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ABSTRACT

Given the technical limitations of conventional CT scanners and the physiological
characteristics of pulmonary perfusion, the goal of this work was to assess the feasibility
of measuring regional lung perfusion with a conventional CT scanner. A variety of
theoretical and experimental work was undertaken to address specific difficulties
encountered in such a measurement.

Seventeen patients participated in a study to assess the reliability of an assisted
breath-hold technique to reduce respiratory motion artifacts. For the majority of these
patients, respiratory motion was reduced from 1.7 cm to 0.4 cm when using the assisted
breath-hold technique. Because the injection protocol in a functional study requires that a
highly concentrated pulse of the contrast be delivered in a very short time, the
relationship between contrast concentration and CT number must be carefully studied.
Therefore, this relationship was theoretically and experimentally examined. The linearity
between CT number and contrast concentration was found to falter when: ) x-rays
become beam-hardened in the contrast; 2) there are large variations in concentration
within the CT scan-time, and; 3) the contrast passes through the imaging plane rapidly.
Streaking artifacts emanating from vessels containing the contrast were found to perturb
the CT number in the surrounding vessel. This is primarily due to the time changes in
density in the vessel, rather than beam-hardening. To obtain reliable perfusion estimates
in the presence of noisy data, a non-model based deconvolution method that uses the

input, tissue and output signals of blood flow was developed. This method was shown to



be more reliable than more conventional methods of deconvolution. High signal-to-noise
ratios in the lung were obtained when using a low tube-energy (100 or 120 kVp) and
large slice thickness (0.5-1.0 cm).

A pilot study to measure regional lung perfusion on a cancer patient was
successfully performed. This work demonstrates the first reported measurement of
regional lung perfusion using a conventional CT scanner. Because conventional scanners
are accessible in most clinics and this technique requires only minor modifications to
these scanners, there is great potential in the use of functional CT in healthy and diseased

lung.
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1. General Introduction

1.1 Radiation therapy of lung cancer

Lung cancer remains the leading cause of cancer deaths in Canada [Statistics
Canada 1996]. Within the last three years, there have been modest decreases in the
probability of male deaths from lung cancer (8.5 to 8.3%); however, the probability of
female deaths within the same period has risen from 4.2 to 4.5%.

In the early stages of disease, some lung cancers have high control-rates via
radiation and/or chemotherapy [Cox er al. 1986]. However, the control-rates for those
diagnosed at later stages of growth are poor [Graham er al. 1994]. Some purported
reasons for treatment failure are the variations in the radiosensitivity of different tumor
sizes and types, inadequate or insufficient delivery of dose, and the deleterious effects of
normal tissue irradiation.

In radiation therapy of lung tumors, multiple high-energy X-ray beams are cross-
fired into the deeper lying tumor volume, resulting in a concentration of dose to the
volume of interest. Through multiple beams, a high and uniform dose distribution may
be delivered that not only conforms to the tumor geometry, but also avoids critical
structures. The efficacy of the treatment hinges on the conformation of dose to the tumor
volume since both local tumor control and normal tissue complications increase with
dose.

With novel use of technology such as three-dimensional conformal therapy (3D-

CRT) and intensity modulated radiation therapy (IMRT), it may be possible to increase
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the dose to the tumor while still adhering to normal tissue constraints [Liebel ez al. 1994,
Armstrong et al. 1993, Chao er al. 2001]. However, the tolerance of lung tissue to

radiation is still not well understood.

1.2 Lung complications in radiation therapy

Lung complications may be expressed through clinical signs such as the loss of
lung function and scarring (or fibrosis) of lung tissue [Marks et al. 1993, Boersma et al.
1994, Mah er al. 1988]. Marks et al. and Boersma et al. both show that lung perfusion
becomes significantly reduced as a result of radiation therapy. They demonstrate that the
difference in single photon emission computed tomography (SPECT) signals taken
before and after radiation therapy correlate with radiation dose. However, the
interpretation of the difference in signal remains unclear since SPECT studies are
generally non-quantitative [Marks et al. 1995]. Furthermore, the large image resolution
of SPECT scanners, respiratory motion, and uncertainties in the registration of the
SPECT and dose images decrease the quality of this complication data.

Mah et al. show that with computed tomography (CT), the degree of fibrosis in
the lung tissue may be assessed through changes in the mean density before and after
radiation therapy. Changes in mean density within the irradiated regions may increase
by as much as 0.20 +/- 0.10 g/cm3. However, the sensitivity of this technique is poor
(5%) and density increases of as much as 0.20 +/- 0.09 g/cm3 may occur within non-
irradiated regions. Because of the low sensitivity, complication data generated from this

data are susceptible to errors.



Positron emission tomography (PET) produces a molecularly tagged image of
lung tumor cells and is quantitative. The utility of this technique to define tumor
volumes is of growing interest; however, the ability of PET images to provide insight on
normal tissue damage remains unclear [MacManus et al. 2002, Mah ez al. 2002, Mutic ez
al. 2002].

The use of magnetic resonance imaging (MRI) and functional MRI (f-MRI) in
radiation therapy is also of growing interest. F-MRI has been used to measure radiation
complications in other organs such as the brain and cervix, but not in lung [Fuss ef al.
2000, Huber et al. 2001,Gong et al. 1999]. Because the lung has a low magnetic
susceptibility, the feasibility of MRI to assess radiation damage also remains unclear.

There are reports on chronic lung tissue complications in mouse lung from
radiation, but there is a clear need for better in-vivo human data [Liao er al. 1995,

Tucker et al. 1997].

1.3 Functional imaging

In addition to providing anatomical and structural information, imaging
techniques such as Ultrasound, MRI, and CT can also provide physiological or
functional information. Of all functional imaging techniques, nuclear medicine images
yield the highest "functional resolution”. Radioactive particles may be strategically
attached to receptor molecules that either permeate cell membranes or attach to internal
structures. After they permeate or attach, the particle decays and locally emits a
photon(s). Despite the high functional resolution, most nuclear medicine techniques

have poor spatial resolution (0.5 cm or greater) due to large detector sizes and motion



artifacts from long scanning times. Other problems include translating the intensity of
signal to an absolute measure of function.

Computed tomography, which is generally known to provide anatomical
information, may also provide physiological information [Miles er al. 1997]. This
technique, called dynamic CT (d-CT), has numerous imaging protocols, but a common
element shared by all is the repeated image acquisition of a volume of interest (VOI) as
a high density tracer migrates through the vasculature. By quantifying the change in
density in a VOI, it is possible to assess the VOI's ability to transfer the agent through,
for example, the arterial blood supply to the extra-vascular space.

The change in CT Number as a function of time may be graphically analyzed to
provide a quantitative measure of perfusion [Miles er al. 1997]. In quantitative d-CT
studies, or functional CT (f-CT), this time-density data may be treated as time-series
functions from which physiologically meaningful parameters or functions may be
estimated. A common approach is to treat the signals as a series of independent causal-
linear systems [Zierler 1965]. This type of analysis has been performed in the brain to
estimate mean transit time (MTT), cerebral blood volume (CBV), cerebral blood flow
(CBF) and other perfusion metrics [Axel 1980, Nabavi et al. 1999].

An advantage of this technique over other functional imaging methods is the
linear relationship between the tracer concentration and the signal. Indicator-dilution
theory and data handling methods developed for nuclear medicine techniques may be

applied in f-CT without correcting for nonlinear effects inherent in MRI and Ultrasound.



Common problems associated with this imaging technique include image artifacts due to

motion and re-circulation.

1.4 The use of functional CT to measure regional lung perfusion

There have been several reports on the use of f-CT to detect lung nodules with
Patlak analysis. In this approach, images are periodically obtained several minutes after
the contrast agent injection [Swenson er al. 2000, Yamashita er al. 1995]. However,
measurements of regional lung perfusion, which require multiple images to be sampled
immediately after injection, have been performed only with ultra-fast CT scanners and
on canines. Wu er al. successfully estimated regional pulmonary perfusion with their
dynamic spatial reconstructor at the Mayo Clinic in Minnesota [Wu er al. 1988].
Hoffman er al. also successfully measured regional differences in lung perfusion with
their ultra-fast CT scanner in lowa [Hoffman et al. 1995]. The same group in Iowa
measured microvascular transit times in dog lung [Tajik er al. 1998]). Both groups
achieved this with highly invasive animal studies, where the contrast was injected
directly into the right ventricle within several seconds. Measurements of Xenon-
enhanced regional lung ventilation have also been performed using a conventional CT
[Gur et al. 1979, Herbert et al. 1982].

To our knowledge, there is no published work demonstrating the use of f-CT to
measure regional lung perfusion with a conventional CT scanner. This may be
attributable to a number of technical and physiological limitations. For example, the
lung is a highly perfuse organ and exhibits rapid clearance rates of the contrast.

Therefore, the contrast remains in the lung tissue for only a few seconds, making the



timing of the bolus injection and imaging critical in the protocol. Conventional CT
image acquisition periods, which are typically 0.5 - 2 seconds, are as rapid as the total
contrast injection period performed by Tajik et al. and Wu et al. Because the image is
collected in a duration nearly equal to that of the signal, potentially ambiguous measures
of the signal may result. Furthermore, artifacts caused by respiratory motion and image
reconstruction may reduce the image quality. This is all compounded by low contrast

enhancement within the lung due to the large air volumes.

1.5 Motivation and project hypothesis

As mentioned earlier, SPECT images taken before and after radiation therapy
can provide insight on the degree of vascular damage in the lung [Marks er al. 1993,
Boersma et al. 1994]. This damage may be expressed through a loss of perfusion after
the course of therapy. By correlating the difference in perfusion with the delivered dose
one can estimate the radiation sensitivity of the lung. This technique, however, is subject
to a number of difficulties.

Several minutes are required to collect the SPECT signals. As a result,
significant amounts of respiratory motion occur within the image, resulting in a blurred
and time-averaged functional image. As a result, the registration between the SPECT
and CT images is suspect to uncertainties. Further, potential errors may arise from the
re-positioning of patient in the follow-up SPECT images, which are taken several
months after the initial scans. Also, the SPECT images are qualitative. Processing
methods required to convert the measured SPECT image to absolute perfusion are

subject to uncertainties [Bushberg et al. 2001]. Last, the image resolution of the SPECT



(0.5 cm or greater) is much larger than that of the CT (typically 0.1 cm), resulting
reduced precision.

The major hypothesis of this work is that a conventional CT scanner, with its
inherent limitations, can be used to measure regional lung perfusion. The goal of this
research is to develop a tool that can be used to obtain a better understanding of the
radiation sensitivity, as expressed through the loss of perfusion, of the lung in-vivo. The
following chapters describe theoretical work, phantom experiments, and a patient study
that examines the feasibility of using a conventional CT scanner to measure regional
lung perfusion. It is hoped that through the use of f-CT before and after radiation
therapy, a better understanding of lung tissue damage can be obtained.

This thesis is organized as follows. Chapter 2 describes the use of a device to
reduce the key issue of respiratory motion artifacts. This device may be used for both
diagnostic and therapeutic purposes. Applications of this device in diagnostic imaging
and radiation therapy are investigated in this work.

Lung perfusion measurements with a conventional CT scanner require rapid data
acquisition from the CT scanner and a very short, but concentrated, contrast pulse.
Because of this, Chapter 3 examines the fidelity of contrast concentration to CT signal.
This work suggests that f-CT methods that rely on the rise-times in the time-density
curves may result in erroneous perfusion estimates.

In the first section of Chapter 4, methods used in obtaining perfusion-related

parameters from f-CT data are discussed. The proceeding section describes a new



technique to analyze f-CT data that exploits additional features of the f-CT image set
that are often neglected.

In Chapter 5, theoretical and experimental work that examines the likelihood of
obtaining a signal in the lung is described. Also, an investigation of the various CT
scanning parameters that maximize the signal to noise ratio in the lung is performed.
This information is then used to predict f-CT signals in the lung. Lastly, a demonstration
of f-CT to measure regional lung perfusion in the lung is performed with a patient study.

Chapter 6 summarizes the main conclusions found in this thesis. This is followed

by a discussion of proposed future work.



2. Evaluation of Active Breathing Control in reducing respiratory
motion artifacts

This chapter describes the use of a tool that reduces respiratory motion in
diagnostic imaging and radiation therapy. A study was undertaken at the Tom Baker
Cancer Centre that assesses the reliability of this tool in reducing respiratory motion.
While the design and rationale for this tool are in the context of radiation therapy, it may
also be used in diagnostic imaging studies, such as functional CT.

Appendix A describes a clinical demonstration of this device in radiation
therapy. This section is included in this thesis since it chronicles the first known use of
respiratory gated radiation therapy with Active Breathing Control (ABC) in Canada. It

also is the first reported use of ABC within a f-CT imaging study.

2.1 Reducing respiratory motion artifacts in diagnostic imaging

Respiratory motion may decrease the image quality of CT scans taken at or
proximal to the thorax [Bushberg et al. 2001]. This is due to the motion of the internal
and external structures during the image acquisition. To reduce these artifacts, a
common approach used is to simply instruct the patient to maintain a breath-hold while
the image is acquired. This ‘breath-hold’ technique provides a simple but efficient
method for reducing respiratory motion artifacts. However, the method poses difficulties
in CT exams that require several minutes; as a result, multiple breath-holds may be
necessary in the exam. In this case, the reproducibility of the patient’s position for each

of the images taken is unreliable.
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Other strategies to reduce respiratory motion in diagnostic CT include the work
of Mori et al. (1994), who employ respiratory-gating of the CT images using a
respiratory trace that triggers the image acquisition. Ritchie et al. (1994) utilize a
predictive respiratory gating system where scanning is performed during end expiration.
A more elaborate technique is to collect all the CT data as quickly as possible as can be
done with ultra-fast CT scanners. Ultra-fast CT scanners can scan the entire lung volume
within 200 milliseconds, thereby minimizing respiratory motion artifacts [Galvin er al.
1994]. These scanners are, however, costly and available in only a small number of

facilities.

2.2 Reducing respiratory motion artifacts in radiation therapy

In radiation therapy, increasing the dose to the tumor results in increased tumor
control. Also, increasing the dose to normal tissue results in increased normal tissue
complications. Since irradiation of normal tissue is often unavoidable in radiation
therapy, a balance between normal tissue damage and tumor control must be struck to
achieve an optimal treatment.

In a typical treatment, a patient may take 4 to 25 breaths while a radiation beam
remains on. Although the beam remains stationary, the tumor volume must always
reside within the radiation field. A volumetric change in the thorax due to respiration
may modify the dose delivered to the patient. Respiratory muscular contractions (such as
those of the diaphragm) may cause the target and other structures to move inside and
possibly outside the treatment-field. The clinical implication of this motion is that

internal and external patient movements of 1 ¢cm or greater can significantly alter the
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dose distribution and, therefore, outcomes [Hobday er al. 1979]. If volumes allotted to
accomodate respiratory motion are not included in the treatment, it may be possible to
reduce normal tissue complications. Furthermore, the respiratory motion of the tumor
and peripheral lung reduces the homogeneity and the mean dose the tumor receives
[Brugmans er al. 1999]. Because of the uncertainties in lung dose, normal tissue
tolerance data derived from these dose distributions are subject to further uncertainty
[Emami er al. 1991, Basran 1997]. Eliminating the margin allotted for respiration may
lead to meaningful increases in tumor dose without increasing complications [Basran
1997).

There are several methods to account for respiratory motion in radiotherapy. The
conventional approach is simply to widen the beam size to ensure coverage throughout
the entire respiratory cycle. Another approach is to coach the patient to hold their breath
and treat in small time intervals [Ten Haken et al. 1997, Mah et al. 2000]. Yet another
approach is to synchronize the radiation beam to the patient's respiratory motion with a
surrogate signal, such as change in volume, diaphragm position, or CO, concentration
[Ohara et al. 1989, Kubo et al 1996, Wong et al. 1999).

In 1999, the Tom Baker Cancer Centre acquired a prototype of the Active
Breathing Control (ABC) Device from William Beaumont Memorial Hospital in Royal
Oak, Michigan [Wong er al. 1999]. This device may be used to reduce respiratory

motion in both diagnostic imaging and radiation therapy.



2.3 System description

Details of the ABC device are described in detail by Wong er al (1999). To
summarize, there are several components, which are displayed in Figure 2-1: lap-top
computer with software (1); digital to analogue converter (DAC) (2); pneumotach,
scissor valve and mouth-piece assembly (3); and emergency release switch (4). The lap-
top and DAC reside in the diagnostic or treatment console area while the pneumotach

and emergency switch are located above the patient.

Figure 2-1: Components of the Active Breathing Control device. The laptop (1) and
DAC converter (2) placed in the treatment console area, the pneumotach and
mouth-piece assembly (3) placed near the patient. Note that the pneumotach and

mouth-piece assembly is connected to an emergency off switch (4).
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The pneumotach and DAC are connected with a 15-pin parallel port. Since most
treatments are performed with the patient’s arms above the head, as in Figure 2-2, a
common procedure is for the patient to hold the emergency switch with one hand
throughout the diagnostic exam or therapy.

A nose-clip and mouthpiece are attached to the patient and the volume of air (in
litres) flowing through the pneumotach is sampled and displayed on the lap-top monitor
in real-time. Once the patient is ready, the patient is instructed (via intercom) that on
their next breath, the valve will close for a duration slightly less than the maximum time
that they can hold their breath. The patient then inhales and the scissor valve is closed
and thus constrains the volume of air inside the patient. During this time, the image is
acquired or therapy is delivered. Figure 2-3 shows an ABC sequence displayed on the
lap-top computer for 5 seconds while 1.0 litre of air is “contained” in the patient. The
valve may be closed at some volume either at inspiration or beginning of expiration (the

latter is shown in Figure 2-3).
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Figure 2-2: A typical patient set-up with the ABC device. Note that the emergency

release valve is placed in the patient’s hand.

Since it is unlikely that the patient will breathe exactly the same inhale and
exhale volume in one breath, the volume trace is automatically set to zero at the end of
each exhale. This is done by setting the volume signal to zero when the sign of the first
derivative in the volume changes from negative to positive. Therefore, the volume signal
is a measure of the air volume flowing through the pneumotach during the breathing

cycle rather than the air volume contained in the lungs.



Figure 2-3: Laptop display of the ABC software. The curved line is a trace of the
integrated signal of the pneumotach, and the horizontal line represents the
“gating” level.

Prior to use, the electronics must be calibrated to reduce drifts in the volume

measurements. Pressing the “Reset” button resets the volume signal to zero when

drifting of the volume signal occurs. This drift is reduced when the ABC system is

constantly on.

2.4 Methods and materials
The study population consisted of lung cancer patients at the Tom Baker Cancer

Center who underwent diagnostic x-ray fluoroscopy for the purposes of radiation
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therapy planning. Patients unable to maintain a breath hold at 10 seconds were excluded
from the study.

The hypothesis in this study was that the ABC device can reduce the uncertainty
in the position of the tumor and healthy tissue volumes for the purposes of radiation
therapy or CT imaging. To this end, the purpose of this experiment was to assess the
reproducibility of the diaphragm position while using the ABC device. It is assumed that
if the diaphragm position is reproduced, then so are the positions of the tumor and
healthy tissue. It is also assumed that the sample of patients used in this experiment does
not affect the reliability of reproducing the diaphragm position.

All patients both were study subjects and acted as their own controls. In the
patient’s first simulation session prior to radiation therapy, two fluoroscopic images
were taken to establish the amount of variability in diaphragmatic positioning during
relaxed breathing (phase 1). Relaxed breathing measurements were taken at end inhale
and exhale. These were the control measurements. Also during the first session, three
breath-hold fluoroscopic images were taken at deep inhalation using ABC (phase 2).
The maximum superior excursion point of the diaphragm was measured from a
specified, fixed anatomical landmark (often an inter-vertebral space in the spinal
column). The same landmark was used for all measurements taken for a given subject.

All patients received a twenty-minute consultation session prior to simulation.
Eight of these patients trained on the device prior to use. The aims of session were to

acquaint the patient to the device and to screen those patients who cannot tolerate the
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mouthpiece or those with reduced pulmonary function (unable to hold their breath for
>10 seconds).

The maximum superior aspect of the diaphragm is seen well on fluoroscopy and
radiation portal images. Given that the diaphragm is the major muscle of breathing while
in the supine position, the positions of organs and tumors were inferred from
diaphragmatic positioning. Davies et al. (1994) found that the motion of the diaphragm
was predominantly in the superior-inferior direction with average displacements of from
7 to 28 mm during quiet respiration. The reliability in the position of the maximum
superior excursion of the diaphragm is assumed to correspond to the reliability in the
position of the lungs and the tumor.

Statistical analysis was done to determine the amount of variability within the
three measurements in each phase. The maximum range in the height of the diaphragm
minus the minimum distance to a vertebral body was measured for each set of images.
For phase 1 images, this distance (D,) comresponded to the maximum height of the
diaphragm for the normal inspiration and expiration images. For phase 2 images, the
maximum distance to the dome of the diaphragm minus the minimum distance to the
dome of the diaphragm with respect to the vertebral body was measured (Dyn). A
Student’s t-test between the variables D, and D, Was calculated to determine statistical
significance.

The number of subjects was determined by the availability of suitable patients
who agreed to participate. The projected number was set at 15 to 20. As this study had

subjects acting as their own controls, and because the difference was expected to be
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quite large, this number of subjects gave us a high degree of confidence in the effect of

ABC in controlling the movement of breathing.

2.5 Results

A total of 17 patients were entered into the study. There were software problems
with the first patient, and the data from one patient were rejected due to severe patient
discomfort. Thus, data from 15 patients were analyzed.

Varis VISION software was used to determine the displacements with respect to
the diaphragm [Varis Oncology Systems, Palo Alto USA]. This software automatically
calibrates the image pixel sizes in a consistent coordinate system. This calibration allows
the user to measure true distances rather than pixel distances while using the measuring
tools available in the software. The pixel size and resolution of the simulator images
were 0.9 mm or less.

Figure 2-4 shows a typical fluoroscopic image acquired during the study. The
figure on the left shows the position of the diaphragm while the patient was inhaling,
whereas the figure on the right shows the position of the diaphragm while exhaling. The
position of an inter-vertebral space and diaphragm-dome were contoured on both
images. Then, the superior aspect of the diaphragm was measured with respect to the
inter-vertebral space. The difference in the distances defined the statistic D, which, in

this case, was approximately 1.5 cm.
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Figure 2-4: Fluoroscopic image of an inhale (left) and exhale (right) with respect to
an inter-vertebral space. The contour of both the inhale and exhale positions of the
diaphragm are displayed on the right image.

The right image of Figure 2-5 shows the diaphragm contours for 3 ABC images,
whereas the left image shows the diaphragm contours for normal exhale and inhale and
one ABC image. For the ABC images, the same vertebral mark was contoured and the
superior aspect of the diaphragm was measured with respect to the inter-vertebral space.
In this example, the maximum difference in the distance defined the statistic D,pc Which,

in this case, is 0.3 cm.
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Figure 2-5: Two ABC images displaying the contours of the diaphragm. Normal

inhale and exhale contours and first ABC image are displayed on the left along
with a measure of D,. The contours of the diaphragm for three ABC images are

displayed on the right.

Table 2-1 summarizes the results from the test for the 15 patients. A two-tailed
Student's t-test (assuming equal and unequal variances) between the population of D,
and D,pc was performed to assess whether D,y is randomly sampled from a distribution
with a mean of D,. The t-statistic assuming equal variances was calculated as 4.03. With
14 degrees of freedom, significance at the 5 and 1% level is 2.03 and 2.78, respectively.
The result was highly significant; the probability that D,y is randomly sampled from a
distribution with mean of D, is less than 0.0004. There was little difference in the results

of the t-test if unequal variances are assumed.



Table 2-1: Summary of results after 15 patients.

21

Statistic Average Standard Maximum Minimum
Distance [cm] | Deviation [cm] [em] [cm]
D, 1.7 0.8 30 0.6
Dabe 0.6 0.6 23 0.1

In addition to the fact that the result was highly significant, the standard

deviations in D, and D,n., which represents the range in diaphragm position, was also

reduced when using the ABC device.

Figure 2-6 displays a histogram plot of the D, and D, as a function of

diaphragm displacement. Most of the Dy data points are less than or equal to 1 cm and

clustered closer to the smaller displacements, whereas the D, data points are more

randomly spread. This would suggest further that the variation in the diaphragm position

is smaller when using ABC than during normal respiration.
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Figure 2-6: Histogram plot of the diaphragm displacements with and without ABC.

To assess inter-observer variability, diaphragm and intervertebral spaces were
contoured and compared by two people (the author and thesis supervisor).
Measurements of Dy(1) and D,,(1) were compared for 11 patients and the inter-observer
variability was determined to be +/- 1 mm. To assess intra-observer variability the
author measured contours of 11 patients 3 times. The intra-observer variability was

determined to be +/- 1 mm.
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Figure 2-7: Scatter plot of D, and D, for N=15.

Figure 2-7 displays a scatter plot that illustrates the potential benefit of using
ABC. Each point represents a patient with their D, and D,y results plotted on the x- and
y-axis. If the device is to have any clinical value, the ABC device must reproduce the
diaphragm position with less variability than during normal breathing. If one defines the
uncertainty in tumor position in non-ABC and ABC treatments as D, and D;pc, the ABC
device must ensure that D, is less than D, in order to be of value.

The diagonal line on the plot represents the boundary where D, is equal to D,p..
If Dy is less than D, for a patient, the data point will lie on the lower right section of the
scatter plot; therefore, at most 14 of the 15 patients could benefit from ABC. Of these,

one patient shows no clear advantage of using ABC and one patient has both D, and D,
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that are quite large. Of the 15 patients studied, 12 would be suitable candidates for ABC
imaging and treatment. Greater clinical gains are expected for patients whose data points

reside further right and lower on the scatter plot.

2.6 Discussion

The ABC device reliably reproduces the position of the diaphragm. Because of
this, the use of the ABC device will improve the quality of diagnostic exams and
radiation therapy. In the context of radiation therapy, planning target volumes allotted
for respiratory motion can be decreased (on average) from 1.7 to 0.6 cm. This extra 1.1
cm includes significant amounts of healthy tissue and eliminating these irradiated
regions may reduce the risk of pneumonitis and fibrosis [Basran 1997].

It should not be assumed that patients who use the ABC for diagnostic exams or
radiation therapy are expected to have diaphragm reproducibility of 0.6 cm. This is
simply because patients who have normal ranges of motion that are smaller than they are
when using the ABC device would not be candidates for ABC imaging or treatment. If a
statistical re-analysis were performed for those patients who would be suitable
candidates for ABC imaging or treatment, D, reduces from 0.6 to 0.4 cm with a
standard deviation of 0.1 cm. This statistic is a more reasonable estimate of potential
diaphragm movement after fluoroscopic screening.

In his investigations, Wong reports intra-fractionation reproducibility better than
2 4/- 2 mm (N=12). Further, he reports inter-fractionation reproducibility of 4 +/- 3 mm,
which is also smaller than our result. Ohara et al. (1989) also report millimeter

reproducibility but still use a 10-15 mm margin for concerns of safety (N unknown).
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Hanley er al. used voluntary self-breath hold gating and measured an inter-fractionation
reproducibility of 1 mm (N unknown). With the exception of Ohara er al., all results are
much smaller than results found here. It is unclear, however, how these statistics were
computed and hence, interpretation and intercomparison of results become difficult.

Not all screened patients would benefit from gated radiation therapy. Memorial
Sloan Kettering in New York and Thompson Survival Cancer Center in Knoxville select
patients for gated breathing if the tumor appears to move at least 1 cm due to breathing
[Mageras and Ramsey 2000]. Why they have selected such a margin remains unclear.
Theoretically, clinical gains may be achieved when spared margins are equal to or
greater than 1.0 cm [Basran 1997]. If one uses this 1.0 cm sparing margin to screen
patients receiving therapy or a diagnostic exams with ABC, only 6 patients would

qualify. As expected in such a case, Dy decreases to 0.3 cm.

2.7 Error analysis

Errors due to displacements within an exam or treatment are either random or
systematic. During the simulation session, marks are placed on the patient for the first
time: there is no opportunity for systematic error to occur unless for some reason the
patient had to be repositioned on the treatment couch within the simulation session. In
this study the mouthpiece was inserted after the D, images were obtained. There exists
an opportunity for displacements when inserting the mouthpiece since small amounts of
patient handling and movement were required. In this study, however, surface marks
were checked immediately after the mouthpiece was inserted and this motion was

limited to the head and arm. Therefore, these errors are considered negligible.
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A question that needs to be addressed is whether motion of the diaphragm
correlates with the tumor position. Within the context of radiation therapy, the current
clinical practice at the TBCC is to simply allocate a 2 cm margin on the superior and
inferior aspects of the tumor volume to account for respiratory motion. This uninformed
criterion could easily overestimate - and possibly underestimate - the required margin
necessary to ensure the tumor is irradiated at all times. Because the diaphragm
contributes 90% of the volume changes within the thorax while in the supine position, it
may be safe to assume that diaphragm displacements would represent a maximum range
of tumor motion in the lung. However, micro-extensions of tumor volumes may ‘anchor’
themselves within the lung, thus making the motion much more complex than the
diaphragm itself. Motion of the tumor volume must be assessed independently from that
of the diaphragm when selecting patients for treatment with ABC. This assessment may
be done during the initial simulation of the patient. In short, the diaphragm motion itself
should not be used as a criterion for tumor motion; the tumor motion itself must be
assessed independently.

Throughout the study, it is assumed that the bony landmarks remain stationary
during each of the ABC and normal breathing images. Although it is unlikely, the bony
landmarks could shift during the simulation session. The magnitudes of these shifts are
expected to be small, since significant changes may be detected by shifts in the body
surface.

Small drifts in the electronics could have an impact on the gate volume and,

therefore, the tumor position. Since the volume traces are much greater than 1 litre, and
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the tolerance during a gating sequence is 0.02 litre, a 2% error in the volume may be
expected during consecutive gating sequences. If one assumes, to a first approximation,
that the volume of air is proportional to the diaphragm displacement and that the average
displacement and volume are 1.7 cm and 1.7 litres, a 2% error in volume could result in

a 0.02 cm change in diaphragm position. This displacement is not detectable.
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3. Fidelity of contrast concentration with CT number

If a f-CT study is to be performed in the lung with a conventional CT scanner to
measure lung perfusion, the physiology of the lung dictates that the f-CT data must be
collected within a matter of seconds after the contrast injection. During the first pass the
contrast passes through the intra-vascular space of the lung within several seconds. The
duration of the scan must be neither longer than a single breath hold nor longer than the
re-circulation period, which are both typically on the order of tens of seconds.
Therefore, the width (or duration) of contrast injection must be small, potentially
ranging from one to several seconds.

A fundamental assumption in all f-CT analysis is that the contrast concentration
is linearly proportional to the observed CT number. Because the contrast pulse-width
approaches the duration of the sampling interval in a single CT image, the fidelity of the
contrast concentration to CT number becomes questionable. Further, the artifacts
resulting from the time-dependent contrast flow may degrade the image quality and
potentially skew the measured response functions. A more thorough analysis of the
meaning of CT number (CT#) in the presence of highly fluctuating densities is required.
These questions are addressed in this chapter.

A theoretical model of the CT# as a function of agent concentration and relevant
CT scanning parameters is developed. Then, this model is tested in experiments. It is
shown that the CT# is related to the agent concentration in a complex manner when the

concentration is a function of space and time. These discrepancies arise primarily from
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the reconstruction algorithm, finite sampling width (or slice thickness), sampling

duration and velocity of the contrast through the imaging plane.

3.1 Spiral and axial CT scanning

Before these questions are examined, some background on CT image acquisition
is provided. A wide variety of reconstruction algorithms are often available in
commercially available CT scanners, but only two methods of reconstruction were used
in this work: a standard axial and standard spiral reconstruction algorithm. No additional
smoothing or additional processing methods were applied. The details of the
reconstruction algorithms are not central to this thesis and can be found elsewhere
[Macovski 1979].

The conventional method of abtaining volumetric CT data is in “axial” mode.
Here, an image is acquired, the CT couch is translated some distance, and the image
acquisition is repeated until the complete volumetric data is collected (see Figure 3-1).
After each slice acquisition, algorithms can be used to reconstruct the projection data .

A more sophisticated method of obtaining an image is to collect projection data
continuously while the table slowly moves through the bore of the CT scanner. This
method of image acquisition is known as “spiral” or “helical” mode. The beam is
continuously on until the table completes its range of motion. Once the raw projection
data is collected, the user can reconstruct images at desired intervals along the couch’s

axis.
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Figure 3-1: Schematic of axial and spiral mode of CT image acquisition.

In f-CT, the time-density curves are obtained by fixing the couch position such
that every image is acquired in the same plane. Each point in the reconstructed image
represents a data point in the time series function. One drawback of axial scanning on
some scanners, such as the one in the TBCC, is that a finite time-interval (at least one
second) is inserted between every 360 degree rotation, even when the couch position is
fixed. In axial mode, the CT reconstruction algorithm reconstructs images immediately

after each slice, rather than storing all the data into a memory buffer and reconstructing
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the data set after all slices are imaged. Because the reconstruction requires a finite time,
a delay in the image acquisition is required between each slice. Thus, the sampling
period while in axial mode is 2 seconds. This limitation does not exist in spiral mode

since the user specifies the distance between each reconstructed image.

3.2 Theory

In f-CT of the lung, high concentrations of Iodinated solution must be rapidly
injected into the body, potentially introducing spatial and temporal dependencies to the
linear attenuation. To better understand this, consider a voxel with dimensions (W,, W,,
W.) containing vessels with differing orientations and diameters. The orientations and
diameters of the blood vessels within the voxel are complex and not parallel to any
single surface within the voxel. Rather, the distribution of vessels within the voxel is
complex or ectatic. Thus, the velocity field within the voxel depends on the blood flow
flux through the 6 surfaces of the voxel. The arrows in Figure 3-2 schematically
represent the mean blood flow velocities through 5 surfaces of the voxel. Assuming that
the response within the voxel is independent of flow rate, the velocity of blood flow

within the voxel is a function of spatial position, or v(x,y,z).
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Figure 3-2: Surface flows on a single voxel.

If it is assumed that the total volume of blood entering and exiting a voxel is the
same, then one can exploit mass conservation principles and arrive at the standard
indicator-dilution formulas. However, employing these formulas in f-CT studies
assumes that the volume of indicator entering the voxel within the image acquisition
period, T, equals the amount of indicator leaving the same volume.

To better understand the relationship between the ‘true’ and ‘sampled’
concentration, consider the arguments described by Cottrall [Cottrall 1977]. Here,

consider the simplified case of flow in one direction with the imaging plane
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perpendicular to the flow (as in Figure 3-3). Generally, the true concentration, c, of a

tracer is defined as:
c= LimM = am . Equation 3-1
Vo8V dV

where dm is the elementary mass of tracer contained in volume 8V. Let the mass be a
function of time, ¢, and distance along only the z direction. Thus, the concentration may

be written as a partial derivative:

_(9m(zt)) dt (om(zt)) dz .
c(z.t)—(—a' ):dv+(—az 1 " Equation 3-2

In estimating the sampled concentration, ¢, the volume may be defined in two ways. If
it is defined as the volume of tracer passing some plane within some finite time ¢, then dz
goes to zero. This is the case in “bucket sampling” methods, where the concentration is
sampled directly by inserting a needle at the site of interest and sampling the collection
of concentration at different times [Doriot er al. 1997]. Altemnatively, if the volume is
defined as the instantaneous volume over some distance, z, then dr goes to zero. This is
the case in functional imaging studies performed with CT. These two definitions will
generally be different unless the true concentration is constant over the volume.

In this example, assume that the true concentration can be sampled
instantaneously (correction for this will be discussed shortly). The volume is defined as
the volume contained instantaneously within W,, W,, and W.. In this case, dt is zero and

the sampled concentration, ¢, sampled over some finite volume, AV, becomes:
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AV,
s\ 9z ) dV

AV

fav

0

Equation 3-3

ol
"

The partial derivative in Equation 3-3 may be equally written as the instantaneous flow

rate through a plane normal to the z axis, Q(z), multiplied by the concentration:

(_amg_zt)) =Qz)c(zt). Equation 3-4
Z )
Note also that the inverse of dz/dV defines the normal surface, S, that the contrast passes
through:
l —
"

dv

S. Equation 3-5

But the velocity of the contrast v(z) may be defined as:

% =wz). Equation 3-6

This gives us the expression given by Doriot er al.,

_ [waeznaz ,
()= T , Equation 3-7

for the sampled concentration in a CT study [Doriot et al. 1997]. In CT, the volume
integral spans over some finite slice thickness W-, so Equation 3-7 is simply:
c(t)= Vvl—fv(z)c(z,t) dz. Equation 3-8

Equation 3-8 describes the sampled concentration based on the true

concentration as a function of space. However, unless the concentration curve can be
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sampled in a time interval less than the time required for the contrast to pass through the
voxel, the f-CT signal will measure some average concentration over the scan time AT,.
When the velocity of the concentration is v., the concentration curve will travel a
distance equal to v. 8t in some small time interval &t (see Figure 3-3). In the scan period
AT, the concentration curve will traverse a distance equal to v.AT;, resulting in a

“time-averaged™ concentration curve.

Distance = v. AT,

w.

Figure 3-3: Temporal and spatial averaging of the moving concentration curve c(?).

The x dimension points into the page.

As AT, approaches zero, the time-averaged concentration curve will equal the
sampled concentration curve, or generally:

1
W_AT,

AT, .
[[terter-v)avae—m L0 (votziav . Equation 3-9
1] z

c(t)=

Thus, if there are significant variations of the concentration during the sampling period,

the limit of AT does not approach zero and the left side of Equation 3-9 must be used.
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3.3 Methods and materials

3.3.1 Linearity of concentration and CT number

In a f-CT study, the CT# is often assumed to be proportional to the contrast
concentration. However, attenuation of lower energy x-rays in high-density materials
may result in spectral changes (or beam hardening) in the CT beam, which may alter the
estimate of CT#. The result is that the assumption of linearity between contrast
concentration and CT# may break down, making the quantitative analysis of the f-CT
study difficult.

To investigate the validity of this assumption, twelve vials of varying lodinated
contrast were created and scanned. Various amounts of distilled water and 300 mgl/mi
Iohexol were mixed to an error less than 2%. The manufacturer specifications on error
could not be found. The concentrations were roughly logarithmic in concentration steps,
ranging from 300 mgl/ml to 0.150 mgl/ml (see Table 3-1). Each mixture was carefuily
prepared with 1% resolution syringes and syringes were discarded after use to reduce
contamination. For example, 50 ml of water plus 50 ml of Iohexol results in a 150
mgl/ml solution. After preparation, the solutions were placed in vials of a 1.0 cm

diameter acrylic cylinder of approximately 15 cm length.
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Concentration Error
[mgl/mi] (+/- mgl/ml]

300.0 -
150.0 30
75.0 1.5
37.50 0.75
18.75 0.38
9.30 0.10
4.72 0.05
2.38 0.02
1.20 0.01
0.599 0.006
0.300 0.003
0.150 0.002

Table 3-1: Concentrations (and errors) used in experiment.

To estimate the linear attenuation of a vial with some known contrast
concentration, assume a well-mixed solution of the contrast (i) and blood (b). The mass
attenuation coefficient (W/p) of the mixture (mix) may be given as:

(WP)mix = fi(Wp)i + (1-f) (WP, Equation 3-10
where f; is the fraction (by mass) of lodine in the solution, and p is the density [Johns et

al. 1983). The fraction by mass of lodine is:



38
fi=mi/(V Pmix ) = ¢i/ Paix » Equation 3-11
where c; is the lodine concentration. Combining Equation 3-10 and 3-11, one gets:
(WP)mix = (€i/ Paix )L (WP)i = (WP)b] + (WP)s.  Equation 3-12
Note that:
Pmix= Mass/ Volume=(m; +my )/ V=ci+c,. Equation 3-13
Thus, simplifying Equation 3-12 for the linear attenuation of the mixture, one has:
Hamix = i (WP)i + co (WP)b- Equation 3-14
Equation 3-14 implies that the linear attenuation of the Iodine and blood mixture is a
linear function of the concentration of lodine and the blood concentration. In
experimental conditions where the CT beam consists of a spectrum of energies, the
linear attenuation is averaged over the spectrum of energies, which results in an
“effective” linear attenuation. The CT# is simply the ratio of linear attenuations with

respect to water:

CT#= 100({ M—-] Equation 3-15
B

As an estimate of the relative amounts of attenuation expected in the 300 mgl/ml
vial, one can use the expression:

N=N,e*, Equation 3-16
where N and N, is the exit and entrance photon fluence, u is the estimated linear
attenuation value using a monoenergetic approximation, and t is the thickness of the
attenuator. Figure 3-4 displays the relative transmission as a function of contrast

thickness.
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Figure 3-4: Estimates of the relative transmission as a function of thickness. The
vial diameter in this experiment is 1.0 cm. The dashed and solid lines display the

transmission for 300 and 0.15 mgl/ml concentrations.

As displayed in Figure 3-4, significant amounts of attenuation in the 1 cm vial
(40% and 8%) are expected from the 300 and 0.15 mgl/ml concentrations, respectively.
Therefore, from Equation 3-15, large changes in CT# are expected when contrasted
against a uniform background.

A Marconi ACQSIM CT scanner was used to measure the CT# in the vials while
in axial mode and using slice thicknesses of 0.5 and 1.0 cm [Marconi Medical Systems,
Essex UK]. Two energy (kVp) settings, 100 and 120 kVp were used in this study.

Two regions of interest were defined within the vials: a large 13 mm? circle and

a smaller 7 mm? circle. These areas were used as they represent the typical size of
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elements used in f-CT analysis. The mean CT# along with its standard deviation were

recorded within the vials in and out of the phantom.

3.3.2 Theoretical examination of concentration and CT number

The contrast concentration curves in f-CT signals are continuous functions in
space and time. But as discussed in Section 3.2, sampling periods and volumes in
conventional CT are discrete and finite. Therefore, the true concentration curve may
differ from the measured one due to the integrative processes of the CT image
acquisition and reconstruction.

To examine these potential differences more closely, consider a normalized
gaussian curve with width, s, traveling with a constant velocity, v. along the z’-axis,
much like that described in Figure 3-3. Assume that this curve retains its shape for all
time, or is non-dispersive.

In spatial coordinates, the gaussian function is:

! = e{h_‘] Equation 3-17

g(Z)=
V2ns

If the pulse is moving with some velocity v with respect to time, z’ can be replaced with
z-v+4. One can now describe the time-dependent concentration by combining the left side

of Equations 3-9 and Equation 3-17:

T

o(t)= u:’T I:j‘“’ z) 2:“2 e{”z(s#]dzdt Equation 3-18

Note here that an extra factor axz) is included to account for the fact that the

measured signal intensity is not constant in the imaging plane. Instead, there is a non-
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uniform slice sensitivity profile that weights the measured signals as a function of z
[Brooks er al. 1977). For theoretical simulations, a(z) is set to a constant but during
measurements, 0Xz) can be easily measured and modeled. Ignoring slice sensitivity

profile, the sampled concentration is:

—_ V. Y ‘~"+"’ .
C(')—W:T, f_! ﬁm—e{ % ]dzd‘t. Equation 3-19

where W. is the slice thickness. With this equation, the effects of various slice
thicknesses, scanning times, velocities, and pulse widths, on the true gaussian pulse can
be compared. Simulations were also performed for gamma variate curves with form:

c()=rPe®, Equation 3-20
where a and B are real numbers, but are excluded here since the results are very similar
to those found for the gaussian curves.

The range in velocities depends primarily on the physiology of the human lung.
Shown in Table 3-2 are velocities of relevant vessels in this work [Fung 1997]. In these
simulations, a wide variety of velocities and pulse widths were simulated. Because a
first-pass study is to be delivered, pulse-widths that ranged from 1 to 60 seconds were
simulated. Slice thickness of 0.1 to 1.0 cm and sampling periods from 0.1 to 2.0 seconds
were simulated, corresponding to the slice thicknesses and sampling periods of both

ultra-fast and conventional CT scanners.



Velocity (cmv/s)
Vessel Range Mean
Ascending Aorta 40-250 120
Pulmonary Artery NA 70
Small Vessels 0.5-1.0 0.75
Capillaries 0.02-0.17 0.07
Vena Cava 15-40 25

42

Table 3-2: Range and mean velocities of blood in canines (taken from Fung 1997).

3.3.3 Experimental examination

To examine the effects of spatial and temporal averaging during a CT image

acquisition, a phantom experiment of a known time-density curve was scanned and

compared against the measured one. A cylindrical water phantom (see Figure 3-5, and

Figure 3-6) and a rod containing small cylinders of contrast of various concentrations

ranging from 150 mgl/ml to water (as in Table 3-1) was constructed. The rod was fed

through the bore of the water phantom at 4.0, and 8.0 cm/s during the image acquisition,

mimicking the blood flow in a small artery. The CT images were collected using spiral

acquisition with 120 kVp, 300 mA, 0.5 cm slice thickness, and employing a standard

reconstruction algorithm.



43

10 cm

Figure 3-5: Phantom experiment of dynamic CT signal.

Static axial scans were performed on the individual vials to construct the ‘true’
time-density curve as a function of space and time. Since each image is acquired in one
second, the true time-density curve is simply a ladder function of the measured axial
scan CT values as a function of distance. A DC motor was calibrated to produce various
linear velocities by varying the voltage level and using different gear ratios in order to
pull the rod through the phantom. The phantom was then imaged in spiral mode using

0.5 cm slice thicknesses and reconstructing images every 0.5 second.
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Computer simulations were then performed to estimate the observed CT# using
the ‘true’ time-density function. The CT# in the rod was measured and compared against
the ‘true’ and expected (averaged) function. The slice sensitivity profile was measured,

fit with a gaussian curve and used as an input to the model [Brooks et al. 1977, Polacin

etal. 1992].

Figure 3-6: Image of phantom geometry. The small cylinders were color-coded with

green dye to visually identify the variations in density.
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3.3.4 Effects of time-dependent signals external to vessels

The change in concentration during the image acquisition not only affects the
value of CT# in the vessel, it may also affect the value of CT# peripherally [Berninger et
al. 1979]. The reason for these artifacts is that the projection data contains mixed
information of the rod’s central density. As a consequence, the reconstruction algorithm
may incorrectly estimate the CT# not only inside, but also outside the central rod.

In a simple experiment, Beminger and Redington measured these artifacts by
passing a high-density object through a tube and measuring the subsequent change in
CT# in the surrounding water phantom [Beminger et al. 1979]. They found that in
addition to inaccurate estimates of CT# in the vessel, streaking artifacts bloomed from
the vessel, perturbing the CT# in the surrounding water. This study was limited to a
single “plug-flow™ bolus, where the density was immediately doubled during the image
acquisition.

This doubling in CT# is not typically observed in f-CT studies. Rather, there is a
rapid increase and then gradual decrease in CT#. A “plug-flow” distribution may be
relevant in angiography, where the bolus is administered directly adjacent to the vessel
of interest. However, deliveries of contrast at a more distal injection site result in smooth
time-density curves, similar in shape to gamma-variate functions [Thompson et al. 1964,
Miles et al. 1997].

In many f-CT studies, these blooming artifacts may mask pathologic conditions
[Rubin ef al. 1995]. A number of authors have overcome this difficulty by reducing the

injection concentration and using prolonged injection rates [Rubin et al. 1995, Costello
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et al. 1992]. It remains unclear as to whether these artifacts are due to beam hardening in
the high-density contrast or from the reconstruction of the time-varying signal.

To investigate the effects of these artifacts adjacent to the input vessel, the CT#s
were measured in the water adjacent to the central rod in the previous experiment when
the rod velocity was 4 cm/s. The scanning protocol was the same as that described in the
previous experiment. To assess whether these artifacts are due to overly attenuated
photons in the high-density contrast or due to the time-dependent signal, comparisons of
the above values to those found in axial images of the rods at different concentrations

were performed.

3.4 Results

34.1 Linearity of concentration and CT number

The lower kVp settings resulted in a higher slope in the concentration versus
CT# relationship. Figure 3-7 displays the CT# vs. concentration plots using a 1.0 cm
slice thickness, 300 mA, with 0.7 s scanning time. The concentration becomes
indistinguishable at a concentration of 0.300 mgl/ml, where the errors in the CT# for the
concentration overlap with that of the control’s (water) error. The data suggest that the
assumption of linearity is valid between concentrations of 0.300 mgl/ml to

approximately 75 mgl/ml.
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Figure 3-7: Linearity of CT# and contrast concentration for 100 and 120 kVp.

Figure 3-8 displays a log-log plot similar to Figure 3-7 but displaying the results
for 120 kVp with slice thickness of 0.5 and 1.0 cm. Also shown are linear regressions
using a least-squares fit along with the correlation coefficients. Both fits are highly
linear and only distinguishable from the measured data in a log-log plot that amplifies
small differences in linearity.

Both graphs would suggest that CT# and concentration are highly linear for

uniform concentrations of Iodine less than 75 mgl/ml.
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Figure 3-8: CT# versus concentration for two different slice thicknesses.

Figure 3-8 also suggests that this linearity does not depend on the slice thickness when
the vials do not change as a function of time. For concentrations higher than 75 mgl/ml,
the linearity begins to fail.

The reason for this loss of linearity may be from beam hardening within the
cylinder. Higher concentrations of Iodine effectively filter lower energies of the x-ray
beam’s spectrum, making it more penetrating. As a result the mean attenuation of the
Iodine decreases. Note also that photon detection is a Poisson process; therefore, the
noise in these regions increases, illustrated by the increased magnitude of error for the

higher concentrations in Figure 3-7.
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34.2 Estimation of CT number with time-dependent signals

Shown in Figures 3-9 to 3-15 are the “true” versus “sampled” concentration, or
CT# (assuming concentration and CT# are linear). Note that for the simulations shown
here that the “true” signal is identical from the 0.1 second sampling signal for realizable
velocities and pulse widths. When interpreting these images, it is important to note that
with the given scanning parameters, a single point on the curve becomes the sampled
CT#. Although the curves are continuous, each measured point is separated by the
sampling period. Thus, if one were to repeat a measurement with the given parameters at
slightly different start times, one eventually generates the continuous curve.

Shown in Figure 3-9A-C are the sampled CT#s when the slice thickness
increases from 0.1 to 0.5 and to 1.0 cm. Here, the pulse-width is 5 seconds, which is on
the order of expected pulse widths in a f-CT study. The velocity is fixed at 1.0 cm/s,
which simulates blood flow in small arteries. Figures 3-9A-C illustrate that the width of
the concentration curve remains relatively the same as the slice thickness increases from
0.1 to 1.0 cm. This suggests that with typical CT scanning periods, partial-volume
averaging due to finite slice thickness is less important when sampling smaller arteries.
Note also that it requires approximately 30 seconds of sampling to observe the curve
with these parameters. This makes sense since 99 % of the gaussian pulse width (2x30)

travels approximately 30 cm at a rate of 1 cm/s.
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Figure 3-9A-C: Sampled CT signals from gaussian input function for different slice

thicknesses. Shown are the true (solid) curve, and T,=1.0s (large dash), and T;=5.0s

(small dash).
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Consider keeping the velocity constant and changing the pulse width from 5.0 to
0.1, 1.0 and 20 cm (Figure 3-10A,B,C, respectively). One can see that the sampled
signals can be quite different when scan times are also different. Consider Figure 3-10A.
With the pulse width of less than 1 second, one would expect the window of observation
to be very small, especially since the curve travels through the scanning plane within a
second. Figure 3-10A suggests that the measured CT# ‘smears’ the true CT# (displayed
in solid). Even though the pulse shape is very narrow, the sampled CT# will be quite
broad. Note also how the magnitude of the sampled CT# also changes within Figure 3-
10A. Remember that the magnitude of the CT# are relative to the “true” CT#. This
would suggest that for very small pulses, high precision in both the spatial and temporal
domain are required.

For longer pulse widths, shown in Figure 3-10B and 3-10C, the sampled CT#
remains relatively the same for all sampling durations. Because the pulses are much
longer, the magnitudes are obviously smaller and the time required to sample the curves
are much longer. Intuitively, one would expect 99 % of the gaussian pulse width (2x30)
to be sampled over approximately 0.6, 60, and 120 cm, at a rate of 1 cm/s (which is
indeed the case here). This suggests that for blood flow in small arteries, the scanning
duration is independent of the pulse width when the pulse width is greater than the

minimum scan time.
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Figure 3-10A-C: Sampled CT signals from gaussian input function for different
pulse widths. Shown are the sampled signals when T, is 0.1 seconds (solid), 1.0s

(large dash), and 5.0s (small dash).
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Now, consider keeping a small pulse width of 1.0 s and varying the velocity from
1.0 cnv/s to 0.01, 0.1 and 10.0 cm/s (Figures 3-11A,B,C, respectively). When the
velocity is very slow, such as in the micro-vasculature, as in Figure 3-11A and 3-11B,
the sampled CT# is independent of scan time, even with a 1.0 second puise. However,
when the velocity is 10 cm/s, such as in perhaps some veins, the sampled CT# is not
independent of the scan duration. Because the puise size remains the same and the
velocity increases, one would expect the observed concentration curve to exhibit greater
‘peakedness’ as the velocity increases. This peakedness is observed when the scan times
are generally small; however, when the scan times increase from milliseconds to the
order of seconds, the sampled CT# is much broader than the true concentration curve.

These figures would suggest that the relationship between CT# and concentration
depends on the velocity and pulse-width of the signal, as well as the scan duration. Since
the exact value of velocity is not known during a f-CT study, the loss of fidelity between

concentration and CT# may result in errors in quantitative analysis.
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Figure 3-11A-C: Sampled CT signals from gaussian input function for different

velocities. Shown are the true (solid) curve, and T=1.0s (large dash), and T,=5.0s

(small dash).
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To put the magnitude of these discrepancies into perspective, consider more

clinically relevant blood-flow velocities and more realistic scanning parameters. Figures

3-12 to 3-16 display the sampled CT#s for a more realistic scan duration and slice

thickness, with velocities of 250, 70, 20, 0.7, and 0.07 cm/s. For the aorta and

pulmonary vessels the measured CT# becomes broadened, whereas in the smaller
vessels the measured and actual signals are closely approximated.

0 g'imfo .S5cm s=10 cmy v=250 cm/s
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Figure 3-12: Sampled CT signals for the aorta. Shown are the true (solid) curve,

and T,=0.5 s (large dash).
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Figure 3-13: Sampled CT signals for the puimonary artery. Shown are the true
(solid) curve, and T,=0.5 s (large dash).
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Figure 3-14: Sampled CT signals for a smaller vessel. Shown are the true (solid)
curve, and T,=0.5 s (large dash).
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Figure 3-15: Sampled CT signals for the small vessels. Shown are the true (solid)

curve, and T,=0.5 s (large dash).
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Figure 3-16: Sampled CT signals in the capillaries. Shown are the true (solid)

curve, and T,=0.5 s (large dash).
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If it is assumed that the mean velocity of blood flow through the imaging plane
approximates the mean velocity of blood within the CT volume, then these simulations
suggest that the measured and true concentration curves through the imaging plane are
approximately equal. However, in the larger vessels, this does not appear to be the case.
In fact, in regions where the blood flow velocity is approximately 70 cn/s or greater, the
true and measured CT#s are different. This may have implications in studies involving

the heart when measuring ejection-fraction [Wolfkiel et al. 1987).

3.4.3 Experimental validation

Figure 3-17 illustrates the experimentally measured CT# and the effects of time
and spatial averaging for a rod moving at 4 cm/s. The measured signal was obtained in
spiral mode and reconstructed the image at 0.2 second time intervals. The dashed line
indicates the input function as defined from axial slices of the different vials of the time-
density curve. Convolving this with the SSP and then performing the time-averaging
results in a final CT# illustrated in the dark circles. The value of T; used is equal to one
half-second since the images were acquired in spiral mode using half-scan interpolation
[Crawford et al. 1990]. A similar result is found with velocity of 8 cm/s, shown in

Figure 3-18.
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velocity is 4 cm/s.
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Figure 3-18: Actual, theoretical and measured CT# as a function of time when

velocity is 8 cm/s.

For the 4 cm/s data, notice that the theoretical and measured CT#s are much
smoother than the true curve. This is to be expected due to the averaging effects of the
signal. Clearly, high-frequency components of the time-density curve become lost when
going from the true to measured curves. This loss of high-frequency information is
further illustrated for the 8 cm/s data on Figure 3-18. Note also that the absolute
maximum of the measured or predicted CT#s does not reach the maximum of the true
(axial) CT#s, again from the averaging effect. In particular, note the actual concentration

is nearly 500 CT#s greater than the measured and predicted one.
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The measured CT#s for the 4 cm/s experiment agrees very well with the
theoretical results in all regions of density variation. The agreement in the 8 cmv/s data is
also very good with the exception of the initial large density variations. The agreement
between the measured and predicted results seem to be slightly off during the largest
changes in CT#. This difference is likely due to the data handling features of the
reconstruction algorithm. In a separate study in this institute, this was indeed the case
[Kay et al. 2002].

An important finding in this experiment is that the magnitude of the CT# for
pulses that are faster than the duration of the image acquisition is less than that of the
axial scan. Also, the true concentration in f-CT is modified primarily through a loss of
high-frequency information. This loss in information is a function of the velocity of the
sampled signal, details of the image acquisition, and the spatial and temporal sampling
interval. The decrease in the magnitude of the CT# may well introduce a bias in
parameter estimates extracted from time-density curves. In particular, parameter
estimates which are deduced by examining rise-times and maximums of the CT-time

curve may be suspect to errors.

34.4 Effects of time-dependent signals external to vessels

The motion of the vessel results in a degradation of image quality and variations
in CT# peripheral to the vessel. Shown in Figure 3-19 is an example of these artifacts
from the spiral image where the contrast changes from 150 to 75 mgl/ml. The image is

displayed with window width setting of 1000 centered at 1000 (equivalent to water)
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X fem]

Figure 3-19: An example of CT image artifacts from the time-dependent signal. On

the right is the window and leveling of the CT image.

The streaking artifacts result in both increases and decreases in CT# peripheral to
the vessel. In contrast, only small variations in CT# are observed in the spiral image

where the contrast changes from 0.300 mgl/ml to water (see Figure 3-20).
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Figure 3-20: An example of CT image artifacts from the time-dependent signal

with little density variation.

To examine these artifacts more closely, the CT# within small annuli (centered
on the rod and equally spaced in annuli from the center outwards) were analyzed. The
positions of the streaking artifacts are somewhat unpredictable and are not as important
as the magnitudes of the CT# variations. Thus, the CT# within the annuli were converted
into histograms. Here, the numbers of counts of an individual CT# (ranging from 0 to
4096) were counted within each annulus. Figure 3-21 displays a histogram of the CT# of
the stationary (axial) and dynamic (spiral) experiment measured within an annulus

bounded by circles with radii (R) of 20 (or 11 cm) from the center.
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Figure 3-21: Histogram of CT# within an annulus far from the central.

As expected, the average CT#s within the annulus for both the stationary and
dynamic experiments are very close to water (mean=1006 CT#) and has approximately a
gaussian distribution (standard deviation=13 CT#).

In contrast, Figure 3-22 displays histograms of CT# when the central vessel
changes from 150 to 75 mgl/ml. Instead of having a gaussian-like shape, the spiral
histogram appears to have a bi-modal shape, where one curve appears to be centered
about 989 CT# with a standard deviation of 10 CT#, and the second is more broad,

centered about 1031 CT# with a standard deviation of 14 CT#. These results are
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reflected in Figure 3-19 where there are bands of higher and lower streaks from the

central vessel.
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Figure 3-22: Histogram of CT#5s within an annulus adjacent to the central rod.

Another interesting feature is the difference between the stationary (axial) and
dynamic (spiral) images. Beam hardening does not explain the perturbation of the CT#
since the distribution of the CT# in the axial image is very similar to that in Figure 3-21.
Clearly, the artifacts present in the dynamic image are due to the reconstruction of the
dynamic signal, not beam hardening.

The bimodal feature of the dynamic image data is less pronounced further from

the center and when the change in central density are small. For example, Figure 3-23
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displays the histograms for annuli of radii of 1 to 10 R when the central density changes
from 150 to 75 mgl/ml. The count in the bins is répresented as gray scales, as indicated
on the colorbar right of the image. As the distance from the central radii increases, the

density of the water within the annuli becomes closer to the CT# of water.
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Figure 3-23: Image of ‘histograms’ for all radii of annuli when central

concentration changes from 150 to 75 mgl/ml.
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Figure 3-24: Image of ‘histograms’ for the closest central annulus when central

concentration changes from 150 mgi/ml (image 1) to water (image 12).

Figure 3-24 displays the same image but with image number on the y-axis. The
histograms in this image are displayed for the annulus closest to the central rod. As the
difference in central density decreases, the CT# within the annulus approaches that of

water. Note the different window and leveling of the image.
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3.5 Discussion

Within the limits of most conventional CT scanners, the measured concentration
curves do not appear to be very different from the true ones when the length of the input
signal is greater than the pulse width multiplied by the velocity of the pulse within the
scanning volume. Even when this is not the case, the errors introduced into parameter
estimates extracted from the dynamic study appear to be small when the ratio of velocity
to pulse variance (v/s) is small (~4 s"). However, special care must be taken in
interpreting data when the concentration changes rapidly. This may be of concern in f-
CT methods that rely on rise-times of concentration.

Generally, the concentration curve and CT# are related in a complicated way. In
many of the simulations and measurements demonstrated here, concentration as a
function of distance does not correlate with CT# as a function of time. Although this
finding was first demonstrated by Cottrall and Lane er al. in the 1970s, their findings
were not put in the context of typical f-CT study [Cottrall 1977, Lane et al. 1975].
Because of these discrepancies, special care should be taken in f-CT analysis of vessels
with rapidly changing and/or high blood-flow velocities.

The effects of CT averaging due to finite sampling times and volumes may
introduce bias in parameter estimates extracted from a f-CT study. This bias expresses
itself primarily through the loss of high frequency components and reduced CT# in the
actual concentration. One implication of these findings is that f-CT methods that rely on
the time-to-maximum CT# will be in error. In the dynamic rod experiments, differences

between the true and measured CT# were as great as 600 over a one second interval in
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the 8 cm/s data. This concentration behavior is less likely with an antecubital
administration of contrast and in vessels exhibiting lower blood-flow velocities;
however, prior to a f-CT study, the magnitude of these velocities is often unclear.

Within the context of using f-CT to measure changes in regional lung perfusion
from radiation therapy, special care should be taken in light of these findings. Because
contrast administration is a passive process, changes in the velocity distribution within a
voxel is not expected; however, it is possible for blood flow velocities to change after
the onset of disease or therapy. If f-CT is used as a prognostic tool to assess the efficacy
of a certain therapy, it is quite possible for the blood flow velocities to change after the
course of treatment. A follow-up concentration curve may well have the appearance of a
previous concentration curve but instead have quite a different velocity distribution. The
subsequent parameter estimates yielded from these ‘before and after’ f-CT studies may
therefore be erroneous. If the velocity in the voxel decreases, the ratio of v/s drops;
therefore, the parameter estimate may be reliable. But this may not be true when the
ratio of v/s increases. To eliminate any potential sources of error, the same f-CT protocol
(amount and duration of contrast, injection velocity, scanning parameters, etc.) should
be used before and after the therapy.

The CT number in surrounding voxels can be perturbed from their true values
when adjacent voxels are experiencing significant changes in density. In the
experimental work here, the perturbations are primarily due to the reconstruction and not
beam hardening. Beam hardening affects only the CT# in those voxels undergoing

changes in density, not the external voxels. As a crude estimate, the CT# in water may
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be perturbed by as much as 40 CT#, which approximately 4 % of the CT# in water, but
may be much greater in lower density tissues such as lung. Assuming the magnitude of
these errors also exist in lung tissue, then these errors may be significant. The CT# in
lung may vary from 0 to 1000, producing a wide range of potential errors. Typically,
lung CT# are approximately 300, which imply a maximum error in the CT# of
approximately 40/300 = 13% simply due to these time-dependent artifacts. This error is
quite large and may be a significant source of error affecting the calculation of
parameter estimates yielded from a f-CT study. These errors become significantly
reduced with smaller changes in CT# and increased distances from the changing vessel.
Therefore, perfusion estimates peripheral to vessels which change dramatically are not

expected to be reliable.
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4. Parameter estimation with functional CT data

In estimating perfusion from a f-CT study, the CT data must be analyzed and
collapsed into a representative perfusion parameter estimate. The purpose of this chapter
is provide a review of numerical techniques often employed in f-CT and also to describe
a new method of analyzing tomographic images. In the first section of this chapter, a
review of common numerical techniques used to generate various perfusion estimates is
provided. Because the data-reduction is often unstable, special care must be taken during
the numerical analysis. In the second section, a new method of analyzing tomographic
images through the use of multiple deconvolutions is described and this method is

compared with existing ones.

4.1 Review of numerical techniques in functional CT analysis

4.1.1 Compartmental Analysis

The basic idea behind this approach is to model the system as a set of
compartments, to generate a conservation of mass equation for the contrast within these
compartments, and to measure the corresponding signals within a single or multiple
compartment(s). Compartmental analysis is typically easier to perform than more
complex approaches, such as linear systems modeling, and also requires fewer
assumptions to be made regarding the response of the system. Typically, an input or
output vessel is required in the model.

Vascular flow per tissue volume may be computed with:
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Fe=V(lamdt-fvear}, Equation 4-1
where c(t), a(t), and v(1) are the tissue, arterial and venous concentrations, respectively
[Miles er al. 1997]. Here, both the arterial and venous time-density curves are required
for the analysis. However, if a sharp bolus administration is delivered whose pulse
duration is less than the time for the contrast to pass from the tissue to the venous
compartment, one can remove the integral in v(z) from Equation 4-1 This may be done
by simply limiting the range of integration to some maximum value that is less than the
time when the contrast begins to contribute to the venous compartment. Such studies
require the rapid acquisition of images within the first few seconds of the bolus
administration.

Re-circulation of the blood may take place as early as 20 s from the injection into
the system. The result of this re-circulation is a superposition of another time-density
curve with the existing curve. Often, these re-circuiation artifacts can be removed in the
analysis by limiting the time series to regions less than the onset of the re-circulation, or
fitting the function to a gamma-variate function [Thompson et al. 1964].

Diffusion-type approaches involve the measurement of the contrast agent as it
diffuses through the extravascular space. First suggested by Patlak, in Positron Emission
Tomography studies, the equation:

‘
[bee e

7:(?:_:=¢b +(a/V )L T Equation 4-2

is used, where c(t), and b(1) is the tissue and blood concentration, ¢, is the fractional

vascular volume of the tissue, and a is the blood clearance [Patlak er al. 1983). By
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measuring a vein or artery, b(), and the tissue concentration c(t), it is simple to plot the
above function with c(z)/b(t) on the Y-axis, and I:Ib( T )dt]/ b(t )on the x-axis, yielding
(1]

the fractional vascular volume for the y-intercept and slope equal to clearance over
volume, V. Such studies require the contrast to migrate through the extravascular space,
and thus the data acquisition typically require several minutes.

Apart from restrictions in the duration of the scan, there are other problems
associated with compartmental approaches. Often, a conservation law, such as the total
mass of contrast, is required. Since f-CT with conventional scanners do not allow for
simultaneous imaging of the ROI over a large volume, a direct measurement of the total
contrast is not often possible. This may be possible in some angiography techniques or
multi-slice CT imaging, but is much more difficult in conventional CT. Thus,
assumptions on the total distribution of mass within the ROI are required, which for the

most part, are not unreasonable [Miles er al. 1997].

4.1.2 Inverse methods

Inverse theory formalizes the method of reducing data to model parameters
based on a series of observations. The “Inverse” problem is the process of estimating, or
learning as much as possible, about the model parameters using the initial data. The
“Forward” problem is the process of estimating the data based on the model and model
parameters. In the f-CT image, one usually obtains measurements of a response based on

some measurement, thus making our problem an inverse one.
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Let o be the data vector, of length N, which in this case represents a time-series
measurement of CT#. In the mathematical formulation of the problem, a soluiion based
on some existing data and possibly some model parameters is sought. If o is the output
function, H is the operator on the input function that maps the input, j, to the output, the
generalized integral equation may be represented as:

o(ey.z0=l Hxx'y.y'z2 .47) j(x'.y".z"7) dx’ dy’ dz’ dr Equation 4-3
or using a matrix notation,

o=Hj, Equation 4-4
where the dependence of position is noted as a function of anatomic position x, y, and z.
By dropping the positional dependencies for simplicity, one can assume that neither the
input, output, nor impulse response depends on the position. However, in the case of the
lung, various effects, such as gravity and posture, alveolar density, and disease seriously
affect diffusion and perfusion, and as such, often provide the rationale for the
measurement.

The function H may consist of a number of independent model parameters, m,
which defines a vector.

H=H(m), Equation 4-5
or assuming linearity,

H=hm, Equation 4-6
where h is a I by J matrix and m is the model parameter vector, whose rank is equal to
the size of the model parameters. When the kemel H is simply a function of the

difference (1-1), the integral becomes a convolution. In this case, the entries of the matrix
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H depend only on the i-j indices, making the matrix H a circulant Toeplitz matrix.
Toeplitz matrices have constants along all diagonals. Generally, the matrix H is ill-
conditioned.

When a model-based system is used, the matrix H becomes a function of model
parameters, called m. The model parameters may be of any length; however, for the
purposes of simplicity, the length of m should be small. Noise may be explicitly entered
into this formulation by simpiy adding an additional vector n, of length N, to Equation
4-4:

o=Hj +n. Equation 4-7

4.1.3 Linear Systems Analysis

In the linear systems approach, one assumes the system measured is linear, time-
invariant, and homogeneous. Using signal-processing techniques, estimates of
parameters such as transit time of the contrast, can be extracted from the measured
signals. These techniques often provide more insight into the transit times of the
contrast, but requires more data handling, analysis, and sometimes assumptions about
the system.

In a linear systems approach, cne has:

o=/ H(-v J() dt, Equation 4-8
where O(r) and J(2) are the output and input time series, and H(z) is the impulse response
of the VOI. The impulse response, H(r), fully characterizes the blood flow in the
sampling region. It describes the time-density distribution of the system subject to a

delta-function input. The shape and form of the impulse response can provide some
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information about the physiology of the system measured. The first moment with respect
to time, is an estimate of the mean tissue transit time:

MTT.=[tH@® dt/ | H@) dr . Equation 4-9
Altemnatively, if an arterial and venous supply to a system, s, can be measured, one can
calculate:

MTT,=[rO@dt/ [OWdr - [eJ@)yde! [J@) du. Equation 4-10
The above formulations for the MTT have come under some criticism, based on the
arguments that velocity of blood flow and exchange of particles between volumes of
interest (VOIs) are not specifically addressed [Doriot et al. 1997].

The process of evaluating the response function in f-CT images has been labeled
as deconvolution. In a more general mathematical sense however, the problem of
extracting H(t) is an inverse problem. In an inverse problem, a suitable form of a kernel
function that describes the observations is sought. With the assumption of time
invariance, the problem simplifies to a convolution.

There are two approaches used to examine and extract the impulse response.
With the first approach, no assumptions about the shape of the impulse response can be
made and one can apply some mathematics with the input and output functions to
estimate the impulse response. These methods are defined as ‘non-model’ based
techniques. Non-model based techniques include least squares inversion, numerical
deconvolution, and transform (such as Fourier, Laplace and wavelet) techniques where
little a priori information on the shape of the impulse response function is assumed. The

second approach is to model the impulse response function in some manner and perform
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a numerical fitting of the model function with the observed data. These are defined as
‘model’ based techniques.

As an aside, of recent interest in the literature are attempts at blind
deconvolution, where nothing is known about the input, nor the impulse response
[Mignotte et al. 2000, Bertero et al. 1998 ]. With some assumptions about the system, it
is possible to extract both the impulse and input function through mathematical
techniques. This problem occurs extensively within the signal processing venues of the

literature [Harikumar er al. 1998].

4.1.4 Existence and Uniqueness of a Solution

Before a discussion of the various analysis techniques is given, it is useful to
point out some mathematical peculiarities in our inverse problem. In particular, a brief
discussion on the existence and uniqueness of a solution is given. For the purposes of
our examples and future discussion, the problems to be solved are assumed to be linear.

Mathematically, a solution based on some existing data and possibly some model
parameters is sought. As noted above, the impulse response function H may consist of a
number of independent model parameters, m:

H=hm . Equation 4-6
By existence, neither the matrix h nor the vector m is null. This is of great importance
when estimating parameters within a model-based technique. If h or m is null, it would
indicate the “incompatibility” of the experimental results: something is amiss in the

model. One must ask if there are any necessary or sufficient conditions to ensure a
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solution to the problem. Both are based on physical measurements or a priori
information about the system.

Another important mathematical issue is the question of uniqueness. That is,
given our data, is there only one solution? The answer to this question is of paramount
importance if the shape of the solution is to be further analyzed. Unfortunately,
uniqueness is often very difficult to prove. In the context of f-CT images, this is equally
important (and is discussed later). If a parameter is estimated from the curve (ex: MTT
from the impulse function) the non-uniqueness of the curve may result in erroneous

parameter estimations.

4.1.5 Ill-condition and Uniqueness of the Impulse Response Function

4.1.5.1 Uniqueness of a solution

Generally in f-CT studies, the calculation of the impulse response is an ill-
conditioned problem. To better understand this, let the problem be estimating the matrix
H in the equation:

o=Hj. Equation 4-4
We are usually free to choose the dimension of the vector j (or o depending on the
measurement technique), either by interpolation, truncating the data set, or changing the
sample rate, but one generally does not choose a different degree of freedom in 0. The
matrix H is a circulant Toeplitz matrix which are non-singular, and thus has a unique
(non-degenerate) form. Mathematically then, it is possible to extract the exact impulse

response of a system given the vectors 0 and j.
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However, a non-singular matrix can have degenerate solutions if the equations
are close to being linearly independent. Furthermore, computer round-off errors in the
attempts of finding the solution can undermine our attempts to arrive at the solution.
Both sources of error can be easily determined by checking o against the calculation of
the estimate, H, operating on the measured input H j. But this checking does not
guarantee uniqueness. Thus, there may be a unique solution mathematically; however,

the correct solution may not be attainable due to computer round-off errors.

4.1.6 Non-Model Based Techniques

An advantage of non-model based techniques is that no assumptions about the
nature of the response are made. Non-model based techniques are the method of choice
in well-conditioned problems. However, non-model based techniques, such as least
squares deconvolution, and transform methods are often plagued with numerical
problems such as noise contamination and singularities. Several investigators have
addressed these issues by curve fitting, digital filtering, and other signal processing
techniques. These techniques are useful and can be based on constraints and limitations
of the system analyzed. For instance, one may suppress the unphysical frequency
components or remove negative components of the contrast signal by smoothing or

filtering, based on physically sound assumptions of the system.
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4.1.6.1 Moment Analysis

Bronikowski er al. (1983) proposed a method for describing arterial response in

lung tissue by ‘moment’ analysis. There are two fundamental assumptions in the

approach:
to=ti+tn , Equation 4-11
6,'=0;"+0", Equation 4-12

where, ;1 are the mean time of the output, input, and impulse response functions, and
G..i.n are their respective errors. The authors show that by using the above conditions and

time-shifting the output function, it is possible to estimate a stable impulse response.

4.1.6.2 Least Squares Deconvolution

A least squares deconvolution is a simple, non-model based, method for
extracting a filter, H, that can produce the output in a least-squares sense. The theory of
least squares deconvolution is generated from constructing the normal equations. The
procedure is as follows. First, the auto-correlation of J is calculated and transformed into
a Toeplitz matrix. The inverse of the Toeplitz matrix is then multiplied with the cross-
correlation of Q with J. The result is an estimate of H. The method is very simple and
easy to implement; however, it is prone to singularities during the inversion of the
Toeplitz matrix.

Li and Cutler explored the conditions under which this approach, also called
finite-difference method or point-area deconvolution, are stable in pharmacokinetic

problems for drug administration [Li et al. 1998a, Li et al. 1998b]. They suggest that
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instead of using the input vector J, one can equally use a cumulative input vector, JC.
This transforms the impulse response matrix into a similar but less ili-conditioned form.
They argue that for intra-venous (IV) administration, this approach is stable. They also
argue that errors in obtaining the solution are more likely due to sampling errors than to
numerical deconvolution.

Regularization methods have also been proposed with success, to provide
constraints to the solution. The basic idea is to fit the data with a function such as:

E=zA+aB, Equation 4-13
where A is the reduced Chi-squared statistic based on a trial input function, B is some
quadratic form and « is a regularization parameter. The matrix B may take on several
forms, such as first, second, or third order difference matrix; however, the regularization
parameter must be selected prior to application. More will be discussed on the selection
of a regularization parameter in this chapter. Bronikowski er al. (1983) applied such an
approach with success in pulmonary physiology studies. Hovorka er al. (1998) found
that the optimal selection of the matrix B depends on the nature of the impulse response:
third order difference matrices seem to match highly curved impulse response, where
first order difference matrices seem to match monotonically decreasing impulse
responses. Verotta (1993) used first order difference matrices with success in
pharmaceutical applications. Huesman and Mazoyer (1987) proposed a similar model in
analyzing PET images where noise was incorporated in the regularization. Szabo er al.
(1987) used a similar approach in nuclear medicine studies. They argue that neither a

good reconvolution fit, nor a minimal deviation from an ‘ideal’ impulse response should
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be a decisive criterion since model parameters extracted from these curves are usually

more important than the shape of the curve.

4.1.6.3 Transform Methods

Equation 4-4 may be easier to solve in another space by applying some
transform, solving for H, and applying an inverse transform. In particular, let T be such
a linear transform. Then assuming existence in o, H and j, through some simple algebra:

T{o)}=T{Hj}=T{H}T{j} Equation 4-14

T{o}/T{j}=T{H}

T [T{e}/T{j}}=H.

Wirestam et al. (2000) used low pass filters with their data to examine cerebral blood-
flow with MRI; however, they argue that the use of such filters may affect parameter
estimation. Flemming and Kemp (1999) solve this problem in Laplace space to improve
image quality of SPECT images by deconvolving the raw data with estimated blurring
functions.

Of particular relevance to this thesis is the work of Tajik er al. (1998), who
performed f-CT analysis with an ultrafast CT scanner in evaluating pulmonary function
in dog lungs. They used a Fourier transform technique after fitting the input and output
data with finely sampled gamma-variate functions. They found that using an inverted
Hanning window, often used in SPECT analysis, enhanced the quality of the measured
impulse response functions, resulting in a bi-modal response function: one consisting of
faster micro-vascular transport, the other consisting of a slower capillary/alveolar

transport. The bi-modal nature is due to the partial volume averaging of the voxels that
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have dimensions much larger than the capillary/alveolar regions. More will be said on
this in following chapters.

Either Fourier or Laplace transforms can be applied in this non-model based
approach. More exotic transforms, including wavelets, may also be used, but their
benefit has yet to be found and still remains an interesting venue of research [Xie er al.
1995]. Similar issues with singularities arise when using transform approaches. Padding
the data with additional zeros, or other signal processing tricks may be used to resolve
some of these artifacts [Press e al. 1992]. Positivity constraints and filtering may also be

applied to ensure the properties of the impulse response are physically meaningful.

4.1.6.4 Optimal Filtering

If an estimate of the noise is possible during the measurement, it is possible to
remove the noise component in the signal and use transform methods. The method is
discussed elsewhere, and is briefly mentioned here [Press et al. 1992]. The process is
identical to the transform method discussed earlier; however, filter, ®, which effectively
“undoes” the effects of noise in the original signal is required:

T'[®T{o}/T{j}=H. Equation 4-15
This is defined as a filter, in a least-squares sense:

@ =T{o}/ [|IT{o}f+|T{n}]]. Equation 4-16
Sutton and Kemp applied this approach, in addition to a positivity constraint, in

renographic analysis of kidney function [Sutton ez al. 1992].



4.1.6.5 Recursive Filters

There are many recursive filter-type approaches to the deconvolution problem.
Although the reasons for not attempting such an approach in f-CT images are unclear,
no such attempts have been recorded in the literature. There have been attempts at such
approaches for other medical applications. For instance, Vadja er al. employ an ARMA
filter approach in estimating the impulse response in pharmacokinetic modeling [Vadja
et al. 1998].

A primary requirement in estimating the impulse response is that it be causal.
This can be done through a combination of zeros and poles in the filter design itself. A
second requirement is that the filter be stable; that is, after the last inputs, the output
eventually goes to zero or a constant. It can be shown that the transform and filtering
techniques discussed earlier are stable filters; but recursive filters may or may not be
stable [Hamming 1987]. Lastly, a positivity constraint ensures a physically meaningful
solution.

The basic idea behind the recursive filter approach is to calculate a filter that
converts the measured input to the measured output. Once the filter is designed, one can
apply a delta function to the filter to estimate the impulse response function. Briefly
mentioned here are three types of recursive filter approaches. By no means is this a
comprehensive list of methods for such approaches. Other comprehensive books on the
subject are available [Press et al. 1992, Hamming 1987].

An exact inverse transform can be obtained by using a simple recursion relation

for:
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1 .
y, = ;—[2 ax,_;~ ijyk_j:I , Equation 4-17
ol J i

where x; is the input function, a; is the output function, b are the coefficients of the filter.
This simple formulation is highly sensitive to the initial values of the input function
parameters and noise and can often result in negative values in the impulse response.

A special case of recursive filters is where the output depends on only the last
input. More precisely, the sequence of possibly dependent random variables x;, x3, x3,
... Xa has the property that the prediction of the value of x;, X2, ... X, is based on the
value of x,.; alone. Filters of this sort are described as Markov Chains, which stem from
probability theory. Several authors have found utility in this technique in describing
some physiological parameters, but its application has been mostly limited to
information theory in blind deconvolution. There is no published work on this approach
in analyzing tomographic images.

Maximum entropy methods (MEM) rely on the premise that the process under
investigation is an “all poles” process plus a white noise excitation series. This technique
is more commonly used in fields such as geophysics and image deblurring, where the
impulse response exhibits some type of auto-regressive behavior. Charter and Gull
(1987) give a treatise on MEM approaches employing positivity constraints. There are

no published reports on MEM approaches in f-CT image analysis.

4.1.6.6 Stochastic approaches

One way to compute the response function is by simply guessing the impulse

response function. Monte Carlo techniques perform an exhaustive search of all the
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possible types of impulse response functions in the convolution. The approach is a
“strong-armed” approach and typically requires massive amounts of computer time and
energy. However, it is much more exhaustive and comprehensive than other approaches
and does not require the problem to be linear. There are several methods of
implementation of such an approach, such as using simulated annealing, genetic
algorithms or other approaches [Press et al. 1992]. Madden ez al. (1996) employed a
genetic algorithm in deconvolution problems in pharmaceutical applications. There are

no reports in the literature on the use of such techniques to analyze f-CT images.

4.1.7 Model Based Techniques

Model based techniques require some underlying assumptions on the shape of
the impulse response function. Axel's work in functional CT is an example of this
technique [Axel 1980]. A model impulse response is given whose nature and shape is
defined through a single parameter or set of parameters. This approach simply convolves
the input function with the test impulse response, compares the result with the output,
and changes the parameters of the impulse response until the output matches that of the
re-convolved test function and input function. One can phrase this as an optimization
problem of finding the model parameter(s) that minimizes the variable xz:

Min()*)= min( | o(t) - | H(t-7) j(r) dt|* /6(t)®), Equation 4-18
where o(t) is an optional scaling parameter. The technique is very simple to implement

and has thus been heavily employed.
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Bassingthwaite et al. (1966) first suggested that curve-fitting of the input and
output functions result in the most stable calculation of the impulse response. However,
limiting the input and output functions to a particular form does constrain the possible
range of solutions, thereby reducing the space of possible solutions of the impulse

response function.

4.1.7.1 Damped Exponentials Basis functions

Of particular interest in medicine are uses of exponentials to describe
physiological behavior. Exponential behavior is commonly observed in
pharmacokinetics and other chemical interactions within the body. Veng-Pederson
(1980) fitted a sum of exponentials to drug absorption data and developed a general
solution to the deconvolution problem. He argues that it is not necessary, and perhaps
distracting, to associate clinical significance to these parameters, since the system is

often non-linear in such a way that the parameters are non-unique.

4.1.7.2 Basis function projection

Clough et al. (1993) used a discrete polynomial method, where polynomial basis
functions are used to model the data. Here, orthonormal coefficients are projected
through discrete integration with any set of basis functions. Clough et al. used

Chebyshev polynomials.

4.1.7.3 Curve-fitting

Nakai (1981) used a piecewise curve-fitting approach of the impulse response

based on minimizing a reduced chi-squared statistic. The method forces various regions
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of the impulse response function to have quadratic forms which initially force the curve
through the origin for  at zero, (assuming an impulse response which begins with zero),
and tapers to zero for ¢ at infinity. Although there is no assumption on the shape of the
impulse response, there are assumptions about the relative shape of the function over
different time intervals.

Verotta (1993) used a curve-fitting approach based on b-spline basis functions
and uses information theory to determine the minimum number of parameters (i.e., the

number of basis b-splines).
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4.2 Use of arterial, tissue and output curves in deconvolution analysis of

tomographic imaging studies

4.2.1 Introduction
A common approach in f-CT is to treat the signals as a series of independent

causal-linear systems:

G@)= FIH (t-0ni(t)dtr Equation 4-19
)]

where G(1) and I(t) are the tissue and input functions, H(tz) is a normalized impulse
response function where the maximum value is set to one, and F is a constant [Zierler
1965]. With G(z) and I(t) being the observed signals, the objective becomes the non-
trivial task of estimating the impulse response function. The input and tissue functions
are normally obtained by sampling the density of an artery and tissue on the set of CT
images collected during the dynamic study. Each point in an image represents a measure
of the density at some time, t, and the time-density curve is generated by repeated
sampling of the density from the time-order CT data set.

In tomographic image studies, an arterial and tissue signal is monitored and the
deconvolution is performed. However additional information, such as the signals from
draining vessels, such as the aorta or vein, are often ignored (see Figure 4-1). For
example, when studying perfusion in the brain with f-CT, the coronary artery and brain
tissue is deconvolved. But often, the draining coronary vein is also often visible in the

CT image.
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Results of a deconvolution method that exploits the use of output signals when
available in tomographic images are presented in this section. The concept is simple:
solve impulse response functions for the input-tissue, while also solving the tissue-
output system and enforcing linearity conditions between the two systems to constrain
the space of feasible impulse response functions. Although the technique requires two
deconvolutions as opposed to one, fewer — if any — restrictions are necessary on the

impulse response functions.

This section is organized as follows: First, a description of the deconvolution
method is given. Second, a series of numerical simulations of this deconvolution method

are performed and compared against more conventional deconvolution methods. Last,

this method is applied in an experimental setting.

4.2.2 Theory

This method relies on the principle that in addition to the input and tissue signals
in the tomographic image, there also exists an output function, J(1), defined through
some impulse response function H3(t) through system 2 (see Figure 4-1). For clarity, let
us pose the deconvolution problem in the framework of a linear inverse problem where

I, G, and J are (1 x n) vectors, with noise &I, 8G, and &/, mapped by the Toeplitz

matrices H,; and H> (n x n) in series:

G +6G = H (I +6I) Equation 4-20

J+8] = H,(G +8G) Equation 4-21
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Figure 4-1: Phantom experiment of input, vessel, and output signals.

Our primary goal is to estimate H;, but with the additional information in J, it

would appear that there are two independent systems of equations to solve rather than

one.
However, because the system is linear:
J+d&J =H,(+d), Equation 4-22
where:
Hy=H>H, Equation 4-23

The last relationship limits the solution space of both H, and H, and can
therefore be used as a constraint in our attempts to find H,. Therefore, if an inversion

process which uses the relationship in Equation 4-23 is used, it may be possible to obtain
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a solution to 1 and 2 which are more robust than the solutions to 1 and 2 amrived at
independently. It can be shown that a more stable solution for both H, and H; can be
obtained by solving for the H;, system and then decomposing H>, for H, and H,, rather
than for solving for H, and H, independently.

To demonstrate this, consider the inverse problem of finding the matrices H, and
H,. The stability of any inversion is governed by the degree of ill-conditioning of the
matrix to be inverted, whereas the accuracy of the inversion is governed by the degree of
the ill-posedness of the matrix to be inverted [Ueberhuber 1997a, Ueberhuber 1997b].
Let us explore here the ill-conditioning, or more precisely, the condition numbers of H,,
H,, and H; impulse response matrices. Practically, the condition numbers for H 3

can be estimated through the following relationships:

<|H,|H,"|= cond( H, ), Equation 4-24

<|H,

H 2"| =cond(H,), Equation 4-25

or, conversely, through a calculation of some matrical norm if H is known. In the joint

system, the condition number is:
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H,,'|=cond(H.,,). Equation 4-26

LS
I
J

Because the system is linear:

H> -H.H, Equation 4-23

From this equation and by use of the triangle inequality, one must have:

cond(H5;) < cond(H>) cond(H,), Equation 4-27

In other words, the condition number of the joint system is equal to, or less than, the
condition number of the independent systems. Therefore, if one attempts to solve the
two systems independently, the condition numbers of the transform mapping systems 1
to 2 and that mapping 2 to 3 is greater than or equal to the condition number of the
system mapping 1 to 3. This proves that, likely, a more stable solution for H; and H- can
be obtained by solving for the less ill-conditioned problem of finding H»; and then
decomposing H,, for H, and H,, rather than for solving for H, and H> independently.

Practically, one can devise a great number of methods to use this additional
(output) information to achieve a stable solution. An efficient method for solving this
system would be to first estimate H>; and then solve for either H; and H, based on the
estimates of:

st




and finally deduce the corresponding system by using the linearity condition in Equation
4-23. This approach is preferable when the relative errors in each of the systems are not
the same, which may often be the case. Numerically, however, the decomposition of H;;
may pose difficulties.

In our application, the relative errors in the input, tissue, and output are relatively
the same and thus there is no clear advantage of first solving one and then the other.
Therefore, an iterative method was chosen which solves H; and H, while using the
linearity condition in Equation 4-23 as a constraint. This method avoids the pitfalls
associated with decomposing the H;> matrix while ensuring that the linearity condition

between the two systems is maintained.

4.2.3 Methods and Materials

A deconvolution technique based on the concepts generated in the theory section
was compared to four commonly used deconvolution methods: exact least squares,
Fourier transform, model-based fitting, and constrained optimization with regularization.
Because these methods are well known and better described in the literature, a brief
discussions of the methods are given with more attention to the details of the algorithm.
When possible, only the ‘raw data’ was used in each of the deconvolution methods.

There are two reasons for this. First, any pre-conditioning of the data, such as re-scaling
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or manual tweaking of the inversion, may both adversely affect the impulse response
estimate and potentially bias any resulting parameters. Second, a method that has as
little ‘user-intervention’ as possible is preferable since in practice, a very large number
(100-10000) of deconvolutions are to be performed in succession during tomographic
image analysis. All methods were implemented using programs developed on MATLAB

numerical analysis software [The Mathworks Inc. Natick MA].

4.2.3.1 Exact least-squares inversion

The exact least-squares method is a direct inversion technique that is generated
from the normal equations in the standard fashion [Anton and Rorres, 1987]. The
method requires the inversion of the autocorrelation matrix of /, multiplied with the
cross-correlation of J and G. For the following sections in this chapter, this method is

defined as the 'LS' method.

4.2.3.2 Fourier Transform

In this approach, Fourier transforms, 3, are used to estimate H through:

H=3 [ S[I]] Equation 4-28

The Fourier transforms were implemented with a Fast Fourier Transform (FFT)
contained within the MATLAB software. To reduce aliasing, data vectors were padded
with zeros of length equal to the original data vector before transforms were applied. A

number of Butterworth filters with various filter widths and decibel settings were also
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tested. No special treatment of the ‘DC’ components during the transform was

performed. For the following sections, this method is defined as the 'FFT' method.

4.2.3.3 Model-based fit

Here, it is assumed that the estimated impulse response function, a \» for system

1 has the form of a gamma-variate function:

H=At-tye ™", Equation 4-29

with unknown amplitude, A, relaxation parameter, 7,, and power factor, n. All
parameters are assumed to be bound on the set of positive real numbers. Then a

minimum to the following scalar function:

o,

&= E[—G—_—L%] Equation 4-30
is sought, where & is the goodness-of-fit measure. The values of F, A and T, are bound
on the set of real-positive numbers and the minimization is implemented using a simple
line-search. The minimum and maximum step-sizes for each trial parameter were fixed

at 0.0001 and 1.0, respectively. For the following sections, this method is defined as the

'FIT' method.

4.2.3.4 Optimization using regularization
By treating the convolution integral as an inverse problem, a minimum of the

following scalar function:

& =x*(G1+AQ(H], Equation 4-31
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is sought, where 2 is a chi-squared functional and Q is a regularizing functional with
regularizer A, and G is the estimated tissue response obtained by a convolution of the
trial impulse response, H,, and input function I In this implementation, ¥’ is the
weighted sum of the squares between the output function and the convolution of the trial
function with the input function. The regularizing functional selected was the norm of
the Hessian matrix multiplied by the trial function. By selecting such a regularizer, it is
assumed the first derivative of the impulse response function is smooth. Because the cost
function is a bound-quadratic, any minimum is assured of being the global minimum
when the correct value of A is used [Hovorka er al. 1998]. Despite the assurance of a
global solution, the selection of A proves to be a non-trivial task [De Nicolao and
Liberati 1993]. There are several methods of finding the optimal choice of A. In this
implementation, the discrepancy principle is employed, which assures equal weighting
between the chi-squared functional and regularizing functional. The minimization is
implemented with a line-search using minimum and maximum step-sizes for each trial
parameter fixed at 0.0001 and 1.0, respectively. For the following sections, this method

is defined as the 'REG' method.

4.2.3.5 Constrained optimization using input, tissue and output curves

To solve for H,(t) and Hx(t) the optimization toolbox described above, where the
trial function is a 2 x N matrix, is used. In its implementation, a cost function, &;:

£ = 2°(G1+ AQIH )+ X1+ A, QA,1+ U ®H, ® A, - 1],

Equation 4-32
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is employed in the minimization, and J is the estimated output function, based on the
trial impulse response function I?z. Note that this cost function is identical to that

defined in the constrained regularization, with an additional term that uses the linearity
in H; and H> to constrain the form of the trial impulse response functions. The
regularization parameters, A; and A,, were each determined from the discrepancy
principle. Values of the trial functions were bound on the set of real-positive numbers.
The minimization is implemented using line-search using minimum and maximum step-
sizes for each trial parameter fixed at 0.0001 and 1.0, respectively. For the following

sections, this method is defined as the '/REG2' method.

4.2.3.6 Numerical simulations

The interest in deconvolution is motivated by their implementation in f-CT
studies in highly perfuse organs, such as the lung. In these studies, contrast injections are
sharply defined with the rise and fall of tissue contrast concentration within a matter of a
few seconds. A number of computer simulations were conducted to test the accuracy of
each of the aforementioned deconvolution method.

The input CT-concentration curve, /, of the pulmonary artery was digitized from
Ono et al., who administered an antecubital Iodinated contrast injection for 5 second