. = 7'7Dijk (252)

These functions vary smoothly and slowly over their entire domain.

Symmetry can be used to reduce the number of terms which must be stored.

Z;

D; = Iz_'Dj (2.53)
Xr; XTj;
Dy = 2% pi 2.54
T Tl 234
T; T; T
Dy = 3 E pE 2.
P PR | PR R (2.55)

where the superscript + indicates that the term is calculated at (|z}, |y], |2]). There-

fore, only one octant needs to be tabulated.

2.5.6 Comoving Coordinates

In cosmological simulations, it is useful to perform simulations in comoving coordi-
nates. In this manner, the simulation can be performed in a periodic box of fixed

size, rather than having to expand the simulation volume as the universe evolves.
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Comoving coordinates, #, and physical coordinates, 7, are related through the ex-
pansion factor, a(t), found in the Robertson-Walker cosmology (see Appendix A for
details).

F=—— (2.56)

- PV (2.57)
yields
; . 1o &
7+ 2H()E =~V - gf (2.58)
This can be simplified by noting that V = a~!V, and that & = 1/2a~2V,r2. There-

fore, the righthand side of equation (2.58) can be written as a potential in comoving

coordinates
- R 1o
Z+2H(t)Z = —a-B—ngo (2.59)
where
¢ = ap+ %rQ (2.60)

Poisson’s equation in comoving coordinates using this potential yields
V2p = a®*V?¢ + 3ia® (2.61)

The Friedmann equations (A.13) can be used to eliminate @, while Poisson’s equation

in physical coordinates can be used to remove @.
V2 = a®4nG (p(7,t) — p(t)) + a®A (2.62)

Finally, if one uses comoving densities, the equations of motion in comoving coor-

dinates become

i =7z (2.63)

. 1 o
Gt 2HWE = ——Vap (2.64)
Vip = 4nG (p(Z,t) — po) + a*A (2.65)

where u is the peculiar velocity, and pg is the mean density when a = 1.
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2.5.7 Energy Conservation

In periodic, co-moving cordinates, energy is no longer conserved. Layzer (1963) and

Irvine (1961) showed that the energy equation in co-moving coordinates is

d aw

= (a'T) + a—p =0 (2.66)

where )
T = —;—Zmivf (2.67)
W = Z:niqﬁ(a‘:}) (2.68)

This expression provides no conveniently conserved quantity. However equation

(2.66) can be integrated to yield
AT, + aW, — / aWdt = C (2.69)

where the subscript n indicates at time ¢, and C = afTp + apWy. As suggested by
Hockney and Eastwood (1988), a good measure of the consistency of a simulation

is given by

H

R = (AC)/(AaW) (2.70)

In all periodic simulations performed, it is verified that R < 1 —2%. If R is too
large, either smaller timesteps or greater softening (discussed in the next section)

must be used.

2.6 Softening

In numerical simulations, particles are point objects. Since the gravitational force
is proportional to inverse square of the separation, if two particles pass very close
to each other the code will calculate an exceptionally high force. However, the
particles in the simulation are only tracers of the smooth underlying distribution

and as such should not scatter off of each other. In order to overcome this numerical
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issue, “softening” is generally applied. Effectively, softening changes the particles
into extended distributions rather than point-like objects. There are numerous
arguments about the physical validity of softening (Dehnen, 2001; Theis, 1998).
However, when it is noted that the goal is not to try to simulate the evolution of
exactly N point-like objects but instead follow a Monte-Carlo representation of the
underlying true mass distribution, the arguments against softening generally fall

apart.

2.6.1 Non-periodic Softening

One approach to softening is to consider each particle as an extended distribution.

The nature of this distribution can be described by a unitless kernel, (z), such that
1

/ drx’n(x)dz = 1. (2.71)
0

The kernel is finite in that 7(1) = 0 and for z > 1, n(z) = 0. If a particle has a
maximum extent of e with a kernel 7(z), then the potential of such an object of

mass M can be determined from Poisson’s equation:
V2o(r) = dn M) (g) (2.72)

Therefore, the Green’s function is

1) JF¥2dr ifR<1
g(r) = - ’ (2.73)
¢l R if R>1

where R = r/e and M(r) = fj 4wz’n(z)dz.

There are several criteria that must be considered when choosing the form of
n. The first is the behaviour of test particles. In order for test particles to behave
as expected — that a test particle with the exact phase-space coordinates of a real
particle should follow the same trajectory as the real particle — the softening kernel

must be chosen so that the force between particles goes to zero as their separation
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Figure 2.3: The F; softening kernel from Dehnen (2001) (solid curve) and unsoftened

forces (dashed curve). Note that R = r/e where € is the softening parameter.

goes to zero. Dehnen (2001) proposes several such kernels which also reduce force

errors relative to standard Plummer softening which is defined by

1

sqrir? + €2 (2.74)

g(r) =

An additional criterion is that the potential and its derivatives should be smooth
and continuous at r = ¢, at least to the order required by the expansion. The kernel

implemented for isolated systems in the work presented later is the Fy kernel.

105
= —(1 -2’01 -4 2.7
) = 221~ a?P0(1 - 2?) (2.75)
where O(z) is the Heaviside function. From equation (2.73) the Green’s function

for this kernel is
1
- 16¢

where R = r/e. The behaviour of this softening kernel is shown in Figure 2.3. The

g(r) (35— 35R? + 21R* - 5R°) (2.76)

derivative tensors required by equation (2.29) are

ri (35 21_, 15 4)
;= (-2 4R -2 2.
b 63( g T gk (2.77)
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rr; (21 15 0i; 35 21 15
D; = 2 (— - ——R2) s (-—- ZR - ~—R4) 2.78
7 e \ 2 2 + e3 8 + 4 8 ( )
ik (5ijrk + (Sik'l"j + 5jkr,» (21 15 2)
e = — == 2.
Dijx 152 + " -~k (2.79)

2.6.2 Periodic Softening

When using a periodic potential, a spherically symmetric kernel function cannot
simply be matched onto an unsoftened potential since the periodic potential in not
spherically symmetric. Therefore, a simpler Plummer-like softening method was
introduced. The softened derivative tensors were calculated from the tabulated

values by replacing r with v/r2 4 €2. Therefore, the softened derivatives are

D: = Ty(r®+ )73/ (2.80)
Dy = Ty(r®+ )" (2.81)
e = Ta(r® + &) (2.82)

(2.83)

2.6.3 Verification of Force Calculations

A version of the multipole expansion algorithm was implemented based upon the
above derivations. It allowed test particles, optimal reversibility, and the choice of
isolated or periodic boundary conditions.

All versions of the code were compared against direct; a standard O(N?) force
calculation code developed at the University of Washington’s N-Body Shop!. direct
provides direct calculation of accelerations and energies for periodic and non-periodic

forces.

! Website at http://www-hpec.astro.washington.edu/



3. INTEGRITY OF NUMERICAL
PHASE-SPACE STRUCTURES

3.1 Introduction

The phase-space distribution and evolution of matter in a system can be described
by its distribution function, f(Z,¥,t). Depending upon the situation under study,
the distribution function (DF) can be interpreted either as the probability, the
density, or the fraction of particles that are found in the phase-space volume d3zd3v.
The evolution of the distribution function in gravitational, collisionless systems is
governed by the collisionless Boltzmann equation (CBE) (see for example Binney

and Tremaine, 1987, Chapter 4)

Ow; Of
1
Z ot ('?wz (3.1)
where W = (Z,¥), and by Poisson’s equation
V20 = 4nGM / £(&,5)d% (3.2)

where M is the total mass of the system and [ f(Z, ¥)d*zd®v = 1.

In large numerical N-body simulations, particles are interpreted as tracers of
the evolution of the underlying DF rather than individual point particles. Since the
CBE is a special case of Liouville’s theorem which states that the phase-space density
about a comoving position in the system is constant (Binney and Tremaine, 1987,
Chapter 4), under the CBE the topological dimension of the DF remains constant.

Therefore, if the initial DF of the system does not extend into the full 6-dimensional

40
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phase-space, all particles in the simulation should remain constrained to a subspace
with the initial dimensionality. In particular, in Cold Dark Matter simulations,
the DF of the initial conditions can be described as a three-dimensional “sheet” in
six-dimensional phase-space which fills configuration space but with single-valued
velocities at every position. As the DF evolves in time, the sheet will curl and fold
but retain its three-dimensional nature though at a given position, there may now
be multiple velocities.

In an ideal computer system with infinite numerical resolution it would be sim-
ple to accurately follow the evolution of this phase-space sheet. Unfortunately,
numerical simulations must be run on non-ideal computers where in every calcula-
tion there exists the possibility of roundoff errors due to the finite number of digits
stored. Roundoff errors are most significant when adding numbers which differ sig-
nificantly in magnitude. For example, in a computer which can store 8 digits, adding
0 =1x10"% to 1 would yield 1 rather than 1.00000001. If this small number had
to be added numerous times, this would result in a significant cumulative error. For
example, if one tried to add é to 1 one million times, it would still yield 1 rather
than 1.01. Fortunately, this particular situation does not arise frequently and can
be avoided by simply multiplying § by 10® before adding in order to arrive at the
correct answer.

Nonetheless, as a simulation evolves, roundoff errors do accumulate slowly, re-
sulting in a divergence between the numerically integrated orbits and the “correct”
trajectories. As the system becomes chaotic, these small roundoff errors are ampli-
fied exponentially. (However, Hut and Heggie (2001) indicate that in some cases, at
later times in a simulation, the exponential divergence can change to a much slower
power-law divergence.) As a result, the numerical simulations are no longer tracking
the true DF. If roundoff errors are not kept carefully under control, particles begin
to effectively sample random points near the true DF. In such a case, if one were to

examine the nature of the DF found in the numerical simulation, a rather random
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and smooth looking distribution may be obtained rather than the correct highly
structured DF.

If the roundoff errors are sufficiently large and orbits diverge quickly, the integrity
of the phase-space structure may be completely broken. The particles in the simula-
tion may no longer even be near the correct DF. For example, the three-dimensional
sheet mentioned above may fracture and expand to fill a six-dimensional volume. In
simulations where an accurate model of the DF is required, such as the case of ter-
restrial dark-matter detection simulations, the breaking of the phase-space manifold

must be avoided, or at least minimized.

3.2 Testing the Integrity

The primary source of roundoff errors in an N-body simulation occurs when two
particles are close together and experience a very large mutual acceleration, a. If
a/At (where At is the time step in the simulation) is large compared to the velocity
of the particle, a significant roundoff error could occur when the velocity is updated.
One solution is to soften the forces to reduce the maximum accelerations which a
particle will feel. However, even with softening, one needs a means to verify that
the phase-space sheet maintains its integrity. One simple method would be to fill
the initial DF with a large number of test particles and evolve the system forward.
With a sufficient number of test particles it would be straightforward to verify their
topology. However, the number of test particles required would be computationally
prohibitive. A more efficient alternative is to lay a single line of test particles in
the DF. As the system evolves forward, the evolution of the line of test particles
can be examined. If the phase-space distribution is maintained, this line of test
particles should maintain its one-dimensional nature. Since the line of test particles
in constrained to reside in the DF, if the test particles retain their line-like nature,
so must the sheet-like nature of the full DF of massive particles be maintained. In

contrast, if the line “breaks” and begins to fill a higher dimensional space, the initial
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Figure 3.1: The initial conditions at z = 15 of the massive DF tracers and the line of test
particles (green line). The line of test particles was chosen to pass through a
region of higher density in the final state of the system. The comoving size of

the cube is 20 Mpc on a side in present-day units.

three-dimensional phase-space sheet must also be broken.

3.3 N-body Example

To quantitatively examine this behaviour, it is useful to examine a simple CDM
cosmological simulation. The initial conditions for an N = 80% N-body realization of
the formation of a structure with approximately the mass of the Local Supercluster
are shown in Figure 3.1. (The details of how such initial conditions are generated
will be discussed in Chapter 6.) The massive particles which trace the evolution of
the DF fill the configuration space of the simulation volume with a unique velocity
at each point. The initial distribution function is a three-dimensional “sheet” in
six-dimensional phase-space. Figure 3.1 also shows the line of 256000 test particles

which lie in the initial DF and pass through a region of higher density in the final
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Figure 3.2: Simulation results for €/§ = 2. Left: Final state of the simulation. Blue
indicates regions of low density, while yellow regions are higher density areas.
The width of the region shown is 20 Mpc. The green test particles can been
seen in the cluster in the right side of the figure. Right: Close-up of the line
of test particles. The line of test particles is coloured from red at one end to
blue at the other. The excessive softening has greatly limited the dynamic

evolution of the system. The width of this panel is 2 Mpc.

state of the system.

The left hand panel of Figures 3.2, 3.3, and 3.4 show the final state of the
simulation at the present day, z = 0, for three different comoving softening lengths,
expressed as the function of the initial grid spacing of the particles, §, with €/§ =
2,0.5,0.0625 respectively. The amount of substructure obviously increases with
decreasing softening length; however, the fundamental question is how well the
structure of the phase-space manifold is maintained.  The right-hand panels of
Figures 3.2, 3.3, and 3.4 show a close up of the line of test particles at the final
stage of the simulation. For €/§ = 2, the excessive softening damps the dynamic
evolution of the system so that the line of test particles evolves only very slightly.

The line-like nature of the test particles is still clearly evident. It is important to
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Figure 3.3: Simulation results for €/6 = 0.25. Left: Final state of the simulation. Right:

Close-up of the line of test particles. The system evolved into a complex final

state but the line of test-particles still looks somewhat line-like in configuration

space. The colouring and dimensions are the same as for Figure 3.2.
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Figure 3.4: Simulation results for €/§ = 0.0625. Left: Final state of the simulation. Right:
Close-up of the line of test particles. The system evolved into a complex final

state but the line-like nature of the distribution of test particles is destroyed.

The colouring and dimensions are the same as for Figure 3.2.
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remember that it must line-like in the full six-dimensional phase-space, not just the
projected configuration-space shown in the figures. In Figure 3.3 the line evolves
into a very complicated form but is appears to be quite line-like. However, in 3.4
with €/6 = 0.0625, it is difficult to follow the complete line of test particles. In the
central region it appears to be more cloud-like than line-like. In all simulations, the
variation in the Layzer-Irvine energy equation (2.66) was verified to be less than

2.5%.

3.3.1 Dimensionality of the Test Particles

While the figures in the previous section indicated that for €/§ = 2, the test particle
distribution is probably still line-like, and for §/¢ = 0.0625, it probably is not, it is
difficult to tell for the intermediate situation. A quantitative measure of the nature
of the test particles is required to determine the point at which the test particles
stop being line-like and the phase-space sheet is broken.

One technique to measure the dimension of a line of particles is to calculate
the fractal Hausdorff-Besicovitch dimension, Dy (Mandelbrot, 1977). This involves
dividing the line up into N segments each of equal length r so that the total measured

length of the line is L = Nr. The fractal dimension is then given by

(3.3)

However, this definition only applies when the object under examination is known to
be linear in nature. This definition can be generalized to d-dimensions by fitting N
d-dimensional hyperspheres of radius r around the particle distribution and taking
the limit. However, this is very difficult to implement in dimensions greater than
two (Greenside et al., 1982).

An alternative definition of the Hausdorff-Besicovitch fractal dimension is the
correlation dimension. First proposed by Grassberger and Procaccia (1983), it is

easier to calculate than Haussdorff dimensions and no assumptions need to be made
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about the underlying dimensionality of the system. It is based on the correlation
function
1 N N
C(’l") = mZZ@(T—l%,—.’L‘]D (34)
i g
where ©(r) is the Heaviside function. C(r) is simply the average fraction of the

population which is separated by a distance less than r. The correlation dimension,

D., arises if one assumes that C(r) scales as a power of r for small r
C(r) o< 7Pe (3.5)

The value of D, can be determined by calculating C(r) for a variety of small r and
looking at the logarithmic slope:

D, = lim dlog C(r)

r—0 dlogr (36)

It can be shown that D, < Dy (Grassberger and Procaccia, 1983). Therefore, the
correlation dimension will place a lower limit on the traditional Haussdorff dimen-
siom.

As long as the correlation dimension of the line of particles remains close to 1,
the line will retain its one-dimensional nature. If the correlation dimension exceeds
2, the test particles will no longer be line-like. Since the line of test particles is
constrained to reside in the sheet, if the line of test particles evolves properly, the
sheet-like nature of the CDM DF must also be maintained. In contrast, if the
line “breaks” and begins to fill a higher dimensional space (D, >= 2), the initial
three-dimensional phase-space sheet must be broken.

In order to calculate the separation of particles in phase-space, it is necessary to
convert the velocities into distances by multiplying them by a characteristic time, ¢,

for the system. One natural timescale arises from the mean density of the system,

p.
to = — (3.7)
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Figure 3.5: The correlation function for €/§ = 2 (solid), 1 (dotted), 0.5 (short-dash), 0.25
(long-dash), 0.125 (short-dash-dot), and 0.0625 (long-dash-dot).

Correlation Dimension

Figure 3.6: The correlation dimension for the same simulations (with the same line types)
as in Figure 3.5. Note for ¢/ < 0.25 the correlation dimension exceeds 2

indicating that the phase-space sheet is broken.
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Using this characteristic time, the numerical values of the scaled velocities span a
range similar to the numerical range of positions in the region of interest.

Figures 3.5 and 3.6 show the correlation function and the correlation dimension
for each of the simulations from the previous section and several intermediate values.
Note that for large €/d, the correlation dimension is close to 1 for small r, while
for smaller €/¢ the correlation dimension increases. For €/§ < 0.25, D, exceeds 2
indicating that the test particles are no longer linear in nature and the phase-space
sheet must be broken. Note that the decrease in the correlation dimension past its
peak in Figure 3.6 as r — 0 arises due to the finite number of particles used. The

most accurate description of the dimension of the line would be the maximum value.

3.4 Phase-Space Integrity and Reversibility

The evolution of phase-space structures can occur through two different processes:
e phase mixing (Binney and Tremaine, 1987) and,

e violent relaxation (Lynden-Bell, 1967) or chaotic mixing (Merritt and Valluri,

1996).

Phase mixing is the gradual change in the distribution of particles which maintain
constant energy. For example, a group of particles on circular orbits at the same
angular position, but slightly different radii, will slowly evolve into a spiral structure
as the particles at smaller radius travel slightly faster than those particles farther out.
Given sufficient time, this process can result in a smooth coarse-grained distribution
function, though the underlying fine-grained DF is not smooth.

Unlike phase mixing, violent relaxation and chaotic mixing result when particles
change energy due to a time-varying potential. This can result in fine-grained mixing
of the DF and could remove the dependence of the final state of the system upon

the initial DF. However, Henriksen and Widrow (1997) find that in self-similar
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spherical collapse models, violent relaxation is not sufficient to completely remove
this dependence though it does introduce instabilities in their models.

Independent of the mechanism with which the phase-space structure evolved,
the simulation should be reversible. It may be more difficult if chaotic mixing
dominates evolution of phase-space structures due to the increased degree of mixing.
In particular, the phase-space structure of numerical simulations which have a small
softening length can be broken due to the exponential growth of roundoff errors
in the chaotic system. Since each individual roundoff error is effectively random,
and each error is amplified exponentially, the trajectories rapidly change from a
coherent phase-space structure to a random sample of orbits which are restricted by
the dynamics of the system. For example, deep inside a potential well, the orbits
may no longer follow the initial phase-space sheet, but particles will still be trapped
in the well. This numerical effect, which could be incorrectly interpreted as physical
chaotic mixing, may lead one to erroneously conclude that the particle distribution
has much more randomness, and appears smooth in nature since the particles are
simply constrained by the mean potential of the region. However, the true nature
of the distribution could be very different, such as a series of discrete velocities.

This randomization of the orbits of particles is closely related to the reversibility
of the N-body system. Omnce the phase-space structure has been destroyed, it is
not possible to properly integrate the trajectories of particles back to their initial
time. After a particle has moved onto a random orbit, it cannot return to its correct
orbit by simple time reversal. Figure 3.7 illustrates how the reversibility on the
simulations from the previous section depends upon the softening length used. As
expected, simulations with larger softening lengths reverse better than simulations
with smaller softening lengths. Simulations with €/ < 0.1 completely fail to reverse.
However, the phase-space sheet may be slightly broken at values above this. In order
to quantitatively determine the point at which phase-space structures are no longer

followed accurately, one can look at the correlation between the reversibility of the
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Figure 3.7: The average (solid line) and maximum (dashed line) distance (in units of
the grid spacing) between the initial and reverse positions of particles for
simulations with various softening lengths. For small €/§, the system fails to

reverse properly.
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Figure 3.8: Correlation dimension of the line of test particles versus the accuracy with
which a simulation can be reversed. The value of /4 is given by each data
point. The dashed line is a least-squares fit to the points. The solid vertical

line indicates where the least squares fit crosses D, = 2.

system and the dimensionality of the test particle distribution. Figure 3.8 illustrates
this relationship. The dashed line is the least-squares fit to the data points. At a
mean reversibility separation of about 4 x 10765, the correlation dimension exceeds
2, indicating that the integrity of the phase-space structure has been lost. From
Figure 3.7, this corresponds to €/é ~ 0.28. Therefore, in order to maintain the
proper phase-space structure of the system, the softening length should not be less
than approximately one-quarter the size of the initial grid spacing. Note that this
limit is determined for the multipole code and softening techniques described in
Chapter 2. For other numerical codes, this limit will depend slightly upon the
details of the algorithm such as type of softening implemented and the integration
techniques used. In additional, if the system is evolved for more dynamical times,

the optimal value of €/§ may vary as well.
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Nonetheless, the size of softening required to maintain phase-space integrity is
significantly larger than the value used in traditional simulations. For example, in
Ghigna et al. (2000), a softening length of 2 kpc is used in a halo with a radius
of R = 2000 kpc and 4 million particles. A value of the initial grid spacing is not
given, but if these particles were uniformly distributed, it would yield a grid spacing
of approximately 20 kpe with ¢/6 = 0.1. This value is an upper limit since the
halo is roughly 200 times denser than the background which significantly reduces
the estimated grid spacing. Therefore, while these simulations may reasonably fol-
low configuration-space features, it is unlikely that the full phase-space structure
is correctly maintained. Measurements of the local velocity distribution at specific
points within the simulation would yield random velocities simply constrained by
the depth of the potental, rather than the correct features of the phase-space dis-
tribution. Estimates of the terrestrial dark matter distribution obtained from these
traditional simulations are therefore suspect. In order to obtain accurate models of
the dark matter distribution in the solar neighbourhood, one must turn to methods

other than direct simulation.



4. SEMI-ANALYTIC TECHNIQUE

In an ideal situation, computational resources would be sufficient that a straightfor-
ward, but very large, N-body simulation of the formation of the Milky Way or Local
Group could yield detailed information about the phase-space structure of dark mat-
ter in the solar neighbourhood. Unfortunately, even using the efficient algorithms
described in Chapter 2, current simulations are still several orders of magnitude too
small to accurately resolve local velocity space information. Recent high-resolution
numerical results (Helmi et al., 2003; Moore et al., 2001) indicate that the dark
matter distribution in regions resembling the solar neighbourhood is quite smooth.
However, even in these large simulations, there are only a few hundred particles
per kpc? available to map out the velocity-space distribution. An important point
to recall is that in early N-body simulations which were underresolved, it was con-
cluded that the mass distribution was also smooth. However, when the resolution
was increased, a wealth of substructure was revealed (Ghigna et al., 2000). It is
possible that the same may occur as the velocity resolution increases.

Furthermore, even if a full N-body simulation did have sufficient resolution, in
the bottom-up hierarchical formation scenario the history of the Milky Way is full
of unpredictable mergers, encounters, and accretion events. A single simulation is
not sufficient to investigate the full range of possible outcomes. Instead, even if
the computational resources were available for a single simulation, a large set of
simulations must be examined using a variety of initial conditions to generate a
statistical model of the local dark matter phase-space distribution. Therefore, in
order to investigate the dark matter distribution around the Earth one must turn

to alternative methods. One such approach is to take advantage of analytic models

o4
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to reduce the computational complexity. In particular, if one could analytically
model the formation history of the Milky Way, the laborious task of using N-body
simulations to detect merger events would be reduced and instead the focus could
be placed on analyzing the merger events themselves and the resulting dark matter

distribution in the solar neighbourhood.

4.1 Probability Distribution of Halo Substructure

The aim is to estimate the probability that the local complement of dark matter
particles includes a measurable contribution from a gravitationally bound clump or
tidal stream. This clump or stream could significantly skew the local velocity-space
distribution of dark matter away from the traditionally assumed smooth models.
We focus on clumps that have made up to four orbits through the Galaxy by the
present day — i.e., clumps that started to fall into the Milky Way at a redshift
z S 1. The local distribution of dark matter particles is therefore divided into two
components — a smooth background composed of particles that were accreted at early

times (the substructure of which has since been erased by dynamical processes) and

Sl

~/ ?

inhomogeneous material from recent accretion events. We assume that for z
changes in the gravitational potential of the Galaxy are gradual and that clump-
clump interactions can be ignored. Under these assumptions, recent accretion events
can be studied numerically by evolving individual subclumps in a smooth, time-
dependent model potential. Our assumptions are based on a variety of arguments
which indicate that the recent accretion rate onto the inner parts of the Galaxy has
been relatively low. The coldness and thinness of the Galactic disk, for example,
limit the infall rate of satellites since they can transfer energy to stars in the disk
(Toth and Ostriker, 1992). Measurements of the ages and metallicities of stars
in the Milky Way’s halo suggest that less than 10% of the halo stars come from
recent merger events (Unavane et al., 1996). By contrast, numerical simulations

and theoretical modeling imply that the mass of the extended dark halo has grown
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by a factor of 2 or more since z >~ 1. The conclusion is that most of the material
accreted recently resides in the outer parts of the halo. Our analysis focuses on
those few clumps that reach the inner regions of the Galaxy.

Our results are expressed in terms of a probability distribution function dP/dp,
where dP is the probability that the density of dark matter particles in the solar
neighbourhood associated with a single clump or stream is between p and p + dp.

In general, we can write
dP
dp

where N (2ta, m, p;) dztadp;dm is the number of clumps accreted by the Galaxy

JN Gy m,2;) £ (2t 53 ) d2tadpsdim (4.1)

with mass between m and m + dm, turnaround redshift between z;, and zi, + d2is
and orbital parameters (e.g., angular momentum) between p; and p; + dp;. The
turnaround redshift is defined as the epoch at which a clump breaks away from the
expansion and begins to fall in toward the centre of the Galaxy. N is modelled
using the extended Press-Schechter formalism (see Section 4.2.1). The dynamical
evolution of accreted clumps within the Galactic halo is encoded in the function
f(#ta, m, pj; p)dp, which gives the probability that a clump characterized by the
parameters m, z,, and p; contributes a density between p and p+dp to the present-
day density of dark matter in the solar neighbourhood.

Before proceeding to the elements of the model, we first reduce the calculation
of f to a more tractable problem. Consider a volume V representative of the solar
neighbourhood. For example, for an axisymmetric model consisting of a thin stellar
disk and flattened dark matter halo, an appropriate choice for V' is a thin circular
tube in the disk plane with (large) radius r; = 8.5 kpc, the distance between the Sun
and the Galactic centre. Imagine that V is filled with hypothetical observers capable
of making local measurements of the dark matter particles. For a given clump, we
then have f = V~dV/dp, where dV/V is the fraction of observers who measure the

dark matter density of the clump to be between p and p+ dp. We will estimate f by
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using N-body simulations to follow the orbital evolution and disruption of accreted
clumps in the evolving Galactic halo.

We adopt a spherically symmetric model for the Galaxy, in which case the re-
maining parameters in equation (4.1) can be simplified considerably. Deviations
from spherical symmetry alter the orbits of individual clumps but since we are in-
terested in the properties of an ensemble of clumps the results assuming a spherical
halo should provide an adequate approximation. For spherical models, there is a one-
to-one relation between a clump’s turnaround radius r, and 2z, (see Section 4.3.1).
The sole remaining parameter required to fully specify the orbit of the clump is the
specific angular momentum J at turnaround. For a spherically symmetric Galaxy
model, the local volume V' can be replaced by a thin spherical shell of surface area
S and radius r,. Equation (4.1) then takes the form

dP 1

ds
- T / N (s, Jym) 2 da d] din (4.2)

Despite the symmetry, evaluation of equation (4.2) appears daunting, since one

must sample the space of initial conditions (zi,, J) for all clump masses m and in
each case determine dS/dp from the output of a separate N-body simulation run
to the present epoch t = ty. This difficulty is alleviated by noting that the present
state for the large space of orbital initial conditions can be sampled by considering a
smaller set of orbits at various times. In Figure 4.1, for example, instead of following
the different orbits @, b, c and evaluating them at ¢ = tg, it is possible to follow a
single orbit and evaluate it at three different times such that the dynamical states at
a’, ¥, correspond closely to those above. Technically, it can be justified as follows:
Let z, and r, denote the turnaround redshift and associated turnaround radius of a
clump that reaches perigee today on its nth passage through the inner parts of the
Galaxy. The simulations are performed with initial conditions selected from the set
(Tn, 2n), with the provision that dS/dp is evaluated by performing an integral over

time ¢ taken from the time ¢, of apogee before the nth passage through the inner
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Figure 4.1: Schematic illustration of the change in variables from z;, to ¢ used in evaluating
dP/dp. Top: six orbits that reach different radii at ¢ = ¢. Bottom: two orbits
used to approximate the contributions bracketed by orbits a — ¢ and d — f of

the top panel.
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Galaxy (t, < tp) to the time t,,; of apogee after the nth passage (t,41 > tp). As
illustrated in Figure 4.1, this essentially corresponds to a change in equation (4.2)
from an integration over 2, to an integration over £ with a sum over n.

In principle, z, depends on the angular momentum J through the usual orbit
equations. However, J must be relatively small, since r, > r, for 1 < n < 4, and

therefore the dependence of z, on J is negligible. Equation (4.2) can then be written

dP 4 1 dz,
inp =~ [E 0 |y, (D)
/N(zn ,J,m) dem] (4.3)
where
H, as
Ja(Jm) = 4nr2 ) dlnp (4.4)

and where, for convenience, the probability distribution function is now defined
with respect to Inp rather than p. The quantity f, is dimensionless and will be
used extensively in the discussion that follows. To evaluate equation (4.3), we select
representative clumps characterized by m, J, and n, and follow their evolution via
N-body simulations in a time-dependent model of the gravitational potential of the
Galaxy. Hypothetical observers located on S measure the density as the different
clumps pass by, allowing one to determine f,, numerically.

The response of a dark matter detector to particles in a clump or stream depends
on their velocity distribution as well as their density. We can estimate the velocity
dispersion in a stream using Liouville’s theorem, which states that the density of
particles in phase space is conserved. Consider an infalling, initially virialized clump
of mass M with an initial characteristic density p; and two-dimensional velocity
dispersion o; = (47/3)"/® GV/2M/3p}/®. Here, p; is the virial density, which we take
to be 200 times the critical density of the universe at the formation time of the

clump. (This definition agrees with the results from numerical simulations for an
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2 = 1,A = 0 universe (Cole and Lacey, 1996) and is used by convention for other
cosmologies as well.) Suppose that the density of the final disrupted clump at the

detector is pp. By Liouville’s theorem, the corresponding velocity dispersion will be

1/3
o ofe)
Pi

/3 ~1/6

_ M PD ! Pi

30kms™! 45
e (1010M@ 0.03 pB) (0.03 Py ’ (4:5)

where pg = 0.3GeVem™ = 5.4 x 1075 gem™3 is the estimated value for the mean

t

(background) density of dark matter particles in the solar neighbourhood. The
fiducial value of 0.03pp has been used, since the streams that are likely to have the
biggest impact in a detection experiment have a pfesent density pp ~ 0.03 pp (see
Section 4.6). The last factor on the right-hand side of equation (4.5) depends on
the formation time of the clump, but only weakly. The essential point is that the
velocity dispersion of the disrupted clump is significantly less than the bulk velocity
of the clump particles relative to the Earth, which is typically several hundred kms~?
for recently accreted clumps. The clump or stream therefore appears as a “cold”,

high-velocity distribution of particles.

4.2 The Merger History of Galaxies

To analytically model the merger history of the Milky Way, it is first necessary to
examine the simpler case of the growth of a single, spherical perturbation. Consider
a region of the early universe with a density, p, which is slightly greater than the
mean density of the universe, p. The deviation from smoothness can be quantified

in terms of the overdensity or density contrast, d:
s=P"°F (4.6)

Assuming that the remainder of the universe outside this region can be considered

spherically symmetric, by Birkhoft’s theorem this overdensity will evolve indepen-
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dently. (For simplicity, a flat universe with no cosmological constant is assumed.)
If the perturbation itself is also spherically symmetric, the equation of motion of a

point on the boundary of the overdensity, r, will be
F= - (4.7)

where M is the mass contained inside the perturbation. The parametric solution to

this equation is
r = A(l—cosf) (4.8)
t = B(6—sind) (4.9)
where A*> = GM B2. This solution results in a singularity at r = 0 as  goes to 2.
The time at which this occurs is frequently referred to as the collapse time, tco,

and is related to B by t..; = 2nB. At early times, equations (4.8) and (4.9) can be

expanded for small 6.

0% 6
~ z _ 2 4.1
r A ( Y ) (4.10)
93 6°
t ~ B (E - ﬁ'b— + "') (4.11)

Eliminating 8 and using the definition of #.,; and A> = GM B?, yields r as a direct

function of ¢:

. _ (GM)(6t)e [1 1 (127rt)2/3]

> — (4.12)

20
The density of the perturbation at early times is then

3M
473

_ 1 [,.1 <127rt)2/3 -
N 67TGt2 20 tcoll
1 3 /127t\?/3
14+ = 4.13
67GE2 [ 20 ( tcon) ] (4.13)

The mean density of a flat, matter-dominated universe evolves as

tcoll

p:

Q

1

P=sop (4.14)
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Therefore, at early times, the overdensity which would collapse to a singularity at

teoll ETOWS as

)2/3 2/3
5(t) = ———-—-—3<122 0) (t;l) (4.15)

A slightly different, and more useful, interpretation of equation (4.15) can be ob-

5 3/2
tc()]l:(-(—;) t (4.16)

where 4, = 3(127)%2/20 ~ 1.69 is the critical density. Therefore, if at a given time

tained by solving for ¢c).

t, the linearly extrapolated density perturbation exceeds the critical density, the
density perturbation will have already collapsed.
By averaging over regions containing a mass M centred at Z, one can determine

when objects of a given mass, rather than a given overdensity, have collapsed.

8(M,2) = [Wan(l - o) (4.17)

If (M, Z) > d, the region containing mass M centred at & will collapse by Zcon.
W is a window function chosen such that the total mass inside the function is
M. In order to eliminate the positional dependence, one can look at the variance of

perturbations of size M
S(M) = o(M)? = (|§(M, Z)|?) (4.18)

From the convolution theorem, the mass variance can also be expressed in terms of
the Fourier transforms of the window function and overdensity

S(M) = Y (|6:1*) Wi (k) (4.19)

k
The Fourier transform of the density fluctuations is related to the power spectrum

of the initial perturbations through

P(k) = {10:/*) (4.20)
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If the windowing function is taken to be a step function in k-space, the fraction of
mass bound in objects between mass M and M + dM at time ¢ can be shown to be
(Press and Schechter, 1974; Lacey and Cole, 1994; Bond et al., 1991; Bower, 1991)

a de(t) dx(M) _ 8
dM ~ X3/2)(M)v2r | dM leXp( 22(M)) (421)

4.2.1 Merger Histories

While equation (4.21) provides a useful model to describe how the mass in the uni-
verse is distributed, it is does not provide any information about how objects arrive
in the predicted state. For example, if a large portion of the mass exists in a single
clump, it does not answer whether it formed from a single large collapse, or through
the merger of many smaller objects. The extended Press-Schechter technique (Bond
et al., 1991; Lacey and Cole, 1993) provides an analytic means to model the growth
of the Milky Way, or any cosmological conglomeration such as groups and clusters.
If the present mass of the Galactic halo is My, then at redshift z the average number
of progenitors of this halo that have mass between m and m + dm is approximated
by

dN 1 Mo 0c(z) — 6,(0) (0c(2) — 0(

—dm = ox 0)* 1]dz],
dmd \/2—7; m (2(772) _ E(MO))S/Z P Z(E(m) — E(MO))] 'dm d (4.22)

where pg is the present mean density of the universe, and d.(z) is the amplitude
that a linear density perturbation, extrapolated to the present epoch, must have
in order for the associated object to reach turnaround by redshift z. In a matter-
dominated, Einstein-de Sitter (2 = 1) universe, d.(z) = 0 (1 + 2), where o =
8.(to) = 0.15(372)*® ~ 1.44. Note that this differs from the more common value

2/3 ~ 1.69 since the latter is

discussed in the previous section of d, = 0.15 (127)
associated with the collapse time, not the time of turnaround. In other cosmological
models, the time-dependence of §, differs from the expression above, while the value
of 9 is relatively insensitive to cosmological parameters (Lacey and Cole, 1993,

for example). For definiteness, we assume a cold dark matter model universe with
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Figure 4.2: Three random realizations of the growth of a 2 x 1012My dark halo. The
heavy straight line is the analytic fitting formula M (t) = My(t/to)' used to
calculate dP/dp.

Qo+ Q24 = 1,800 =03, and h = 0.7, where h is the present value of the Hubble
parameter in units of 100kms 'Mpc™, and  and Q4 are the contributions to
the total mass density, in units of the critical density pi;, from non-relativistic
matter (dark matter and baryons) and the cosmological constant. The primordial
power spectrum is chosen to have the scale-invariant form expected from inflation,
P;(k) ~ k, and the present spectrum is normalized to agree with the observed cluster
abundance, i.e., og = 0.90. (This particular value is obtained from the algorithm
described in Navarro et al. (1996).) This choice of cosmological model fixes the
expression for 6.(z) and also determines ¥.(M).

The average growth rate of a dark matter halo can be determined using eq. (4.22).
Nusser and Sheth (1999) have developed a simple algorithm for generating possible
histories of the most massive progenitor, several of which are shown in Figure 4.2.

(See also Lacey and Cole, 1993; Somerville and Kolatt, 1999) Though there is sig-
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nificant stochasticity in the various histories we assume a simple power-law model

for the growth in mass of the Galactic halo

M(t) = Mo (%)a , (4.23)

where o = 1.5 (solid line in Figure 4.2) for the cosmology that we have used. We
adopt a Milky Way halo mass My = 2 x 1012M,,, the value derived in Wilkinson
and Evans (1999) from observations of globular clusters and satellite galaxies. The
exact details of the halo growth do not significantly affect our calculation of dP/dp,
since it is the long term deepening of the potential well of the Galaxy that is most
important, not the short term fluctuations in the merger rate. In addition, we make
the reasonable assumption that the angular momentum distribution for the accreting
clumps is independent of their mass, so that the J-dependence of N separates out.
This assumption, together with equations (4.22) and (4.23), yields the following

approximate form for N

iy
de

where x(J, 21a) is the normalized clump distribution as a function of angular mo-

N (21a, J,m) = oMy (tL) T 2a) (4.24)

to

mentum at turnaround (f dJy (J, z,) = 1). In principle, ¥ may be determined from
simulations or from a detailed analysis of tidal torques in the hierarchical cluster-
ing scenario. For the present discussion, we assume a scaling form for x, namely
X(J, zia) = X(J/Jeirc(2ta)) Where Jerc(21a) is the angular momentum for a clump
in a circular orbit at the radius ry,. In particular, we assume that the clumps are
uniformly distributed in J2. x then takes the form

2%

X(J, Zta)dJ =0 (Jmax - J) m

JdJ (4.25)

where O(z) is the Heaviside function, 8 = Jire/Jmax, and Jyax is @ model parameter
that characterizes the spread in angular momentum of the clumps. We adopt a value

of 8 = 2, implying that the maximum angular momentum that a clump can have is
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one-half that required for circular orbits. It is trivial to consider different choices of
(3 since dP/dp scales with 3%. At most, with our choice of 3, we overestimate dP/dp
by a factor of 4. This would require merging clumps to be on circular orbits which
is very unlikely. In fact, 3 could be significantly higher than 2 if infalling clumps
are on predominantly radial orbits.

Though halos are never in true virial equilibrium, approximate equilibrium is
reached provided no major merger events have occurred in the recent past. It is
then customary to set the turnaround radius equal to twice the virial radius, 700,
where the latter is defined as the radius within which the mean density of the halo

is 200p¢rit(t). For the ACDM model, the turnaround radius can then be written

ra(t) = 2( ﬁ:%%ﬁ )1/3

_ $ a/3
520kpe (R (1+2)° +1- Q) (t—) . (4.26)
0

I

It is well known that the Press-Schechter mass distribution used above does not
agree precisely with results from N-body simulations (e.g., Jenkins et al. (2001)).
The mass function obtained from N-body simulations generally has more high-mass
objects and fewer low-mass objects than the Press-Schechter distribution predicts.
Correcting this difference would have little effect on our final value for dP/dp. The
more massive infalling clumps would create larger tidal tails, thereby increasing
the probability of encountering one today. On the other hand, there would also
be fewer low-mass objects falling into the Milky Way. Taken together, these effects
should partially cancel, suggesting that that the error introduced by using the Press-
Schechter distribution instead of the numerically determined distribution should be
small. Moreover, the Press-Schechter expression for the progenitor distribution at
moderate redshift is more accurate than the Press-Schechter mass function at late

times.
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4.3 Model Parameters

4.3.1 Potential of the Milky Way

The simulations follow the evolution of an individual clump in a rigid, time-dependent
gravitational potential designed to represent the Galaxy. We adopt a three-component
model for the Galactic potential out to a truncation radius, ryume, which is deter-
mined by the total mass of the system. Beyond the truncation radius, the potential

is assumed to be Keplerian:

P = (I)halo + (I)spher + (Pdisk if r < Ttrunc ( 4 27)

__Gi\l + (I)oo if r > Ttrunc

The model halo is described by a logarithmic potential, the spheroid by a Hernguist
potential (Hernquist, 1990), and the disk by the spherical analog of a Miyamoto-
Nagai potential (Johnston et al., 1996). The components of the Galactic potential

in our model are thus:

1
Phalo = 51)}21&10 In <r2 + a2) , (4.28)
GMS er
@spher — _—H——pz 5 (429)
G My;s
Bge = — K (4.30)
(r2 + c2)?

where vha0, M, and a are all time-dependent, with M (t) given by equation (4.23).
We assume that riunc and a scale with time at the same rate as ry, (equation (4.26)).
The time dependence of vy, is then set by the relation

o = GM T + & (4.31)

2
Ttrunc Ttrunc

The disk and spheroid potentials are assumed to be time-independent. The values

used for the disk and bulge are the same as those found in Johnston et al. (1996):
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b = 0.7kpc, ¢ = 6.5kpc, Mpher = 3.4 X 10"°M¢, and My = 10" M. However,
we adopt slightly different values for the present-day halo parameters: a(to) =
16.5kpc and vpaio(to) = 200km s~*. These parameters imply a circular speed at 7,
of 220km s™!, the accepted IAU value. Additionally, the implied mass of the Milky
Way halo within 200 kpc is My = 2 x 102M,, in agreement with recent work on the
dynamics of satellite galaxies and globular clusters (Wilkinson and Evans, 1999).
The current value of the truncation radius in our model is 740 = 216 kpc and the
rotation curve is relatively flat out to this radius.

While the shapes of dark halos are not well constrained, the results of Ibata et al.
(2001) on the tidal stream associated with the Sagittarius dwarf speriodal galaxy
suggest that the Milky Way halo potential is close to spherical. The assumption of a
spherical disk potential is less realistic but should not affect our results significantly.
While a planar disk would cause the orbits of an otherwise spherical model to precess
and leave the orbit plane, it will not affect the properties upon which our subsequent
calculations are most dependent — the number and density of the tidal streams.

Selected orbits for which the clump reaches perigee at the present time, t; = 13.5
Gyr, on its first, second, third, or fourth orbits through the Galaxy are shown in the
right panel of Figure 4.3. To construct these orbits, the (r,, J)-parameter space is
sampled at random, and those initial conditions for which the orbits satisfy r < r,
at t = to are marked in the left panel of Figure 4.3. As noted above, the decrease in
apogee with time is due to the time-dependent nature of the Galactic potential. The
orbits are followed from turnaround, which occurs at redshifts z; = 0.26, z, = 0.56,

z3 = 0.79, and z4 = 1.0 respectively.

4.3.2 Structure of the Infalling Clumps

We next turn our attention to the structure of the clumps at turnaround, before
they have been subjected to the tidal fields of the Galaxy. We treat the clumps

as composed purely of dark matter, i.e., we ignore the dynamical effects of baryons
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Figure 4.3: Initial condition parameter space and corresponding orbits. Left: ry, — J

parameter space for orbits that are near the surface S at t = £g. The strips of
points at i, = 380, 285, 230, and 195 kpc correspond to particles that reach S
after 1, 2, 3 or 4 orbits through the Galaxy respectively. (Those at 7, = 165
kpc merger before z = 1 and are not considered.) The large dots are the
initial conditions used in the numerical simulations. Right: Distance from the

Galactic centre as a function of time for the orbits shown in the left panel.
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in the clumps. Numerical simulations (e.g., Dubinski and Carlberg (1991); Navarro
et al. (1996); Moore et al. (1998)) suggest that the density profiles of dark-matter
halos have a ‘universal’ shape characterized by an inner power-law cusp and an r—3
density fall-off at large radii. These include the NFW profile (Navarro et al., 1996)
and that proposed by Moore et al. (1998). However, for convenience, we model the

infalling clumps as Hernquist spheres (Hernquist et al., 1991), for which the density
profile is given by

plr) _ a

Perit r (7‘ + a)3 .

where p.y is the critical density for closure, a is the scale radius of the halo, and &,

(4.32)

is the characteristic density in units of p;;. Since the density falls off asymptotically
faster than »—2, this model has the practical advantage that the total mass is finite,
M = 27€ periza®, without having to impose a truncation radius. Furthermore, the
corresponding particle distribution function, f(E), can be expressed analytically
for the Hernquist model, while no closed form is available for the NFW or Moore
profiles (however, see Zhao, 1997; Widrow, 2000; Lokas and Mamon, 2001).

The characteristic density £, and scale length a are determined using the al-
gorithm outlined by Navarro et al. (1996). Given the virial mass, Moy, and the
redshift at which the halo is identified (in our case the turnaround redshift), both
the virial radius, rqg9, and characteristic density, €., can be calculated independently
of the halo model assumed. The virial mass and virial radius are defined through
the relation

800
Mg = ?Wrgoopmt . (4.33)

&. and rogo can then be used to calculate the scale length, a, of the Hernquist profile.

For the Hernquist model, the virial mass, as derived from (4.32), is

2
T
Mooy = 27€ . persy @ 200 . 4.34
200 TEePerit (rao + )2 ( )
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Figure 4.4: Density profiles for Hernquist (solid curve) and NFW (dashed curve) models
assuming a virial mass, 10°Mg. The shaded region corresponds to densities
at the detector of p = (1073 — 101)pp where pp = 6 x 10%pqy; is the density

of dark-matter particles in the background.

when combined with the definition of Msgy (equation (4.33)) it yields

£ = é—2995(1 + )%, (4.35)

where © = ryg0/a. Thus, once £ and ryg are known, the scale length a can be
readily calculated.

While we implicitly assumed a one-to-one correspondence between £, and a, the
results of N-body simulations show that there is an intrinsic scatter in the £, — a
relationship (Navarro et al., 1996). This stochasticity will not significantly alter
the results since these fluctuations are largely erased when one integrates over the
ensemble of infalling clumps.

The details of the density profile for the clumps (e.g., Hernquist vs. NFW)

should not significantly alter our results. As shown in Figure 4.4, the central profiles
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have the same 7! behavior, while the NFW profile falls off less rapidly at large r.
However, it is the intermediate region, where the density is close to the background
dark-matter density in the solar neighbourhood (the shaded region in Figure 4.4),
that is of greatest interest. The central cores of the accreting clumps remain compact
while the outer regions are quickly stripped by the tidal field of the Galaxy. Since
the density fall-off is more gradual for the NFW model the resulting tidal streams
would be longer, slightly increasing the probability that the solar system is in a low
density stream today. Thus, the choice of a Hernquist profile should underestimate
dP/dp at low clump densities.

As described previously, the calculation of dP/dp requires that we evaluate the
quantity f, in equation (4.4) for various clump parameters. An approximate form
for f, is found by assuming that the clump is unaffected by the tidal field of the

Galaxy. In this limit,
Hy, dV

- 4nr2v,, dinp

fn (4.36)

where v,,, is the radial velocity of the clump on its n** pass through the solar
neighbourhood (see Figure 4.3). The quantity dV/dp is readily calculated from the
clump density profile. The resulting expression for f, can be compared directly with
the measurement of f, in the simulations (equation (4.4)), as we will see in the next

section.

4.4 Numerical Simulations

We use numerical simulations to study the effects of tidal fields on clumps as they
pass through the inner regions of the Galaxy. Clumps of various masses, initially
described by the Hernquist spheres, are set on orbits such that a point particle
with the same initial conditions would reach the solar radius today. The clumps
are followed as they move through the rigid, time-dependent Galaxy potential de-

scribed in Section 4.3.1. Each clump consists of 10* particles. The code used was a
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modified version of the treecode made available by J. Barnes!. The time step At is

dynamically adjusted (Pearce et al., 1994) using

/ €

where € is the softening length, a,,,, is the maximum acceleration that any particle
has for that timestep, and a ~ 0.5 is a fixed parameter adjusted to optimize the
performance of the treecode. The softening length is taken to be 1/40th of the
scale radius of the infalling halo. We have checked that the results do not change

significantly when the number of particles is increased or the timestep reduced.

4.4.1 Dynamical Friction

We note that the effects of dynamical friction on the evolution of the clumps are
not included in the code. Dynamical friction due to the motion of a clump through
the Galactic halo would cause a steady deceleration of the clump in the direction of
its motion, leading it to spiral into the centre of the Galaxy. These effects should
be negligible for the problem at hand, since the timescale for dynamical friction is
generally much longer than the age of the universe. For example, for a clump of
mass M ~ 10° M, travelling at speed vejump = 500 km s™! through the halo, with a
perigee of r = 8.5 kpc, the timescale for the clump to spiral into the Galactic centre

is at least

2 2 9
10°M,
thie =~ 2.5 x 1010 [ — ( Uclump ) © 4.
fic 2 2.5 X 10 (8.5kpc) 500kms © i) Yeas  (438)

(See for example Binney and Tremaine, 1987, Section 7.1). This is a conservative
underestimate of the friction timescale because it assumes the clump spends all
of its time at perigee and ignores the spatial extent of the clump. A clump more

massive than this which penetrates the solar orbit could in principle suffer significant

! The original version of the treecode is avaiable from

http://www.ifa.hawaii.edu/~barnes/treecode/treeguide.htmi
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dynamical friction. However, even in this case, we expect the clump to be ripped
apart by the halo tidal field before it is appreciably slowed by dynamical friction; as
a result, the effective clump mass (as far as friction is concerned) is reduced, again
rendering friction unimportant. To see this, a crude estimate of the ratio of the tidal

and dynamical friction forces gives

/3 —1\ 2
Fi; M\ (500kms
Mo 4%x107 il PVOVE 4.39
Fiiqar ( 10°Mg ) ( Vclump ) 7 (4.39)

where 7 is the ratio of the clump density to the local smooth halo density. Further-

more, if we were to include dynamical friction, it would cause more clumps to pass
through the solar neighbourhood (on their way to the Galactic centre), increasing

the probability that one would detect a clump.

4.5 Calculation of Local Densities

The density at any point r; is approximated by taking the weighted average over its

N nearest neighbors:

p(l’z) jad ZmJW (I'z', I'j) s (440)

where m; is the mass of the j’th nearest particle, W (r;, r;) is the symmetric smooth-

ing kernel,

W(r, ;) = 5‘; (wle; — 51/ H) + w(l; — v51/H,) | (4.41)

where V; = 4rH?/3, H; is half the distance to the N'*! nearest neighbor to an

observer at r;, and

1-32-2)2® ifz<1
w(z) =4 1(@2-2)>° if1<z<? (4.42)

1
4
0 otherwise
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This method is used extensively in smooth particle hydrodynamics simulations.
The quantity f, is calculated by placing fictitious observers on a spherical shell
of radius r; = 8.5 kpc centered on the model Galaxy. At regular intervals through-
out the simulation, these “observers” record their local density using the method
described above. 10* observers are used in order to ensure that no significant stream

or clump slips through the surface S undetected.

4.6 Results

A selection of representative dark matter-halos are merged with an analytic model of
the Milky Way and their densities are measured by hypothetical “observers” located
in a region representative of the solar neighbourhood. Specifically, the observers are
situated on a sphere with a radius of 8.5 kpc — the distance of the Sun from the
Galactic centre. The observers correspond to dark matter detectors in operation on
the Earth.

Figure 4.5 provides snapshots of 10° My clumps that reach the solar neighbour-
hood today on their first, second, third and fourth orbits through the Galaxy. Figure
4.6 illustrates what the sphere of hypothetical observers see as a clump passes
through the inner part of the Galaxy for the first time. There are two distinct
regions of high measured density where the clump enters and exits the r = r,
sphere. Thus, at this instant, a small fraction of observers measure a high density
of high-velocity clump particles while most of the observers measure a relatively low
density of clump particles.

By combining many simulated merger and observation events, it is possible to
calculate the probability that any given observer would measure a dark matter
density, ppar, higher than p. Figure 4.7 shows that after integrating over all merging
halos, it is very likely that there is a streaming component of dark matter in the solar
neighbourhood due to the recent accretion events. Therefore, a few percent of the

local dark matter is from a recent merger event and will have a streaming velocity
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Figure 4.5:

Snapshots of 10° Mg clumps whose centre of mass is near the surface S at
t = tp on their first (upper left) through fourth (lower right) orbits through
the Galaxy. The surface S is represented by the sphere in the centre of each
panel. Darker regions correspond to higher densities. The symbols used for

the particles are elongated in the direction of their velocity.
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Figure 4.6: Sphere of observers and the density they measure as a stream passes through.

Darker regions of the sphere correspond to higher measured densities.

significantly above the mean background speed. As indicated by the numerical

lwith a velocity

simulations, the stream of particles had a mean speed of 569 km s~
dispersion of 25 km s™1. Such a stream could have a significant effect on the dark
matter spectra. A detailed study of the implications of velocity-space substructure

will be conducted in Chapter 7.
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Figure 4.7: Probability for the Earth to be passing through a stream with local density
greater than p. Since the probability goes towards unity at small densities,
the local dark matter distribution has a low-density streaming component.
p is given in units of the background density, ppy = 0.3 GeVem ™3 = 8 x
1073 Mgpc=3.



5. “REVERSE-RUN” SIMULATIONS

The semi-analytic technique described in the previous chapter indicated that the lo-
cal distribution of dark matter is not expected to be smooth. Streaming components
from recent merger events could have a significant impact on the phase-space distri-
bution of dark matter in the solar neighbourhood. However, the analytic techniques
used to model the evolution of the Milky Way cannot fully match the complexity
that arises in N-body simulations. Ultimately, one must resort to N-body simu-
lations to fully understand the local distribution of dark matter. The question is
then how to increase the velocity-space resolution while maintaining a small enough
number of particles such that the simulation is still manageable. To accomplish this
challenge, a novel numerical technique, based upon the reversibility of collisionless
systems, is developed and tested. The theory behind the method is presented and
demonstrated for a simple one-dimensional system. The algorithm is then applied

to more complicated situations.

5.1 The Reverse-Run Technique

A system cousisting of collisionless cold dark matter can be completely described by
the time-dependent phase-space distribution function, f(Z,7,t). At time ¢, f can be
regarded as either the phase-space density of particles at (#,v) or as a probability
of finding a particle at that phase-space location. Regardless of the interpretation,

as discussed in Chapter 3, the evolution of the distribution function is governed by

79
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the collisionless Boltzmann equation and Poisson’s equation.

of & ow; Of
o0t 2o pwy =" (5:1)
V20 = 4nGM / 17,9 (5.2)

An important feature to note is that the potential does not depend on the velocity
of the mass distribution, only on the positions. If an N-body simulation has an
insufficient number of particles to accurately trace the velocity-space distribution
in a given region, it may still be possible to accurately model the potential (or
equivalently the density) of the system. For example, an accurate approximation
of the density in the solar neighbourhood may be possible with only about 100
particles in the region around the Sun but this number is completely inadequate
to accurately trace the velocity-space distribution in that region. In this numerical
regime, a modest increase in velocity-space resolution can be achieved by simply
adding numerous test particles to the initial particle distribution and evolving the
system forward. The test particles would effectively interpolate the phase-space
distribution between the massive DF tracers. The dynamics of the system is not
changed with the addition of test particles, but the interpolation provides a more
complete picture of the phase-space distribution of the system.

In the final output of the simulation, these test particles would be distributed
throughout the simulation volume providing additional particles to map out velocity-
space at any given position. However, when the simulations are to be used to
model dark matter detection events where one is interested in the local velocity-
space distribution, the increased resolution at a given point is modest at best since
only a few test particles may be found in the volume. In order to obtain the highest
velocity-space resolution, one would want all of the test particles to end up exactly at
the point of interest. The situation could be improved by repeating the simulation
several times and using the results from each preceeding simulation to refine the

initial distribution of test particles so that more end up in the region of interest but
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this technique has problems. In particular, the velocity-space features are limited to
refinements of features detected in the first iteration only. For example, if a region
of test particles in the initial simulation evolves into a low-density stream that
intersects with the volume of interest, but the volume contains no particles from the
stream (since it is such a low density in configuration space), the initial region of test
particles would not be resampled at a higher resolution in the proceeding iterations.
However, this stream could be very important in dark matter detection experiments
since, by Liouville’s Theorem, a low density in configuration-space must have a high
density in velocity-space — i.e. the velocities are highly correlated. As illustrated
in Section 1.5.2 and as will be explored in more detail in Chapter 7, such a stream
could introduce significant features into the dark matter detection spectra.

A new technique to overcome these difficulties, to be used in conjunction with
standard cosmological simulations, allows one to map the velocity-space distribution
at a single point within a simulation. The method relies on test particles which, by
design, reach the desired point (the position of the would-be detector) in the final
timestep of the simulation. Through an iterative process, these test particles allow
one to locate the points where the phase-space sheet describing the dark matter
distribution intersects the phase space sheet describing the detector.

The starting point for our algorithm is a standard forward N-body simulation.
In the final frame of the simulation an appropriate location for a detector is iden-
tified and a velocity-space spanning grid of massless test particles is placed at that
location. Both the test particles and original simulation particles are then evolved
backward in time to the initial frame of the simulation. The backward evolution is
accomplished by simply reversing the timestep. During this “reverse run” the phase-
space sheet defined by the test particles will fold and curl. At the initial time, the
intersection points of the test-particle phase-space sheet and the phase-space sheet
that defines the initial dark matter DF are located. These intersection points map

directly into points in velocity space at the position of the detector (i.e. the initial
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velocity-space distribution of the test particles). The value of the DF is calculated
at each crossing point, and, by Liouville’s Theorem, one can obtain the DF at the
location of the detector.

The test particles provide an interpolation of the DF in the region of the detector.
For the interpolation to make sense, the system must reverse properly. In essence,
reversibility is equivalent to the condition that the dark matter DF, as described by
the simulation particles, maintains its three-dimensional character. Chaos, driven
in part by two-body interactions, combined with round-off errors, has the potential
to spoil the reversibility of the time integration and destroy the integrity of the
phase-space sheet. Therefore, as indicated in Chapter 3, the softening of the system
should be approximately 1/4 of the initial grid spacing in periodic systems.

To obtain an estimate of the resolution of the method, one must first consider
the velocity-space distribution that can be obtained from a traditional simulation.
Consider a simulation with a dark matter halo of size L with a potential of depth
® consisting of N particles. To obtain a picture of the velocity-space distribution
about a given point z,, a small volume, V', of width L' must be chosen about &,
and will contain N’ particles and have a velocity dispersion of 0. Two competing
factors contribute to the velocity-space resolution. The first is simply the number
of particles in the volume. For a given V', the greater N’, the better the resolution
will be. The velocity dispersion is roughly a measure of volume in velocity space, so

the velocity-space resolution, Av, scales as

A
7” ~ N'-1/3 - (63)

However, the size of the volume V' itself acts to reduce velocity space resolution
since one is averaging over the volume. The larger the volume, the more details will
be lost due to the averaging procedure. If the potential varies by A® across the
sampled volume V', the velocity-space resolution can be estimated to be

(5.4)

- == ~

Av Ad L' (N3
o ¢ L
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In order to balance these two effects, the volume V' should be chosen such that it
contains v/ N particles. In this case, the velocity resolution goes as N/¢. Therefore,
for traditional N-body simulations, the velocity-space resolution at a given point
increases quite slowly as a function of the number of particles in the simulation.
However, since one does not have to average over a small volume in the reverse-
run technique, the method has a resolution in velocity space of Av/o ~ N~1/3,

Thus, with N = 10¢ particles and using the reverse-run technique, one can achieve

a resolution that would have previously required 102 particles!

5.2 One-Dimensional Simulations

To demonstrate this technique, it is useful to examine a much simpler scenario such
as a one-dimensional simulation of planar gravity. These reduced simulations can
be used to both illustrate and test the technique without the difficulties involved

when dealing with the full six-dimensional phase-space distribution.

5.2.1 Planar Symmetry

The acceleration due to gravity when planar symmetry is imposed can easily be

derived from Poisson’s equation.
V2@ = 47Gp (5.5)

With planar symmetry, there can be no y or z dependence. Therefore, if a thin

plane with mass m is located at zg

>

In order to solve this equation, it is useful to replace the delta function with one of

its limit definitions.

5(x—x0):ll <

m—————= 5.7
Wel—%eQ—i—(x——:vo)? (57)
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Therefore,
d*® €
— =4Gmlim ———— 5.8
Ir2 Gm Im 5 (@ —20)? (5.8)
To solve for the acceleration, a = —d®/dz, integrate and take the limit.
) €
¢ = —4Gmlim | ————=dx

e~0J €+ (x — x0)?
= —4Gmlimtan™! (:v_—-_:z:o)
e—0 €
T — Xg

— 5.9

|z — zo| (59)
Therefore, the magnitude of the acceleration is constant while the direction only de-
pends upon which side of zq a particle is on. For multiple planes, the net acceleration

is simply the sum of the acceleration due to each one individually:

a(z) = -27rGZm,-i_~3’-"— (5.10)

'CL‘ - J?ll
Effectively, this means the acceleration is simply the difference between the mass to

the right of z and the mass to the left.

5.2.2 Periodic Boundry Conditions

Cosmological simulations require the implementation of periodic boundary condi-
tions and expanding, comoving coordinates. The basic requirement is that par-
ticles in a uniform distribution experience no net force. Consider a simulation
box of comoving size L, extending from —L/2 to L/2 with a total mass of M.
In the non-periodic case with a uniform mass distribution, a particle at x (where

—L/2 <z < L/2), experiences a net acceleration of

a= —47TGM% (5.11)

Therefore, when periodic boundary conditions are applied, the net acceleration of a

particle at  must be

a(z) = 21G <2M% - Zmiii”—l) (5.12)
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Figure 5.1: The initial phase-space distribution of the massive particles. Positions and

velocities are in arbitrary units.

An alternate derivation of the periodic potential and accleration can be done using

Fourier transforms to yield the same result.

5.2.3 Phase-Space Structure

For planar symmetry, the dimensionality of phase-space is simply two. The initial
phase-space distribution of the massive particles in this case is just a line (Figure
5.1). This distribution started from a cold (v = 0), uniform density line of particles
which had a sinusoidal perturbation applied. As the system evolves, the particles
remain bound to a manifold of the same dimensionality as that defined by the
initial conditions. In other words, since the particles started in a one-dimensional
line, they must remain in a one-dimensional line. However, the accuracy with which
the line of particles can be followed depends upon the number of particles used
to trace it. For example, Figure 5.2 shows the final state of the initial conditions
shown in Figure 5.1 using 100 particles (left) and 100 000 particles (right). In the

high-resolution simulation, the line of particles can clearly be traced even through
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Figure 5.2: The final phase-space distribution of the massive particles. Left: 100 particles.
Right: 10 particles

the tight windings near £ = 0. In the low-resolution simulation, the line nature
is not clearly visible though if it is known that it should be a line, a reasonable
approximation can be intuitively interpolated. However, simply joining consecutive
particles with a straight line segment would imply that in some cases the phase-
space line could self-intersect and yields a completely false description of the nature
of the distribution.

Therefore, the only way one can obtain a measure of the velocity-space distri-
bution is to directly sample the distribution of particles in the simulation. In a
one-dimensional simulation, this involves looking at the particles in a slice of width
Az about the location of interest, zo. The simplest way to analyze the velocity distri-
bution is to construct a velocity histogram of all the particles in the slice. However,
to avoid issues related to the size of the bin used, a cumulative velocity distribution
can be used instead. In order to obtain enough particles in the slice so that statis-
tical fluctuations are minimized, the width should be chosen so that in a simulation

containing N particles, roughly v/N particles reside within zo + Az/2. Figure 5.3
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Figure 5.3: The cumulative velocity-space distribution at z¢ = 0.05 from the low-N (dot-
ted) and high-N (solid) simulations. The low-N distribution tends to (incor-
rectly) imply a smooth, continuous velocity-space distribution. The high-N

results correctly identify the 7 distinct velocity-space streams.

shows the cumulative velocity distribution at zq = 0.05 obtained from the low and
high resolution simulations of Figure 5.2. The velocity distribution from the high
resolution simulation clearly shows the location of the 7 streams at z,. However,
the low resolution results are completely washed out. Due to the relatively large
width of the slice that was required, particles from adjacent streams are incorrectly
counted in the distribution. If a more narrow slice is used instead, the blending
of multiple streams can be reduced but some low-density streams could be missed
completely. The reverse-run technique provides a means to obtain high-resolution
velocity distributions using only the low-resolution simulation results.

The first step in the reverse-run technique is to add a uniform distribution of
test particles at the location of interest which span the velocity-space. For the 1-D
simulations examined above, this is simply a line of test particles extending from

v=—15tov=15at x = 0.05. Typically, the number of test particles is chosen
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Figure 5.4: The initial distribution of test particles (thick line) and the high resolution
simulation (thin line) in the first reverse-run iteration (left panel) and for
the fifth iteration (right panel). Note how the test particles are now tightly

clustered on the real-particle distribution.

to equal the number of massive particles in the simulation. Figure 5.4 shows the
initial distribution of test particles for both the low and high resolution simulations.
Once the test particles are distributed, the entire system is evolved backwards by
simply reversing the time step. If, as discussed in Chapter 3, the phase-space sheet
of the massive particles was properly maintained, the real particles will evolve back
to their initial location. Figure 5.5 shows the state of the system after it has evolved
back to t = 0 and the initial perturbation is removed. The points of interest are
where the line of test particles crosses the unperturbed massive particles at v = 0.
In 1-D, this can easily be determined by finding the locations in the line of test
particles where the velocity switches sign.

The accuracy with which the crossing point can be determined depends upon the
resolution of the test-particle distribution. The initial distribution of test particles

covers a large span of velocity space and many of them do not end up anywhere
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Figure 5.6: The same as Figure 5.5 but after 5 reverse-run iterations.

near a crossing point. The accuracy can be improved by iterating the reverse-run
procedure several times. The location of the crossing points determined from the
first reverse run can be used as centres for distributing the same number of test
particles, but at a high resolution. This causes the test particles to end up closer
to the initial phase-space distribution by discarding regions which end up far from
it. Each successive iteration can use the previous iteration’s results to improve the
initial distribution of test particles. This can yield more accurate positions for the
crossing points. The right-hand panel of Figure 5.4 shows the initial test-particle
distribution at the beginning of the fifth iteration. The test particles are clustered
about the true DF. Figure 5.6 shows the distribution of particles at the end of the
fifth iteration. Note how the test particles are clustered close to the initial DF
allowing for an accurate determination of the crossing points.

While the location of the crossing points, or equivalently the velocities of particle
streams at x = 0.05 in the final frame, are important, there is no information about
the relative density of each stream. This is of critical importance for dark-matter

experiments since detection rates depend directly upon the density of particles. The
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density of the DF in the final frame corresponding to each of the crossing points can

be estimated using Liouville’s Theorem which states that the comoving phase-space

(2).= ). ©19

where p is the density, and o is the velocity dispersion of the particles. Hence,

density is constant. Therefore,

Pty X O, ! If ¢, is the initial time of the forward simulation, and ¢, is the final time,
the final density can be determined by measuring the initial velocity dispersion. The
velocity dispersion is proportional to the particle density in velocity space, or for a

fixed number of particles the velocity-space volume V', so
Pty X V;,l_l (5'14)

This relationship applies to both massive and test particles. Therefore, if one mea-
sures the volume defined by test particles surrounding the crossing point, one can
approximate the density of the corresponding stream in the final state of the simu-
lation. In 1-D, the “volume” is simply the distance between the particles spanning
the crossing point. Figure 5.7 shows the cumulative velocity distribution from the
low-N reverse-run after 5 iterations. As is apparent in the Figure, the velocities of
the streams are accurately determined but there is some drift in the relative densi-
ties of the streams. This is primarily due to an overestimate of the density of the
stream near v = —1. This stream is considerably more dense than from the direct
high resolution simulations, which, due to the use of the normalized cumulative
velocity distribution, shifts the other streams up and reduces their apparent den-
sity. Additionally, the low-resolution system will evolve slightly differently from the
high-resolution system simply due to the different number of particles and slightly
different densities may be expected. Nonetheless, the results are a very significant
improvement over the information which can be obtained directly from a low res-
olution simulation. The general trends are quite accurate with outer low-density,

high velocity streams and higher density, lower velocity streams towards the centre.
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Figure 5.7: 'The cumulative velocity-space distribution at zg = 0.05 from the low res-
olution reverse-run (dotted) and high-N (solid) forward simulations. The 7
streams are successfully identified using the reverse-run technique with ap-

proximately the correct densities.
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Figure 5.8: A cube can be divided into 6 non-overlapping tetrahedra.
5.3 3-Dimensional Simulations

While the simple 1-dimensional simulations clearly illustrate the theory and the
potential of the technique, it must be verified that it is practical to implement
in 3-dimensions. A simple test case in 3-dimensions is a “cosmological” spherical
cold collapse model. A more realistic model investigated in Section 5.5 involves
adding perturbations to the spherical distribution so that the system will involve in
a hierarchical manner. The majority of the procedure can be conducted in exactly
the same manner as in the one-dimensional case except that it is extended to the
higher number of dimensions. For example, when adding the test particles to the
final frame of the simulation, they are uniformly distributed throughout the velocity-
space volume rather than simply in a line. However, while it is trivial to determine
the intersection of the initial phase-space sheet of the massive particles and the test

particles in one dimension, in 3-dimensions it is not quite so obvious.
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Figure 5.9: As the cube is distorted, the 6 tetrahedra still fill the volume.

5.3.1 Calculation of Intersection Points

In the one-dimensional models, the phase-space sheet of the initial distribution and
the test particles are simple lines in two-dimensional phase-space. Two adjacent test
particles could simply be connected with a straight line to see if the test particle
sheet would intersect with the sheet of massive particles. In a full 3-dimensional
simulation, the subspaces of interest are now two 3-dimensional “sheets” intersecting
in 6-dimensional phase-space. It is no longer trivial to determine the set of points
where the sheets overlap. Fortunately, in most cases the initial distribution function
after the perturbations are removed is very simple. For example, in a spherical

model to be investigated later,
F(&, V) = O(rmax — |%])0(V) (5.15)

where O(z) is the Heaviside function, ryay is the maximum extent of the DF and ¥
is the peculiar velocity. Since the position and velocity dependence are separable,
each subspace can be treated independently.

The clue to identifying the points of intersection is to note that since the initial



5. “Reverse-Run” Simulations 95

distribution of the test particles is a uniform grid degenerate in position, a set of
adjacent test particles define a cube in velocity space. This cube can be decomposed
into 6 tetrahedra which completely fill the volume as shown in Figure 5.8. As the
test particles evolve backward through the potential, the tetrahedra will become
distorted but continue to fill the volume. (Though it is possible that the tetrahedra
may not exactly fill the volume of the distorted cube (Bagemihl, 1948), when the
adjoining cubes are considered, no regions will be missed.) At the inital frame, there
are two tests that must be performed to determine if a given tetrahedron of test
particles intersects with the initial distribution function. The first is to verify that
the position of a tetrahedron overlaps with the configuration-space distribution of
the particles. A simple test checks that at least one vertex at Z, lies within |Z] < rpax
or that the midpoint of the tetrahedron is close to the real distribution function.
The second test is to see if ¥ = 0 lies within the velocity-space spanned by the
tetrahedron.

To test if a point lies inside a tetrahedron, one needs to see if the point of interest
and each of the vertices lie on the same side of the plane defined by the three other
vertices. For example, if the vertices of a tetrahedron are at a, 5, ¢, and J; and
the point of interest is &, then if ¥ and d are on the same side of the plane which
contains a, g, and €, then the point could be inside. If it is true for each vertex,
then the point lies inside the tetrahedron. This can be tested by checking that the
components of the vectors between the plane and & and between the plane d are in

the same direction. Explicitly,
sign [((8— @) x (¢—a)) - (—&)] =sign [((6- @) x (¢~ a)) - (F-a)] (5.16)

Figure 5.10 illustrates this test. Both d and ¥ are on the same side of the plane
defined by a, I;, and ¢ so both Z — @ and d — @ will have a component parallel to
i = (5 — 6) x (¢—d). On the other hand, 7 lies on the opposite side of the plane

so it will have a component anti-parallel to 7. This can be rewritten as
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Figure 5.10: Tetrahedron test to see if a point and one vertex are on the same side of the

plane defined by the 3 other vertices.
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This can be repeated for each vertex.
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a; a, a, 1
T, Ty T, 1
D, = (5.20)
Cz Cy C; 1
d; d, d, 1
a; ay a, 1
b, b, b, 1
Dy = | V7 (5.21)
Ty Ty T, 1
d, d, d, 1
a; ay a, 1
by b, b, 1
Dy = (5.22)
Cz €y c; 1
Ty Ty T, 1

Therefore, if point ¥ lies inside the tetrahedron then Dy, D1, Dg, D3, and D4 will
all have the same sign. It can also be shown that the volume of the tetrahedron is

V' = D, /6 which is required to calculate the density of any streams.

5.4 Spherical Cold Collapse

Since the eventual goal is to apply the reverse-run technique to a simulation of the
formation of the Milky Way, it is useful to consider a simple model in a cosmological
context. Therefore, one can consider a spherical overdensity surrounded by a uni-
form universe. Fortunately, it can be shown that the region inside the overdensity
will evolve independent of the region outside so that one can simply consider the
isolated sphere (Peebles, 1982). Ryden and Gunn (1987) developed a reasonable
model for the density profiles inside a spherical overdensity which collapses to form
galaxies and clusters. Their density profile, and the corresponding mass profile at
z = 44 are shown in Figure 5.11. At large r, the density profile flattens and the

mass profile approaches r® as the overdense region merges with the outside density
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Figure 5.11: Initial density profile (left) and mass profile (right) of the spherical density
perturbation compared to the background density at z = 44. As large r,

both the density and mass profiles approach the background values.

distribution. Since a cosmological-style simulation is being performed, the initial

distribution of particles are also given Hubble velocities.

5.4.1 Forward-Run Simulation

The first step in the reverse-run technique is to do a traditional forward simulation.
The simulation is run from ¢ = 0 to ¢t = 12 (in units with M;oa = 100 and G = 1)
with approximately 33,000 particles and uses the same N-body code that will be
used in subsequent, more realistic simulations. The initial and final phase-space
distribution are shown in Figure 5.12. Note that the figure shows a two-dimensional
projection of the full six-dimensional phase-space distribution. As a result, the
appearance of the streams is greatly enhanced due to the favourable symmetry. If
one considers a point at r = 2, there are clearly 11 streams. Since the system is
spherically symmetric, any position in the system with the same radius should have

the same number of streams. However, if one examines the full six-dimensional
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Figure 5.12: 'The initial phase-space distribution (left) and the final distribution (right)
of a spherical collapse simulation with initial Hubble velocities. The vertical

line at » = 2 indicates the location of interest at ¢ = 12.

distribution at a given point with the same radius, i.e. Zy = (2,0,0), a significantly
different picture is obtained. As discussed with respect to the one-dimensional
simulations in Section 5.2.3, the volume/resolution trade-off comes into effect. If a
small volume is chosen (left panel in Figure 5.13), streams are completely missed.
If a larger volume is chosen (right panel in Figure 5.13), the streams are largely

washed out.

5.4.2 Reverse-Run Results

The next step in the reverse-run procedure is to populate the point of interest in
the final forward-run output with test particles which span the velocity-space of
the system. After evolving the system backwards, the intersections between the
initial massive particle DF and that of the test particles can be determined. The
velocity-space volume of the tetrahedron which contains ¢ = (0,0, 0) can be used to

estimate the density of the stream in the final frame. Figure 5.14 shows the radial
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velocity distribution after 5 iterations. The resolution with which the streams are
determined is far superior to any measurements that could be obtained simply from
the forward run even when spherical symmetry is used to enhance the results as
indicated by the dots in the top of each panel. The width of the dots corresponds
to the actual range of velocities that were found when looking at ro + Ar/2 with
Ar =0.005. Even with the advantage of symmetry, smaller values of Ar miss the
low-density streams entirely.

The successful identification of the streams from the full 3-dimensional spheri-
cal collapse simulations indicate that the reverse-run technique can successfully be

extended beyond rather trivial 1-dimensional toy models.

5.5 Spherical Collapse with Perturbations

To test the technique in a more realistic simulation, a spectrum of perturbations can
be added to the spherical collapse model from the previous section. The detailed
nature and origin of the perturbations will be discussed in Chapter 6 but for the
moment it is sufficient to state that the spectrum of perturbations is chosen to be
consistent with bottom-up hierarchical formation scenarios. This style of simulation
was originally performed by Katz and Gunn (1991) to model the effects of gas dy-
namics on galaxy formation, but it can be applied to purely collisionless simulations
as well. It has also been applied by Dubinski and Carlberg (1991) to investigate the

structure of dark matter halos.

5.5.1 Forward-Run Simulation

The forward simulation was conducted in the same manner as the purely spherical
collapse in the previous section. The perturbations applied can be seen in the
density fluctuations in the initial conditions of the simulation (left panel of Figure
5.15). The final state of the system is shown in the right panel of Figure 5.15.

The point of interest (as indicated by the arrow and green dot in the Figure) was
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Figure 5.15: The initial conditions (left) and the final state (right) of a spherical collapse
model with perturbations. The colour represents the density ranging from
low-density (blue) to high-density (yellow), though the absolute densities vary
significantly between each panel. The arrow in the right panel indicates the

point of interest in the simulation.
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chosen to lie at approximately one softening length from the centre of the largest
galaxy in the simulation. The galaxy chosen qualitatively resembles the dark matter
distribution of the Milky Way with a mass of 5 x 102M,, and virial radius of
500 kpc, roughly twice the size of the actual Milky Way. Figure 5.16 shows the
speed distribution (with respect to the global rest frame) of dark matter measured
using the 700 particles nearest to the point of interest. Note that the vertical axis
is logarithmic. The speed distribution appears quite smooth, in agreement with
what other studies have found (Moore et al., 2001; Helmi et al., 2003). However,
this effect is primarily due to the finite resolution and large volume required to
obtain a reasonable number of particles. Applying the reverse-run technique yields

a significantly different picture.

5.5.2 Reverse-Run Results

The reverse-run technique avoids the problems associated with averaging over large
volumes of space to obtain velocity-space information. By placing the test particles
at the point of interest, and evolving the system backwards, a significant increase in
velocity-space resolution can be obtained. Figure 5.17 shows the speed distribution
obtained from the reverse-run algorithm after 10 iterations. Increasing the num-
ber of iterations beyond 10 does not significantly alter the results. Instead of an
almost smooth distribution of speeds, the velocity-space spectrum is dominated by
a couple of specific speeds. In order to determine if the particles with these speeds
are correlated (ie: the particles belong to distinct streams arriving from a specific
direction) or are more uniformly distributed (i.e: a smooth, uniform infall into the
Galaxy from all directions), one can look at the orientation of the dark matter par-
ticles with respect to the mean bulk velocity in the region. Figure 5.18 shows the
correlation between the direction of the dark matter particles and the speed of each
particle. The particles are not uniformly distributed in angle indicating that the

dark matter particles are arriving from preferred directions.
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While this spherical collapse model with perturbations more closely resembles
the formation of a system which is qualitatively similar to the Milky Way within the
Local Group, in order to develop the most realistic picture possible of the phase-
space distribution of dark matter in the solar neighbourhood, one must turn to
full cosmological simulations. As will be presented in the upcoming chapter, this
involves performing simulations with periodic boundary conditions and a proper

normalization of the perturbations.



6. COSMOLOGICAL SIMULATION

In order to apply the reverse-run technique to the problem of dark-matter detection
in the solar neighbourhood, one requires a traditional N-body simulation which
contains a region that resembles the Milky Way. Several studies have been done
to generate N-body initial conditions which evolve into systems which resemble the
Local Group or Local Supercluster (Klypin et al., 2001; Hoffman and Zaroubi, 2000;
Zaroubi, 2002). However, in order to understand the limitations of such techniques
it is necessary to investigate the origin and evolution of density perturbations in the

early universe, and their relationship to N-body initial conditions.

6.1 Initial Conditions

In the early universe, small density perturbations seed the growth of larger struc-
tures. The evolution of these density fluctuations can be modelled by considering
the material as a simple gravitating perfect fluid governed by Poisson’s equations

and the conservation of mass and energy:

V20 = 47Gp (6.1)
Op L
(B?)F—F Vi pi =0, (6.2)
du , "
p [(;l;) +(a- Vr)“] = —Vip — pV:® (6.3)

where 7 and u are the proper distance and velocity of a fluid element relative to a
fixed origin. If one considers the evolution of the density contrast, § = (p — p)/p,

in comoving coordinates under the assumption of small perturbations (§ < 1),

106
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equations (6.2), (6.3), and (6.1) can be linearized (refer to Appendix B for details)

to yield
9%  _add 4AnGpo
hlEY Sl
Y TR
where a(t) is the cosmological expansion factor. The solution to (6.4) is (Peebles,

1980):

5 (6.4)

o .
8.(&,t) = = dt 8(, o), 8a(,t) = = 8(F, o) (6.5)
a

alto a?
Note that d; describes the evolution of a growing perturbation, while é5 describes a
decaying mode.

To generate initial conditions appropriate for a cosmological simulation, one
starts with a cube of uniformly distributed particles. These particles are then per-
turbed to match the density contrast predicted from linear theory. A technique to
accomplish this was first presented by Zel’Dovich (1970). If the initial comoving
location of a particle is ¢ and it has no peculiar velocity, then its perturbed position,

Z and velocity, ¥, at time ¢ are

- = E ik-@
#t) = q—l—(51(t)2;€—25kekq (6.6)
;
- : l]; iﬂ.q‘
u(t) = 51@)2};‘2‘%6 (6.7)
F

(see Appendix B for technical details). Here §;(¢) is the linear growth factor given
in equations (B.13) or (B.16) depending upon the cosmology under investigation
and &y, is related to the initial power spectrum of density perturbations in the early
universe, P(k), via

P(k) = (6¢) (6.8)

Note that in general §; is a complex value to allow for both the amplitude and the
phase of the perturbations. In order to construct realistic N-body simulations, one

must determine the proper form for the power spectrum, P(k).
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6.1.1 Power Spectrum

Inflationary models and “naturalness” arguments (Peebles, 1993, for example) indi-

cate that a scale-free power spectrum is likely with
P(k) < k" (6.9)

with n = 1. Recent observations of the cosmic microwave background support this
model indicating that n = 0.99 + 0.04 (Spergel et al., 2003). If, as the universe
evolves, the various components of the early universe behave in the same manner,
the perturbations would continue to have this form on all scales. However, interac-
tions between radiation, baryonic matter, and dark matter can act to suppress the
growth of perturbations on particular scales. For example, prior to the epoch of re-
combination, density fluctuations propagate as acoustic waves in both the photons
and baryons due to strong coupling. After recombination the situation changes.
The two components now evolve separately which causes the shape of the initial
power law spectrum to be modified. The full details of the evolution of the early
universe have been numerically modelled in exquisite detail in the numerical pack-
age CMBfast (Zaldarriaga and Seljak, 2000). This utility would allow the complete
determination of the power spectrum. It is very computationally intensive, calculat-
ing much more than the power spectrum and it is not practical for many situations
which do not need such accurate detail or auxillary information. Instead, several
empirical fitting formulae have been derived to allow rapid approximations of the
power spectrum for a variety of cosmologies. The power spectrum is usually split

into the power-law component, and the transfer function, T'(k).
P(k) = AK™T?(k) (6.10)

where A is a normalization factor. The model form of the transfer function used
here is given by Eisenstein and Hu (1998).

The transfer function can differ considerably depending upon the cosmological
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Figure 6.1: Transfer function (top) and power spectrum (bottom) for a flat baryon-
dominated universe (2, = Qp = 1,94 = 0). Note the numerous features

at large k introduced by baryon interactions.

model under investigation. Any flat cosmology can be characterized by three pri-

mary parameters:

Qnm The amount of matter (both dark and baryonic) in the universe,
Q;, The amount of baryons in the universe (Note that £, < Q,.)
25 The strength of the cosmological constant

Note that all parameters are measured as fractions of the critical density. (Refer to
Appendix A for a review of cosmology and cosmological parameters.) Observations
indicate that the universe is flat which requires €23 + 24 = 1. One of the simplest,
original cosmological models is a baryon-dominated universe with €, = Q = 1,
and 2, = 0. In the early universe, there are complex interactions between baryonic

matter and between baryons and photons such as the propagation of acoustic waves
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Figure 6.2: Transfer function (top) and power spectrum (bottom) for a Q, = 0.5,Qp =

1.0,24 = 0 universe.

in the plasma and Compton drag. As shown in Figure 6.1, these interactions give
rise to a rapid falloff in the transfer function and numerous oscillations in the power
spectrum. When dark matter is added to the mix, such as for the half baryonic mat-
ter (€2, = 0.5), and half weakly interacting dark matter (Q3; = 1) model shown in
Figure 6.2, the baryonic interactions are dampened. The power spectrum has a less
pronounced k-cutoff, but still has noticeable features at large k. Figure 6.3 reflects
the model currently favoured by observations of the cosmic microwave background
(CMB) (Spergel et al., 2003) and supernova measurement results (Perlmutter et al.,
1999) with €, = 0.04,Qy = 0.27 and, Q2 = 0.73. Due to the very small baryonic
fraction of this model, baryons have a negligible effect in the early universe. The
evolution of the power spectrum is dominated by the cosmological constant and

dark matter. As a result, this power spectrum is very smooth and can be well fit by

P(k) = Ak(1 + byk? + byk>®) ! (6.11)
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Figure 6.3: Transfer function (top) and power spectrum (bottom) for a Qp = 0.04, Q2 =
0.27,Q5 = 0.73 universe. The dashed line is the fit from equation (6.11).

with A = 1.57 x 107, b; = 1.04 x 10* b, = 1.96 x 10°. The fit curve is the dashed
line in Figure 6.3.

While careful modelling of the physics of the early universe can describe the
location and relative amplitude of the features in the power spectrum, there is
currently no way to predict the overall normalization. To determine this, one must

look at observational constraints.

6.1.2 Normalization

There are two methods used to normalize the primordial power spectrum. The first

is based on measurements of the cosmic microwave background from the COBE
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satellite, while the second is constrained by galaxy counts. Using the COBE data,
Bunn and White (1997) have determined that the present-day normalization of the

power spectrum is well fit by

2 c 3+n
P(k) = 25 (-H-"(’)) (k) (6.12)

where the normalization parameter, éy, is given by

1.95 x 10—59*0-18—0-19111QM—0-17neO,86—0.72n—0.14n2 if Qr =0
M A (6.13)

o
o
i

— —_ 2 .
1.94 x 10—5QMO.785 0.05 anM60.781-0.612n—0.169n if Oy =1—Qu

The second way to normalize the power spectrum requires the variance of mass
fluctuations within a sphere of radius R. (Peebles, 1980, for example). The mass

variance is given by

3(sin kR — choskR))2dk (6.14)

00
o*(R) = /0 ARHT2 (k) ( TP
o(R) is an observable quantity which can be used to constrain A. For R = 8h Mpc,
o(8h) is of order unity. However, for the simulations presented here, the COBE
normalization will be used.

The normalized power spectrum presented above is the present-day power spec-
trum that is linearly interpolated from the initial small fluctuations. To generate
initial conditions for a numerical simulation, one needs the power spectrum at the
initial time of the simulation. Therefore, the present-day power spectrum must be
extrapolated backwards in time using the linear growth factors described in Ap-

pendix B.1.

P(k;z) = P(k;z = 0) (%) (6.15)

For example, Figure 6.4 compares the power spectrum using the present-day normal-
ization (upper curve) to that at z = 15 (lower curve). As expected, the amplitude
of the power-spectrum, and hence the magnitude of the initial perturbations, are

significantly reduced.
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Figure 6.4: The present-day power spectrum (upper curve) and the power spectra scaled

to z = 15 (lower curve).

6.2 Local Group Simulations

The Milky Way exists in a small group of about 40 galaxies called the Local Group.
Of these galaxies, the Milky Way and the Andromeda Galaxy (M31) are the dom-
inant members while the remainder are relatively small dwarf galaxies. The Milky
Way has a mass of approximately 2.5 x 1012M; (Sakamoto et al., 2003; Wilkinson
and Evans, 1999). The mass of M31 is less well known but current estimates indicate
that it is roughly 1.5 x 10'2M, but depends upon the assumed mass distribution
(Evans and Wilkinson, 2000; Gottesman et al., 2002; C6té et al., 2000). The next
largest member of the Local Group with a known mass is M33 with a mass of just
2.5 x 10'°M (Mateo, 1998). Therefore, the dynamics of the Local Group are largely
governed by the Milky Way and M31. These galaxies are currently separated by a
distance of 770 kpc (Freedman and Madore, 1990).

In order to ensure that the N-body simulations resemble the Local Group, it
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is important that the Milky Way and M31 exist in the simulation with properties
similar to those stated above. Ideally, in order to form systems which are similar to
the region around the Milky Way, the amplitude and phases of the power spectrum
could be constrained by observations of the present-day mass fluctuations and ve-
locity flows. Klypin et al. (2001) successfully constrain the power spectrum to form
the Local Supercluster, a region much larger than the Local Group, and identify
all of its major components such as the Virgo, Perseus-Pisces, and Coma. clusters
as well as the Great Attractor. However, all of these features exist on scales and
distances of tens to hundreds of megaparsecs. When looking at smaller features on
the order of a megaparsec, such as the galaxy distribution in the Local Group, the
evolution of structure is only weakly constrained and the correlation between the
simulation results and observations is tenuous. Therefore, observational constraints
cannot, currently be used to significantly constrain the initial conditions of simula-
tions on the scale of the Local Group. Alternative techniques must be used to ensure
that the simulation results sufficiently match the true distribution of galaxies in the
Local Group. The simplest method is to simply run a suite of small-N simulations
with different initial conditions and pick the one which most closely resembles to
Local Group for use in higher resolution studies.

In order to apply the reverse-run technique to investigate the distribution of dark
matter in the solar neighbourhood, one requires a simulation with sufficient resolu-
tion that the mass distribution is reasonably accurate. This can be accomplished in

two complimentary manners:
1. use a large number of particles, and
2. only simulate the region required.

Therefore, the forward simulation is designed such that the total mass is comparable
to that of the Local Group, Mg = 5 x 1012M. Assuming that the mean density of

matter over the Local Group volume is the same as that of the universe as a whole,
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Figure 6.5: The initial conditions (left) and the final state (right) of local cluster simu-
lation. The colour represents the density ranging from low-density (blue) to
high-density (yellow), though the absolute densities vary significantly between
each panel. The region which resembles the Local Group is indicated by the

green box.

the present-day length of a side of the simulation volume must be

/3

STFML(;G

L=
30 H?

(6.16)

where {2, is the current cosmological mass density and Hy is the present-day Hubble
constant. In order to ensure that sufficient environmental effects due to regions
surrounding the Local Group are included, a total mass of M = 3.6 x 10 M, was

used which yields a simulation volume with L = 10 Mpc.

6.3 Forward Run Results

Figure 6.5 shows the initial and final state of a forward-run simulation with 10°
particles. The green box in the right-hand panel indicates the region similar to the
Local Group in that it contains two large galaxies, each with masses of approximately

3 x 102 My separated by 720 kpc. These galaxies are slightly larger than the true
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Figure 6.6: A close up of the “Local Group” environment shown in the £ — z and y — 2
projections. The separation of the centres of the two main galaxies is 720 kpec.
The point of interest, located approximately 25 kpc (the softening length)
from the centre of the “Milky Way” on the right, is indicated by the green dot

and arrow. Blue is low density, yellow is high density.
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Number of massive particles 108
Number of test particles 5x 10°
Simulation box size 10 Mpc
Softening length 25 kpc
Initial redshift 35

- Number of steps 1000

Table 6.1: Summary of parameters for the “Local Group” simulation.

masses of the Milky Way (2.5 x 102 M) and M31 (1.5 x 10'>M,,) and slightly closer
together at 720 kpc than the currently accepted distance of 770 kpc. Nonetheless,
the dynamics of the system are likely a close approximation to the dynamics of the
true Milky Way/M31 system. Figure 6.6 shows a close-up of the simulated “Local
Group.” The point of interest, indicated by the green dot and arrow, lies roughly 25
kpc from the centre of one galaxy. This distance is roughly equal to the softening
length used in the simulation. A summary of the parameters used in the simulation
are shown in Table 6.1.

It should be noted that the apparent regularity in the final distribution, particu-
larly the numerous, approximately horizontal density contrasts, is a selection effect
due to the requirement that the simulation have a region which resembles the Local
Group with two large galaxies resembling the Milky Way and M31. If a different
random seed had been used, no such regularity would be appear.

Figure 6.7 shows the speed distribution obtained using the v'N ~ 1000 nearest
particles to the point of interest. Note how the speed distribution is quite smooth,
with no significant features. While this tends to indicate that the distribution of dark
matter is smoothly distributed in velocity space, there is also the possibility that
the particles are moving in a coherent direction but with a smooth spread of speeds.
To check for this possibility, one can examine the distribution of angles, 8, between

dark matter particles and the bulk motion in the region surrounding the detector. If
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Figure 6.7: The speed distribution at the point of interest obtained from the forward run

using the nearest \/N ~ 1000 particles.

the particles are moving coherently, or in several smaller flows, the particles should
be be clumped in cos#-speed parameter space. On the other hand, if the particles
are smoothly distributed throughout velocity-space, there should be no significant
correlations. Figure 6.8 shows that the particles are randomly distributed with
respect to the mean motion in the region surrounding the point of interest. From
the standard forward cosmological simulation, there are no clear indications of any
streams or clumps of dark matter passing through the solar neighbourhood. This is

the result found by others (Moore et al., 1998; Helmi et al., 2003).

6.4 Reverse Run Results

Applying the reverse-run technique to the Local Group simulation yields a signif-
icantly different picture of the speed distribution. Instead of the rather smooth
distribution shown in Figure 6.7, Figure 6.9 shows a complicated distribution with
numerous peaks and voids.

Furthermore, the streams of dark matter are not uniformly distributed in direc-
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Figure 6.10: The speed of dark matter particles versus the angle between each particle’s
velocity and the bulk motion of the forward simulation. The dark matter
streams are not uniformly distributed preferentially arriving from specific

directions.

tion. Figure 6.10 shows the direction that the dark matter particles are travelling
relative to the mean motion in the region surrounding the point of interest. At a
given speed, the particles tend to be clumped in direction rather than uniformly
distributed in all directions. This indicates that the dark matter is in streams or
partial shells of infalling material rather than thoroughly virialized into a smooth
distibution.

It should be noted that since the location of the detector was chosen to be 25 kpc
from the Galactic centre, the velocities from the simulation tend to be lower than
those found in the solar neighbourhood which is 8 kpc from the centre. In order to
more accurately represent the dark matter as viewed from the Earth, the simulation
velocities were scaled up by the ratio of the circular velocities (veire rt/ 2) from
r = 25 kpe to r = 8 kpe. This may have the effect of slightly overestimating the
amount of structure present since the system may be slightly less evolved farther

from the Galactic centre. This issue can be overcome by simply using a higher
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resolution simulation in the future.

The combination of the results from the cosmological reverse-run simulations,
and the semi-analytic modelling from Chapter 4, indicate that the dark matter dis-
tribution in the solar neighbourhood is not smooth. Instead it is composed of a set
of distinct dark matter streams with unique velocities and effectively random orien-
tations. This picture of the dark matter in the solar neighbourhood is significantly
different than that traditionally assumed for dark matter detection experiments.
Chapter 7 will now examine the implications of non-uniform dark matter distribu-

tions on the expected signatures of terrestrial dark matter detection experiments.



7. EFFECTS OF SUBSTRUCTURE ON DARK
MATTER DETECTION

The results from the Chapters 4 and 6 indicate that the local distribution of dark
matter is not well modelled by a smooth Maxwellion distribution. Instead the
velocity distribution of dark matter in the solar neighbourhood has at least a small
component which is “streaming” possibly with a velocity significantly higher than
the mean speed expected from a virialized dark matter distribution. As dark matter
detectors become more advanced and obtain more data, they must start considering
the possibility that the dark matter distribution is not smooth. The demonstration
in Chapter 1 indicated that substructure in velocity-space could have a significant
impact on the dark matter detection spectra. In order to examine this effect in
more detail, one must first determine the velocity of the dark matter relative to the
detector taking into account the motion of the Sun through the Galaxy, and the
Earth’s orbit about the Sun. Once the correct relative velocities are determined,
detection spectra can be modelled and compared for both uniform (Maxwellian) and

non-uniform (N-body ) distribution.

7.1 Current Dark Matter Detectors

There are currently over 20 dark matter detectors in various stages of development
and operation around the world searching for both WIMPs and axions. As these
detectors increase their exposures and sensitivities, it will be necessary to have an

accurate model of the dark matter distribution in the solar neighbourhood.

122
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7.1.1 WIMP Detectors

At present, there are many more WIMP detectors in operation or under develop-
ment than axion detectors. Three of the leading detectors, representative of differ-
ent approaches to WIMP detection, are the Cryogenic Dark Matter Search (CDMS)
(Abrams et al., 2002, for example), the DAMA detector (Bernabei et al., 2002),
and DRIFT (Martoff et al., 1999). The DAMA experiment, which detects photons
emitted when a WIMP scatters with Nal in the detector, has reported a positive
detection of the annual modulation (to be discussed in Section 7.2.2) of the WIMP
signal (Bernabei et al., 2002). However, CDMS and several other experiments such
as EDELWEISS (EDELWEISS Collaboration et al., 2002) and the Zeplin series of
experiments (Liischer et al., 2001), have not detected any significant WIMP signal.
In particular, CDMS has detected only 23 possible events, all of which are consis-
tent with a neutron background. An analysis of the CDMS results excludes the
region of WIMP masses and interaction cross-section parameter space favoured by
DAMA at the 99.9% confidence level. Figure 7.1 shows the current limits of several
WIMP detectors. The region above the curves is eliminated. It is important to note
that the standard analysis assumes a smooth dark matter distribution in the solar
neighbourhood. Copi and Krauss (2003) and Belli et al. (2002) have investigated
the effect of smooth non-isotropic dark matter distributions on CDMS and DAMA
results with conflicting conclusions.

DRIFT is a directionally-sensitive detector which has only recently started op-
eration. It has not yet released any data regarding WIMP masses or cross-sections.
However, due to its exceptional background rejection, it should be able to clearly
identify a smooth Maxwellian halo with fewer than 100 detection events (Martoff
et al., 1999).

The next generation of WIMP detectors is already under development including
improvements to CDMS, EDELWEISS, Zelplin, and DRIFT. In all cases, the new

detectors will strive to increase efficiency and sensitivity by several orders of mag-
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Figure 7.1: The current exclusion limits for WIMP candidates from a variety of detectors.
The region favoured by DAMA is indicated by the solid red region. Figure
from http://dmtools.berkeley.edu/

nitude. A proper understanding of the local dark matter distribution is essential to

take full advantage of the improvements in upcoming detectors.

7.1.2 Axion Detectors

There are several axion experiments presently in operation. These includes the
Axion Dark Matter Experiment (ADMX) (Asztalos et al., 2002), CAST (Zioutas
et al., 1999), and PVLAS (Cantatore et al., 2001). Of these detectors, only ADMX
is searching for cosmological axions. CAST primarily focuses on axions arriving
from the Sun, while PVLAS looks for any axions created in a terrestrial laboratory
experiment. Nonetheless, all three can place constraints on the possible range of
axion mass and cross-section. Figure 7.2 shows the current range of excluded axion
masses and cross-sections obtained from ADMX (Asztalos et al., 2002). Note the
very fine energy resolution with which the axion mass could be determined. Current

axion detectors have exceptional energy resolution on the order of AE/(m,c?) ~
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Figure 7.2: The current exclusion limits for axion candidates from ADMX for the two
different axion models. Regions inside the curves (i.e. where the labels are

located) are excluded. Figure from Asztalos et al. (2002).

10~ (Asztalos et al., 2001) where m, is the rest-mass of the axion. This high energy
resolution could provide a very high resolution spectrum of the speed distribution

of dark matter in the solar neighbourhood.

7.2 The Earth’s Motion in the Galaxy

All of the previously mentioned dark matter detectors are sensitive to the speed dis-
tribution of the dark matter. In Chapter 1, it was shown that WIMP recoil spectra
depend upon the integrated one-dimensional speed distribution (equation 1.7) due
to the random scattering angle in the nuclear collision. On the other hand, axion de-
tectors can directly determine the speed distribution by measuring the energy of the
photon created through Primakoff conversion. Ideal directionally-sensitive detectors
can measure the full three-dimensional velocity distribution. In all cases however,

the detection event is dependent upon the velocity of the dark matter relative to
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N

Figure 7.3: The Sun’s motion in Galactic coordinates (left) and the definition of Galactic

latitude (b) and longitude (!) on the right.

the Earth. Since the Earth is not stationary in Galactic coordinates, the velocity of

the dark matter must be transformed to the correct frame of reference.

7.2.1 Solar Motion

In all of the discussion of the velocity distribution of dark matter so far, the frame of
reference was that of the overall system in isolated systems, or relative to the Galaxy
being examined. For example, in the cosmological simulations of the formation of
the Local Group in Chapter 6, the velocities were measured with respect to the
motion of the Milky Way-like galaxy. However, the velocity of interest for terrestrial
dark matter detection experiments is the velocity of the dark matter relative to the
Earth. To first order, this can be accounted for by simply considering the Sun’s
motion around the centre of the Galaxy. Though there is uncertainty in the speed
with which the Sun orbits the Galactic centre, the most commonly accepted value is
roughly 230 km s™!(See for example Feast and Whitelock, 1997; Kerr and Lynden-
Bell, 1986). In Galactic coordinates, as shown in Figure 7.3, the Sun moves in the

positive Y direction! with positive X towards the Galactic centre. Therefore, the

! Technically, the postive Y direction is defined by the motion of the Local Standard of Rest

(LSR) which is the average motion of stars in the region surrounding the Sun. The Sun has a
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Sun’s velocity in Galactic coordinates is simply
U = (0,230,0) km s} (7.1)

It is also convenient to define Galactic latitude (b) and longitude (1) to specify where
objects appear on the sky. As illustrated in Figure 7.3, Galactic latitude is the angle
above or below the Galactic plane, while Galactic longitude is the angle in the plane
from the Galactic centre. Since the Sun is travelling in the plane in the positive Y’
direction, it is headed in the direction (b,1) = (0,90°).

If, on average, the dark matter is at rest with respect to the Galaxy, the Sun’s
motion will effectively create a “wind” of particles flowing against the Earth’s mo-
tion. This would results in a significant directional bias for dark matter detection
events. The implications of this directional sensitivity will be investigated later.
The Sun’s motion through the Galaxy also boosts the velocity of dark matter par-
ticles compared to in the Galactic frame. This results in higher velocities and more

available energy to deposit in dark matter detectors.

7.2.2 Seasonal Variation

Though the Sun’s motion about the Galactic centre, and the motion of the dark
matter itself, are the dominant contributions to the relative velocity between the
dark matter and the Earth, there is another small, but important, velocity shift due
to the Earth’s motion about the Sun. For both smooth and non-uniform dark matter
distributions, the Earth’s orbit around the Sun can cause a seasonal modulation in
the detected spectra. As illustrated in Figure 7.4, for half of the year a component
of the Earth’s orbital velocity will be partially aligned with the orbital motion of the
Sun around the centre of the Galaxy. This effectively increases the Earth’s speed

relative to the Galaxy. For the other six months, the opposite is true and the Earth’s

small, constant, peculiar velocity with respect to the LLSR which would shift the Sun’s velocity

from the pure Y direction.



7. FEffects of Substructure on Dark Matter Detection 128

Sun’s motion rel. to Galaxy

Figure 7.4: The Earth’s motion around the Sun increases and decreases its net speed

through the Galaxy.

speed is effectively reduced. The velocity of the Earth in Galactic coordinates can

be approximated by (Gelmini and Gondolo, 2001)
Te(t) = ve [é1 sinw(t — tg) — éx cosw(t — o)) (7.2)

where v, = 29.8 km s~! is the Earth’s orbital speed, w = 27yr~! is the Earth’s
angular speed, t; ~ 80 days is the time of the vernal equinox, and é; and é; point

towards the Sun at the spring equinox and summer solstice respectively:

é = (—0.0670,0.4927, —0.8676) (7.3)
& = (—0.9931,—0.1170,0.01032) (7.4)

This approximation neglects the small ellipticity of the Earth’s orbit but, as shown
in Green (2003), the maximum difference between the much more complicated full
expression and this approximation is only about 1 km s™!.

Therefore, the velocity of the Earth in Galactic coordinates is
Ue = v, [é sinw(t — to) — €z cosw(t — to)] + (0,230, 0)km s™* (7.5)

Figure 7.5 shows the variation in Galactic speed due to the Earth’s motion about

the Sun. It ranges from 216 km s~ in December to 246 km s™! in June.
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Figure 7.5: The yearly variation of the speed of the Earth in Galactic coordinates due to

the Earth’s motion about the sun.

As will be shown, this slight shift in speeds throughout the year can have a
noticeable effect on dark matter spectra and can be used both to help distinguish
true detection events from the background and to reconstruct dynamical properties
of any non-uniform streaming component of the dark matter. In order to quantify
the effect that the seasonal modulation has on detection experiments, it is useful to

define the seasonal modulation factor:

_ Rate(June) — Rate(December)

F= Rate(June) + Rate(December)

(7.6)

where the “Rate” refers to the detection measure appropriate for the dark matter
candidate in question.

A careful analysis of the effect of the Earth’s motion on predominantly smooth
dark matter distributions by Green (2003) indicated that proper modelling of the
Earth’s seasonal motion is important and oversimplification of astrophysical con-
straints can lead to errors in interpretation of experimental results as large as tens

of percent.
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7.3 Analytic Detection Models

When modelling dark matter detection events, it has been traditionally assumed that
the dark matter distribution can accurately be modelled as a smooth Maxwellian
distribution truncated at the local Galactic escape speed. Various minor perturba-
tions have been applied such as breaking the spherical symmetry by using an oblate
or ~prolate halo, or adding some rotation (see for example Copi and Krauss, 2003;
Belli et al., 2002). However, in order to compare the effects of velocity-space sub-

structure to the traditional smooth assumptions, a simple Maxwellian distribution

will be assumed. In the Galactic frame of reference, the distribution is

f(Upe) = %571%?@“”%0/"3 (7.7)
where vy = 220km s™! is the halo velocity dispersion, and ¥pg is the velocity of the
dark matter (D) relativé to the Galaxy (G). (Neglecting the cutoff at the escape
speed of v, ~ 500 km s™! (Binney and Tremaine, 1987) has a negligible effect on the
detection spectra since over 98.5% of the particles in this Maxwellian distribution

have speeds below v,.)

7.3.1 Axion Detectors

Axion detectors, based on the Primakoff conversion of axions to photons, obtain a
direct measure of the total energy (rest mass plus kinetic) of the axions. Therefore,
axion detectors can directly measure the speed distribution of dark matter.

For a Maxwellian distribution, the one-dimensional speed distribution in the
frame of the Earth is

] G e e B | AL
where vpg is the speed of the dark matter relative to the Earth and vgg is the
speed of the Earth relative to the Galaxy. Since the Earth’s speed relative to the

Galaxy varies throughout the year as it orbits the Sun, the location and shape of
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Figure 7.6: The seasonal shifting of an axion spectrum due to the Earth’s motion around
the Sun. The solid line shows the spectrum due to a smooth distribution in

June, while the dashed line is the same distribution but for December.

the one-dimensional velocity dispersion will change slighty between the extrema in
June and December. Figure 7.6 shows the expected detection spectra of an ideal
axion detector in June and December.

In order to quantify the seasonal variation, it is useful to examine the seasonal
variation defined in equation (7.6). Figure 7.7 clearly shows the bias of high-speed
detections in June due to the increased relative speed between the Earth and the
Galactic halo.

Current cosmological axion detectors are not directionally-sensitive (Daw, 2001).
They only can detect that an axion has arrived, but cannot tell the direction from
which it came. However, experiments which are searching for solar axions are
directionally-sensitive and there have been proposals to adapt this technology to

search for cosmological axions (Zioutas et al., 1999). If a directionally-sensitive
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Figure 7.7: The seasonal modulation factor, as defined in equation (7.6), highlights the

differences between the June and December spectra.

cosmological axion detector is constructed, it would be able to probe the full three-
dimensional velocity distribution, f(vpg), directly. Separating the velocity of the
dark matter into its component relative to the Earth, and the Earth’s motion relative

to the Galaxy yields the directional distribution function:

f(ﬁDE) = e—(U2DE+U%G+2vDEvEG cos 0) /v (7.9)

3/208
where 6 is the angle between the direction of the dark matter in the Earth’s frame
and the direction of the Earth’s motion. The top half of Figure 7.8 shows the ex-
pected detection rate (in units of maximum June detection rate) for a directionally-
sensitive axion detector in June and December. Note the subtle changes in the
shape of the contours due to the seasonal motion of the Earth. In June, slightly
more high speed events are detected with a slight bias towards oncoming particles.
In December, there is a slight increase in axions which are more parallel to the

Earth’s motion.
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Figurc 7.8: Top: Directional axion spectra for June (left) and December (right) in units
of the peak June detection rate. Bottom: The seasonal modulation factor for

the above spectra.
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In order to clearly illustrate the annual modulation of the detection rates, the
seasonal variation of the detection rate, defined in equation (7.6), is shown in the
lower half of Figure 7.8. As in the speed distribution modulation (Figure 7.7), the
most pronounced modulation occurs at the highest speeds. However, there is very
little variation at low speeds for any angle of encounter.

In a smooth halo, directionally-sensitive detectors would be highly biased to-
wards particles which appear to be coming from the forward direction (moving in a
direction 180° relative to the Earth’s motion). Since the Earth’s speed through the
Galactic halo is comparable to the velocity dispersion in the halo itself, it is very
difficult to have particles “catch-up” to the Earth from behind with any significant
speed. This is visible in Figure 7.8 where the detection rate falls rapidly for angles
less than 90° (or cosé > 0).

The seasonal effects are most pronounced however, when the net flux of axions
arriving from a given direction on the sky is considered. The total event rate arriving
from direction (b, 1) in the sky is given by integrating over all speeds in that direction.

> 1 —(v v U v 2
F(0,0) = [ e et he om0/ vy (100

cosf is related to the direction of the detected particle and the direction of the

Earth’s motion, (¥',1'), via
cos§ = cosbcoslcosb' cosl’ + cosbsinl cos b’ sinl’ + sin bsin b/ (7.11)

Figure 7.9 shows the net axion flux arriving from different parts of the sky. The
peak is clearly in the direction of the Sun’s motion, however the exact location
and intensity shifts as the Earth orbits the Sun. The decrease in peak intensity in
December is accompanied by an increase in detections throughout the remainder of
sky. From Figure 7.8, this increase in flux is from lower velocity axions with speeds
of about 200 km s

However, even with the seasonal modulation, if the halo is correctly described

by a Maxwellian distribution, an axion detector would be dominated by particles
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December

Figure 7.9: Sky plot for the net direction rate of axions arriving from a given direction
in a smooth Maxwellian halo in June (upper plot) and December (lower plot)

normalized to the peak June rate.
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from in front of the Earth with very few detection of axions parallel to the Earth'’s

motion.

7.3.2 WIMP Detectors

The analysis of WIMP detection is more complicated than for axion detection exper-
iments. Since WIMP detectors are based upon the scattering of WIMPs off detector
nuclei, there is a random scattering angle involved. Therefore, the detection rate
must involve an integral over all possible scattering angles. As shown in Jungman
et al. (1996, and references therein), the detection rate for WIMPs is given by

dR  oopo F2(Q) = Mdv (7.12)
v

Q  2mm? Umin
where og is the scattering cross-section, pg is the local density of WIMPs, m, is
the mass of the WIMP, m, = m,my/(m, + my) is the reduced mass, and my is
the mass of the nucleus in the detector. Finally, vy, is the minimum velocity of a
WIMP which could deposit an energy of () into the detector:

_ Qmy
Umin = 2m2

r

(7.13)

For example, in a germanium-based detector (my = 68.5 GeV), if an energy of 100
keV is detected and a WIMP mass of 50 GeV is assumed, the minimum speed which
the WIMP could have had is 607 km s~1.

For the Maxwellian speed distribution from equation (7.8), the detection rate
can be evaluated analytically:

dR 00P0 12 1 [ (vmin + ’UEG) (Umin — 'UEG)J
—_—= F fi-—— ) —erf | o o E T 7.14
dQ  2m,m? (@) 2UEG o Vo e Vg (7.14)

Figure 7.10 illustrates the expected detection rate (in arbitrary units) of an ideal
WIMP detector for June and December. As with axion detectors, the variation of
the Earth’s speed in the Galaxy causes a shift in the detected recoil rates with a

decrease in high energy events in December. Figure 7.11 highlights this seasonal
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Figure 7.10: Seasonal effect due to the Earth’s motion on WIMP detection in a smooth
halo. Moving into the halo in June increases the detection rate compared to

December for all but the lowest recoil energies.
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Figure 7.11: The seasonal modulation factor for WIMP detection experiments.

variation by plotting the seasonal modulation factor.

The design of directionally-sensitive WIMP detectors is further advanced than for

directionally-sensitive axion detectors. Several experiments are currently underway

or in development to record not only the recoil energy of the WIMP, but also its

direction.

The one-dimensional velocity distribution in equation (7.12) can be expanded to

yield
00 T 27
AR _ 9P _po o /0 /0 f(¥)vd¢ sin 6dfdv

d@  2m,m? Vmin

The differential detection rate for a given direction is then

d?R oopom
dQdcos  m,m?2

F@Q) [ f(v,0)dv

(7.15)

(7.16)

For the usual Maxwellian distribution, this can be evaluated to give the angular-

dependent recoil spectrum:

d’R GoPoT o Vhg
== F - T
dQd cos 6 2v,m,m? (@) exp v2 %
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2 2 ) 9
{UEG cos Hﬁexp (EEE:EO_S__G_) (erf (Umm + Vgg €OS ) 3 1)
v

o vO

V2. + 2UBQUmin €OS 0
+v,exp | — o2
[2]

(7.17)

where 0 is the direction of the arriving WIMP relative to the Earth’s motion, not
the angle of recoiled nuclei.

The top portion of Figure 7.12 shows the directional WIMP recoil spectrum for
June and December. The contours are logarithmic spanning 25 orders of magnitude!
Therefore, as with the axion spectra, the vast majority of events would occur from
WIMPs travelling against the Earth’s motion. The highest event rate would occur
for small recoil energies since WIMPs of all velocities can contribute. The contours
shift slightly between the June (left) and December (right) spectra. This variation is
illustrated by the seasonal variation factor shown in the lower portion of the Figure.

The origin of WIMPs in the sky will be the same as for axions shown in Figure
7.9 since it is simply a measure of the net flux of particles. Therefore, if the smooth
virialized halo model is correct, almost all detected particles should be travelling

against the Earth’s motion with only a small probability of low energy events arriving

from behind.

7.4 N-body Results

The results from the reverse-run cosmological simulation from Chapter 6 are in the
form of a Monte-Carlo representation of the distribution function, not a smooth
analytic function. In order to compare the results of the N-body simulation with
the analytic models from the previous section, numerical routines must be developed

to simulate the observation of axions and WIMPs.



7. Effects of Substructure on Dark Matter Detection 140

cos(theta)
cos(theta)

200 0 200

100 100
Recoil Energy (keV) Recoil Energy (keV)

1

0.36

0.24

cos(theta)

200

100
Recoil Energy (keV)

Figure 7.12: Top: Recoil spectra for an ideal directionally-sensitive WIMP detector for
June (left) and December (right). The contours are logarithmic so from dark
red (highest detection rates) to dark blue (lowest detection rates) they span
25 orders of magnitude. Bottom: The seasonal modulation factor for an
ideal directionally-sensitive WIMP detector clearly show the bias towards

higher velocity particles. Note the contours are linear in this figure.
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Figure 7.13: Directional detection spectra for axions (left) and WIMPs (right) from a
numerical realization of a Maxwellian distribution. Contours are as in Figures

7.8 and 7.12 respectively.

7.4.1 Numerical Analysis Routines

In order to verify the analysis routines, a numerical representation of the Maxwellian
distribution used for the analytic plots was generated. This N-body Maxwellian was
then analyzed using the same routines that will be used for the cosmological results.
Figure 7.13 shows the predicted detection rates for direction-sensitive axion (left
panel) and WIMP (right panel) experiments. In both cases, the June spectrum was
analyzed. These figures agree with the analytic models presented in Figures 7.8
and 7.12, providing confidence that any effects seen in the cosmological simulation
results are truly representative of the distribution of the dark matter, and not an
interpretation issue.

In addition to the axion and WIMP detection spectra, the directional sky plots
of the origin of dark matter are important. Figure 7.14 illustrates the direction
of incoming dark matter realized from the numerical Maxwellian distribution. It

agrees with the analytic model shown in Figure 7.9.
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December

Figure 7.14: Sky view of dark matter flux from a numerical Maxwellian distribution. The

projection is normalized to the peak June rate.
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Figure 7.15: Axion detection spectra from the cosmological simulation of Chapter 6. The
solid line shows the spectrum in June, while the dashed line is the same

distribution but for December.

7.4.2 Axion Detectors

Since axion detectors directly measure the speed distribution of the particles, it
is straightforward to calculate the axion detection spectra from the cosmological
simulation results from Chapter 6. Figures 7.15 and 7.16 show the detection spectra
for June and December, and seasonal modulation factor respectively. The spectra
have a general form as due to the Maxwellian distribution with the detection rate
rising from v = 0, peaking around v = 300 — 400 km s™'and falling to 0 by 800

km s™!

. However, there are significant differences. Most importantly are the many
localized peaks in the distribution. These are streams or partial shells of matter
which are not in virial equilibrium with the rest of the dark matter in the solar
neighbourhood. As the Earth orbits about the Sun, the changing relative velocity

between the terrestrial detector and dark matter causes the locations of some of
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Figure 7.16: The seasonal modulation factor, as defined in 7.6, highlights the differences

between the June and December spectra from the N-body data.

the peaks to shift. The amount of variation in the location of the peak yields
some dynamical information about the streams of dark matter. For example, if a
peak shows no or very little seasonal variation, the dark matter stream must be
oriented roughly perpendicular to the plane of the Earth’s orbit. A large seasonal
variation indicates that the stream must be parallel to the Earth’s orbit. The
seasonal modulation factor also shows clear signs of the streaming nature of the
dark matter. As the location of the peaks moves, it results in a large seasonal
change in detection rates over a small range of speeds.

The differences between the assumed smooth Maxwellian distribution and the
N-body results are more pronounced in the direction-sensitive axion spectra. Figure
7.17 shows the directional dependence of the axion signal for the N-body results.
Though the general trend of a higher range of detected speeds near cos# = —1, and

only small velocities near cosf = 1 is still visible, instead of the smooth variations
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seen in the analytic model in Figure 7.8, the reverse-run spectra consists of many
small, isolated features. This clearly shows that a large portion of the material is
not smoothly distributed but instead resides in streams or clumps which are passing
through the solar neighbourhood.

The differences between the June and December spectra are also much more
pronounced. This gives rise to the rapidly varying seasonal modulation factor shown
in the lower half of Figure 7.17. The seasonal modulation factor has almost extreme
values (+1) for a wide variety of speeds and angles. Since the seasonal modulation
is caused by the change in velocity and angles of a dark matter stream during the
year, large variation in the seasonal modulation factor usually occurs in pairs. Many
of the small isolated features in the directional spectra appear as a pair of nearby
points where one has a value of 7 = 41, while the other has F = —~1. This arises
simply due to the change in cos @ and v of the stream between June and December
and the lack of any nearby streams to mask the variation.

The prominent features visible in the directional axion spectra can be confirmed
to be streams by looking at the origin of the axions in the sky. Figure 7.18 shows
the intense features from the directional axion spectra are visible in the sky plot
of the N-body results as concentrated points. Figure 7.18 also clearly illustrates
that, as in the smooth analytic models, the majority of detection events will be of
particles travelling against the Earth’s motions. However, the maximum detection
rates are no longer directly ahead of the Earth. In this realization of the Milky Way,
the maximal signals would be arriving from closer to the Galactic poles than from
straight ahead. However, it should be noted that the simulation from Chapter 6 is
only one random model of the Milky Way and a slightly different simulation could
yield streams arriving from different directions. Nonetheless, the qualitative nature
of the stream-dominated dark matter distribution, rather than a smooth Maxwellian
distribution, would still remain. For example, if the Sun’s motion is assumed to be

in a different randomly chosen direction in the Galaxy, the location of peaks in the
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Figure 7.17: Top: Directionally-sensitive axion spectra for the results from the N-body
simulation of Chapter 6 in June (left) and December (right). Contours are
as in Figure 7.8. Bottom: The seasonal modulation factor for the above

spectra. Note the rapid variation in both speed and angle.
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December

Figure 7.18: Sky plot for the direction of origin of axions from the N-body simulation in

June (upper plot) and December (lower plot).
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Figure 7.19: Axion detection spectra from the cosmological simulation of Chapter 6 as-
suming a different direction of the Sun than in Figure 7.15. The solid line
shows the spectrum in June, while the dashed line is the same distribution

but for December.

speed distribution shift, but the qualitative nature of the distribution remains the
same. Figure 7.19 shows the same dark matter distribution from Figure 7.15 but the
Sun’s motion was assumed to be in a different direction. The peaks in the spectrum

remain, but their location shifts.

7.4.3 WIMP Detectors

An analysis of the cosmological reverse-run simulation for WIMP detections is
slightly more complicated than for axion detection experiments since it involves
an integral over all velocities above the minimum value. Nonetheleés, it can be
computed through a straightforward application of equation (7.12) with the inte-

gral performed numerically. Figure 7.20 shows the June (solid line) and December
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(dashed line) recoil spectra for a germanium detector (my = 68.5 GeV) and a 50
GeV WIMP. At low recoil energies, the general trend of both spectra is very sim-
ilar to that of the smooth distribution shown in Figure 7.10 (and as indicated by
the long dashed line in Figure 7.20). However, the N-body spectrum has numerous
bumps and changes in slope. This is due to the inhomogenous nature of the dark
matter distribution. In particular, at higher recoil energies the recoil spectrum be-
comes quite “step-like”. This is due to the fact that streams of uniform velocity (i.e.
streams where the velocity dispersion within the stream is small compared to its bulk
motion) have a maximum energy that they can contribute to the recoil spectrum.
This results in a sharp truncation of the recoil energy spectrum at the maximum
transferable energy of the stream. Therefore, the several steps at higher recoil en-
ergy in the spectrum indicate that at high velocities, the dark matter distribution
is dominated by streams of particles, rather than a smooth distribution.

The seasonal modulation of the recoil spectra, shown in Figure 7.21, also clearly
differs from the smooth transitions in the Maxwellian distribution. While at low
energies, it varies somewhat smoothly, at high energies it varies rapidly. This is
related to the conclusion that the dark matter distribution is dominated by streams
at higher velocities. As the Earth orbits the Sun, the relative velocity between
the stream and the detector will change causing the maximum energy deposited in
the detector to vary. This is clearly visible for the large stream with a maximum
recoil energy of approximately 130 kev in June, but which falls to about 110 kev in
December. This causes a very large seasonal modulation in this range of energies.

As in the case of the axion spectra, the one-dimensional spectra provide hints of
underlying structure in the velocity-space distribution of the dark matter, but can-
not yield too many specific details. The directionally-sensitive plots of the WIMP
detection rates from the cosmological simulation (Figure 7.22), can be used to ex-
tract more information about the nature of the dark matter distribution. The first

thing to note is that the same general properties exist in the N-body spectra and the
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Figure 7.20: 'The June and December WIMP recoil spectrum from the N-body results.

For comparison, the June detection rate for a Maxwellian halo is shown with

the long dashed line.



7. Effects of Substructure on Dark Matter Detection 151

v by

T R

Differential Rate

TR AR A

|

_00.1 L 1 1 1 l 1 1 1 1 ' 1 1 1 1 ! 1. 1 ] i
0 50 100 150 200
Recoil Energy (keV)

Figure 7.21: The seasonal modulation rate for WIMP detection experiments.

analytic spectra. In general, the higher event rates occur at low recoil energies and
for WIMPs which have large angles between their motion and the Earth’s. However,
the highest detection rates do not occur at 180°, but instead in a variety of regions
elongated in the speed direction spanning small ranges of angles. This is similar to
most features in the figure which extend from @ = 0 to a maximum @ at almost
constant . This is another signature of the stream-like nature of the dark matter
distribution. If a stream exists at a given angle, , to the Earth’s motion with an
energy of o, it would appear in the directional WIMP plot as a horizontal line at
0o extending up to (Jg. The several dominant streams found in the axion spectrum
in Figure 7.17 and visible in the sky projection (Figure 7.18) are also visible in the
directional WIMP recoil spectrum.

The streams in the directional WIMP spectra are emphasized in the seasonal
modulation signal (lower half of Figure 7.22). As the relative speed and direction of

the Earth changes slightly throughout the year, two effects arise. The first is that the
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Figure 7.22: Top: Directional WIMD recoil spectra for June (right) and Decewmber (left).
Note the contours are logarithmic and span 15 orders of magnitude. Bottom:

The seasonal modulation factor for the above spectra. The contours are linear

between +1.
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length of the feature changes due to the dependence of @)y upon the relative speed
between the Earth and the WIMP. This results in a large seasonal modulation at
higher energies and very little change at lower energies for a given 6. A second
effect arises if there is a change in angle between the direction of the Earth and the
direction of the WIMPs throughout the year. If the change is large enough, it can
result in the entire feature moving up or down in #. In the seasonal modulation
figure, this appears as a long horizontal line of enhanced variation.

Note that the current generation of directionally-sensitive WIMP detectors have
very low angular resolution, and in fact, measure the direction of the nuclear recoil,
not the direction of the incoming WIMPs. Therefore, due to the random scattering
events in the detector and the uncertainty about properties of the incoming WIMPs,
the direction of origin cannot be well determined. (However, Gondolo (2002) has
shown that it is possible in principle to reconstruct the WIMP velocity distribu-
tion from only the nuclear recoils.) Nonetheless, directional sensitivity in detectors
serves two important purposes. The first is background discrimination. In the di-
rectional spectrum of both the smooth Maxwellian distribution and the N-body
results, very few WIMPs arrive from behind the Earth. Background events, such
as neutron interactions and nuclear decays which should show no directional bias,
would dominate the detection spectra for directions much less than 90°. This back-
ground would be random in direction and could be subtracted from the other half
of the spectrum to yield the actual WIMP interaction rate. However, this technique
implicitly assumes that the detection rate at higher angles is much greater than at
lower angles. It is possible that a stream of dark matter could be arriving from
behind. This illustrates the second advantage of a directional detector. If there are
correlations in any direction of the recoiled nuclei, it could still be used distinguish

to true WIMP recoils from background events.



8. CONCLUSIONS

The standard assumption that dark matter is thoroughly virialized in a smooth
Maxwellian distribution does not withstand either of the investigation techniques
presented. Both the semi-analytic modelling from Chapter 4 and the reverse-run
technique from Chapters 5 and 6 indicated that the local component of dark matter
will have at least a small streaming component due to recent merger events, and
could in fact have a large amount of velocity-space substructure.

The semi-analytic model showed that a small portion of the local complement
of dark matter likely arose from recent merger events. This dark matter would have
a velocity significantly higher than the typical velocities in the solar neighbourhood
giving rise to inhomogeneities in the measured velocity distribution. Since the dark
matter stream arose from a relatively recent merger event, the speed of the dark
matter as it passes through the solar neighbourhood is significantly above the typical
circular or virialized velocities.

To further investigate the possibility of velocity-space substructure, the “reverse-
run” technique was developed. One requirement for the reverse-run is that a tra-
ditional N-body simulation must be reversible. It was shown in Chapter 3 that
reversibility and the integrity of phase-space structures are tightly linked. In order
for the system to be reversible, the evolution of the phase-space distribution must be
correctly followed. A simple solution to minimize the breaking of the phase-space
sheet in CDM simulations is to use sufficient softening in the simulation. It was
shown that one must use a softening length of approximately 1/4 the initial grid
spacing of the particles in order to properly maintain the integrity of the phase-space

sheet.
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In order to implement the reverse-run method, a new numerical code was devel-
oped based upon the multipole expansion method of Dehnen (2000). The new code
is reversible, allows test particles, and incorporates periodic boundary conditions for
full cosmological simulations. A simulation which is similar to the Milky Way and
M31 was designed and the velocity-space distribution at a point resembling the solar
neighbourhood was analyzed using the reverse-run technique. The results showed
that there is a significant amount of velocity-space substructure in the vicinity of
the simulated Milky Way.

The effect of velocity-space substructure was shown to have significant impact
on terrestrial dark matter detection experiments. Rather than the smooth contin-
uous spectra expected from the smooth halo assumption, the substructure creates
numerous features in both the axion and WIMP spectra. The axion speed distri-
bution consisted of numerous peaks and it was shown that these are concentrated
streams of dark matter originating from small locations in the sky. As the Earth
orbits the Sun, the seasonal motion causes the intensity of the streams and their
direction relative to the Earth to change, yielding strong seasonal variations in the
spectra. Due to the random scattering angles involved in WIMP detection, sub-
structure tends to become washed out in the simple bolometric detectors. There
were signs of substructure in the non-directional spectra but not as prominent as
in the axion spectra. However, directional WIMP detectors, with low backgrounds,
would clearly see the substructure and significant seasonal modulation.

As dark matter detectors become more advanced, and possibly begin to detect
unambiguous signals of dark matter particles, the issue of velocity-space substruc-
ture will become of vital importance. Even in the absence of any confirmed de-
tections, the limits placed upon dark matter candidates may be overly restrictive
without considering the existence of streams and clumps of dark matter. Incorrect
assumptions about the local distribution of dark matter could lead one to completely

misinterpret the signal (or lack thereof) and arrive at erroneous conclusions about
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the nature of the predominant form of matter in the universe.

8.1 Future Work

While the studies undertaken here indicate that the velocity-space distribution of
dark matter in the solar neighbourhood is not smooth, and this inhomogeniety would
have significant impact upon dark matter experiments, there is still the possibility to
extend this work. One important task to undertake is to perform a higher resolution
cosmological simulation which better mimics the Local Group and has sufficient
accuracy to probe closer to the Galactic centre.

An equally important extension of this work is to incorporate realistic detector
models into the expected detection spectra. All spectra presented here, both non-
directional and directional, assume ideal detectors with arbitrarily high resolution.
In practice, detectors are non-ideal with experimental uncertainties and limited
resolution. Such restrictions on the quality of the obtainable data may impede the
ability to identify velocity-space substructure in the local dark matter distribution.

Finally, another interesting pursuit would be to examine one’s ability to recon-
struct the full dynamical properties of dark matter streams from observed detection
spectra. If the streams can be completely quantified, it may be possible to associate
them with local stellar streams or probe the exact details of the formation history

of the Milky Way.
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A. COSMOLOGY

A.1 General Relativity

A complete introduction to general relativity is beyond the scope of this Appendix.
However, for the purposes here, it is sufficient to say that the geometry of space-time,
described by the metric

ds? = gapdz®dz” (A.1)

is governed by the mass and energy distribution, T?. They are related through
Finstein’s equation:
s 831G, 4
G, = —T. (A.2)

ct e
where G# = R? — 1/2¢°R, R? is the Ricci tensor and R is the Ricci scalar. Both

R? and R are related to the metric elements gag.

A.2 Robertson-Walker Metric

According to the cosmological principle, the Earth should occupy no special spot in
the universe. Since on sufficiently large scales, the universe appears homogeneous
to terrestrial observers, it should appear the same to any other observer located
elsewhere. This leads to the conclusion that the universe must be isotropic and
homogenous. The only metric which satisfies both isotropy and homogeneity is the
Robertson-Walker metric:

dr?

2 _ (2
ds® = a(t) Ry

+ r*(d6* + sin’ Hd([)z)] — c*dt? (A.3)
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where R is the radius of curvature. If R is real, the spacetime has negative curvature;
if R is imaginary, the spacetime has a positive curvature. R = oo is flat space.
Calculating the Einstein tensor! yields

a? + 2ad — 2R2

Gr = oy (A.4)
- 2 .. _2
o _ G@°+2ai—CR
Gy = — 2a2 (A-5)
-9 . -2
s 02+ 2aa—R
G¢ - c2a2 (A.G)
i? — 2R

The remaining terms are zero. For a perfect fluid with a cosmological constant the

stress-energy tensor is

c?

871G A
2
&G A

with the remaining terms zero where p is the pressure, p is the density, and A is the

T =T =T} = (A.8)

T = —pc* ~ (A.9)

cosmological constant. Therefore, from (A.2)

32 + 2ad — 2R2 81G
a® -+ 2aa — ¢ __7rp+A

(A.10)

a? c?

and
3(‘12—1:—22-]—%—_—?— =8rGp+ A (A.11)
Equations (A.10) and (A.11) are the Friedmann equations. Rearranging them into

the more familiar form yields

a snGp A & 1
- = — A12
a [ 3 + 3 + RzaQ} ( )
a 4G P A
2 - 27 3L = Al
a 3 (p * 02) * 3 (A13)
Several additional parameters are useful. The Hubble parameter,
a
H=- A.14
: (A14)

* GRTensorJ (http://grtensor.phy.queensu.ca) was used to perform the metric calcuations.



A. Cosmology 170

the redshift,
Qo

a(t)

where the subscript 0 is used to indicate the present-day value of a parameter, and

1+2z= (A.15)

the deceleration parameter,

aa
Under the assumption that the pressure term, p, can be neglected (a good ap-
proximation when collisionless dark matter dominates the mass of the Universe),

equations (A.12) and (A.13) can be reduced to

a Que Qn 12
- = H, Q A7
a ’ [(a/ a) | (afac)? A] (A17)
= = 0™ __q Al
72 7E [2(a/a0)3 A} (A-18)
where
87TG,00 A A
Q — — —_———_—— = —— Al
v=3mp 0 M T mRa (A.19)
Evaluating these expressions at the present day yields
Qu+ Q%+ Q=1 (A.20)
and
Q
Qo = TM = (A.21)

A.3 Selected Solutions to the Friedmann Equations

A completely general solution to equations (A.12) and (A.13) is difficult to obtain.
However, it is useful to examine various popular sets of parameters in order to

understand how the universe evolves in likely cases.

A.31 Qn=102 =002 =0

The simplest solution for Friedmann’s equations, known as a Einstein-DeSitter

model, is for ©,, = 1,24 = 0, and Qg = 0. This is a flat, matter-dominated
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universe with no cosmological constant. In this case the solution is

a(t) = (ig‘lt)z/s (A.22)

normalized such that at the present time, g, a(ts) = 1. The age of the Universe,

parameterized by the present value of the Hubble constant, is then

Hoto = % (A.23)

A3.2 Q,+QO,=1,Qr=0

This case is motivated by the current observational constraints that indicate 2, ~
0.27 and 2 = 0.73 (Spergel et al., 2003). In this case, the general solution to (A.12)
and (A.13) has the form

a(t) = Csinh?*(at) (A.24)

where C' and « are constants to be determined by substituting the general form into

the Friedmann equations and requiring that a(to) = 1. Solving yields

Q) V3 3
C= (Q—"Z) , and o = S Hoy/0 (A.25)

Therefore, )
Q 1/3 ) 3
a(t) = (Q_]ZI) sinh?/3 (§H0\/QA t) (A.26)
In this case, the age of the Universe is
2 1 Qa Qp
Hytg = =——==1 —— — 1 A27
o = 3 0 “[\/(QM)+\/(QM)+ ] (A-27)

Using Qx4 = 0.73 and Qp = 0.27 yields Hytp = 1.04 or roughly 1.5 times the age

of the Einstein-DeSitter Universe. Note that it was assumed that Q54 > 0 to be

consistent with observations.
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Figure A.1: Contraints on cosmological paramters from the cosmic microwave background
(CMB) (Spergel et al., 2003), large scale structure surveys (LSS) (Verde
et al., 2002) and supernova results (SN1la) (Perlmutter et al., 1999). Fig-
ure is an updated version of one from Verde et al. (2002) available at

http:/ /www.astro.princeton.edu/~lverde/



B. STRUCTURE FORMATION

B.1 The Evolution of Structure

In the early universe, matter can be modelled as a gravitating perfect fluid. When
small perturbations are present in the fluid, they can grow under the influence of
gravity. If the perturbations are sufficiently small, their evolution can be approxi-

mated through linear approximations.

B.1.1 Perfect Fluid

The standard fluid dynamic equations in a gravitating system are

dp L
(b—t>F+ Vi pi =0, (B.1)
du . .
p [(E) + (4 - VF)U] = —Vip — pVi® (B.2)
V2® = 47Gp (B.3)

where 7 and @ are the proper distance and velocity of a fluid element relative to a
fixed origin. If the fluid is expanding, these can be related to comoving coordinates,

Z and ¥ by

F o= —— (B.4)

7 (B.5)

7= i

i 1
P32+ 2V pi=0 (B.6)
a a
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ov 1 a 1 1

—+ ~(0- V) 0+ -v=—-——Vp—- -V B.7

8t+a(v )U+av pa L ¢ (B7)
where the comoving potential, ¢, is related to the fixed potential ® via ® = ¢ —
1/2adx?. Finally, it is useful to express the continuity equation (B.6) in terms of

the density contrast ¢ defined by

o(@,t) = 21+ 6z, 1) (B.8)

]

where pg is the present-day mean density. Substituting (B.8) into (B.6) yields

5tV (1487 =0 (B.9)

The above expressions can be combined to yield (Peebles, 1980):

2 : 1
Qﬁ+2g§§ = ~a—V2p+ ?V-(1+6)V¢+

1_& [(1+5)va o (B.10)
ot? adt  po zh v ’

a2 dz°daP

While equation (B.10) completely describes the growth the the density perturba-
tions, it is very difficult to handle directly. However, if the density contrasts are
small (§ < 1) and the velocity distribution has no skewness (last term in (B.10) is

~ 0) it is possible to linearize the expression.

5% add _ 4nGpo

- — = ) B.11
o " “aot a? (B-11)

From Peebles (1980) the solution to (B.11) is
a(,t) =2 [ 56 k), 0&t) =" 8(a,t0) (B.12)

These solutions describe the growth of pertubations in a homogenous, isotropic
universe when the matter is modelled by a pressureless, perfect fluid. Note that 0,

corresponds to a growing mode, while d is a decaying mode.

B.1.2 Q,=1,02,=0,Qr =0
For a flat, matter-dominated universe, the solution to (B.12) is

5u(t) = ?B-Higa(t), 5a(t) = Hoa~2(2) (B.13)
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or, expressed in terms of redshift z,

21 1

- = Hp (1 + 2)%? B.14
) = Sy ) = Ho(1+) (B.14)
and
: 2 1 . 3, .
6.(2) = ==V1+ 2z 0(2)=—--Hj(1+2) (B.15)
5 H, 2
B.1.3 Q,+Q,=1,Q95 =0
The solution to (B.12) is
2 3 3HoVAut/2 sinh?/3(x)
51(6) = s coth (5Hoy/0nt) [ Sl Wir (B
1) SHEQ OOV o cosh?(x) = (B16)

Sa(t) = Hoﬂcoth<gHo¢Q—At) (B.17)

This has been expressed more conveniently by Bildhauer et al. (1992) in terms of

a(t):

5 Qm 1/3
6 = ng(5/6,2/3) (Q—A) x1/2 (B.18)
by = a2 l—f—l;Qma?’ (B.19)
where
-1 Qn 3
x :1+1__Q a (B.20)

and B;(a,b) is the incomplete beta function.
Note that the normalization of the two forms of the solution are different. How-
ever, since it is generally the ratio of the expansion factors at two times that is of

interest, the absolute normalization is not important.

B.2 Zel’Dovich Approximation

Zel’Dovich (1970) proposed that the evolution of particles in the early universe could

be modelled in comoving coordinates via the simple construct of:

#(t) = G+ B(t) (@) (B.21)
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—

where ¢ is the initial position of the particle, f(g) is an unknown perturbation
function and, B(t) is some unknown growing term.

From the conservation of mass one finds that

/ o, Oz = / 0d’q (B.22)
Therefore,
. _ |oq
p(Z,t) = po a—; (B.23)
af !
~ 50 [5+ B3 (B.24)

-

Expanding linearly in B(t)f(§) gives

—

5zeld0vich = P ;;Opo - _B(t)‘—iq : f((f) (B25)

From linear thoery, one expects the growing modes to be given by (B.12)

. a ftdi
6linear(x7t) = E/O ?5(7‘71’-0) (B26)
= 5() 3 6T (B.27)
k
= 5() S bR a0 (B.28)
k

where the Fourier expansion of §(F,t;) was used. However, since the Zeldovich

perturbations are small, initially B(t) £l (9) < ¢. Therefore,
5linea,r ~ 51 (t) Z 5keik'6 (B29)
k

In order for equations (B.25) and (B.29) to be consistent, it is required that
B(t) = 01(t) and
. ik . o
flg)= ; ﬁ‘ske ke (B.30)
The Zel’Dovich approximation has the advantage over standard linear theory in

that it remains qualitatively correct even when the perturbations become large and

the linear theory approximations can no longer be applied (Zel’Dovich, 1970). This
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allows one to analytically follow the evolution of small perturbations much farther
than one might expect. For numerical simulations, the ability to model the early
stages of growth beyond the truly linear regime is of great benefit since it permits
one to start the simulation at a much later time and reduce the total amount of

computation.

B.2.1 Numerical Initial Conditions

To apply the Zel’Dovich approximation to numerical initial conditions, one must

determine values for 8 appropriate for the chosen power spectrum P(k).
P(k) =< 6, >* (B.31)

In general, &; could be a complex value. However, if one assumes that the initial
density fluctuations are Gaussian, ; can be chosen by simply choosing §p (real part
of 6;) and §; (imaginary part of é;) from a Gaussian distribution with variance given

by P(k). The initial particles can then be perturbed according to:

—

i . .
Zy(E0, ) = To + 61(1) Y = ((51 cosk - Zo+ Opsink - :fo) (B.32)
k

where % is the particle’s initial unperturbed position.

For the reverse-run technique, it is necessary to undo these perturbations. Un-
fortunately, equation (B.32) is not analytically invertible. However, the initial point,
Zy which yields the perturbed point,ﬁ, can be found by numerically solving for the

roots of

A = Pi_xpi(f)
k; 2 o
= -Pi_xi"‘(sl(t)z:ﬁ(6]COSk"CU+6RSIHk'.T) (B.33)
k

This is a set of three coupled equations which cannot be separated. However, a

simple and efficient technique to find the roots is Newton’s method. The basic idea
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behind the algorithm is that if the value of a function and its derivative are known

at a given point, it can be used to extrapolate an estimate for the z-intercept.

@)
To = 7) (B.34)

The derivative of the function can then be calculated at this new point, z,, and the

procedure repeated until the root is found.
To apply this technique to undoing the Zel'Dovich perturbations requires the

derivatives of A:

n;
7 = 1 +51(t);

|75

2
i
2

(5]SinE‘f_5RCOSE‘f) (B.35)

e

Each new approximation for the initial position, o, which yields the perturbed

—

position, P, is

P, —x;— 51(t)2k% (510031_5-5:'+ 5RsinE-f)
—1+51(t)2k%z~ (5ISinE-§:'— 5Rcosﬁ-§)

(B.36)

Since the Zel’Dovich perturbations are relatively small, an initial guess of T = Pis
a good starting point.

Note that this is not a strictly complete implementation of Newton’s method in
three dimensions since the terms 0A,;/Oz; where ¢ # j are ignored. Nonetheless,

since the perturbations are small, the algorithm still converges quickly.
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