USING META-MODEL-DRIVEN VIEWS TO ADDRESS SCALABILITY IN

I* MODELS

Zheng You

A thesis submitted in conformity with the requirements
for the degree of Master of Science
Graduate Department of Computer Science
University of Toronto

Copyright © 2004 by Zheng You

g

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliotheque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-95286-X
Our file Notre référence
ISBN: 0-612-95286-X

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

[Dot]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Using Meta-Model-Driven Views to Address Scalability in i* Models

Zheng You
Master of Science
Graduate Department of Computer Science
University of Toronto

2004

This thesis proposes an extension to the i* framework to address scalability
issues. The notion of “view” is exploited to selectively present portions of an i*
“baseline model”, which contains all modeled objects for a given application
using i* notations. We first reformulate the i* framework and define four types
of views—Actor Class, Strategic Dependency, Strategic Rationale, and
Evaluation Results. Next, we define sub view types based on the four types of
views and supply a view management framework. The views and sub-views are
defined using meta-models, and formalized using the Telos conceptual modeling
language. Each view type is associated with a formally defined “selection rule”
so that the projection of a specific view from a baseline model can be automated.
Relationships among views are depicted in View Maps. Illustrative examples are
taken from the London Ambulance Service and the Trusted Computing Group

case studies.

ii

Acknowledgements

The author of this thesis would like to thank all those who contributed to its

completion.

In particular, I would like to thank Professor John Mylopoulos for offering

valuable comments on the thesis and being the second reader of it.

A brilliant researcher with a splendid personality, Dr. Lin Liu provided
extremely important feedback on an earlier draft of this thesis and inspired the

formal construction of the view extension.

The team of ConceptBase designer and developers from Informatik V, Aachen
University of Technology (RWTH), Germany, a special thanks to them for
providing a tool for prototyping and validating the selection rules in the view

extension.

Jennifer Horkoff, a diligent and excellent modeler, for contributing the
original Trusted Computing Group (TCG) case study. The TCG case study offers

rich resource for validating the usefulness of our view extension.

I had the honor to conduct this work under the supervision of Professor Eric
Yu. His trust, patience and overall support towards the completion of the work
have been greatly appreciated. I hope this thesis, despite its possible weaknesses,

was worthy of his attention.

111

Contents

1 IntrOduction AN SN IS SIS NN NN AN NN NSNS NSNS NS ENANA NS NN NS NSNS NRESEEEEN 1

1.1 IMOTIVALION. ...ttt ettt ettt e s eeeteerenseneeresrensennas 1
1.2 The London Ambulance Service Computer-Aided Despatch System................ 2
1.3 Research Objectives and ApProachocoeeeevevivveniiniiciinicsececeee e 7
1.4 Related WOTKcoooeiiiiiieieiece ettt ea e 8
1.4.1 Scalability handling in KAOS and EKDcccoceeivieieiverieeiceeenen, 9
1.4.2 Scalability handling in Object-Oriented and SADT modeling techniques11
1.5 Thesis Organizationc.ecivvieiiecriieeere ettt ee e e e e e e 13
2 The Original i* Framework P — P — —
2.1 MoOdelng FEAtUIESccecerviriiiriiriiieinietciese ettt st seses e 15
2.1.1 The Strategic Dependency Model...........ccooveveviveeieiveeicieeseeceereeeeeen. 15
2.1.2 The Strategic Rationale Modelccooeveiiieviiiiciiicceeeeee e, 18
2.2 Representational CONSIIUCES........ccceriruriruriererieeiereecteensereee st eeeeeenenes 20
221 The Strategic Dependency Model............cooovveeviieieiiiieieeceeeseeeeeeens 21
222 The Strategic Rationale Modelccoovvvereeeieiiiceeeeieeseeeeeeeeer s 23
2.3 SUMIMATY ..ttt a et er s s e et rtob et esseressesseaseesesensens 26

3 Reformulating the i* Framework Using the Concept of View 27

3.1

3.2
3.2.1
322
323
324

33
3.3.1
332
333
334

INEFOAUCTION. ...ttt ettt et eeaes 28
Realigned Graphical NOtationscccvuerieveriveieeeeeeeicceceeeeeeeeeesee oo 30
The ACtOr Class VIEWccviirirniirieiiieteeteecee e e 31
The Strategic Dependency VIEWc..cccoovveivveeiiiorereeieeeeeeeeeeeeeeereenns 35
The Strategic Rationale VIEWccieveiiviiecieceieiereereereseeeee e, 36
The Evaluation RESULILS VIEWccccverererereuieieieceinccceeeeeeee s, 40
Representational CONSLIUCTES.........o.oiuviieiiiiieeeeeeeeee et et eee e e oo e 43
The Actor Class VIEWcccverieiirieieiitisteeeeteeteeeeeee ettt en s 43
The Strategic Dependency VIEWcccveveieeiiiueriveeneereieeeeeeeeeeeeer e, 46
The Strategic Rationale VIEWcoocceivveiieeeiieeeeeee oo eseee e, 48
The Evaluation RESUILS VIEWcocveveviuiriieeiriiiieee e 52

v

3.4

DISCUSSION ...ttt et e et e et e e et e s et e e e e e e ee et e es e eseeeeeessresaseesnnrens 54

4 Managing i* Models Using ViewsS.....ccccecvrircrenensnmnnesnssnaseaneess 64

4.1 View EXtension Featurescccovviiiriieieiieie et 64
4.2 VIEW IMAD.....cociiriiriieieiiiireete sttt et ste et sreste e s e sb e s e basssereereesaensenseanesreenses 65
4.3 Representational CONSLIUCES.........cvvvirverierierieeiesiecreecre et ere e 66
44 Meta-concepts Essential to Selection Rulesccceeviiveeiiiieeceieciee. 71
4.4.1 Plain and specified actor..........cccccviviiirenieiierinieneiee e 71
44.2 ACHOr ASSOCIALION. ...ttt ettt 72
443 Parent versus childrencccccvevieeninininineinceenceeee e 72
444 Incoming versus outgoing dependency............c.cceveveevveeeieeviieeernenenne 74
4.4.5 External lINKSc.cocoeriniininienineeeceeee et 77
4406 Ancestor versus desCendentcovvvervreinreereirieeeee e, 78
4.5 SUMIMATY ..ot r s er ettt be st sr e eresne e 81
5 Actor Class views.......... —— — R SRR - ¥ J
5.1 OVEIVIEW ...ttt ettt ettt ers sttt ettt se e nens 83
52 Details 0f the AC VIEWS ..cc.eiviiiieiiiiieieieiieteeeteeeee ettt e e 84
5.2.1 Basic Actor Class VIEWc..ccuoiieiiiiieieeieeeeeeeeeeete et 84
5.2.2 SINGIEe-NEtWOTK VIEW ...c.eoviiiiiriiiiiiiieteecte et 87
523 SINgle-Plain-ACtOT VIEW.......ccvrvueiereririnierieietiresieeeeesetesese s et s e 90
52.4 ADSLract-Actors-Only VIEWcc.eivvireeiiitieieiietieieeeeee oot eeeeae 94
5.2.5 Plain-Actors-Only VIEWcccccevivreriviereniireriseeieeseese e s e e e e 96
52.6 Agents-OnlY VIEW ...c.oc.ccoviiiirriiieiiieeeerereeeeee et eea e 97
527 Direct-Replaceable VIEWcoouviiirieiiiieeeccciee et eee e 99
53 SUMIMATY ..ottt e et et ee e e se e e e s e s e 102
6 Strategic Dependency Views......... amamanas P S vevurannnas 103
6.1 OVEIVIEW ..ttt sttt sttt seteesesesereseetesesseseseseseens 104
6.2 Details 0f the SD VIEWS.....ccooviiiiiiriietieceececeectereee ettt e s s e s eeans 105
6.2.1 Plain- versus Specified-Actor-Based SD VIeWcoceoeveveevcverrnnnnnn, 105
6.2.2 SINgle- ACtOr-FOCUS VIEWc.ouiviiereririeceiiieeecceeeeee oo e e er e 111
6.2.3 Pair-wise-ACtOrS VIBWcceomiirieeiietiieeiccitceeeeeeeeeeeeeeeee s e e e 115

7.1

7.2
7.2.1
722
723
7.2.4
7.2.5

7.3

OVEIVIEW ...ttt sttt et re e ae st e ete e ereebeeareenresreesseons 119
Details 0f SR VIEWS.....c.couiuivirieiiieiireiere ettt ev e 121
Single-Actor-FOcus SR VIEWc.ocvciiiciieiciceeeeece s 121
Single-Actor-Internal or External View............c.cccoovvvreviciieivinirceenen, 125
Internal-Non-functional and Functional View............ccccocoeeeviiinvinnnnn, 128
Single-Softg0al VIEW......cccociiiiriiriieiicieieceec et 132
Single-Affected-Dependum or -Actor VIEW..........cccevvverererennercrencninnnne. 133
SUITITIATY ..ottt ee e e e ee e be e eabesraesreebeetreetsereenrsoseestaensesanenne 137

8 Re-presenting the Trusted Computing Group Case Study...139

8.1

8.2
8.2.1
822
8.2.3
8.2.4
8.2.5
8.2.6

8.3
8.3.1
8.3.2
833
834

8.4
8.4.1
8.4.2
8.43
8.4.4
8.4.5

OVEIVIEW ..ottt sttt n bbbt r st st et sesaerenene 141
ACtOT Class VIEWS......ccevueuirieririiriinreinisreieeereseessee st eseere s eseseensessenensenssressens 143
The Basic AC VIEW ...c..coueirericiiirieirenentneee et 144
Single-NetWork VIEWS........ccovuviereririnninieieiniieeveeeee e se s 145
Plain-Actors-Only, Abstract-Actors-Only and Agents-Only views 147
SIngle-Plain-ACtOT VIEWSc.ccvvmrrriirierierereeeree sttt eresesteveseereeseenas 149
Direct-Replaceable VIEWSccccveeirieieieriiiciectcceeveieee e 152
DISCUSSIONvviriiieteteietetrreiis ettt ettt nese e e es 155
Strategic Dependency VIEWSc.ccvieiieerierivieiereieeicresecseeseeseeseeeeeeeesenes 162
The Basic SD VIEW......c.ccveiriiiririeiieieereece et 164
Single-Actor-FOCUS SD VIEWS.....c.ooveviuiiiiriniieiriieriiireieeeereeseeeseeeesnns 164
Pair-wise-Actors SD VIEWScccuiveuivieiieiirerieeetcececcce et e s e 168
DISCUSSION ...c..couiuiieiiteieieteee ettt ettt n et see et eees 170
Strategic Rationale VIEWS.......ccovevvuiiiieierccicciee e en e, 172
The Single-Actor-Focus SR View for agent TCG...........cccceevvveeennnnnnn, 174
Single-Actor-Internal and External VIEWScccoceovvivveeeeereereenn 175
Internal-Functional and Non-functional VIEWS.............ccecvevveveeererernnnn. 176
Single-Softgoal VIEWSc.ccevuviririeiriieiceticeeereee e 178
Single-Affected-Dependum or ACtor VIEWSc.cceeveveveeveeesesnennn, 180

vi

8.4.6 IS CUSSION ...t e e e e e e e e e e eeee e e e e e e e es e aeans 183

8.5 Contributions and ReSUIScccooveviiiniiriiieeeeeecese s 184

9 CoNCIUSIONS...uiiurimrnnnsserenersasennsnnsassssnsnassnnsnnsnasansanansnsnasnsnsnnsens 1 88
9.1 Summary of ReSUILS........cccoevieiiniiiiccecee e 188
9.2 CONIIIDULIONS......c.cotereeieirieiriieeseeee ettt er e ere st se et sres e saenno 190
9.3 FUuture DIF€CIIONS ...ceeuerviririiriireietiieietesteeetet et se et ene ettt seensenesaenes 191
9.3.1 Meta-model related future Workcccceeveeveeieieieiiciecceeree 192
932 Use generic knowledge-base driven techniquesccccoevevvneveenenenn. 192
933 Guidelines for the modeling Process........vviirverrereririneiiinieesenereeerens 193
9.3.4 Broader appliCationsccceveevriviieesieniesesteerecte et seeere st e eeeneeas 194

AppendiCes......ccucemimnaimsininmnasninsssssasnssn s ssensansarannnsnnsassnsnasnasssnses 1 96

A Transformation of FOL formula ... 196
Al Transform definition of meta-classesc.cooovvviiiniiinninnenn.. 196
A2 Transform qUeriescooeeiii i 198
A3 Transform expressionscooioiiiiiiiiiiiiiiiiiiii e 199

B Queries in O-Telos formatoo.oiiiiiiiii e, 201

C Sample Query Results in O-Telos formatcoeeeiineienininaninn.. 217

D Facts about the London Ambulance Service Computer Aided Despatch

SYSTEIM Lo, 219

Bibliography I I NN NN NN NSNS NN NN SN AN E AN NN NSNS NN NN SN NN SN NS NN UNE NN NN 221

vii

List of Tables

Table 1 Variable assignment for defining meta-class “external link™

Table 2 Variable assignment for defining query “find_internal_connectors”.

Table 3 Mapping of expressions and logical operators from FOL to O-Telos

viii

...............

...............

...............

List of Figures

Figure 1.2-1 A partial model from the LAS-CAD case Study.........cccovvrververeeereerennrerennnenn, 3
Figure 1.2-2 Partial representation of the model in TELOS showing the size of the
UNAETTYING CONSLITUCTSeuviureiieiiieiieterieieeriestees ettt eve s bbb ss e sr s 6
Figure 2.1-1 Dependency tYPEScoceeeevererirrirrereeieerieeeresiereessessesesessessereeseeressessesssrenns 16
Figure 2.1-2 A partial SD model from the LAS case study..........c.ccoevvevevcveceiriiiiinns 17

Figure 2.1-3 A partial SR model showing internal rationale of actor Resource Allocator
from the LAS €ase StUAY....coccviireriiiiiiieienieeseese ettt ons s eseeeerens 19
Figure 2.2-1 Definition of meta-level class AgentElementClass and a domain class that

instantiates it denoting the class of agent Ambulance Crew from the LAS case study

... 21
Figure 2.2-2 A partial meta-model of the SD model in Yu’s thesiscccccevevevirvrnenne. 22
Figure 2.2-3 Representation of a partial SD model from the LAS case study.................. 23
Figure 2.2-4 Partial meta-model for the SR model............cccovvvvmriveiriiiiieieeeeeeeee 24
Figure 2.2-5 SR presentation in TeloScc.cccvivviriereiiinieecieieereeeee e 25
Figure 3.2-1 A partial baseline model showing some structures related to plain actor

Ambulance Crew, LAS Management, Resource Allocator, and Incident Reviewer

from the LAS €as€ StUAYcoeieeiiiiiiieieiecieieecrecrecee ettt er e sate e s e eeeneneeas 31
Figure 3.2-2 Newly introduced graphical Notationscceveveeveieiereiieeireeeeeeeenenenens 33
Figure 3.2-3 Sample Actor Class view from the LAS case studyccoceeiviveerirerenennnn 34
Figure 3.2-4 Sample SD view from the LAS case studycccoovviviieerererrseeeren. 36
Figure 3.2-5 Graphical notation of Beliefccocovveviriviieinieieeeeeer et eseeesereeanan 37
Figure 3.2-6 Intentional LNk tYPes.......cvveeeiiririiierieeietererercseese st eeeeeeeves e e esensnas 37
Figure 3.2-7 Effects of contribution HnKS.............cooeiereeivieiieeieieeeceeeeeeeeeseeeeeessenssesens 38
Figure 3.2-8 Effects of correlation lINKSo.ccvvivieriieiviiiiceccee e ceeeeeereeeeseeese e e 38
Figure 3.2-9 Graphical notation of decision point..............c.oceeveeeeeeeeeeeieeeeeeereee e eeeenan, 39
Figure 3.2-10 Example of the SR view from the LAS case study............ccccccoevevererennnnnn. 39
Figure 3.2-11 Label tyPescccovviriiuiiiiririeiriieeietete et e et st e sranas 41
Figure 3.2-12 Methods of label assignment...............c.coeveveovereveeeeeeee e e 41

Figure 3.2-13 Sample Evaluation Results view based on an SR view from the LAS case

SEAY e vttt rt ettt et b e st et s b et s s e ts e st e b e b e beere et s enrenseatesreeneerseren s 42
Figure 3.3-1 A partial meta-model of the Actor Class VIEW..........cccvovereriereireecrieenirenns 43
Figure 3.3-2 Actor Class view representation in Telos.........ccccovevervevirievviresrerieeeveereennnns 45
Figure 3.3-3 A partial meta-model of the SD VIEWccoevivieivnieiicccecceecea 46
Figure 3.3-4 SD view representation il Teloscvovveeerieinieierinieiseeccececteeeveeeeeenas 48
Figure 3.3-5 A partial schema showing Element hierarchy in the SR view 49
Figure 3.3-6 A partial meta-model showing the links supported by SR view.................. 50
Figure 3.3-7 SR view representation in Teloscceeveveriererieeirieeecicieeereeeeeere s 52
Figure 3.3-8 Formal representation of labels in Telos..........ccccoccevvvevivviineirieeeeerenee 52
Figure 3.3-9 Evaluation results in TELOS representation...............ooecevivvvveeeeeeereineonenenees 53
Figure 3.4-1 The Telos representation of a segment from the LAS baseline model......... 57
Figure 4.2-1 Graphical notations in VIiew Mapcccecveeciirerivrieceececeeecececeesvee e 66

Figure 4.2-2 Generic View Map showing relationship of the baseline model and the basic

Figure 4.3-1 A partial meta-model of the view extension showing meta-level relationship
among the baseline model class and other view Classes..........ccocoevvvvveereveeereeerernnnn 67
Figure 4.3-2 A partial meta-model of the view extension showing the hierarchy of
INNETITANCEcocuiiiiiiiiite ettt s et n s et eaeteneneneeaeon 68
Figure 4.3-3 A partial meta-model of the view extension showing meta-level
relationships among different types of AC View Classescecveveerreeeeersrenennn, 69
Figure 4.3-4 A partial meta-model of the view extension showing meta-level
relationships among different types of SD view classes..........oeeceveeevrevevveeerennanns 70

Figure 4.3-5 A partial meta-model of the view extension showing meta-level

relationships among different types of SR and EVLR view classes.........coo......... 70
Figure 4.4-1 A partial meta-model showing relationships among extended actor types in

OUE EXEENISIONcuiiiiiiiiitetee ettt et e et et e st et seetesese et e e s st eteneseseneseesseseessesees 72
Figure 4.4-2 Partial meta-model showing association link classes...........coevuvvverivvrniinn. 72
Figure 4.4-3 Partial meta-model showing the parten-children relationship 73
Figure 4.4-4 Partial Telos representation showing the parent-child relationship.............. 74

Figure 4.4-5 Partial meta-model showing incoming and outgoing dependency links...... 75

X

Figure 4.4-6 Partial meta- and domain-model showing the ancestor-descendent

TEIAtIONSHIPcviiiiiiieicc ettt st 78
Figure 4.4-7 Telos representation of partial model showing the descendent-ancestor

TElAtIONSHIP. c..viiiiiiiie e es 79
Figure 5.1-1 A generic view map showing a parent AC view and its possible children .. 83
Figure 5.2-1 A partial Basic Actor Class View from LASCS (our original view)........... 84
Figure 5.2-2 Single-Network views derived from the original Viewc.cccevecrreneee 88
Figure 5.2-3 Single-Plain-Actor views derived from the original viewccocuene.. 92
Figure 5.2-4 Abstract-Actors-Only view derived from the original view 94
Figure 5.2-5 Plain-Actors-Only view derived from the original view............cccovvvrrvennnn.. 96
Figure 5.2-6 Agents-Only view derived from the original viewccccoevevvvieverirnenene. 98
Figure 5.2-7 Direct-Replaceable Views projected over the original view...................... 100

Figure 6.1-1 Generalized view map showing relationships between different forms of

Basic SD VIEWScccceviviiiricniiieiieesesiennts ettt sers 104
Figure 6.1-2 Generalized view map showing possible decomposition of “Any SD View”

... 105
Figure 6.2-1 Partial Plain-Actor-Based SD view from LASCScocoooeoeveeeeeeereenns 106

Figure 6.2-2 Partial Basic AC view from LASCS showing the associations of the four
PlAIN CHOTS ...ttt 107
Figure 6.2-3 The Specified-Actor-Based SD view corresponding to the Plain-Actor-
Based SD VIEWcoiiiiiiiiicinicttrec ettt 107
Figure 6.2-4 Single-Actor-Focus view for position Resource Allocator from LASCS.. 111
Figure 6.2-5 Pair-wise-Actors SD views from LASCS.........cccoooevviiveiiieeeeeeeeerennn, 116
Figure 7.1-1 Generalized view map showing decomposition hierarchy from a Single-
Actor-Focus SR VIEW t0 1tS SUD-VIEWS.......oovrireirieeiieriieiieecr et 119
Figure 7.1-2 Generalized view map showing the label propagation direction for the
evaluation process using the hierarchy of SR SUb-VIEWS..........coccvvvveveevevvirerrnnn, 120
Figure 7.2-1 Single-Actor-Focus SR view showing internal rationales of agent
Ambulance Crew from LASCS (the original VIEW)cccoovvevevereveeeesseerennn. 122
Figure 7.2-2 Sample Single-Actor-Focus EVLR view showing evaluation results for

agent Ambulance Crew from LASCS..........ocovoiiivieiiiiiiieeeeeeeeeeeeeeeee e 124

Figure 7.2-3 Sample Single-Actor-Focus EVLR view showing evaluation results for

agent LAS (Management) from LASCS........ccovviviiiieiieeeeeeeeeeeeen e 124
Figure 7.2-4 Single-Actor-Internal view derived from the original view....................... 126
Figure 7.2-5 Single-Actor-External view derived from the original view...................... 126

Figure 7.2-6 Single-Actor-Internal-Non-functional view derived from the Single-Actor-
Internal view for agent Ambulance CreWcoovvviievevieireeeriveieeeeeeeeeeeeeeeenns 129

Figure 7.2-7 Single-Actor-Internal-Functional view derived from the Single-Actor-
Internal view for agent Ambulance CreEWocvevveieiereeeeneeeeseieeeeeeeeeeeeeeneeseen, 129

Figure 7.2-8 Single-Softgoal view derived from the Single-Actor-Internal Nonfunctional
view presented in the previous SECtONc.ovvveveviviieiiiieieieeeeee e esesesenas 132

Figure 7.2-9 Sample Single-Affected-Dependum view showing one affected dependum

BeArrived [within 11 mins] from LASCS.........cooooviiiiiiiiceeeeeeeeee e, 134
Figure 7.2-10 Sample Single-Affected-Actor view showing the effects to Hacker from
agent TCG from the TCG case StuAY.......coveveereveieeiiiiieeireeeeeeeer e, 135
Figure 8.1-1 View map showing the relationships among the basic views from TCGCS
... 142
Figure 8.1-2 Revised Baseline Model representing the viewpoints from the proponents of
TC ittt sttt ettt e et e e nens 143
Figure 8.2-1 View map for some partial AC VIEWSooevveveveeeeeeeeeeeeeereeessea, 144
Figure 8.2-2 Basic ACtOr Class VIEWcoeeoiuereviiierieeieieiieeeeeeeseeeeeeeeseeresesesesesns 145
Figure 8.2-3 Single-Network view for producers from the TCG proponents’ viewpoint
... 146
Figure 8.2-4 Single-Network view for consumers from the TCG proponents’ viewpoint
... 146
Figure 8.2-5 Plain-Actors-Only view for CONSUMELS ZrOUDeoveveeeeeerrererersrerersnans 147
Figure 8.2-6 Abstract-Actors-Only view for ConSUMEr group............coveeevveveveevererenen.. 148
Figure 8.2-7 Agents-Only view for CONSUMETS GrOUPevveveveveereeeeeeeeseseeeoeeer, 148
Figure 8.2-8 Single-Plain-Actor view for “PC USEI”coocverevereeeereeeseseseesoe. 149
Figure 8.2-9 Single-Plain-Actor view for "Content USer"...........coveeveeeveeeeeereoooons 150
Figure 8.2-10 Single-Plain-Actor view for “Malicious User(s) and Attacker(s)”.......... 151
Figure 8.2-11 Single-Plain-Actor view for “Data Pirate”...........cooouevoremorveeveoeserorons 152

X1

Figure 8.2-12 Direct-Replaceable actors view for agent Individual Consumer 153

Figure 8.2-13 Direct-Replaceable views for specified actors.........ccovvveveverevivenivernnernens 153
Figure 8.2-14 Direct-Replaceable view for agent instance Helen Duff........................ 154
Figure 8.2-15 Direct-Replaceable view for agent instance George Hudson 154

Figure 8.2-16 Comparison of Actor Views (diagram) showing redundancy identified . 156

Figure 8.2-17 Example of logic gaps in actor replacementccccevvvevevvecenciennnnnn. 157
Figure 8.2-18 Modified representation to fill the 10gicC gap.......ccccevveercerceerrvirennierinerinnns 158
Figure 8.2-19 Substitution of role PC User in TCGCScocovviiiiiiiicnniieinnns 159
Figure 8.2-20 Substitution of Hacker/Malicious User in TCGCS........cccccecvevvvenercrennnne 160
Figure 8.2-21 Our modified AC views in removing the 10giC £apscceevvvrveereeirerenns 161
Figure 8.2-22 Modified version showing PCMSPTCGMTCG as arole.........cccvevennne.. 162
Figure 8.3-1 View map for partial SD views from the Pro TCG view point.................. 163
Figure 8.3-2 Basic SD view from the TCG proponents’ viewpoint...........ccccoeververernnnees 164
Figure 8.3-3 External relationships for role Government as PC User.............cccveueuee. 165

Figure 8.3-4 External relationships for role Individual Consumer as PC User and Content

U T ittt ettt ettt ettt bt et st s h e er et e e e b e e b e e b e e rb e teeebeenreereenteeares 165
Figure 8.3-5 External relationships for Malicious Group/Individual as Government

Attacker and Hacker/Malicious USET.......c.ccceveeiierienrivcieieecrecrecrestrenee e 166
Figure 8.3-6 External relationships for agent TCG (TCPA).....c.cccocvevvivveercerinreiien 167
Figure 8.3-7 External relationships for agent instance George Hudson......................... 168

Figure 8.3-8 Pair-wise view for PC Software Manufacturer/Service Provider and

Government as PC USET......cccoovieeririiiiiiiieiennesrcsestee et 169
Figure 8.3-9 pair-wise view for TCG (TCPA) against Hacker/Malicious User 170
Figure 8.3-10 Differences in expressing external contributions to dependums.............. 171
Figure 8.4-1 View map for partial SR views from the Anti-TCG viewpoint.................. 173
Figure 8.4-2 Single-Actor-Focus SR view from the Anti-TCG viewpoint of TCGCS .. 174
Figure 8.4-3 Single-Actor-Internal view for agent TCGc.ccoooovivivcienreneeeneeeernnn, 175
Figure 8.4-4 Single-Actor-External view for agent TCG.........c.occooovvvvvveveveeeeneeeennn.s 176
Figure 8.4-5 Single-Actor-Internal-Functional view for agent TCG...........cccocveuenen..... 177
Figure 8.4-6 Single-Actor-Internal Non-functional view for agent TCG....................... 177
Figure 8.4-7 Internal Single-Softgoal view for softgoal Lock-in PC Users................... 178

Xiii

Figure 8.4-8 Internal Single-Softgoal view for softgoal Support [DRM]c........ 179

Figure 8.4-9 Internal Single-Softgoal view for softgoal Fight Piracy [Software].......... 179
Figure 8.4-10 Internal Single-Softgoal view for softgoal Trusted [PC User]................. 180
Figure 8.4-11 External Affected Multiple-Dependums view for dependums Compatibility

ANd TNNOVALION ...eiveiiiiieriierieeeere ettt e s be s s sene e 181
Figure 8.4-12 External Single-Affected-Dependum view for Control [PC]................... 182
Figure 8.4-13 External Single-Affected-Dependum view for Protect [Stored Data] 182
Figure 8.4-14 External Single-Affected-Actor view to Hacker/Malicious User............. 183
Figure 8.5-1 The original model from the Pro TCG viewpoint...........ccocevcvvreerereerienennns 186

xiv

1 Introduction

1.1 Motivation

The i* framework is a conceptual modeling technique that supports goal- and
agent-based reasoning. It was first proposed in Yu’s 1994 PhD thesis—Modeling
Strategic Relationship for Process Reengineering (Yu 1994). The i* framework was
aimed at helping in process modeling, process design, and process analysis from a
social and intentional perspective: A Strategic Dependency (SD) model is used to
express “the intentional relationships among agents”; whereas a Strategic Rationale
(SR) model is used to show “how processes are comprised of intentional elements
[of the agents].” Applications of the framework were demonstrated in four areas:
requirement engineering, business process reengineering, organizational impact
analysis, and software process modeling. In addition to enhancing the argument by
working examples, formal constructs of the framework were also presented by Yu
(Yu 1994).

A common challenge encountered by users of the i* framework is that the
approach is difficult to scale up. Multiple factors may be contributing to the
scalability challenge. The i* framework adopts a partial, semi-formal, and
qualitative modeling approach that accommodates uncertainty and incompleteness in
the real world. While tool support is possible to a certain degree, intensive human
interaction is nevertheless required during modeling and analysis. As the size of an

application increases, the complexity of modeling and analysis also increases.

The original purpose of the i* framework was to perform process analysis and
process redesign (Yu 1994). These two activities require traversing of the modeled
structure by i* users; therefore, human decision is required at each step. Moreover,

the model evaluation process adopted from the NFR framework (Chung et al. 2000),

CHAPTER 1. INTRODUCTION 2

used to evaluate the effects of process elements on organizational goals, also
requires intensive human interaction. For ease of human interaction, 1* models must
be visualized. However, any visualization is subject to the constraints of media
ability and human comprehension. For example, when visualized, a diagram may be
entitled to a limited space, a list may be confined to a finite length, and only two
dimensions might be displayed for a matrix in a tabular format. While conceptually
an i* model could grow infinitely, it can become intellectually unmanageable

beyond a certain size.

We illustrate the scalability challenge in the next section using the London

Ambulance Service (LAS) case study.

1.2 The London Ambulance Service Computer-Aided

Despatch System

The London Ambulance Service Computer Aided Despatch (LAS-CAD) system is
a well known software failure and has been used by the research community as a
standard exemplar. It was introduced to the software engineering community at the
8" International Workshop on Software Specification and Design (IWSSD), using
the Report of the Inquiry into the London Ambulance Service (LAS-Report 1993) as
the primary source of information (see Appendix D for citations from the report).
Kramer and Wolf (Kramer and Wolf 1996) summarized the results of how several
workshop participants handled the exemplar. Others, like Breitman et al. (Breitman
et al. 1999) and Letier (Letier 2001) also used the LAS. Breitman et al. (Breitman et
al. 1999) surveyed the possibility of the uses of newly—as of 1999—emerged
requirements engineering (RE) techniques to identify LAS problems early on; and
Letier (Letier 2001) used LAS as a case study for the KAOS goal-oriented

requirements approach.

A case study using the i* modeling and evaluation techniques was also performed

using a project-specific approach to resolve scalability issues (You 2003). Four i*

CHAPTER 1. INTRODUCTION 3

models' representing different aspects of the LAS case study, encompassing a total
of 79 diagrams, were produced, including the evaluation (analysis) diagrams.
Approximately 40 different forms of actors were presented in the four models. The
study focused on the analysis of user-oriented questions, such as “Why is the manual
system not able to meet the performance requirements?” and “How would an

automated system help achieve the performance goals?”

Incident i
ansgemeny Specifies al
‘S‘:omes

- T
-~ b 3
aﬂl;ﬂﬂ \\ COVER:! [Q:’ybg d
= L) » YERY VB
A [Mawh”g \\ Incinto]
\ DeRATYY 3

2 e R N - S

; \ —c

4 N .
1 Opﬂmﬂf’ { amn T -.-.._.“

TN i
- ;
‘" e A h y N
Quakly: § RS 8 ¢ 3
’ Isarvice] | - - K
T \

L& ‘
(=) @)

e
b

1N
7 = \\ ; kﬁ \V N
“; i UPE%’ ey
v ‘Accuracy Y/ \ -

g -

Figure 1.2-1 A partial model from the LAS-CAD case study

The following sample indicates how large and complex an i* model can become.
Figure 1.2-1 is a graphical representation of a partial i* model from the LAS case
study, which involves only four actors (Ambulance Crew, Resource Allocator,

Incident Reviewer, and LAS Management) and part of their inter-relationships.

' In this thesis, we reserve the term “model” for an entire representation (using i* notations) of a certain
organization configuration, and therefore SD and SR, although called “models” in Yu’s original thesis, are
called “views”. The definition of SD, SR, “model” and “view” will be presented in later chapters.

CHAPTER 1. INTRODUCTION 4

Figure 1.2-2 shows the corresponding formal representation in Telos. Telos is a
conceptual modeling language adopted by Yu (Yu 1994) to embed i* concepts.
Telos also serves as the internal representation language in the Organization
Modelling Environment (OME) tool (OME 2003) supporting i* modeling. Modelers

of i* work with the graphical models and do not need to see the Telos code.

% plain actor Ambulance Crew %
TELL SimpleClass AmbulanceCrew_PlainActor IN ActorElementClass WITH
name
displayName : “Ambulance Crew”
specifiedByLink
: AmbulanceCrew_Agent
END

% agent Ambulance Crew %
TELL SimpleClass AmbulanceCrew Agent IN AgentElementClass WITH
name
displayName : “Ambulance Crew”
specifiesLink
: AmbulanceCrew_PlainActor
children
: AC_QualityService
: AC TimelinessService
: AC_TimelinessArrivalLocation
: AC_AccuracyAmblnfo

[outDepLinks
: AC TALtoOptimalLink]
END

% softgoal Timeliness [Arrival Location] inside agent Ambulance Crew %
TELL SimpleClass AC_TimelinessArrivalLocation IN SoftGoalElementClass WITH
parent
: AmbulanceCrew_Agent
outDepLinks
: AC_TALtoOptimalLink
links
: AC_TALtoTS_AndContributionLink

label
: UndecidedElementLabel
END

% plain actor Resource Allocator %
TELL SimpleClass ResourceAllocator PlainActor IN ActorElementClass WITH
name
displayName : “Resource Allocator”
specifiedByLink
: ResourceAllocator Position
END

CHAPTER 1. INTRODUCTION

% position Resource Allocator %
TELL SimpleClass ResourceAllocator_Position IN PositionElementClass WITH
name
displayName : “Resource Allocator”
specifiesLink
: ResourceAllocator PlainActor
occupiedByLinks
: RAMOccupiesRA
: HRAOccupiesRA
children
: RA_OptimalMoblInst
: RA TimelinessArrivalLocation
: RA_AccuracyAmblnfo
: RA_BeGeneratedMoblnst
[inDepLinks
: OptimaltoOptimalLink RA]

END

% occupies link from agent Resource Allocation Module to position Resource Allocator %
TELL SimpleClass RAMOccupiesRA IN OccupiesLinkClass WITH
from
: ResourceAllocationModule Agent
to
: ResourceAllocator_Position
END

% agent Resource Allocation Module %
TELL SimpleClass ResourceAllocationModule Agent IN AgentElementClass WITH
occupiesLinks
: RAMOccupiesRA
children
: RA BeGeneratedMoblnst ByAlgorithm
END

% agent Human Resource Allocator %
TELL SimpleClass HuamnResourceAllocator Agent IN AgentElementClass WITH
occupiesLinks
: HRAOccupiesRA
children
: RA_BeGeneratedMoblnst ByHumanDecision
END

% dependency link from softgoal Timeliness [Arrival Location] inside agent Ambulance Crew to softgoal
dependum Optimal [Moblnst] %
TELL SimpleClass AC_TALtoOptimalLink IN DependencyLinkClass WITH
from
: AC TimelinessArrivalLocaltion
[: AmbulanceCrew_Agent]
to
: AC OptimalMoblInst RA
END

% dependency link from softgoal dependum Optimal [Moblnst] to softgoal Optimal [Moblnst] inside position
Resource Allocator %

CHAPTER 1. INTRODUCTION 6

TELL SimpleClass OptimaltoOptimalLink RA IN DependencyLinkClass WITH
from
: AC_OptimalMoblnst RA
to
: RA_OptimalMoblInst
[: ResourceAllocator_Position]
END

% softgoal dependum Optimal [Moblnst] %
TELL SimpleClass AC_OptimalMoblnst RA IN DependumElementClass, SoftGoalElementClass WITH
inDeplinks
: AC_TALtoOptimalLink
outDepLinks
: OptimaltoOptimalLink RA
label
: UndecidedElementLabel
END

% softgoal Optimal [MoblInst] inside position Resource Allocator %
TELL SimpleClass RA OptimalMoblnst IN SoftgoalElementClass WITH
parent
: ResourceAllocator Position
inDepLinks
: OptimaltoOptimalLink RA
label
: UndecidedElementLabel

END

Figure 1.2-2 Partial representation of the model in TELOS showing the size of the

underlying constructs

Our experience with the LAS case study indicates that it is difficult indeed to
accommodate all elements of a model in one representation that is still intellectually
comprehensible. Although Figure 1.2-1 contains only 82 elements out of some 400,

some i* users may already found this partial model difficult to read.

The LAS case study is considered to be only a medium-scale application. In fact,
an i* model can increase in size and complexity to the extent that communications
via the models become impossible—Ilet alone the resolving of practical questions. In
the literatures on i*, various ad-hoc practices have been used to reduce the large
model into segments. The research reported in this thesis aims to introduce

systematic methods to deal with scalability issues of i* models.

CHAPTER 1. INTRODUCTION 7

1.3 Research Objectives and Approach
Objectives

The objective of this research is to seek a systematic method to break down a
large and complex i* model into segments that are self-contained, and
comprehensible to humans. Thus, when using these segments in combination, users
of i* are able to achieve the same as they could with the entire model. Meanwhile,
we also intend to offer a systematic approach to maintain the connections among

these segments.

Approach

We found that we need to reformulate the i* framework before new guidelines to
deal with scalability can be introduced. Thus, the approach taken is, first, to provide
a generic and formalized representation of the i* framework. The missing
representational constructs for some of the graphical notations—such as role’—are
clarified, and the inconsistency in the formal constructs between Yu’s original thesis
and the Organization Modelling Environment (OME) tool are aligned. During this
process, we did not introduce major new concepts to i* since our objective is not to
redesign the i* framework but, rather, to resolve the scalability issues that arise

while using i* in practice.

After the existing i* concepts had been clearly presented, a framework extension
that contains different types of views (a projection over a model according to some
criteria) and that supports view management was proposed. The views and sub-
views are defined using meta-models, and formalized using the Telos conceptual
modeling language. Each view type is associated with a formally defined selection
rule so that the projection of a specific view from a baseline model can be

automated. This formalization makes the view extension extensible, and makes it

? We use italics to highlight the first mention of a concept in a section. In most cases, we do not highlight the

same element again in the same chapter.

CHAPTER 1. INTRODUCTION 8

economic to maintain: New view types can be added by specifying a new class in
Telos, and a view can be updated by changing its associated selection rule.

Relationships among views are depicted in View Maps.

Then we studied the details of each type of view in the extension. Every view
type is presented based on the following four aspects: an informal description of
what type of elements from an i* model is to include; a sample view based on the
LAS case study showing the elements actually qualified; brief justifications for the
strengths and constraints of the view; and the formalized selection rule used to

derive this type of view from an i* model.

The view extension and the selection rules were further validated in the research.
The extension was validated against a larger and more complex case study—Trusted
Computing Group, a previous study which had to cope with complexity in the
absence of a systematic method. The rules were translated into ConceptBase (a
deductive object base supporting Telos data models) query classes and tested for

validity.

1.4 Related Work

When real-world applications increase in size and complexity, the various models
that try to abstract the applications grow accordingly. Diagrams serve as the vehicle
of communication and comprehension of these models, and “the usefulness of any
diagram is inversely proportional to the size of the model depicted” (Feldman and
Miller 1986). Not surprisingly, all modeling techniques—whether intended to model
concepts, processes, states, or intentions—experienced scalability problems.
Solutions to these problems had been developed by various research and industry
groups to enhance communication among analysts, designers, and domain experts; to
coordinate efforts contributed by distributed teams; and to manage large and

complex projects using qualitative guidelines.

In this section, we first summarize the approaches taken in techniques closely

related to i*—KAOS and EKD. KAOS is a goal-oriented requirements acquisition

CHAPTER 1. INTRODUCTION 9

process (Lamsweerde 2003), and EKD is an enterprise knowledge modeling process
that embraces goal- and agent-oriented elements (Bubenko et al. 2001). We also
survey some well-established modeling techniques in their approaches to dealing
with large-scale applications. These well-established techniques include Conceptual
Models (Feldman and Miller 1986; Harel 1988; Garlson et al. 1990), State-Chart
diagrams (Harel 1988), and the SADT approach. Some of these techniques have
been adapted to modeling frameworks such as IDEF—the NASA standard, and
UML—the de-facto industrial standard for object modeling.

1.4.1 Scalability handling in KAOS and EKD

Neither KAOS (Lamsweerde 2003) nor EKD (Bubenko et al. 2001) have claimed
to have any problem with scalability, including their built-in diagrammatic
representation of the models. One reason for the smooth process is that KAOS and
EKD have simpler semantics than i*, since both allow only “AND” and “OR”
decomposition of a goal. Thus, the corresponding goal model follows a strict tree
structure, which can be easily expanded or contracted at each node. Partial details of
a model can always be obtained by selecting a sub-tree, and the connections to the
rest of the model are maintained by the edges between parent node and its off-
springs. The i* framework (Yu 1994), on the other hand, encompasses richer
semantics at the meta-level by allowing cross-relationships among elements and,
therefore, its diagrammatic form exhibits a network graph structure. Typically, it is

more complicated in separating elements in a network graph than in a tree structure.

Despite the major differences in meta-level concepts, KAOS, EKD and the
proposed view extension share some common strategies in terms of project
management. These strategies include organizing a project into sub-models (term
used in KAOS and EKD) or views (term used in this thesis), introducing hierarchies

to modeled contents, and applying queries to facilitate information access.

Both KAOS (Lamsweerde 2003) and EKD (Bubenko et al. 2001) have multiple
sub-models, each focusing on a specific perspective, and each grouping a set of

closely related meta-concepts. For example, there are goal centered models to

CHAPTER 1. INTRODUCTION 10

address stakeholder intentions, process models to address dynamic issues, and agent
models to address agent responsibilities. In our view extension, we followed a
similar approach and categorized the meta-level concepts in the i* framework into
four groups, which we call views. Views differ from sub-models in that our view
extension enforces strict consistency among different types of views that are derived
from the same underlying i* model. Changes in the underlying model shall be
reflected in all related views. Sub-models in KAOS or EKD are typically

constructed separately and, thus, are loosely coupled.

KAOS uses supports from its GRAIL tool (Lamsweerde 2003) to preserve model
consistency and maintain one hierarchy for each type of modeled elements including
concept, diagram, and model. Each entry in any of these hierarchies is uniquely
identified by a combination of its type and name. EKD achieves a similar
functionality in its KETH tool (Bubenko et al. 2001) by introducing hierarchies to
the repository of knowledge. Since these hierarchies might be built by different
human users, Fanie et al. suggest that synonyms be replaced by a common (unique)
term throughout the entire organization (Bubenko et al. 2001). In the view extension,
hierarchies of views are introduced. These hierarchies are visualized in a built-in
type of diagram, which we call view map, offered by the extension. We suggest each
view be identified with a unique ID. We provide basic guidelines for building the
hierarchy according to view types and the view decomposition procedure. But
hierarchies in KAOS and EKD depend completely upon human decision and vary

from project to project, so there lack reusable guidelines.

Both GRAIL and KETH (tools for KAOS and EKD) provide text search engines.
The search engine is to help users locate specific information without having to
browse the whole hierarchy. In our view extension, selection rules are formulated in
First Order Logic for each view, and they are Telos-compatible. These rules select
modeled elements and links from an i* model based on their types, which

correspond to i* meta-level concepts. Thus, our solution can be fully automated.

CHAPTER 1. INTRODUCTION 11

In brief, even though KAOS and EKD are considered more as requirements
engineering (RE) processes, and i* is considered as RE notations, when comes to
scalability issues, they do share common approaches as far as managing a real-world

project is concerned.

1.4.2 Scalability handling in Object-Oriented and SADT modeling

techniques

Over the years, research on scalability-related problems has been conducted on
functional modeling (IDEFO 1993), conceptual schema modeling (Feldman and
Miller 1986; Harel 1988; Garlson et al. 1990; Gandhi et al. 1992; Campbell et al.
1996), and dynamic feature modeling techniques (Harel 1988; Damm and Harel
2001; Douglass 2003). Each technique has built-in meta-level concepts on which a
set of well-defined rules relies to abstract important information from details.
Applying these rules enhances the capability of dealing with large complex models

by a specific approach.

Our view extension is inspired by these early researches mentioned in the
previous paragraph. The influences appear in three major directions. First, views of
1* are represented (graphically) and decomposed in a similar manner as of IDEF0
(IDEF 1993). Next, the two-level abstraction offered in the original i* framework
conforms to what was proposed in the higraph-based visual formalization (Harel
1988). Finally, focusing on representation is the approach embraced by both this
thesis and other conceptual modeling researches (Feldman and Miller 1986; Garlson

et al. 1990; Campbell et al. 1996; Castano 1998).

IDEFO, derived from Structured Analysis and Design Technique (SADT), is a
well-formed graphical language that focuses on functional modeling of a system
(IDEF0 1993). Each IDEFO model is generated by decomposing a single system
function step-by-step, and scalability issues are addressed by a set of rigorous and
precise rules along this decomposition process. Auxiliary techniques—such as a
consistent naming convention and a reference structure—are applied. The former

mitigates reader confusion among various elements in the model, while the latter

CHAPTER 1. INTRODUCTION 12

provides an overview of a project and allows quick access to a reader-interested part.
This research follows the same approach by introducing a view extension to i*,
which provides built-in support for a reference structure over the views. The
reference structure follows a tree-like topology, and each node in the reference
structure corresponds to a view (in i* view extension) or a diagram (in IDEFO0).
Every node should be uniquely referenced across the entire application, and each

may have parent or child nodes according to the reference structure.

Even though the fact is not explicitly stated, influences from the higraph-based
visual formalism presented by Harel (Harel 1988) can be found in most conceptual
schema (Garlson et al. 1990; Gandhi et al. 1992; Campbell et al. 1996) and dynamic
feature modeling techniques (Damm and Harel 2001; Douglass 2003). This visual
formalism introduces hierarchies into flat models. In a higraph-based model, blobs
denoting elements at a certain level of abstraction are connected by hyperedges—
implying connecting multiple basic modeling elements. In the application provided
by Harel (Harel 1988), blobs are mapped to states, and hyperedges are mapped to
events. A state, or parent blob, can contain sub-states, or sub-blobs; this semantic
makes it possible to introduce hierarchy into state-charts. Later, Harel extended this
approach to Live Sequence Charts (LSC) (Damm and Harel 2001). Both approaches
were adopted by UML in resolving scalability issues (Douglass 2003). Similarly,
Garlson et al. defined the concepts of complex entity, complex attribute, and
complex relationship to introduce hierarchy into a flat Entity-Relationship (ER)
model (Garlson et al. 1990). A suitable analogy would be the complex entities and
attributes to parent blobs, and complex relationships to hyperedges. The original i*
framework (Yu 1994) applied a two-level abstraction hierarchy over i* models.
Actors in the Strategic Dependency (SD) view can be treated as a parent blob which
contains internal elements that are shown only in the Strategic Rationale (SR) view.
Contribution-links appearing in the SD view are hyperedges in that they may
combine multiple links from different internal elements towards some same external

elements.

CHAPTER 1. INTRODUCTION 13

Conceptual schema, such as class diagrams and ER charts, are extensively used
for modeling data. Algorithms (Feldman and Miller 1986; Campbell et al. 1996;
Castano 1998) and proofs (Garlson et al. 1990) were employed to explore possible
means in abstracting the flat-structured conceptual models into a nested style.
Authors of the methods claim that they took a “reverse-engineering” approach by
focusing on reformulating an existing model rather than constructing a new one. Our
view extension follows a similar philosophy. We reduce models in a “flat” manner
and do not introduce abstract elements in views, yet other approaches try to define
abstract elements (at a higher abstraction level) that correspond to some basic
elements (at the flat structure level). Moreover, our selection rules are based purely
on the types of i* meta-concepts and can be fully automated, while the other

approaches require intensive human interaction (Feldman and Miller 1986).

In brief, our view extension presented in this thesis is influenced by the
scalability-handling techniques applied and proposed in a number of existing
modeling methods. Yet we have encountered different challenges and thus led to
adaptations. One reason is that i* embraces a richer set of meta-concepts so that
meta-model driven rules can be defined to partition elements according to their
types. Another is i* introduces intentional and social aspects to a model, which are

not accommodated in other formalities.

1.5 Thesis Organization

This thesis is organized as follows: Chapter 2 reviews the original i* framework
presented in Yu’s 1994 thesis, and the formal constructs used in the Organization
Modelling Environment (OME) tool (OME 2003). Chapter 3 presents the first part
of the proposed view extension, which is a reformulation of the i* framework based
on a consolidation of the changes made to i* over the past 10 years. Graphical
notations of new concepts are synthesized from previous literature of our research
group, and formal constructs of some newly introduced concepts are presented for
the first time. Chapter 4 presents the second part of the proposed view extension,

which is described from three aspects: its features and the view map; its formal

CHAPTER 1. INTRODUCTION 14

constructs; and critical concepts related to the selection rules. Chapters 5 to 7
describe in detail selection rules associated with each view. Examples from the LAS
case study are presented to illustrate the use of each type of view. Chapter 5 focuses
on Actor Class views; Chapter 6, on Strategic Dependency views; and Chapter 7, on
Strategic Rationale views. Chapter 8 validates the proposed extension over the
existing Trusted Computing Group (TCG) case study, and Chapter 9 draws

conclusions and proposes relevant future work.

2 The Original i* Framework

In this chapter, we summarize the modeling features of the i* framework and
review its formal constructs from Yu’s original thesis (Yu 1994). The formalism is
aligned with the one used in the Organizational Modelling Environment (OME) tool
(OME 2003). Examples from the London Ambulance Service (LAS) case study (You

2003) are cited to illustrate various meta-level concepts.
2.1 Modeling Features

2.1.1 The Strategic Dependency Model

Actors are strategic in i*: they have “motivations, intents, and rationales behind
[their] actions” (Yu 1994). An actor can be further differentiated into roles, agents,
and positions. A role is “an abstract actor embodying expectations and
responsibilities.” An agent represents a physical actor—human or machine—who
can play different roles. A position represents a group of responsibilities that can be
occupied by one agent; as well, a position can cover more than one role. There also
defined aggregation (PART) and instantiation (INSTANCE) relationships among the
same type of actors. The graphical notations of the two relationships were briefly
introduced in one example (Yu 1994). Figure 2.1-1 shows graphical notations of
various forms of actors. A plain circle (e.g., Ambulance Crew’) denotes a (plain)
actor; a circle with a curved line across the bottom denotes a role (e.g., Remover
[Duplicated IncInfo]); a flower shape denotes a position (e.g., Resource Allocator);

and a circle with a bar across the top denotes an agent (e.g., Incident Reviewing

Module).

* We use bold to highlight the first mention of an element in the models. In most cases, we do not highlight the

same element again in the same section.

15

CHAPTER 2. THE ORIGINAL I* FRAMEWORK 16

The Strategic Dependency (SD) model is used to express the “intentional
description of a process in terms of a network of dependency relationships among
actors.” Dependency relationships are represented by dependable elements, and
actors depend on one another for goals to be achieved, fasks to be performed,
softgoals to be satisficed, and resources to be furnished. The symbol “D” in the
dependency link indicates the direction of dependency. Yu also “callfs] the
depending actor the depender, the actor who is depended dependee[, and] the object
around which the dependency relationship centers dependum (Yu 1994). Figure
2.1-1 shows the graphical notation of the different dependency types.

Depender Dependum Depentiee

Remover
[Duiplicated
Incinfo)]

Rés urce %
Allogator«‘

PeRemovel
[Duplicated !
Incinfol:

Resairce " Remoy
Allocator P—(Oipheared D
Incinfo] v
| Y Resource:
D Allocator
s -

Moddle

{(d) Resource Dependency

Figure 2.1-1 Dependency types

CHAPTER 2. THE ORIGINAL 1* FRAMEWORK 17

Figure 2.1-2 shows a partial SD model from the LAS case study. This model
shows the dependency relationship among actors Resource Allocator, Ambulance
Crew, Incident Reviewer, and LAS Management. Relationships among these
actors are also presented. For example, either a Resource Allocation Module or a
Human Resource Allocator occupies the position of Resource Allocator. The latter
depends on the Ambulance Crew to ensure the Accuracy of Ambulance Information
(AmblInfo), and, in turn, the Ambulance Crew depends on the Resource Allocator to

provide Optimal Mobilization Instruction (MobInst).

Remover
[Duplicatec

Incinfa]

CDVERS

Accuracy) CQVERS

| [Ambinto]

ihcident.
Rewewer

Resource
Allocator

OCZUPIES
OECUPIES

 iRcident
| lnfurmat%n

ncldent g
 Information

RHumarg \
SOUrce:
' Aloc'é‘:tor

e
L \Mddﬁsa‘

Figure 2.1-2 A partial SD model from the LAS case study

CHAPTER 2. THE ORIGINAL I* FRAMEWORK 18
2.1.2 The Strategic Rationale Model

The Strategic Rationale (SR) model is aimed to “provide the intentional
description of processes in terms of process elements and the rationales behind
them.” This implies that the layout of the reasoning structure internal to an actor,
based on inter-actor relationships presented in the SD model, is represented in the
SR model. In this internal structure, intentional elements—goals, tasks, resources,

and softgoals—are connected by intentional links. (Yu 1994)

Two classes of intentional links are defined by Yu (Yu 1994). Task
decomposition link, denoted by —~, expresses “a task in terms of its decomposition
into sub-components.” Yu distinguished (semantically but not graphically) among
four types of task decomposition links according to the type of sub-components. A
task can be decomposed to a sub-goal via a subgoal decomposition link, to a sub-
task via a subtask decomposition link, to a sub-resource via a resourceFor
decomposition link, and to a softgoal via a softgoalFor decomposition link. For
example, in Figure 2.1-3, task Provide [Optimal Moblnst] is decomposed to
softgoals Accuracy [AmbInfo] and Accuracy [IncInfo] via two softgoalFor links,

respectively.

Several types of means-ends links, denoted by —, were also defined and the
“arrowhead points from the means to the end.” A goal specified as the end can be
achieved by means specified as tasks through goal-task means-ends links (GTLink).
For example, goal BeCollected [IncInfo] can be achieved by information passed
either task By database or network or task By paper-based forms (Figure 2.1-3).
Similarly, a resource specified as the end can be furnished by means specified as
tasks through resource-task links (RTLink). A softgoal can be satisficed by means
specified as tasks or softgoals through softgoal-task (STLink) and softgoal-softgoal

(SSLink) links, respectively. A softgoal-link can contribute positively (denoted by +)

or negatively (=) to the softgoal specified as the end, and they are shown graphically

as curved arrows. For example, task Provide [Optimal MoblInst] contributes

positively to softgoal Optimal [MoblInst] through the softgoal-task (means-ends)

CHAPTER 2. THE ORIGINAL I* FRAMEWORK 19

link, and softgoal Timeliness [Arrival Location] contributes positively to softgoal
Timeliness [Service] through a softgoal-softgoal (means-ends) link (Figure 2.1-3).

The framework also allows task-task links that specified tasks as both the end and

the means. (Yu 1994)

= -—
".-— -

Figure 2.1-3 A partial SR model showing internal rationale of actor Resource

Allocator from the LAS case study

Figure 2.1-3 shows the process elements (activities, plans) and initiatives behind

the intentions of position Resource Allocator. This internal structure can help us

CHAPTER 2. THE ORIGINAL I* FRAMEWORK 20

select among alternative activities or plans. For example, achieving the top-level
goal BeCollected {IncInfo] requires only one of the two alternatives—collect
incident information By paper-based forms versus By database or network—
being performed. Selecting the former will result in the top-level softgoal
Timeliness [Mobilization] being harmed—via the negative contribution link from
the former, while selecting the latter will not. If timeliness is a major concern of
Resource Allocator, the latter alternative (collect incident information by database
or network) thus needs to be chosen. We see from the example that by using the SR
model, users may obtain a better understanding of how the top-level goals can be

achieved, and how these goals relate to each other.

2.2 Representational Constructs

Meta-level concepts of the i* framework, and their relationships, are embedded
into the conceptual modeling language Telos (Koubarakis et al. 1989), which results
in “an object-oriented representational framework with classification, generalization,
aggregation, attribution, and time” (Yu 1994). Two levels of classes are involved in
this formalization: Concepts from the i* framework are defined at the meta-class
level in Telos, and domain class are defined as instances of some meta-class and at
the simple-class level (Yu 1994). Figure 2.2-1 shows the definition of the meta-class
AgentElementClass and one of its instances at the domain level, specified as a
simple class. Text quoted by %% are comments. In order to distinguish the objects
internal to an actor, we prefix such objects with the acronyms of actors. For example,
we prefix softgoal Quality [Service] inside agent Ambulance Crew as
AC_QualityService, where AC is the acronym for Ambulance Crew. We apply this

naming convention throughout this thesis.

However, the formal constructs shown in Yu’s original thesis and the
Organization Modelling Environment (OME) tool differ in class and attribute design.
For example, Yu formulated a goal dependency using an instance of
GoalDependsClass, while OME using one instance of GoalElementClass and two

instances of DependencyLinkClass. The OME tool style conforms to Yu’s original

CHAPTER 2. THE ORIGINAL I* FRAMEWORK 21

proposal since the two are equivalent in semantics: all i* semantics are naturally
implemented in the OME tool. We favor the OME tool style in that it is widely used
and provides a measure to verify the validity of the models so that human

interference can be minimized.

% Telos representation of concept agent %
TELL MetaClass AgentElementClass .. WITH
attributes
name : String;
children: IntentionalElementClass
END
% Telos representation of domain class AmbulanceCrew %
TELL SimpleClass AmbulanceCrew_ Agent IN AgentElementClass ISA
AmbulanceCrew Actor WITH
name
displayName : “Ambulance Crew”
children
: AC QualityService
: AC TimelinessService
: AC_TimelinessArrivalLocation
: AC_AccuracyAmbInfo

END

Figure 2.2-1 Definition of meta-level class AgentElementClass and a domain class that

instantiates it denoting the class of agent Ambulance Crew from the LAS case study

2.2.1 The Strategic Dependency Model

Figure 2.2-2 shows a partial meta-model of the SD model adapted from Yu’s
original thesis. There are two categories of objects in the SD meta-model: the
Element(meta)Class and the Link(meta)Class. An instance of LinkClass (e.g.,
AC_TALtoOptimalLink in Figure 2.2-3) shall have some instances of
ElementClass as its two critical attributes from and to. The instance of ElementClass
that is specified as from (e.g., AmbulanceCrew_Agent) denoting the source
element from where the link starts, and similarly to where the link ends (e.g.,
AC_OptimalMoblInst_RA). An instance of ElementClass (e.g.,
AmbulanceCrew_Agent) may have some instances of LinkClass (e.g.,

AC_TALtoOptimalLink) as its attribute links.

CHAPTER 2. THE ORIGINAL 1* FRAMEWORK 22

ObjeciClass

“
/ &\

OccupiesLinkClass ElementClass LinkClass
DWUM p \W&mm
Position / from > Ager{\: | Do 4: dable T
. ementClass
ElementClass mentClass from

ependencylinkClass
cavgrshinks
IntentionalElementClass

7

ActorElementClas

CoversLinkClass PlaysLinkClass SubElementClass
\B“K M . (EGEND
cavera inks
RoleElementClass GoalElementClass -»> generalization
TaskElementClass —= attribute class

ResourceElementClass
SoftGoalElementClass

Figure 2.2-2 A partial meta-model of the SD model in Yu’s thesis
Figure 2.2-3 shows the formal representation of some of the elements that appear

in Figure 2.1-2. Text quoted by %% on top of each simple class denotes the name of

the corresponding element shown in the graphical representation.

%the actor Ambulance Crew$%
TELL SimpleClass AmbulanceCrew Actor IN AgentElementClass WITH
name
displayName : “Ambulance Crew”
links
AC_TALtoOptimalLink
END

$the position Resource Allocator$%
TELL SimpleClass ResourceAllocator_ Position IN PositionElementClass
WITH
links
OptimaltoOptimallLink RA

END

$The dependency link from Ambulance Crew to the softgoal dependum
Optimal [MobInst]%
TELL SimpleClass AC_TALtoOptimalLink IN DependencyLinkClass WITH
from

AmbulanceCrew_Agent
to

CHAPTER 2. THE ORIGINAL I* FRAMEWORK

23

: AC_OptimalMobInst_ RA
END

$The dependency link from the softgoal dependum Optimal [MobInst] to

Resource Allocator%
TELL SimpleClass OptimaltoOptimalLink RA IN
OutgoingDependencyLinkClass WITH
from

AC OptimalMobInst_ RA
to

ResourceAllocator_Position
END

%$The softgoal dependum Optimal [MobInst]%
TELL SimpleClass AC OptimalMobInst RA IN DependumElementClass,
SoftGoalElementClags WITH
links
AC_TALtoOptimalLink
OptimaltoOptimalLink RA
END

Figure 2.2-3 Representation of a partial SD model from the LAS case study

2.2.2 The Strategic Rationale Model

In Yu’s thesis, the meta-model of SR includes every segment shown in the SD

model plus those shown in Figure 2.2-4. This meta-model conforms to the intuitive

description of the SR model in Section 2.1.2.

LinkClass << TaskDecompositionLinkClass

TN T

GoalElementClass TaskElementClass ResourceElementClass SoftgoalElementClass

A
’60‘0 &£

o

SubgoalTDLinkClass SubtaskTDLinkClass ResourceForTDLinkClass SoftgoalEorTDLinkClass

GTLinkClass RTLinkClass STLinkClass SSLinkClass

\ / LEGEND

MeansEndsLinkClass

—>> generalization

—> atlribute class

CHAPTER 2. THE ORIGINAL I FRAMEWORK 24
Figure 2.2-4 Partial meta-model for the SR model
Figure 2.2-5 shows the formal representation of some of the elements that appear

in Figure 2.1-3. The text quoted by %% on top of each simple class denotes the

name of the corresponding element shown in the graphical representation.

f$actor Ambulance Crew%
TELL SimpleClass AmbulanceCrew Agent IN AgentElementClass WITH
name
displayName : “Ambulance Crew”
children
AC QualityService
AC_TimelinessService
AC_TimelinessArrivalLocation
AC_AccuracyAmbInfo

END

$softgoal Timeliness [Arrival Location] inside boundary of actor
Ambulance Crew%
TELL SimpleClass AC_TimelinessArrivalLocation IN
SoftGoalElementClass WITH
parent
AmbulanceCrew_ Agent
links
AC_TALtoOptimalLink
AC_TALtoTS_AndContributionLink

END

$position Resource Allocator$%
TELL SimpleClass ResourceAllocator Position IN PositionElementClass
WITH
children
RA OptimalMoblInst
RA TimelinessArrivalLocation
RA AccuracyAmbInfo
RA BeGeneratedMobInst

END

%agent Resource Allocation Module$%
TELL SimpleClass ResourceAllocationModule Agent IN AgentElementClass
WITH
children
RA BeGeneratedMobInst ByAlgorithm
END

%¥agent Human Resource Allocator$%

CHAPTER 2. THE ORIGINAL I* FRAMEWORK 25

TELL SimpleClass HuamnResourceAllocator_ Agent IN AgentElementClass
WITH
children
RA BeGeneratedMobInst ByHumanDecision
END

%$The dependency link from softgoal Timeliness [Arrival Location] in
the boundary of actor Ambulance Crew to the softgoal dependum
Optimal [MobInst]%
TELL SimpleClass AC TALtoOptimalLink IN DependencyLinkClass WITH
from
AC TimelinessArrivalLocaltion
to
AC_OptimalMobInst RA
END

$the dependency link from softgoal dependum Optimal [MobInst] to
softgoal Optimal [MobInst] inside boundary of position Resource
Allocator%
TELL SimpleClass OptimaltoOptimalLink RA IN DependencyLinkClass WITH

from

: AC_OptimalMobInst RA
to
RA OptimalMobInst

END

$softgoal dependum Optimal [MobInst]l$%
TELL SimpleClass AC OptimalMobInst RA IN DependumElementClass,
SoftGoalElementClass WITH
inDeplinks
AC TALtoOptimalLink
outDepLinks
OptimaltoOptimalLink RA
END

¥softgoal Optimal [MobInst] inside the boundary of position Resource
Allocator%
TELL SimpleClass RA_OptimalMobInst IN SoftgoalElementClass WITH
parent
ResourceAllocator Position
links
OptimaltoOptimalLink RA

END

Figure 2.2-5 SR presentation in Telos

In SR models, both the “from” and “to” attributes for an instance of

DependencyLinkClass (e.g., AC_TALtoOptimalLink) can represent some instances

CHAPTER 2. THE ORIGINAL 1* FRAMEWORK 26

of IntentionalElementClass (e.g., from AC_TimelinessArrivalLocaltion to
AC_OptimalMoblInst_RA), while in the SD model, one of them must be an
instance of ActorElementClass (e.g., the same link from AmbulanceCrew_Agent to

AC_OptimalMobInst_RA).

2.3 Summary

This chapter outlines in brief features of the original i* framework described by
Yu (Yu 1994). These features are graphically presented using two models: the
Strategic Dependency (SD) model and the Strategic Rationale (SR) model.

Meta-level concepts such as “actors” and “dependencies” are introduced in the
SD model, while intentional links such as “means-ends” and “decomposition” are
explained in the SR model. Graphical notations of these concepts are illustrated

using samples from the LAS case study.

We omit the concept of dependency strength originally presented by Yu, because
this concept does not play a role in our view extension, nor was it widely referenced
in previous literatures. Nevertheless, dependency strength could be used in the

future as a criterion in simplifying complex i* models.

Formal constructs of the meta-level concepts were adapted into Telos.
Conforming to i* semantics presented by Yu (Yu 1994), two levels of classes are
involved in this formalization. Concepts from the i* framework are defined at the
meta-class level in Telos, and domain class are defined as instances of some meta-
class and at the simple-class level (Yu 1994). However, the design of the class
hierarchy of i* follows the OME tool style. Sample domain classes from the LAS

case study were cited in demonstrating these formal constructs.

3 Reformulating the i* Framework Using the

Concept of View

Over the past 10 years, new concepts were introduced to the i* framework and
existing concepts were refined. The definition of the Goal-oriented Requirements
Language (GRL) framework elaborates on the incorporation of concepts from the
NFR framework into the i* framework, anticipated by Yu (Yu 1994). The latest
GRL version was presented in 2003 (GRL 2003).

Besides the definition of GRL, one major milestone was the separation of the
actor diagram from the SD diagram, another was the release of the Organization

Modelling Environment (OME) tool which implemented the meta-model of i*.

Yu (Yu 1994) formally proposed three specified types of actors—roles, agents,
and positions—and three intentional links—plays, covers, occupies. Two other types
of links—Instances and PART—were well established in Object-Oriented (OO)
modeling, so Yu just gave their graphical notation yet not emphasized. It was not
until 1997 that the concept of agents (one type of specified actors) was explicitly
depicted (Yu 1997; Chung et al. 1997). Liu and Yu first emphasized graphical
notations for role, agent, position, and the links among them (Dubois et al. 1998).
They later refined this line of concepts and their graphical notations, built the
specified actors hierarchy, and formalized graphically three types of links (is-A, INS,
and is-Part-of) among these specified actors (Yu and Liu 2000). However, in their
2000 publication, various types of actors and the three types of links were shown in
the SD model. In 2002, specified actors and the links among them were first shown

separately in a so-called Actor Diagram (Liu et al. 2002).

The OME tool (version 2) was released in 1998; OME version 3 (the current
version is 3.13) supports GRL, i*, NFR, and other kinds of frameworks. Some new

graphical notations that had not appeared in publications were added recently. These

27

CHAPTER 3. REFORMULATING THE I* FRAMEWORK USING THE CONCEPT OF VIEW 28

new notations smooth the merging of NFR approach into GRL. The GRL framework
implemented in the current OME tool supports specified actors and their
corresponding links, which are initially specified in i* but omitted in the standard
submission of GRL. These effects result in the differences in modeling features

between the OME tool, the standard submission of GRL, and Yu’s original thesis.

Changes made to i*, as discussed in previous paragraphs, appeared in various
literature produced by the i* research group. Lacking adequate explanations, these
changes confused readers unfamiliar with the concepts. For example, such terms as
“diagram” and “model” were often interchanged (meaning some partial i* model) in
different publications, and diagrams (models) were normally presented in an ad-hoc

sequence convenient to the specific publication.

In this chapter, we attempt to consolidate what has happened over the past 10
years. The main objective is to collect, synthesize and organize concepts scattered
throughout existing literatures. Minor adjustments are made to existing concepts to
improve accuracy (of each of them) and consistency (among all of them). As a first
step, modeling constructs are organized in four types of views, in correspondence to
the two types of models (SD and SR) by Yu (Yu 1994). This paves the way for

scalability issues to be addressed in subsequent chapters.

Section 3.1 summarizes the reformulated framework and briefly justifies our view
extension; Section 3.2 discusses the reformulated i* framework in detail; Section 3.3
presents the formal constructs of the reformulated i* framework; and Section 3.4

discusses the relationships among the four types of views.

3.1 Introduction

We reformulate the i* framework by refining the concept of model and by
introducing the new concept of view. Initially, SD and SR are called “models” by Yu
(Yu 1994), but in this thesis we reserve the term model for the collection of i*
objects structured according to i* syntax and semantics. A model contains

information in both SD and SR, and we call a domain i* model the baseline model.

CHAPTER 3. REFORMULATING THE I* FRAMEWORK USING THE CONCEPT OF VIEW 29

In most cases, an i* model describes a particular configuration (e.g., from one type
of viewpoint, at a certain period of time, and for a specific project) among

organizational actors.

A view is a partial presentation of that type of configuration. In this sense, SD
and SR are called “views” in our extension. In fact, the extension distinguishes
among four types of views: an Actor Class (AC) view for focusing on various forms
of actors and the associations among the different forms of each actor, a Strategic
Dependency (SD) view focusing on inter-actor dependency relationships, a
Strategic Rationale (SR) view focusing on “the rationales that actors have about
adopting one configuration or another” (Yu 1994), and an Evaluation Results
(EVLR) view helping in the decision-making process over alternative system

configurations.
We reformulate the baseline model in this way for the following reasons.

First, the SD view is an abstract form of the SR view. Inter-actor dependencies
and external links and elements in the SD view can be obtained from its
corresponding SR view. From the formal construction of i* models, we can affirm
that the SD and SR views share a majority of concepts in their meta-models, with
SR having some extra concepts representing internal rationale. Thus, any SD view
can be obtained by collapsing actors’ internal structures in the corresponding SR
view, and each collapsed actor in the SD view inherits all the external dependencies
that are originally connected to its internal elements. In this sense, we consider it
more appropriate to treat them as views that project over the same model instead of

sub-models.

Second, a distinguished AC view makes actor analysis easier. In most of the early
literature, the SD view was used to identify stakeholders and perform basic actor
analyses within an organization. Questioﬁs such as “How does a plain actor map to a
specified one?” and “What are the relationships (actor associations) among the
specified ones?” were not emphasized. It appeared straightforward with the

examples shown in early literature, when there was no need to distinguish among

CHAPTER 3. REFORMULATING THE 1* FRAMEWORK USING THE CONCEPT OF VIEW 30

different forms of actors. Yet social configuration for a medium-sized organization
(e.g., 500 employees) can increase in complexity and, thus, accommodation of actor
associations (e.g., 300 “plays”, “covers”, or “occupies” links) in the initial SD
models becomes difficult. Showing dependency relationships for multiple specified
forms of the same actor (e.g., position Resource Allocator and agent Resource
Allocator Module) at the same time also appears difficult. Thus, we decide to
abstract these sets of information into a new type of view—Actor Class. Separation
of the actor associations from dependencies does not affect our analysis. The former
focuses on understanding which set of actors have something in common; the latter,
on reflecting how an organization functions among the inter-actions of actors who

basically do not share internal rationales.

Finally, the Evaluation Results (EVLR) view accommodates concepts imported
from the NFR framework. After the collaboration of i* and NFR, a model evaluation
process employing a qualitative label propagation algorithm was implicitly adopted
by i*. In accordance with this action, we distinguished the EVLR view to present the
results of the evaluation process. The evaluation process uses the SR view to run the
algorithm, so each EVLR view is built on top of its corresponding SR view.
However, users may use the same SR view to perform different evaluations that

differ in various assumptions, so one SR view normally corresponds to a set of

EVLR views.

3.2 Realigned Graphical Notations

The baseline model, which consists of i* domain classes, serves a centralized
repository for information elicited for a specific configuration of an organization.
Because multiple evaluation results can be obtained from the same baseline model
structure, each baseline model contains one basic model structure and several sets of
evaluation results that are distinguished by initial values or human decisions for
label assignments. For simplicity, we refer to the basic model structure as the

baseline model as long as no confusion will incur. Figure 3.2-1 shows a sample of

CHAPTER 3. REFORMULATING THE I* FRAMEWORK USING THE CONCEPT OF VIEW 31

the baseline model structure from the LAS case study. We use this sample as the

baseline model of the sample views shown in Section 3.2.1~3.2.4.

b
o N
N
1

.

AY

0

-5

-

b
.

Figure 3.2-1 A partial baseline model showing some structures related to plain actor
Ambulance Crew, LAS Management, Resource Allocator, and Incident Reviewer from

the LAS case study

3.2.1 The Actor Class view

As defined by Yu (Yu 1994), the i* framework supports the concept of strategic
actors. Actors can be plain or specified. A role, a position, an agent, or an agent
instance* (the term “agent instance” will be discussed later in this section) is called a
specified actor. A plain actor is an actor of unspecified type, i.e., the modeler does
not say whether it is a role, a position, an agent, or an agent instance. Since such an

unspecified actor can appear as an element in a model, we give it the special term

CHAPTER 3. REFORMULATING THE 1* FRAMEWORK USING THE CONCEPT OF VIEW 32

“plain actor”, to distinguish it from the general notion of actor (see Section 4.4.1 for
more details). Besides, we define six relationships—plays, occupies, covers, is-A,
INS, and is-Part-of—among actors as actor associations (Koubarakis et al. 1989; Yu

and Liu 2000). This type of overall information forms the Actor Class (AC) view.

In addition to clarifying existing actor types and actor associations, we introduce
new concepts into i* framework, and they are: two new association types—specifies
and complete composition, one specified actor type agent instance, and the external

relationship inheritance rule along actor associations.

The “specifies” relationship originates from a specified actor to point to its
corresponding plain actor. We call the former the direct specified actor of the latter.
Graphically, it is denoted by a dashed arrow line labeled “specifies”, with the arrow
pointing to the plain actor (Figure 3.2-2(a)). This link reflects a form of
generalization similar to “is-A” between a plain actor and its specified form. The
“is-A” relationship, however, can only apply between actors of the same specified
type. For example, the role “Government as PC User” can only specializes (via an
“is-A” link) the role “PC User”. The “specifies” relationship is needed in enforcing
the external relationship inheritance rule between a plain actor and its specified

forms.

The “complete composition” relationship is added as a specialized form of the
“is-Part-of” relationship, which implies that the union of the parts is exactly the
same as the whole. As with “is-Part-of”, this new relationship can only apply among
actors of the same specified type. Graphically, it is denoted by a solid arrow line
labeled “And” with the arrow pointing to the “whole” and the “whole” is highlighted
using a dash-filled rectangle with dashed border (Figure 3.2-2(b)). This graphical
notation is not to be confused with the “And” contribution (Section 3.2.3), which
can only apply between two intentional elements. The “complete composition”

relationship applies a rigorous scope of the responsibilities and opportunities of the

* Instances of other forms of actor types such as role instance are also possible. We leave this part of semantic
for future research.

CHAPTER 3. REFORMULATING THE 1* FRAMEWORK USING THE CONCEPT OF VIEW 33

“whole”, basing on those of its “parts”. In other words, any property of the “whole”
must be found in one of its “parts”. Therefore, a more accurate consistency can be

enforced along this type of aggregation relationship.

We distinguish agent instances from agents in that they have different semantic
implications. An agent instance reflects a domain-object level actor such as a human
individual (e.g., John Steven), a physical organization (e.g., USA Government), a
specific machine, and the like. An agent reflects the classification (at the domain-
class level) of the domain-object level instances. For example, agent Human
Resource Allocator denotes the group of individuals who are thus classified.
Moreover, this change affects the syntax of the INS link. In this reformulation, only
an agent instance may instantiate (via an INS link) an agent. Graphically, we
distinguish an agent instance from an agent by highlighting the former using a filled

rectangle with dashed border (Figure 3.2-2(c)).

“<aIR

BRI
A‘ﬁoc.atnr ¥

ﬁ.mbulance.
Crew

(a) Specifies (b) Complete composition (c) Agent instances

Figure 3.2-2 Newly introduced graphical notations

An external relationship inheritance rule is defined over the reformulated actor
associations discussed previously in this section. The “specifies” link imply that the
source (a specified actor) and the target (the corresponding plain actor) share the
exact same set of external relationships. The “is-A”, “plays”, “occupies”, “covers”,
and “INS” links all imply that the actor serving as the source of such a link inherits
all external relationships from its corresponding target, but not vice versa. For

example, in Figure 3.2-3, position Incident Reviewer “covers” both role Remover

CHAPTER 3. REFORMULATING THE I* FRAMEWORK USING THE CONCEPT OF VIEW 34

[Duplicated IncInfo] and role Assigner [Reviewed IncInfo]. Suppose role
Remover [Duplicated IncInfo] has an external dependency G1 and role Assigner
[Reviewed IncInfo] has G2, and G1 differs from G2. According to the external
relationship inheritance rule, position Incident Reviewer has both G1 and G2 as
external dependencies. The “complete composition” and “is-Part-of” links imply
that the actor serving as the target of such a link inherits external relationships from
its corresponding sets of source actors. For example, in Figure 3.2-2(b), the roles PC
User and Content User (source actors) are each a part of the combined role PC
User and Content User (the target). Thus, the latter inherits all external

relationships from the former two.

By applying the external relationship inheritance rule, we can specify external
relationships at a single actor, and these relationships can be referenced by
associated actors through an inheritance network along actor associations. By this
means, redundant external relationships can be avoided in an i* baseline model,
which leads to SD views showing no redundant dependencies from one actor to

multiple specified forms of another actor.

Ambuilance LAS
y i

Specifies SAecifies Sgecifies S*:cifies
1 4 i COVERS

COVERS
LAS Incident
shageme Reviewer

(occuies
Incident
Revievesr

Incident
Reﬂesver

emovey
it
Incinfa]

Assigner
[Reviavwed
Incinto}

Resource
Allocator

Incicent
Reviewing
Module as

Abuser

Rasource
Allocating
Moduie:

Incicent
Revigwing
Madule

(

Figure 3.2-3 Sample Actor Class view from the LAS case study

CHAPTER 3. REFORMULATING THE I* FRAMEWORK USING THE CONCEPT OF VIEW 35

Figure 3.2-3 shows the AC view projected from the baseline model shown in
Figure 3.2-1. By omitting dependency links and internal elements, the diagram
appears clearer and more readable. Actor associations stand out: Position Resource
Allocator can be occupied by either a Resource Allocation Module or a Human
Resource Allocator; and position Incident Reviewer covers role Remover

[Duplicated IncInfo] and role Assigner [Reviewed IncInfo].

3.2.2 The Strategic Dependency view

The Strategic Dependency (SD) view corresponds to the SD model described by
Yu (Yu 1994). Some minor changes originating from recent publications (Yu and
Liu 2000; Liu et al. 2003) are applied, including the removal of the actor
associations and the addition of intentional links that target some external domain-
objects. We call these intentional links external links (see Section 4.4.5 for more
details). The purpose of the SD view is thus to express the “intentional description
of a process in terms of [not only] a network of dependency relationships among
actors” (Yu 1994), but also to express the intertwined negative or positive effects
towards those dependency relationships among actors. The details of the
representation of those negative or positive effects will be discussed in the next
section. In addition, since the annotations (critical, open) of dependencies are not
widely emphasized in various i* modeling practices, we omit that aspect in this

thesis.

Figure 3.2-4 shows the SD view extracted from the baseline model of the LAS
case study (Figure 3.2-1). Position Resource Allocator (depender) depends on agent
Ambulance Crew (dependee) to ensure the Accuracy of Ambulance Information
(Amblnfo) (dependum); in turn, agent Ambulance Crew depends on the Resource
Allocator to provide Optimal Mobilization Instruction (MoblInst). The Resource
Allocator depends on either a CA Agent or the Incident Reviewing Module to
supply Reviewed Incident Information. If the Incident Reviewing Module plays
an Abuser role, it will hurt (an external correlation link) the incoming dependency

from the Resource Allocator.

CHAPTER 3. REFORMULATING THE I* FRAMEWORK USING THE CONCEPT OF VIEW 36

Optimal
[Mokinst)

Accuracy
[Amblnto]

Figure 3.2-4 Sample SD view from the LAS case study

3.2.3 The Strategic Rationale view

The Strategic Rationale (SR) view experienced major changes in the graphical
notations when 1* evolved into GRL in 2001. Our view extension follows what was
defined in the latest standard GRL submission (GRL 2003). GRL refined the notion
of belief and decision point. 1t also distinguished correlation links from contribution

links and defined labels for contribution and correlation links.

Although logically defined by Yu (Yu 1994), the graphical notation of belief was
not presented until the introduction of GRL (GRL 2003). As stated in GRL,
“[b]eliefs make it possible for domain characteristics to be considered and properly
reflected into the decision making process, and hence facilitating later review,
justification and change of the system, as well as enhancing traceability.” Since
beliefs are held by some stakeholders, it shall not appear as a dependum and, hence,
shall never appear in the SD view. Belief and the other four that appear in the SD
view—goal, task, softgoal, resource—are called intentional element in total. The

graphical notation of a belief is shown in Figure 3.2-5.

CHAPTER 3. REFORMULATING THE I* FRAMEWORK USING THE CONCEPT OF VIEW 37

o

Figure 3.2-5 Graphical notation of belief

GRL (GRL 2003) distinguishes among four classes of intentional links. A goal
(ends) can be achieved by different tasks (means), and this relationship is expressed
by the means-ends link (the original GTLink). A task (or goal) can be decomposed
into sub-components—sub-goals, sub-tasks, sub-softgoals, and sub-resources. This
relationship is expressed by the decomposition links. This link type remains the
same as what was initially defined by Yu (Yu 1994). Contribution (combination of
the original STLink and SSLink) and correlation (newly added type) links are used
to express a direct or indirect effect from a descendent to an ancestor softgoal.

Graphical notations of the four classes are shown in Figure 3.2-6.

" .

B

(a) Means-ends (b) Decomposition (¢) Contribution (d) Correlation

Figure 3.2-6 Intentional link types

Moreover, an effect could be positive (make, help, or some+), equal, unknown, or
negative (break, hurt, or some-). In GRL (GRL 2003), make implies a sufficiently
positive effect; help, a partially positive effect; and some+, a positive effect with
unknown extent. Similarly, break implies a sufficiently negative effect; hurt, a
partially negative effect; and some-, a negative effect with unknown extent. Equal
implies an identical effect, while unknown implies a possible positive or negative
effect. In addition, direct effects to a softgoal could be AND or OR, meaning all the
off-springs must be met or only one of the off-springs need to be met for the
corresponding softgoal to be satisficed. Graphical notations of these effect labels are

presented in Figure 3.2-7 for contribution links and in Figure 3.2-8 for correlation

CHAPTER 3. REFORMULATING THE I* FRAMEWORK USING THE CONCEPT OF VIEW 38

links. Alternatively, words (e.g., BREAK) can be used to label the links instead of
the symbols (e.g., =).

|
5
+
.+
+ .

BREAK HURT SOME- UNKNOWN SOME+ HELP MAKE

ARA

EQUAL

Figure 3.2-7 Effects of contribution links

>

+

+

x7? +

A
i
i
i
]
i
i
i
I

ey

M M
[i
[!
I i
| i
i I
i I
| i
i i

—————

S A
|
|
|
1

I
1
1
1
I
1
1
l

b4

BREAK HURT 50ME- UNKNOWN SOME+ HELP MAKE EQUAL

Figure 3.2-8 Effects of correlation links

Liu and Yu defines the notation of decision point in the i* framework (Liu et al.
2003). A decision point is a goal that can be achieved by more than one task.
Graphically, it is denoted by a goal highlighted using a solid-filled solid-border
rectangle. Figure 3.2-9 shows goal BeCollected [IncInfo] as a decision point since
it can be achieved by wusing either paper-based forms or machine-based
mechanisms. Since this notation does not affect our view extension, we only denote

it graphically.

CHAPTER 3. REFORMULATING THE 1* FRAMEWORK USING THE CONCEPT OF VIEW 39

v databasey
\ o nabwork.

i
-
5 n Jncident ~.
anage I eviowar
@ A gy L) v ‘O S,
. per v 1
\)
.

B i)

-
. oy

’,-" : b
{l

0
TN P
TS -y Optimal »
Argrecef S iMonnsty i,) s
A Snky 3.9 aeedtse N
2 H (Service] o ’ L 83
B »] g N

¥
I Tareva -
¥ L boation} s
.
* N
A reviewsd '\
\\ incinfa (Y
Accurac] Tme
. [t]
T iy

- -
i e Ol

Figure 3.2-10 Example of the SR view from the LAS case study

Figure 3.2-10 shows the SR view corresponding to our baseline model from the
LAS case study (Figure 3.2-1). The view shows the intentional elements that are
required to achieve top-level goals of the position Resource Allocator. We call

intentional elements that reside internal to an actor as internal elements. For

CHAPTER 3. REFORMULATING THE 1* FRAMEWORK USING THE CONCEPT OF VIEW 40

example, softgoal Optimal [MobInst] and Timeliness [Mobilization] are internal

elements to position Resource Allocator.

3.2.4 The Evaluation Results view

The Evaluation Results (EVLR) view presents graphically the results of the
evaluation process over an i* model. A qualitative evaluation process of i* models
was adapted from the NFR framework (Chung et al. 2000) in GRL (GRL 2003), its
purpose is to assess the feasibility of certain alternatives in achieving organizational

level goals.

The evaluation process labels each process element according to some initial
assumptions of leaf nodes in the SR view. A /eaf node is an intentional element that
normally has no incoming intentional links; a top level node is one that normally has
no outgoing intentional links. The evaluation process propagates labels from leaf
nodes step-by-step to top-level nodes, from internal elements to their incoming
dependums, and from that dependum to the internal elements that reside inside the

corresponding depender.

The original label propagation algorithm is defined for the NFR framework
(Chung et al. 2000), and has been adapted to the richer i* notations throughout the
literature (e.g., Liu et al. 2003) and in case studies (e.g., Horkoff 2004). In this
thesis, we do not define the propagation rules, because the topic itself deserves
further research and a uniformed label propagation algorithm in i* is yet to be
defined. Consequently, scalability issues specific to this type of view is not studied

in detail. However, we summarize some basic notations that are generically accepted
in the EVLR view.

GRL distinguishes among six types of intentional element labels, each denoting a
qualitative level of the satisficeability of the node; they are Satisficed, Weakly
Satisficed, Conflict/irresolvable, Undecided, Weakly Denied, and Denied. Figure

3.2-11 shows their graphical notation.

CHAPTER 3. REFORMULATING THE 1* FRAMEWORK USING THE CONCEPT OF VIEW 41

)/ A 3

(a) Satisficed (b) Weakly Satisficed (c) Undecided
(X

(d) Weakly Denied (e) Denied (f) Conflict

Figure 3.2-11 Label types

(¥ [¥

(a) Starting 1abel () Automated lahel () Human-decisionh-involved fabel (d) Imported label

Figure 3.2-12 Methods of label assignment

The current OME tool distinguishes the labels from the way they are assigned. A
starting label 1s a label assigned to a node (normally leaf node) by the modeler, and
we highlight the corresponding node with a dashed-border solid-filled rectangle
(Figure 3.2-12(a)). An automated label is a label that propagates automatically from
a node’s descendents to it, and, hence, there is no graphic change to the
corresponding node (Figure 3.2-12(b)). A human-decision-involved label is a label
that is assigned by the modeler according to what is contributed by its descendents,
and it is denoted by highlighting the corresponding node with a solid-border solid-
filled rectangle (Figure 3.2-12(c)). This notation appears graphically the same as the
decision point, so we recommend that this not be used to highlight decision point in
the EVLR view. An imported label is a label that is propagated from previous
evaluation steps that are not shown in the current diagram, and is denoted by
highlighting the corresponding node with a dashed-border dashed-filled rectangle
(Figure 3.2-12(d)). As mentioned in the previous paragraph, these graphical

CHAPTER 3. REFORMULATING THE I* FRAMEWORK USING THE CONCEPT OF VIEW 42

notations do not play a critical role in our view extension, so we define them only

graphically.

" g @ Bl -
T o {iois) v Aciaerer \‘\
A y: Y
* L7

P

Figure 3.2-13 Sample Evaluation Results view based on an SR view from the LAS case

study

Figure 3.2-13 shows the EVLR view obtained by performing the evaluation
process using the sample SR view from the LAS case study (Figure 3.2-10). During
the evaluation, four process elements were selected to assign the starting labels:
softgoal Accuracy [AmbInfo] was considered weakly satisficed, task generate
mobilization information By Machine-based Algorithm and Pass paper-based
form, and softgoal Buggy [Software] were considered satisficed initially. No
human decision is involved in the label propagation process nor any imported labels
from other segments of the baseline model that are not visualized in this view.
According to the label propagation algorithm adapted by Liu et al. (Liu et al. 2003),
the weakly satisficed label of softgoal Accuracy [AmbInfo] contributes a weakly
denied label to both the top-level softgoal Quality [Service] through an AND link
and the incoming dependum Accuracy [AmbInfo] from the Resource Allocator. The

former label, together with the undecided label propagated from softgoal Timeliness

CHAPTER 3. REFORMULATING THE I* FRAMEWORK USING THE CONCEPT OF VIEW 43

[Service] via another AND link, makes the label of Quality [Service] undecided.
Following a similar procedure, the labels are propagated step-by-step until all top-

level nodes are labeled.

3.3 Representational Constructs

We use here the approach discussed in the original framework (Section 2.2) to
embed the reformulated i* framework into Telos. The OME style is again selected in

presenting the formal constructs.

3.3.1 The Actor Class view

AgentinstanceElementClass

fmm\ i&anoesunks

INSLinkClass

from OccupieslLinkClass
accuM
! rtsOfLinks\ m

kS

Parts 2 Position AgentElementClass
+ .ﬁ-—-—-——-—-———-—.
to .
covers inkst from Playstin
fpm ActorElementClass

CoversLinkClass

laysLinkClass
coveredByLink: to
from to Mmks
from
mgietePartsOfLinks\\\ <
A

CompiﬁteCompositiAn RoleElementClass A > |SALinkClass
inkClass 1 ~<EOMpOSTIONOTLIRS generalizationOfLinks I
to to
LEGEND
~-»3 generalization =2 attribute class

Figure 3.3-1 A partial meta-model of the Actor Class view

Figure 3.3-1 shows a partial meta-model of the AC view. The relationship
between ISALinkClass and RoleElementClass applies to all other element classes
shown in the meta-model, but we omitted them for the sake of simplicity. So does

the relationship between the following pairs: PartsLinkClass and

CHAPTER 3. REFORMULATING THE 1* FRAMEWORK USING THE CONCEPT OF VIEW 44

PositionElementClass, and CompleteCompositionLinkClass and RoleElementClass.

The formal definition of the “specifies” link will be given in Section 4.4.1.

Note that an instance of the INSLinkClass always has an instance of
AgentInstanceElementClass (e.g., John Steven) as its attribute from and an instance
of AgentElementClass (e.g., Human Resource Allocator) as attribute to. In this

thesis, we distinguish the two concepts explicitly in i* semantics for the first time.

Figure 3.3-2 shows the formal representation of some of the elements that appear
in the AC view shown in Figure 3.2-3. The text quoted by %% on top of each simple
class denotes the name of the corresponding element shown in the graphical
representation. Note that the link names do not show in the graphical presentation of

the view.

[+

% plain actor Ambulance Crew %
TELL SimpleClass AmbulanceCrew_PlainActor IN ActorElementClass WITH

name
‘displayName : “Ambulance Crew”
specifiedByLink
ACASpecifiesACPA

END
% agent Ambulance Crew %
TELL SimpleClass AmbulanceCrew_Agent IN AgentElementClass WITH
specifiesLink
ACASpecifiesACPA
END
% Specifies link from position Resource Allocator to plain actor
Resource Allocator %
TELL SimpleClass ACASpecifiesACPA IN SpecifiesLinkClass WITH
from
AmbunalceCrew_Agent
to
AmbulanceCrew_ PlainActor
END
% plain actor Resource Allocator %
TELL SimpleClass ResourceAllocator PlainActor IN ActorElementClass
WITH
name
displayName : “Resource Allocator”
specifiedByLink
RAPSpecifiesRAPA

CHAPTER 3. REFORMULATING THE I* FRAMEWORK USING THE CONCEPT OF VIEW 45

END
% position Resource Allocator %
TELL SimpleClass ResourceAllocator Position IN PositionElementClass
WITH
specifiesLink
RAPSpecifiesRAPA
occupiedByLinks
RAMOccupiesRA
HRAOccupiesRA
END

Q

% Specifies link from position Resource Allocator to plain actor
Resource Allocator %
TELL SimpleClass RAPSpecifiesRAPA IN SpecifiesLinkClass WITH
from
ResourceAllocator_ Position
to
ResourceAllocator_PlainActor
END
% occupies link from agent Resource Allocation Module to position
Resource Allocator %
TELL SimpleClass RAMOccupiesRA IN OccupiesLinkClass WITH
from
ResourceAllocationModule Agent
to
ResourceAllocator Position
END
% agent Resource Allocation Module %
TELL SimpleClass ResourceAllocationModule Agent IN AgentElementClass
WITH
occupieslinks
RAMOccupiesRA
END
% agent Human Resource Allocator %
TELL SimpleClass HuamnResourceAllocator Agent IN AgentElementClass
WITH
occupieslLinks
HRAOccupiesRA
END

Figure 3.3-2 Actor Class view representation in Telos

CHAPTER 3. REFORMULATING THE I* FRAMEWORK USING THE CONCEPT OF VIEW 46
3.3.2 The Strategic Dependency view

Figure 3.3-3 shows a partial meta-model of the SD view. In the OME style we
followed, a more rigid hierarchy was introduced into the meta-model to enforce the
application of i* semantics. For example, OME introduced the concept of
DependableElementClass, whose instance can have an instance of
DependencyLinkClass as its attribute /links. Our view extension distinguishes
between incoming dependencies (instances of IncomingDependencyLinkClass) and
outgoing dependencies (instances of OutgoingDependencyLinkClass). Details
regarding these dependency links are discussed later in Section 4.3.4. Formal

definition of the external link will be presented in Section 4.4.5.

ObjectCIass
ElementClass LkaIass
Con{nbuteeCIass
ndable
d k
Ele entc \ / e'"WLln Class
intentmnalE!ementClass Actan!ementCIass Outgongependency
incomingDependency LinkClass
SubEIamentClass LinkClass
GOaIEiemeﬂtCla S LEGEND
TaskElementClass 5> generalization
ResourceElementClass . .
~Z= aftribute class
SoftGoalElementClass

Figure 3.3-3 A partial meta-model of the SD view

Figure 3.3-4 formally represents some of the elements that appear in the SD view
shown in Figure 3.2-4. The text quoted by %% on top of each simple class denotes
the name of the corresponding element shown in the graphical representation. The
attributes quoted using [square bracket] are calculated attributes. They are
calculated based on the information obtained from the baseline model and are not
originally specified in the given element. For example, the outgoing dependency

link AC_TALtoOptimalLink was initially specified as a link of an internal softgoal

CHAPTER 3. REFORMULATING THE I* FRAMEWORK USING THE CONCEPT OF VIEW 47

AC_TimelinessArrivalLocation of agent Ambulance Crew. However, in SD view, it

is abstracted as a link of its parent—agent Ambulance Crew.

[}

% plain actor Ambulance Crew %
TELL SimpleClass AmbulanceCrew PlainActor IN ActorElementClass WITH
name
displayName : “Ambulance Crew”
END
% agent Ambulance Crew %
TELL SimpleClass AmbulanceCrew Agent IN AgentElementClass WITH
name
displayName : “Ambulance Crew”
[outDepLinks
AC TALtoOptimalLink]
END
% plain actor Resource Allocator %
TELL SimpleClass ResourceAllocator PlainActor IN ActorElementClass
WITH
name
displayName : “Resource Allocator”
END

% position Resource Allocator %
TELL SimpleClass ResourceAllocator_Position IN PositionElementClass
WITH
name
displayName : “Resource Allocator”
[inDepLinks
OptimaltoOptimallink RA]

END

% agent Resource Allocation Module %

TELL SimpleClass ResourceAllocationModule Agent IN AgentElementClass
WITH

END

% agent Human Resource Allocator %

TELL SimpleClass HuamnResourceAllocator Agent IN AgentElementClass
WITH

END

% dependency link from softgoal Timeliness [Arrival Location] inside
agent Ambulance Crew to softgoal dependum Optimal [MobInst] %

TELL SimpleClass AC_TALtoOptimallLink IN DependencyLinkClass WITH

CHAPTER 3. REFORMULATING THE [* FRAMEWORK USING THE CONCEPT OF VIEW 48

from

[: AmbulanceCrew_Agent]
to

: AC OptimalMobInst RA
END

% dependency link from softgoal dependum Optimal [MoblInst] to

0,

softgoal Optimal [MoblInst] inside position Resource Allocator %
TELL SimpleClass OptimaltoOptimalLink RA IN DependencyLinkClass WITH

from
: AC OptimalMobInst_ RA
to
[: ResourceAllocator Position]
END

% softgoal dependum Optimal [MobInst] %
TELL SimpleClass AC_OptimalMobInst RA IN DependumElementClass,
SoftGoalElementClass WITH

inDeplinks

: AC_TALtoOptimalLink
outDepLinks
OptimaltoOptimalLink RA

END

Figure 3.3-4 SD view representation in Telos

3.3.3 The Strategic Rationale view

We argued previously (Section 3.1) that SR view is the detailed form of a SD
view, so modeling constructs for the SR view is a superset of those for the SD view.
The same analogy applies to the formal constructs between SR and SD. Thus, it
appears sufficient for us to just show the representational constructs in the SR view

that are not covered in the SD meta-model.

We use two diagrams to exhibit the meta-model for the SR view. Figure 3.3-5
focuses on presenting the hierarchy of element classes in the SR view while Figure

3.3-6 focuses on showing various link classes that are supported in the SR view.

Figure 3.3-5 shows the hierarchy of element classes. There are five meta-level
classes that have corresponding graphical notations: GoalElementClass,
TaskElementClass, ResourceElementClass, SoftgoalElementClass, and

BeliefElementClass. Others are intermediate classes that only help implementation

CHAPTER 3. REFORMULATING THE 1* FRAMEWORK USING THE CONCEPT OF VIEW 49

of i* semantics. For example, the inheritance relationship from GoalElementClass
and TaskElementClass to DecomposableElementClass enforces a rule in i* that only
a goal (instance of GoalElementClass) or a task (instance of TaskElementClass) can
be decomposed. Another example is the use of SubElementClass and
IntentionalElementClass. From the partial meta-model of the SD view (Figure 3.3-3),
we know that a sub-element (instance of SubElementClass) is dependable while an
intentional element (instance of IntentionalElementClass) is not. BeliefElementClass
does not subclass SubElementClass, so a belief (instance of BeliefElementClass) is

not dependable. This semantic implies that a belief shall never be a dependum.

IntentionalElementClass

DependableElementClass / '&D
\ Detomposab

SubElementClass EndsElementClass

mentClass

GoalElementClass esolrcaElementClass BeliefElementClass

TaskElementClass SoftGoalElementClass
ContributorClas ContributeeClass LEGEND

~>3 generalization

ObjectClass —= attribute class

Figure 3.3-5 A partial schema showing Element hierarchy in the SR view

Figure 3.3-6 focuses on showing various link classes and their semantics that are
supported 1n the SR view. For example, a means-ends link (instance of
MeansEndsLinkClass) can only starts from a task (instance of TaskElementClass)
and ends at either a goal, a task, or a resource (specified instance of
EndsElementClass). Besides, to distinguish dependency from other non-actor-
association links, we group the four types of links—means-ends, decomposition,
contribution, and correlation—into intentional links (instances of

IntentionallLinkClass).

CHAPTER 3. REFORMULATING THE I* FRAMEWORK USING THE CONCEPT OF VIEW 50

' tCl
DecomposableElementClass LinkClass TaskElementClass

¥

DecompositionLinkClass /AeansEndsLinkGlass

T IntentionalLinkClass
S,o?‘ A 1

SubElementClass EndsElemeantClass

BreakCorrelationLinkClass —>> CorrelationLinkClass \
ContributorClass /.0,»
\
&mm\‘comributionLinkClass/ TEGEND

\ —>> generalization
~m attribute class

OrContributionLinkClass

Figure 3.3-6 A partial meta-model showing the links supported by SR view

Figure 3.3-7 shows the formal representation of some of the elements that appear
in the SR view shown in Figure 3.2-10. The text quoted by %% on top of each
simple class denotes the name of the corresponding element shown in the graphical

representation.

Q,

% plain actor Ambulance Crew %
TELL SimpleClass AmbulanceCrew_PlainActor IN ActorElementClass WITH
name
displayName : “Ambulance Crew”
END
% agent Ambulance Crew %
TELL SimpleClass AmbulanceCrew Agent IN AgentElementClass WITH
name
displayName : “Ambulance Crew”
children
: AC_QualityService
: AC TimelinessService
: Ac:TimelinessArrivalLocation
AC_AccuracyAmbInfo

END

% softgoal Timeliness [Arrival Location] inside agent Ambulance Crew

oe

CHAPTER 3. REFORMULATING THE I* FRAMEWORK USING THE CONCEPT OF VIEW 51

TELL SimpleClass AC TimelinessArrivalLocation IN
SoftGoalElementClass WITH
parent
AmbulanceCrew_Agent
outDepLinks
AC_TALtoOptimalLink
links
AC_TALtoTS_AndContributionLink

END
% plain actor Resource Allocator %
TELL SimpleClass ResourceAllocator_ PlainActor IN ActorElementClass
WITH
name
displayName : “Resource Allocator”
END
% position Resource Allocator %
TELL SimpleClass ResourceAllocator_Position IN PositionElementClass
WITH
name
displayName : “Resource Allocator”
children
RA OptimalMobInst
RA TimelinessArrivallocation
RA_AccuracyBAmbInfo
RA BeGeneratedMoblInst

END
% agent Resource Allocation Module %
TELL SimpleClass ResourceAllocationModule Agent IN AgentElementClass
WITH
children
RA BeGeneratedMobInst ByAlgorithm
END
% agent Human Resource Allocator %
TELL SimpleClass HuamnResourceAllocator Agent IN AgentElementClass
WITH
children
RA BeGeneratedMoblInst ByHumanDecision
END
% dependency link from softgoal Timeliness [Arrival Location] inside
agent Ambulance Crew to softgoal dependum Optimal [MobInst] %
TELL SimpleClass AC TALtoOptimallLink IN DependencyLinkClass WITH
from
AC_TimelinessArrivalLocaltion

CHAPTER 3. REFORMULATING THE 1* FRAMEWORK USING THE CONCEPT OF VIEW 52

to
AC_OptimalMobInst RA
END

Q,

% dependency link from softgoal dependum Optimal [MobInst] to
softgoal Optimal [MobInst] inside position Resource Allocator %
TELL SimpleClass OptimaltoOptimalLink RA IN DependencyLinkClass WITH
from
AC_OptimalMobInst RA
to
RA OptimalMoblInst
END
% softgoal dependum Optimal [MobInst] %
TELL SimpleClass AC_OptimalMobInst RA IN DependumElementClass,
SoftGoalElementClass WITH
inDeplinks
AC_TALtoOptimalLink
outDepLinks
OptimaltoOptimalLink RA
END
% softgoal Optimal [MobInst] inside position Resource Allocator %
TELL SimpleClass RA OptimalMobInst IN SoftgoalElementClass WITH
parent
ResourceAllocator Position
inDepLinks
OptimaltoOptimallLink RA

END

Figure 3.3-7 SR view representation in Telos

3.3.4 The Evaluation Results view

label %

intentionalElementCilass 2IntentionalElementlLabelClass g

&

[

[

m
U PO TUD I et~ cu s SUR R NP7 gRus AUUE FURTETRURRRR @
DeniedElementlLabsl . o«
WoaeaklyDeniedElementLabel ‘ ContiictElementl abel %
UndecidedElementlabel SatisficedElementLabel m

LEGEND WeaklySatisficedElementlabel E
.‘.P.;nstanﬁaﬁon —3m atiribute class %
m

4]

Figure 3.3-8 Formal representation of labels in Telos

CHAPTER 3. REFORMULATING THE 1* FRAMEWORK USING THE CONCEPT OF VIEW 53

The 1* framework supports a set of qualitative labels. We formalize them using a
set of simple classes, each of which corresponds to an instance of the meta-class
IntentionalElementLabelClass. For example, the weakly denied label (¢) is
represented by simple class WeaklyDeniedElementLabel. The formal representation

of these modeling constructs is shown in Figure 3.3-8.

Figure 3.3-9 shows the formal representation of two elements that appear in the
EVLR view shown in Figure 3.2-13. Each of the two elements has “label” as its
attribute, and each is assigned an UndecidedElementLabel. The text quoted by %%
on top of each simple class denotes the name of the corresponding element shown in

the graphical representation.

0

% softgoal Timelines [Arrival Location] inside agent Ambulance Crew$%
TELL SimpleClass AC TimelinessArrivallocation IN
SoftGoalElementClass WITH
parent

: AmbulanceCrew_Agent
outDepLinks

: AC_TALtoOptimalLink
links

: AC_TALtoTS_AndContributionLink

label .
%an Undecided label is assigned to this element %
UndecidedElementLabel
END

TELL SimpleClass AC_OptimalMobInst RA IN DependumElementClass,
SoftGoalElementClass WITH
inDeplinks
: AC_TALtoOptimallink
outDepLinks
OptimaltoOptimallink RA
label
%an Undecided label is assigned to this element %
UndecidedElementLabel
END

Figure 3.3-9 Evaluation results in TELOS representation

CHAPTER 3. REFORMULATING THE 1* FRAMEWORK USING THE CONCEPT OF VIEW 54

3.4 Discussion

The four views derived from the same baseline model share common elements
and these elements serve as connectors among the views. Given a baseline model,
the information contained in it can be partitioned into three basic views: Basic AC
view, Basic SR view, and Basic EVLR view. Actors (plain or specified) show in
both the AC and SR view, yet the former contains actor associations while the latter
focuses on dependencies. Any SD view can be viewed as an abstraction of its
corresponding SR view. Any EVLR view contains all elements in its corresponding
SR view along with label assigned to the elements as attributes during an evaluation

process.

The inter-view relationship can be seen more clearly in the underlying Telos
representation. We use Figure 3.4-1 to show the formal constructs of a partial
baseline model, denoting parts belonging to different views using different special
effects. Then we show separately the corresponding formal representations in

different views.

In Figure 3.4-1, we italicize the attributes that belong only (meaning do not
belong to the SR view) to the AC view; we bold the attributes that belong to both
SD and SR views; and the attributes without special effects belong to only the SR
view. For the calculated attributes in the SD view, we put them in [square bracket].
Intentional elements are assigned labels in the EVLR view, so we underline those

attributes shown only in the EVLR.

% plain actor Ambulance Crew $%
TELL SimpleClass AmbulanceCrew_PlainActor IN ActorElementClass WITH
name
displayName : “Ambulance Crew”
specifiedByLink
: ACASpecifiesACPA
END
% agent Ambulance Crew %
TELL SimpleClass AmbulanceCrew Agent IN AgentElementClass WITH
name
displayName : “Ambulance Crew”
specifiesLink

CHAPTER 3. REFORMULATING THE 1* FRAMEWORK USING THE CONCEPT OF VIEW 55

ACASpecifiesACPA
children
: AC_QualityService
AC TimelinessService
AC_TimelinessArrivalLocation
AC_AccuracyAmbInfo

[outDepLinks
AC_TALtoOptimalLink]
END
% Specifies link from position Resource Allocator to plain actor
Resource Allocator %
TELL SimpleClass ACASpecifiesACPA IN SpecifiesLinkClass WITH
from
AmbunalceCrew_ Agent
to
AmbulanceCrew_PlainActor
END

)

% softgoal Timeliness [Arrival Location] inside agent Ambulance Crew
%
TELL SimpleClass AC_TimelinessArrivallLocation IN
SoftGoalElementClass WITH
parent

AmbulanceCrew Agent
outDepLinks

AC_TALtoOptimalLink
links

AC_TALtoTS AndContributionlLink

label
UndecidedElementLabel

END

% plain actor Resource Allocator %
TELL SimpleClass ResourceAllocator PlainActor IN ActorElementClass
WITH

name
displayName : “Resource Allocator”
specifiedByLink
RAPSpecifiesRAPA

END
% position Resource Allocator %
TELL SimpleClass ResourcelAllocator Position IN PositionElementClass
WITH
name
displayName : “Resource Allocator”
specifiesLink

CHAPTER 3. REFORMULATING THE I* FRAMEWORK USING THE CONCEPT OF VIEW 56

RAPSpecifiesRAPA
occupiedByLinks
RAMOccupiesRA
HRAOccupiesRA
children
RA OptimalMobInst
RA TimelinessArrivalLocation
RA AccuracyAmbInfo
RA BeGeneratedMobInst
[inDeplLinks
OptimaltoOptimalLink RA]

END

()

% Specifies link from position Resource Allocator to plain actor
Resource Allocator %
TELL SimpleClass RAPSpecifiesRAPA IN SpecifiesLinkClass WITH
from
ResourceAllocator Position
to
ResourceAllocator PlainActor
END
% occupies link from agent Resource Allocation Module to position
Resource Allocator %
TELL SimpleClass RAMOccupiesRA IN OccupiesLinkClass WITH
from
ResourceAllocationModule Agent
to
ResourceAllocator Position
END
% agent Resource Allocation Module %
TELL SimpleClass ResourceAllocationModule Agent IN AgentElementClass
WITH
occupiesLinks
RAMOccupiesRA
children
RA BeGeneratedMobInst ByAlgorithm
END

% agent Human Resource Allocator %
TELL SimpleClass HuamnResourceAllocator Agent IN AgentElementClass
WITH
occupiesLinks
HRAOccupiesRA
children
RA BeGeneratedMobInst ByHumanDecision
END

CHAPTER 3. REFORMULATING THE 1* FRAMEWORK USING THE CONCEPT OF VIEW 57

% dependency link from softgoal Timeliness [Arrival Location] inside
agent Ambulance Crew to softgoal dependum Optimal [MobInst] %
TELL SimpleClass AC_TALtoOptimalLink IN DependencylinkClass WITH
from
AC TimelinessArrivalLocaltion
[: AmbulanceCrew_Agent]
to
: AC OptimalMobInst RA
END
% dependency link from softgoal dependum Optimal [MobInst] to
softgoal Optimal [MobInst] inside position Resource Allocator %
TELL SimpleClass OptimaltoOptimalLink RA IN DependencyLinkClass WITH
from
: AC_OptimalMobInst RA
to
RA OptimalMobInst
[: ResourceAllocator Position]
END
% softgoal dependum Optimal {[MobInst] %
TELL SimpleClass AC OptimalMobInst RA IN DependumElementClass,
SoftGoalElementClass WITH
inDeplinks
: AC TALtoOptimalLink
outDepLinks
: OptimaltoOptimalLink RA
label

UndecidedElementLabel

END
% softgoal Optimal [MobInst] inside position Resource Allocator %
TELL SimpleClass RA OptimalMobInst IN SoftgoalElementClass WITH
parent
ResourceAllocator Position
inDepLinks
OptimaltoOptimallink RA
label

UndecidedElementLabel

END

Figure 3.4-1 The Telos representation of a segment from the LAS baseline model

The following diagram shows the corresponding SD view of Figure 3.4-1. Only
actors and their dependency links are included, and the non-bolded attributes are

calculated ones.

Q.

% agent Ambulance Crew %

CHAPTER 3. REFORMULATING THE I* FRAMEWORK USING THE CONCEPT OF VIEW 58

TELL SimpleClass AmbulanceCrew_ Agent IN AgentElementClass ISA
AmbulanceCrew Actor WITH
name
displayName : “Ambulance Crew”
outDepLinks

AC_TALtoOptimalLink
END

% position Resource Allocator %
TELL SimpleClass ResourceAllocator Position IN PositionElementClass
ISA ResourceAllocator Actor WITH
name
displayName : “Resource Allocator”
inDeplLinks
OptimaltoOptimallink RA

END

Q

% agent Resource Allocation Module %

TELL SimpleClass ResourceAllocationModule Agent IN AgentElementClass
ISA ResourceAllocator Actor WITH

END

% agent Human Resource Allocator %

TELL SimpleClass HuamnResourceAllocator Agent IN AgentElementClass
ISA ResourceAllocator Actor WITH

END

o)

% dependency link from softgoal Timeliness [Arrival Location] inside
agent Ambulance Crew to softgoal dependum Optimal [MobInst] %
TELL SimpleClass AC TALtoOptimalLink IN DependencyLinkClass WITH

from

AmbulanceCrew Agent
to
: AC_OptimalMobInst RA

END

0

% dependency link from softgoal dependum Optimal [MobInst] to
softgoal Optimal [MobInst] inside position Resource Allocator %
TELL SimpleClass OptimaltoOptimalLink RA IN DependencylLinkClass WITH

from

: AC _OptimalMobInst RA
to
ResourceAllocator_ Position

END
% softgoal dependum Optimal [MobInst] %
TELL SimpleClass AC_OptimalMobInst RA IN DependumElementClass,
SoftGoalElementClass WITH
inDeplinks

CHAPTER 3. REFORMULATING THE I* FRAMEWORK USING THE CONCEPT OF VIEW 59

: AC TALtoOptimalLink
outDepLinks
OptimaltoOptimalLink RA
END

The corresponding AC view of Figure 3.4-1 show below keeps only actors and

their associations.

o

% plain actor Ambulance Crew %
TELL SimpleClass AmbulanceCrew_ PlainActor IN ActorElementClass WITH

name
displayName : “Ambulance Crew”
specifiedByLink
ACASpecifiesACPA

END
% agent Ambulance Crew %
TELL SimpleClass AmbulanceCrew Agent IN AgentElementClass WITH
name
displayName : “Ambulance Crew”
specifiesLink
ACASpecifiesACPA
END
% Specifies link from position Resource Allocator to plain actor
Resource Allocator %
TELL SimpleClass ACASpecifiesACPA IN SpecifiesLinkClass WITH
from
AmbunalceCrew_Agent
to
AmbulanceCrew_PlainActor
END

% plain actor Resource Allocator %

TELL SimpleClass ResourceAllocator PlainActor IN ActorElementClass
WITH

name
displayName : “Resource Allocator”
specifiedByLink
RAPSpecifiesRAPA

END

% position Resource Allocator %

TELL SimpleClass ResourceAllocator Position IN PositionElementClass
WITH

name
displayName : “Resource Allocator”
specifiesLink
RAPSpecifiesRAPA

occupiedByLinks

CHAPTER 3. REFORMULATING THE 1* FRAMEWORK USING THE CONCEPT OF VIEW 60

RAMOccupiesRA
HRAOccupiesRA
END

% Specifies link from position Resource Allocator to plain actor
Resource Allocator %
TELL SimpleClass RAPSpecifiesRAPA IN SpecifiesLinkClass WITH
from
ResourceAllocator Position
to
ResourceAllocator PlainActor
END

[}

% occupiles link from agent Resource Allocation Module to position
Resource Allocator %
TELL SimpleClass RAMOccupiesRA IN OccupiesLinkClass WITH
from
ResourceAllocationModule Agent
to
ResourceAllocator Position
END
% agent Resource Allocation Module %
TELL SimpleClass ResourceAllocationModule Agent IN AgentElementClass
WITH
occupiesLinks
RAMOccupiesRA
END

0,

% agent Human Resource Allocator %
TELL SimpleClass HuamnResourceAllocator Agent IN AgentElementClass
WITH
occupiesLinks
HRAOccupiesRA
END

The corresponding SR view of Figure 3.4-1 shown below keeps actors, their

external dependencies, and their internal structures.

0,

% agent Ambulance Crew %
TELL SimpleClass AmbulanceCrew Agent IN AgentElementClass ISA
AmbulanceCrew Actor WITH
name
displayName : “Ambulance Crew”
children
: AC_QualityService
AC_TimelinessService
AC_TimelinessArrivalLocation
AC_AccuracyAmbInfo

CHAPTER 3. REFORMULATING THE [* FRAMEWORK USING THE CONCEPT OF VIEW 61

END

% softgoal Timeliness [Arrival Location] inside agent Ambulance Crew

oe

TELL SimpleClass AC_TimelinessArrivalLocation IN
SoftGoalElementClass WITH
parent
AmbulanceCrew_ Agent
outDepLinks
AC TALtoOptimalLink
links
AC_TALtoTS_AndContributionLink

label

UndecidedElementLabel

END
% position Resource Allocator %
TELL SimpleClass ResourceAllocator Position IN PositionElementClass
ISA ResourceAllocator Actor WITH
name
displayName : “Resource Allocator”
children
RA OptimalMobInst
RA TimelinessArrivalLocation
RA_AccuracyAmbInfo
RA BeGeneratedMobInst

END
% agent Resource Allocation Module %
TELL SimpleClass ResourceAllocationModule Agent IN AgentElementClass
ISA ResourcelAllocator Actor WITH
children

RA BeGeneratedMobInst ByAlgorithm
END

% agent Human Resource Allocator %
TELL SimpleClass HuamnResourceAllocator_ Agent IN AgentElementClass
ISA ResourceAllocator Actor WITH

children

RA_BeGeneratedMobInst ByHumanDecision
END

% dependency link from softgoal Timeliness [Arrival Location] inside

agent Ambulance Crew to softgoal dependum Optimal [MobInst] %

TELL SimpleClass AC_TALtoOptimalLink IN DependencyLinkClass WITH
from

AC_TimelinessArrivallocaltion

to

CHAPTER 3. REFORMULATING THE 1* FRAMEWORK USING THE CONCEPT OF VIEW 62

: AC OptimalMobInst RA
END
% dependency link from softgoal dependum Optimal [MobInst] to
softgoal Optimal [MobInst] inside position Resource Allocator %
TELL SimpleClass OptimaltoOptimalLink RA IN DependencyLinkClass WITH
from
: AC OptimalMobInst RA
to
RA OptimalMobInst
END
% softgoal dependum Optimal [MobInst] %
TELL SimpleClass AC_OptimalMobInst RA IN DependumElementClass,
SoftGoalElementClass WITH
inDeplinks
: AC_TALtoOptimalLink
outDepLinks
: OptimaltoOptimalLink RA
label

UndecidedElementLabel

END
% softgoal Optimal [MobInst] inside position Resource Allocator $%
TELL SimpleClass RA OptimalMobInst IN SoftgoalElementClass WITH
parent
ResourceAllocator Position
inDepLinks
OptimaltoOptimalLink RA
label

UndecidedElementLabel

END
$In the EVLR, a label attribute is associated with corresponding
intentional element tokens.$%
TELL SimpleClass RA OptimalMobInst IN SoftgoalElementClass WITH
parent
ResourceAllocator Position
inDepLinks
OptimaltoOptimalLink RA

label
UndecidedElementLabel

END

Besides what was formally proposed in this thesis, we uniquely named each
simple class in our sample. Naming convention is beyond the scope of this research

so we will not enforce the use of any specific style. The style chosen proved to be

CHAPTER 3. REFORMULATING THE 1* FRAMEWORK USING THE CONCEPT OF VIEW 63

sufficient in identifying elements from the LAS case study, but we do not guarantee

it will generalize to other applications.

4 Managing i* Models Using Views

As a sub-step in our view extension to effectively represent large-scale and
complex i* models, we separate meta-concepts in the Actor Class (AC) view from
the Strategic Dependency (SD) view. However, for a sufficiently large-scale
application, a basic (AC, SD, or SR) view itself can become complex, and difficult
to comprehend. So we need to break down each basic view until the information

contained in a view is readily comprehensible.

While scaling down a complex baseline model into multiple views, the number of
views can grow. The approach itself introduces a new line of complexity into
representing and traversing the model. As a result, we introduce a view extension as
a separate project management framework alongside the core i* framework. The
purpose of this view extension is to offer a reference structure so that users can
maintain a relationship among various views and locate information effectively from

other views.

Section 4.1 explains the features of the view extension; Section 4.2 presents the
representational constructs of the view extension; Section 4.3 defines related meta-
concepts that are used in the selection rules; and Section 4.4 briefly summarizes

contributions of our view extension.

4.1 View Extension Features

We use a View Map (VM) to visualize relationships among various views in the
reference structure. Unique names are given to models, views, links and elements to
provide a referencing structure. This strategy is important to support cross diagram
references and, thus, minimize manual efforts (given the fact that these references

have to be maintained manually at present).

In the reformulated i* framework (Section 3), four types of views—AC, SD, SR

and EVLR—are defined. To address scalability, our extension further distinguishes
64

CHAPTER 4. MANAGING 1* MODELS USING VIEWS 65

among various sub view types. The views are defined using Telos: Use meta-classes
to encode view types (e.g., BasicViewClass), and use simple (domain) classes to
encode an actual view (e.g., theBasicACView) obtained from an existing baseline
model. In this regard, adding or deleting or updating a view type can follow a
systematic and formal approach. Thus, it is easier for users to maintain and evolve

over time this view extension and to make use of tool support.

Elements in a view are not selected arbitrarily; rather, a selection rule is bound to
each specified view type. Applying a selection rule to the baseline model or some
intermediate view, we find that the resulting elements constitute a corresponding
sub-view of the input element. Selection rules are defined in Telos-compatible First
Order Logic (FOL) and can be implemented using Telos queries (instances of
QueryClass). See Appendix A for more details regarding the translation from FOL

formula to O-Telos classes.

The reformulated i* framework discussed in chapter 3 distinguishes the baseline
model from views. Our extension also distinguishes between basic and partial views.
For any real-world application, one or more i* models can be constructed according
to different social settings, different view-points, or different time periods. We
define each of these models as the baseline model for the specific settings and
viewpoints. Corresponding to the four view types, four basic views are derived from
each baseline model, one for each view type. Basic views are derived according to
the type of meta-level concepts each specific view type support (see Section 3.3 for
more details). Partial views, corresponding to one or more sub- view type, are
derived from a basic view or another partial view according to the selection rules

associated with the sub- view type.

4.2 View Map

In a view map, we use a heavy-border box to denote a basic or an initial view (the
view all other views are based on in a view map), and we use a regular-border box to

denote a derived view (views other than the initial one in a view map). The

CHAPTER 4. MANAGING 1* MODELS USING VIEWS 66

decomposition from one view into multiple child views is denoted by branches; this
type of reduction is total. In other words, the union of modeled elements in child
views is equivalent to the set of modeled elements in the parent view. The
projection over one view to a sub-view is denoted by dashed arrow-lines. The view
decomposition and projection links connect sub-views of type AC, SD, and SR. In
the EVLR view, we use a solid arrow-line to denote the direction of label

propagation. Figure 4.2-1 shows the graphical notations of the concepts.

\fiew Description [View Description | B = »
basic or inltial view derived view view decomposition view projection label propagation
link link direction

Figure 4.2-1 Graphical notations in View Map

Figure 4.2-2 illustrates the generic view map that fits for all i* models. For any i*
model constructed for a given organizational configurations, The Baseline Model
can be decomposed into four basic views: The Basic AC View, The Basic SD view,

The Basic SR view, and The Basic EVLR view.

[The Baseline Model |

| meBascacview | | ThepasicSbview | [TheBasicsRview]| | TheBask EVIRView |

Figure 4.2-2 Generic View Map showing relationship of the baseline model and the

basic views

4.3 Representational Constructs

Each type of view is defined by a meta-level view class, and concrete views in an
application are instances of the meta-level view classes. Selection rules are encoded
in query classes and are attached as the selectionRule attribute to each specific type

of view class.

CHAPTER 4. MANAGING 1* MODELS USING VIEWS 67

META-META CLASSES

i I
ViewMetaClass selectionRule > QueryClass
METACLASSES
griOblects
. " i | > ObjectClass
BaselineModelClass e ViewClass bjectC
basicYiews
theBaselineModel
childViews
BasicViewClass
PartialViewClass [AC|SD|SRIEVLR]ViewClass

\ X arentViews

Basic[AC|SD|SRIEVLR]ViewClass Partial[AC|SD|SR|EVLR]ViewClass

LEGEND
nsf»»ms(anﬁaﬁan -~ attribute class 35 generalization

Figure 4.3-1 A partial meta-model of the view extension showing meta-level

relationship among the baseline model class and other view classes

Figure 4.3-1 shows the part of the meta-model that defines the relationship among
a baseline model and its child views. Formally, we consider a baseline model as a
specific view (the whole); an instance of BaselineModelClass takes an instance of a
BasicViewClass as attribute basicViews, while the latter takes the former as its
attribute theBaselineModel. Besides, the above figure also shows two lines of
specializing view classes: One of them is in accordance with the four view types,
and the other is in accordance with the distinction between basic and partial. After
combination, we obtained eight sub- view classes, including BasicACViewClass,
BasicSDViewClass, BasicSRViewClass, BasicEVLRViewClass,
Partial ACViewClass, PartialSDViewClass, PartialSRViewClass, and
PartialEVLRViewClass. We use short-hand style Basic[AC|SD|SR|EVLR]ViewClass

CHAPTER 4. MANAGING I* MODELS USING VIEWS 68

in Figure 4.3-1 to reference the four basic view classes. Same pattern applies to
partial views.

META-META CLASSES

selectionRule
ViewMetaClass =z QueryClass

META CLASSES

griObjects
BaselineModelClass »» ViewClags — 3 ObjectClass

basicVie
eBaselineModel 7/ N\ |
chilane

BasjcViewClass Partua%Vie'wCIas

LinkClass

BasicACViewClass

cv 1

p niy/ v 1 aSingleNetwo oal_7
View Link' 8
theBasicACView anAgentsOnlyView
N y4 SIMPLE CLASSES
. . pv_1
theBasicSDView (EGEND

~>}~inslantiation -3 aliribute class 55 generalization

Figure 4.3-2 A partial meta-model of the view extension showing the hierarchy of

inheritance

Figure 4.3-2 shows the relationships among the meta-level classes and concrete
views residing in an i* model. Each i* model corresponds to a singleton instance of
BaselineModelClass—theBaselineModel. Instances of any BasicXXViewClass are
also singletons, and here “XX” stands for one of AC|SD|SR|EVLR. For example,
theBasicACView is the singleton instance of meta-class BasicACViewClass. Each
view is constituted by a sub-set of domain classes existed in the baseline model. For
example, aSingleNetworkView (indirect instance of PartialACViewClass) contains
Goal_7 (instance of GoalElementClass) and Link_8 (instance of LinkClass) as
contents of its attribute griObjects.

CHAPTER 4. MANAGING I* MODELS USING VIEWS 69

META-META CLASSES
. selectionRule
ViewMetaClass = QueryClass

PlainActorsOnlyViewClass] \ \\ plainActorsOnlyRule
r

AgentsOnlyViewClass) > agentsOnlyRule
AbstractActorsOnlyViewClass - abstractActorsOnlyRule

SinglePlainActorViewClass d \ > singlePlainAcotrRule

SingleNetworkViewClass > singleNetworkRule
DirectReplaceableViewClass —-k—r——% directReplaceableRule
META CLASSES
LEGEND
YV YV¥Y
Y) } ingtantiation -3 attribute class 33 generalization

PartialACViewClass

Figure 4.3-3 A partial meta-model of the view extension showing meta-level

relationships among different types of AC view classes

Figure 4.3-3 shows a partial meta-model of the view extension concerning AC
sub- view types. Query classes assigned to different types of AC views are
manifested. For example, plainActorsOnlyRule (instance of QueryClass) is
assigned to the PlainActorsOnlyViewClass as its attribute selectionRule. Each
partial view (e.g., aPlainActorsView) of a given type (e.g., Plain-Actors-Only view
type) corresponds to the resulting set of elements following the execution of the

query (e.g., plainActorsOnlyRule) attached to the view type.

Figure 4.3-4 and Figure 4.3-5 shows the similar meta-model of the view extension

concerning SD and SR views, respectively.

CHAPTER 4. MANAGING 1* MODELS USING VIEWS 70

META-META CLASSES

. selectionRule
ViewMetaClass

> QueryClass

..

PlainActorsSDViewClass
SpecifiedActorsSDViewClass
PairwiseActorsViewClass pairwiseActorsRule
r
¥ SingleActorFocusSDViewClas singleActorFocusSDRule
v :
BasicSDViewClass &
META CLASSES
PartialSDViewClass
LEGEND

..,mesfanﬁaﬁgn —> altribute class 3. generalization

Figure 4.3-4 A partial meta-model of the view extension showing meta-level

relationships among different types of SD view classes

META-META CLASSES

salectionRule
. > QueryClass

ViewMetaClass

w

ngleActorFocusSRViewClass— = singleActorFocusSRRule
InernalViewClass . > singleActorintemalRule
ExternalViewClass . singleActorExternalRule

r

FunctionalViewClass = internalFunctionalRule

NonFunctionalViewClass —r%-intamalNonfunctionalRule
SingleSoftgoalViewClass --—r—>nonfunctionaISingieSoﬂ;goalRule

SingleAffectedActorViewClass ..l singleAffectedActorRule
SingleAffectedDependumViewClass——> singleAffectedDependumRule

K :]f A

’\

by

PartialSRViewClass

el

META CLASSES

LEGEND

Mf”instanﬁaﬁon -3 atiribute class 55, generalization

Figure 4.3-5 A partial meta-model of the view extension showing meta-level

relationships among different types of SR and EVLR view classes

CHAPTER 4. MANAGING I* MODELS USING VIEWS 71
4.4 Meta-concepts Essential to Selection Rules

In previous sections, we introduced the view types and their corresponding
representational constructs in Telos. In this section, we define some critical concepts
that are extensively referenced in the selection rules. Most of the concepts come in
pairs, as follows: plain vs. specified actor (Section 4.4.1), parent vs. children
(Section 4.4.3), incoming vs. outgoing dependency (Section 4.4.4), and ancestor vs.
descendent (Section 4.4.6); the exceptions are actor association (4.4.2) and external

link (Section 4.4.5).

Concepts discussed in this section are derived from existing meta-concepts in our
reformulated i* framework, and some of them have been defined informally in
Section 3.2, along with the description of the graphical notations. We emphasize in
this section the formal constructs related to these concepts: without exception, they

are described in a Telos compatible First Order Logic (FOL) form.

4.4.1 Plain and specified actor

Our extension implements the concept plain actor explicitly using meta-class
PlainActorElementClass, and the concept specified actor using meta-class
SpecifiedActorElementClass. PlainActorElementClass is equivalent to only
ActorElementClass, while SpecifiedActorElementClass 1is equivalent to the
generation of RoleElementClass, PositionElementClass, AgentElementClass, and
AgentInstanceElementClass. Among specified actors, we distinguish between
abstract actors (instances of AbstractActorElementClass) and physical actors
(instances of PhysicalActorElementClass) for the former represents the
classification of similar instances while the latter represents a single instance.
AbstractActorElementClass is equivalent to RoleElementClass and
PositionElementClass, and AgentElementClass, while PhysicalActorElementClass to
AgentInstanceElementClass. Figure 4.4-1 shows the partial meta-model that relates

to our extended actor types.

CHAPTER 4. MANAGING I* MODELS USING VIEWS 72

ActorElementClass <«— SpecifiedActorElementClass

ifissLi
T speci nas/o(‘y \ —
to

PlainActorElementClass <« SpecifiesLinkClass PhysicalActorElementClass | —>> generalization
specifiedByLink 7

—> attribute class

AbstractActorElementClass
/
PositionElementClass /

RoleElementClass AgentinstanceElementClass
AgentElementClass

Figure 4.4-1 A partial meta-model showing relationships among extended actor types

in our extension

4.4.2 Actor association

We define actor associations informally as the general form of eight relationships
among actors, as follows: “plays”, “occupies”, “covers”, “is-A”, “INS”, “is-Part-of”,
“specifies”, and “complete composition”. Now we formally present these concepts
as subclasses of ActorAssociationLinkClass. Figure 4.4-2 shows the part of meta-

model related with association links.

AssociationLinkClass
OccupiesLinkClass | ISALInkClass
PlaysLinkClass PartsLinkClass LEGEND
CoverslLinkClass INSLinkClass -3 ganaralization

CompleteComposition SpecifiesLinkClass
LinkClass

Figure 4.4-2 Partial meta-model showing association link classes

4.4.3 Parent versus children

The i* semantic has natural support for one level of abstraction between a
strategic actor and its internal rationales. These internal rationales are modeled

using intentional elements (goals, tasks, softgoals, resources, and beliefs) that are

CHAPTER 4. MANAGING I* MODELS USING VIEWS 73

connected by intentional links (means-ends, decomposition, contribution, and
correlation). Our extension defines the relationship discussed above as parent-
children®. In other words, a strategic actor can have intentional elements as its
children, while, in turn, these intentional elements have that actor as their parent.

The partial meta-model related to these concepts is demonstrated in Figure 4.4-3.

ElementClass
LEGEND
parent — -3 genaralization
IntentionalElementClass ActorElementClass]
- Shildren —z attribute class

Figure 4.4-3 Partial meta-model showing the parten-children relationship

For example, in the underlying representation of a partial model shown in Figure
4.4-4, we see that simple class AmbulanceCrew_Agent (denoting agent Ambulance
Crew) has simple class AC_TimelinessArrivalLocation (denoting softgoal
Timeliness [Arrival Location]) assigned to its attribute children. The latter, in turn,

has the former assigned to its attribute parent.

Q,

% agent Ambulance Crew %
TELL SimpleClass AmbulanceCrew_Agent IN AgentElementClass WITH
children

: AC QualityService

: AC_TimelinessService

: AC _TimelinessArrivalLocation

: AC_AccuracyAmbInfo

END

% softgoal Timeliness [Arrival Location] inside agent Ambulance Crew

o

TELL SimpleClass AC_TimelinessArrivalLocation IN
SoftGoalElementClass WITH
parent
: AmbulanceCrew_Agent

* This choice of terms follows from OME version 3 tool and does not imply there will be multiple layers of

parent-children relationship in the present reformulated i* framework.

CHAPTER 4. MANAGING [* MODELS USING VIEWS 74

| END

Figure 4.4-4 Partial Telos representation showing the parent-child relationship

Formally, we identify the parent and children of a given element using Telos
queries. The parent of a given intentional element can be obtained by executing the
find_parent query. Children of a given actor element are also called the internal
elements. We use query find internal_elements to retrieve the set of internal
elements. The symbol “§” denotes for all those in the FOL formula specified in this
thesis. See Appendix A for more details regarding the rules in translating queries
expressed in our FOL format into O-Telos query classes. Queries (e.g., Queryl) and
definitions (e.g., Defl) in this thesis are numbered numerically. See Appendix B for
the O-Telos format for the complete list of such definitions. See Appendix C for a
sample output after applying a query.

Queryl
find_parent(e:IntentionalElementClass)::=

§a:ActorElementClass-e.parent=a

Query2
find_internal_elements(a:ActorElementClass)::=

§e:IntentionalElementClass-(e € a.children)

4.4.4 Incoming versus outgoing dependency

For a specific actor, or an intentional element internal to the actor, or a dependum
(external to all actors), we can distinguish the incoming and outgoing dependencies
according to the direction of the dependency links. An incoming dependency comes
from a depender to a dependum or from a dependum to a dependee. An outgoing
dependency goes from a depender toward a dependum or from a dependum to a
dependee. We formalize the distinctions explicitly using
IncomingDependencyLinkClass and OutgoingDependencyLinkClass. Instances of

these two meta-classes are referenced by intentional elements (instances of

CHAPTER 4. MANAGING I* MODELS USING VIEWS 75

IntentionalElementClass) as attributes inDepLinks and outDepLinks, respectively.

Figure 4.4-5 shows the part of the meta-model that deals with these relationships.

from .-
'l WstorElementClass
Null / Empty g
to a0, o
B .s’\“{g?‘%w & |
4 to : : BEERRR -\ from =
5 th *Eozdéééé"' - ¥ .
: . comingDependen . .
k
DependumElement _ MPSPLIKS o T o ss) InternalElement
Class | ——Umnmf—??utgoingDependencw SulbDepLinks)I\ Class
A\ LinkClass :
from to
LEGEND
~s3» generalization -3 attribute ¢lass -- 2> virtual altribute class

Figure 4.4-5 Partial meta-model showing incoming and outgoing dependency links

Examining Figure 4.4-5, we observe that the virtual “from” and “to” attributes
(the ones to ActorElementClass and is graphically denoted by dotted-line) of the
dependency links applies only to SD views, while their origin (the one to
InternalElementClass) applies only to SR views. So do the “inDepLinks” and

“outDepLinks” attribute of ActorElementClass and IntentionalElementClass.

Formally, we identify the incoming and outgoing dependencies of a given actor
element using Telos queries. The incoming dependencies can be obtained by
executing the find_incoming_dependencies to_actor query. The outgoing
dependencies are obtained by executing the find_outgoing dependencies_from_actor

query.
Query3

find_incoming_dependencies_to_actor(a:ActorElementClass)::=

§l:DependencyLinkClass:

l.to=a v (Je:InternalElementClass- e.parent=a A 1.to=¢)

Query4
find_outgoing_dependencies_from_actor(a:ActorElementClass)::=

§1:DependencyLinkClass-

CHAPTER 4. MANAGING I* MODELS USING VIEWS 76
l.from=a v (Je:InternalElementClass- e.parent=a A 1.from=e)

As a by-product of the above definition, we can formally define dependum
element and internal element by attaching deductive rule to SubElementClass. In the
formula below, name of meta classes (e.g., DependumElementClass) are shown as

(13 bdd

the left-hand operand of “::=" (equivalent to), and its definition (e.g.,

29

“e:SubElementClass with ‘dependum rule’”) as the right-hand operand. The
previously defined meta-class on which this new one will be based (e.g.,
SubElementClass) appears after the semicolon and before the word “with” in the
definition. The corresponding deductive rule (e.g., “dependum_rule”) follows the
word “with” and is placed in “quotation marks”. This pattern applies to all the

definition of meta-classes using a deduction rule.

Defl
DependumElementClass::= e: SubElementClass with “dependum_rule”
dependum _rule::=

—(3Ja: ActorElementClass - e.parent = a)

Def2

InternalElementClass::= e: IntentionalElementClass with “internal_rule”

internal rule::=

da: ActorElementClass-e.parent = a

We also define queries to locate the dependers and dependees for a given
dependum (instance of DependumElementClass). There are two levels of dependers:
the actor level (shown in SD view) and the element level (shown in SR view). We

construct different queries for them in our extension. In FOL, they are as follows:

QueryS5s
find_depender actor(de:DependumElementClass)::=
§a:ActorElementClass: 31:DependencyLinkClass:

(1.from=a v (Je:InternalElementClass- e.parent=a A 1.from=¢)) A l.to=de

CHAPTER 4. MANAGING I* MODELS USING VIEWS 77

Query6
find_depender element(de:DependumElementClass)::=

§e:InternalElementClass- 31:DependencyLinkClass- 1.from=e A 1.to=de

Query?7
find_dependee_actor(de:DependumElementClass)::=
§a:ActorElementClass: 31:DependencyLinkClass:

(L.to=a v (Je:InternalElementClass- e.parent=a A l.to=e)) A l.from=de

Query8
find_dependee_element(de:DependumElementClass)::=

§e:InternalElementClass- 31:DependencyLinkClass- 1.from=de A l.to=¢

4.4.5 External links

To distinguish dependency from other non-actor-association links, we group the
four types of links—means-ends, decomposition, contribution, and correlation—into
intentional links (see Section 3.3.3 for detail). Intentional links normally connect
elements inside an actor boundary; however, they sometimes extend their target

outside the actor boundary, and we call these intentional links external links.

We define external links using a query find_all external links.
Def3
ExternalLinkClass::=]:IntentionalLinkClass with “external rule”

external rule::= (1 € find_all external links())

The query 1is defined recursively. We first define a sub-query
find_direct_external_links. Informally, a direct external link is one that originates
from an element within an actor’s boundary and ends at a dependency link outside

the actor’s boundary. Formally, the query is defined as follows:

Query9
find direct external links()::=

CHAPTER 4. MANAGING 1* MODELS USING VIEWS

§l:IntentionalLinkClass-
Ja:ActorElementClass, dl:DependencyLinkClass, e:IntentionalElementClass-

l.from=e A e.parent=a A l.to=dl

Then we define an external link recursively—informally, it is:
1. A direct external link; or
2. Any link that ends at an external link

Formally, query find all external links is expressed as:

Queryl0

find_all external links()::=
§l:IntentionalLinkClass- lefind_direct external links() v
(312:IntentionalLinkClass- 1.to=I2A(12 € find all external links()))

4.4.6 Ancestor versus descendent

LinkClass r"?"n
from -y
\ A >
. . O
IntentionalElementClass InternalLinkClass ;
to @
(V)]
0
anAncestorElemen %
~aninternallink
/ E
7))
aDescendentElement/ @
w
LEGEND
->> generalization —3>attribute class — atribste |- instantiation

Figure 4.4-6 Partial meta- and domain-model showing the ancestor-descendent

relationship

CHAPTER 4. MANAGING I* MODELS USING VIEWS 79

As explained in the previous sections, an actor’s internal rationales that are
modeled using intentional elements are connected by intentional links. We derive
the ancestor-descendent relationship using i* meta-concepts shown in Figure 4.4-6.
Links in i* are all directed, and its source and destination are denoted by two
attributes, from and fo, respectively. As a result, we define the element at the source
end as a direct descendent of the one at the destination end, and, in turn, the latter is

a direct ancestor of the former.

% softgoal Timeliness [Arrival Location] inside agent Ambulance Crew

o°

TELL SimpleClass AC_TimelinessArrivallLocation IN
SoftGoalElementClass WITH
parent
AmbulanceCrew Agent
links
AC_TALtoTS AndContributionLink

END
% softgoal Timeliness [Service] inside agent Ambulance Crew %
TELL SimpleClass AC_TimelinessService IN SoftGoalElementClass WITH
parent
AmbulanceCrew_Agent
links
AC_TALtoTS_AndContributionLink

END
% and contribution link from softgoal Timeliness [Arrival Location]
to Timeliness [Service] inside agent Ambulance Crew %
TELL SimpleClass AC_TALtoTS_AndContributionLink IN
AndContributionlLinkClass WITH
from
AC_TimelinessArrivallLocation
to
AC TimelinessService
END

Figure 4.4-7 Telos representation of partial model showing the descendent-ancestor

relationship

Figure 4.4-7 shows how a direct descendent-ancestor relationship is identified
from the underlying Telos representation of an i* model. In this case, softgoal

Timeliness [Arrival Location] is a direct descendent of softgoal Timeliness

CHAPTER 4. MANAGING 1* MODELS USING VIEWS 80

[Service]. For a more generalized definition, we say an intentional element e is a
descendent (or ancestor) of ie if and only if the former fulfills the following

conditions:
1. ie and e share the same parent;
2. eis a direct descendent (or ancestor) of ie; or

3. there exists an intentional element e/ such that e/ is a descendent (or

ancestor) of ie and e is a direct descendent (or ancestor) of e/.
Formally, we define those using Telos queries as follows:

Queryll
find_direct descendants(ie: IntentionalElementClass) ::=

§ e: IntentionalElementClass- 31:DependencyLinkClass- 1.to=ie A l.from=e

Queryl2

find all descendants(ie: IntentionalElementClass) ::=
§ e: IntentionalElementClass- eefind_direct descedent(ie) v
(3d:IntentionalElementClass- e.parent=d.parent A defind_all descendants(ie)

A eefind_direct descendants(d))

Queryl13
find_direct ancestors(ie: IntentionalElementClass) ::=

§ e: IntentionalElementClass- 31:DependencyLinkClass- 1.from=ie A l.to=¢

Queryl4

find_all ancestors(ie: IntentionalElementClass) ::=
§ e: IntentionalElementClass- ecfind_direct ancestors(ie) v
(3d:IntentionalElementClass: e.parent=d.parent A defind_all ancestors(ie)

A eefind direct ancestors(d))

CHAPTER 4. MANAGING 1* MODELS USING VIEWS 81

4.5 Summary

In this chapter, we presented an extension for tackling the scalability issues in
representing an i* model. Scalability issues are resolved through the use of views
and their attached selection rules. A type of built-in diagram—View Map—is
effered in the extension to visualize a reference structure of multiple views derived
from the same i* model. The selection rules are built upon a set of meta-concepts
that originated from the reformulated 1* framework and that was formalized in the

view extension.

The extension was embedded in Telos, and the extension was specified
independently from the Telos constructs of the core i* framework. Partial meta-
models were used to illustrate view classes in our extension, as well as some meta-
concepts. We present the formal definitions in a Telos compatible First Order Logic
(FOL) form so that these rules can also be implemented using other conceptual

modeling languages.

5 Actor Class views

The Actor Class (AC) view allows use of the i* model focusing on actor
associations and actor analysis—studying the social and intentional structure among
various actors and their specified forms within an organization. However, a Basic
AC view (the one derived from a baseline model) can still appear complex.
Therefore, it should be scaled down to make each partial view, when visualized,

more comprehensible.

We define six partial AC view classes in our view extension; their meta-level
constructs have been discussed in Chapter 4. In this chapter we present domain
examples (as instances) of each partial view class and define the selection rule

attached to it.

Each view type is presented from these four perspectives, and each perspective
forms a subsection: Informal Description, Example, Justifications, and Selection
Rule. An informal description gives the reader a brief idea of what kinds of elements
are qualified for a specific partial view. A domain example from the London
Ambulance Service case study (You 2003), which we cited as LASCS throughout
this chapter and the subsequent two chapters, is used to further clarify the idea. We
then provide explanation of why that view type is desirable and outline some context
of use for it. Last, we provide formal definition of the selection rule attached to each
partial view class, which is embedded in Telos and presented using Telos compatible
First Order Logic (FOL). The transformation from this FOL form to O-Telos, a

Telos compatible conceptual modeling language, is provided in Appendix A.

Section 5.1 gives an overview of the relationship between different types of AC
views using a generalized View Map; Section 5.2 presents the Basic AC view and
six partial AC views from the 4 aspects discussed in the previous paragraph; Section

5.3 summarizes the results of this chapter.

82

CHAPTER 5. ACTOR CLASS VIEWS 83

5.1 Overview

In addition to the Basic AC view, we define six types of partial AC views:
Single-Network view, Single-Plain-Actor view, Abstract-Actors-Only view, Plain-
Actors-Only view, Agents-Only view, and Direct-Replaceable view. Figure 5.1-1
shows the relationships between different types of views. Each view has a selection
rule attached to it, and some of them require input arguments (e.g., Actor <n>). The
application of a rule (e.g., singlePlainActorRule) over Any AC view (the original

view) will result in the corresponding partial AC view (e.g., Single-Plain-Actor

<n> View).
Single-Plain-Actar <1> Single-Plain-Actor <2> Single-Plain-Actor <n>
View View e View
singiePla-ilActorRule(“Any The Corresponding
AC View”, Actor<2>} Agents-Only View
agsentsOrlyRule("Any AC View"), -
LTha Basic ACView |- oo . The Corresponding
direcmep[acaabl Any AC View nly Abstract-Actors-Only
[(Vearacor e Fow: soras OrkBulat Ay A i o
View of Actor <i> | View", Actor<j>) plainActorsOni - iew The Corres
' A . . ponding
singleNetworkRule{"Any AC View") Plain-Actors-Only View
| Single-Network <1> View || Single-Network <2> View |-~ [Single-Network <m> View |
LEGEND " A A basic view
\i ow) dort : orthe
""" > praj’:wckl on decomposition d‘:{:: ¢ original view

Figure 5.1-1 A generic view map showing a parent AC view and its possible children

Observing the above diagram, for any AC view, we see that it can be decomposed in three
ways: by plain actors, by connected networks, or by meta-concept types. A view-
decomposition implies the parent view (e.g., Any AC View) is equivalent to the union of the
child views (e.g., Single-Network <1> View) resulting from the decomposition. For example,
suppose there are n (where # is a positive integer) plain actors in an AC view, then elements
in it are partitioned into n Single-Plain-Actor views, each containing exactly one plain actor.
Moreover, every element contained in the parent view is contained by at least one of the
child views. A parent view can also be projected, and so result in a child view (e.g., Direct-

Replaceable View of Actor <i>) that reflects only partial information from it.

CHAPTER 5. ACTOR CLASS VIEWS 84

5.2 Details of the AC Views

5.2.1 Basic Actor Class View

Informal Description

The Basic Actor Class View enumerates all actors (plain and specified) and their
association links. The association links include the “plays,” “isA,” “is-Part-of,”
“covers,” “occupies,” and “INS.” We also need to include the “specifies” and

“complete composition” links from our view extension.

The parent view of the Basic Actor Class View is the Baseline Model. We

normally use the latter as the original view over which the selection rule is to be

applied.

Example

Figure 5.2-1 A partial Basic Actor Class View from LASCS (our original view)

CHAPTER 5. ACTOR CLASS VIEWS 85

Since our purpose in this section is to demonstrate the use of various AC view
types, we choose four plain actors out of ten from basic AC view of the LASCS.
This partial basic AC view includes just enough elements to show our approach.
Figure 5.2-1 visualizes the part of interest. Plain actors that are selected are as
follows: Ambulance Crew, LAS Management, Resource Allocator, and Incident
Reviewer. This AC view will be used as the original view that the sub-views are

derived from throughout this chapter.

Justifications

As argued previously, a distinguished Actor Class (AC) view makes actor
identification and actor analysis easier. Yu (Yu 1994) and most of the early
literature on the subject did not emphasize on questions such as “How does a plain
actor map to a specified one?” and “What are the relationships (which we call actor
associations) between the specified ones?” The issue appeared adequate with the
examples shown in early literature—when there was no such need to distinguish
among different forms of actors. Yet social configuration for a medium-size
organization (e.g., 500 employees) can become too complex to be expressed in the
original SD models. Thus, for ease of communication, it is desirable to have an AC

view separate from a SD view.

Separation of the actor associations from dependencies appears natural since
these entities focus on different type of analysis: the former on a vertical hierarchy
among a plain actor and its specified forms; the latter on a horizontal dependency
network among actors (normally) originated from different plain actors. The
associations help perform actor analysis, while the dependencies help perform
process analysis. The purpose of actor analysis is to identify actors from the
application domain; the purpose of process analysis is to identify process elements

(such as goal or task).

Therefore, separation of the AC view is recommended for all application domains
that have more than 20 actors (based on our previous experience), or any application

domain that has complex social associations among stakeholders.

CHAPTER 5. ACTOR CLASS VIEWS 86

Selection Rule

Formally, we obtained the corresponding Basic AC View out of a Baseline Model

by applying the following query theBasicActorClassView over the latter:
Queryl$5s

theBasicActorClassView(m:BaselineModelClass): =

§o:0bjectClass: oem A

oc{a|ain ActorElementClass} U {1|1in AssociationLinkClass}

(134

In the formulae above, operator “in” denotes “instantiation”. For example,
expression “a in ActorElementClass” means “object a is an instance of class

ActorElementClass.”

In the definition of selection rules for partial views, we define for simplicity only
the element objects—instances of meta-classes suffixed by “-ElementClass”—in the
queries. Whenever link objects—instances of meta-classes suffixed by -
LinkClass”—are not defined explicitly, it implies that a link object, say /, should be

selected if and only if it satisfies the following conditions:

1. [exists in the parent view (e.g., the baseline model m); and

2. Elements assigned as both the “from” and “to” attributes of / are selected into the

child view (e.g., the basic AC view class derived from m).

Formally, we define a generic query as one to find all link objects for a given set

of element objects as follows:
Querylo

%pv: parent view; cv: child view
find_all_links(pv:ViewClass, cv: ViewClass)::=
§ I: LinkClass' (epv) A(Jel, e2:ElementClass- el,e2ecv A Lfrom=el A lLto=e2)

CHAPTER 5. ACTOR CLASS VIEWS 87
This rule applies to all definitions of selection rules throughout this thesis, so we
will not repeat it later. But in this section, since link type “l in

AssociationLinkClass” has been specified in the rule, this rule does not apply.
5.2.2 Single-Network view

Informal Description

A Single-Network view presents a group of specified actors that are connected
with association links. Since plain actors are not included in this view, the

“specifies” association which ends at a plain actor shall not appear, either.

Given a parent AC view and a specified actor within that view, objects that

satisfy one of the following conditions should be selected into this view:
1. The specified actor, say a;
2. A specified actor that is connected by an association link with a;

3. A specified actor that connects to any previously selected actors in the

view,

Example

Figure 5.2-2 shows three Single-Network views that are derived from the original
AC view. With the plain actors removed, elements in the original view formed 3
networks. Networks 1 and 2 have only one agent each: Ambulance Crew (Figure
5.2-2(a)) and LAS Management (Figure 5.2-2(b)), respectively. Network 3
combined the specified actor associated with plain actors Resource Allocator and
Incident Reviewer. In most cases, each network corresponds to the set of specified
actors for a single plain actor. In Figure 5.2-2(c), which appears a special case, the
two sets of specified actors are joined by agent CAD Software System, which
appears as the aggregation of the agent Resource Allocation Module (specified
Resource Allocator) and the agent Incident Reviewing Module (specified Incident

Reviewer).

CHAPTER 5. ACTOR CLASS VIEWS 88

(a) Network 1 (b) Network 2

o,

caD amover
Software: § [gugicaled
System incinta]
Nt
IsBr-of A part.of Cemmi
QCCUPES. : CA Agent CPVERS
wing

RCCURIES

. QCCUPIES COYERS
e ‘Resoiirce ¥
en Anl‘go of
%ggg"rg; oduie QCCUPIE

A

|

b 4!
Hogeimeetiiing

(c) Network 3

Figure 5.2-2 Single-Network views derived from the original view

Justifications

In most organizations, human resource staff want to identify the responsibilities
related with a given position (job profile), and when somebody is hired to take the
position, they then keep track of this relationship. This information can be modeled
in i* as follows: the responsibilities as roles, the position as a position, and
employees as agent instances. When we try to use an i* model in analyzing the
situation, the question to answer becomes “What actors share similar

responsibilities?” The next possible set of questions might be “How much

CHAPTER 5. ACTOR CLASS VIEWS 89
commonality do they share?” and “How can they work with each other in an
organization?” To answer these questions efficiently, we need to single out only the

specified actors that have association links among them.

Grouping specified actors in connected networks appears natural when
considering questions listed in the foregoing. The purpose of an AC view is to
present actors and their associations; in an organization, this kind of work is
normally done in a plain-actor-by-plain-actor manner. Users of the i* model may
explore all possible variations of one plain actor, study the possible roles it may
cover, the positions that are designed to fulfill it, and the actual class of individual
who are considered as this plain actor. One may even assign employees in an
organization to the plain actors. Thus, it makes sense to group specified forms of a

plain actor in one view.

The Single-Network view can be used to scale down the complexity of the
original view, yet not lose information in addressing questions related to a single

plain actor.

Selection Rule

Formally, we obtain the corresponding Single-Network view out of any given AC
view by applying the following query singleNetworkRule.
singleNetworkRule (v:ACViewClass, a:ActorElementClass)::=

§o:ObjectClass: oe v Ano€ {a, find_all associated actors(a) }

Queryl17

find_direct_associated_actors(a:SpecifiedActorElementClass)::=
§al:SpecifiedActorElementClass- 31: AssociationLinkClass:
l.from=anl.to=al v l.from=alAl.to=a

Queryl8

find_all associated_actors(a:SpecifiedActorElementClass)::=

§al:SpecifiedActorElementClass- al efind_direct_associated actors(a) v

CHAPTER 5. ACTOR CLASS VIEWS 90
(Ja2:SpecifiedActorElementClass- al efind_direct_associated_actors(a2) A

a2efind_all associated actors(a))

5.2.3 Single-Plain-Actor view

Informal description

A Single-Plain-Actor view presents the family of specified actors who can inherit

all external relationships from a given plain actor.

Given a parent AC view and a plain actor within that view, objects satisfying one

of the following conditions should be selected into this view:
1. The given plain actor, say a;

2. The specified actor that connected with a via a “specifies” link, which we

call the direct specified actor, say dsa, of a;

3. Any specified actors that have a “plays,” “isA,” “covers,” “occupies,” or
“INS” link to dsa; or any specified actor that has an “is-Part-of” or a

“complete composition” link from dsa;

4. Any specified actors that have a direct “plays,” “isA,” “covers,”
“occupies,” or “INS” link to; or a direct “is-Part-of” or “complete

composition” link from any previously selected actors in this view.

Example

Figure 5.2-3 shows all Single-Plain-Actor views that can be derived from the
original AC view. There are four plain actors in the original view, and thus we have
four Single-Plain-Actor views. The views for plain actor Ambulance Crew and LAS
Management appear extremely simple, so we show them in one diagram (which
contains two views). Note that agent CAD Software System appears in both the
partial view for plain actor Resource Allocator and Incident Reviewer, and this

implies that it can inherit external relationships from both of the plain actors.

CHAPTER 5. ACTOR CLASS VIEWS 91

i i
1 1
Skeciﬂes Skeciﬂes
f i
1
]
i
i
I
L
I
|

l
i
1
1
i
i
i
I

..

LAS
Qanagemegt

COVERS

COVERS

RCCUPIENS

(b) Resource Allocator

CHAPTER 5. ACTOR CLASS VIEWS 92

rw!}ncir:tent
eviewer

|
i
i
i

.

ecifies
i
i
|
|
|
I
]
]
§
1

B i

So%ﬁv%re
System

CA Agent

i
CCUF%IES

incidant’
Reviewingy
Module

Incidant
Reviewer

&

(c) Incident Reviewer

Figure 5.2-3 Single-Plain-Actor views derived from the original view

Justifications

The modeling process of i* is iterative. Typically, modelers identify plain actors
(AC view); next, their dependencies (SD view); and sometimes, internal rationales
(SR view) of the plain actors. When more information and a deeper understanding of
the application are obtained, modelers differentiate plain actors into their specified
forms and sometimes build a network of the specified forms surrounding the plain
actor. Subsequently, plain actors in the SD views shall be substituted with one of its
specified forms. Thus, showing all candidates for that transition becomes a request
from the modeler. The Single-Plain-Actor view is thus designed in response to this

modeler’s request, i.e., this type of view helps obtain various SD views based on

different forms of the actor.

Presenting all the specified forms that can inherit external relationships from a

plain actor in one view appears natural in partitioning. The substitute of plain actors

CHAPTER 5. ACTOR CLASS VIEWS 93
in the SD view is done in a plain-actor-by-plain-actor manner. Users of the i* model
may explore all possible variations of one plain actor, and choose one from the
candidates before moving on to work on another plain actor. Switching views are

not necessary for finding the right substitute for a single plain actor.

Even though we do not claim that our view extension supports the i* modeling
process. According to earlier discussion in this section, the Single-Plain-Actor view
may help maintain connection between the abstract information (e.g., a SD view
showing relationships among plain actors) and the particulars (e.g., the
corresponding SD view substituting each plain actor with its specified form).
Abstract information is typically collected at an earlier modeling stage. At a later
stage, when a better understanding of the application domain is developed through
the model refining process, generic information are then refined to particulars.
Displaying connections between an actor’s generic form and various specified ones
helps maintain the consistency when selecting a specified actor to stand in for the
corresponding plain one in a SD view. Therefore, this view offers one systematic

approach for modelers to follow in refining i* models.

Selection Rule

Formally, we obtain the corresponding Single-Plain-Actor view out of a given AC

view by applying the following query singlePlainActorRule; we pass the selected
plain actor (@) as an input argument to the query.
singlePlainActorRule (v:ACViewClass, a:PlainActorElementClass)::=

§o:ObjectClass- oev A o€ {a, al=find_direct_specified actors(a),

find_all replacing actors(al) }

Queryl19
find_direct_specified_actors(a:PlainActorElementClass)::=

§ta:Specified ActorElementClass- 31:SpecifiesLinkClass-1.from=taal.to=a

Query20

find_direct replacing actors(a:Specified ActorElementClass)::=

CHAPTER 5. ACTOR CLASS VIEWS 94
§al:SpecifiedActorElementClass- 31: AssociationLinkClass-
((1 in PartsLinkClass) v (1 in CompleteCompositionLinkClass)) A
l.from=a A L.to=al) v
((1in ISALinkClass) v (1 in INSLinkClass) v (I in PlaysLinkClass) v
(11in CoversLinkClass) v (1 in OccupiesLinkClass)) A
l.from=al A l.to=a)
Query21

find all replacing actors(a:SpecifiedActorElementClass)::=
§al:SpecifiedActorElementClass- al efind_direct_replacing_actors(a) v
(Fa2:SpecifiedActorElementClass- al efind_direct replacing_actors(a2) A

a2efind_all replacing actors(a))

5.2.4 Abstract-Actors-Only view

Informal description

An Abstract-Actors-Only view presents only abstract actors including roles,

positions, agents, and any association links among them.

Example

aintaine
[Ambinfol
s T
oholizar QOVERS CAD emov?
oftware Duplicated
i ' e incinfol

e
OVERS .
| lgssigns
Resource s-Part-of |\ pan. a— sviewad]
Allocator f y-Fart-of cevers \Jncinfol
QCCUPIES CAAgent 9
A oSN : e
Rmibulancd [LAS CUF’IES e, p—— v
i Brew {anagement T Baaar o QCCUPIES c ERS
. utnan PR Raviewing X
ga M

H
3% urce oduie Module OCCUPN
ncident
Reviewer

cator

18 (SA

e

¥
ettt ¥ S ... A
® O &

Figure 5.2-4 Abstract-Actors-Only view derived from the original view

CHAPTER 5. ACTOR CLASS VIEWS 95
Figure 5.2-4 shows the corresponding Abstract-Actors-Only view of the original
AC view. We see that all plain actors and agent instances have disappeared in this

view,

Justifications

The Abstract-Actors-Only view focuses on the relationship between the abstract
actors, ignoring the abstraction of plain actors and the instantiation of agents. This
view may help when an organization has hundreds or thousands of employees,
devices, and machines—especially when the individual agent instances in an
organization are easily classified to a relatively small number of agents. Under this
circumstance, we strongly recommend this view be used to let the user focus on

understanding relationships between different forms of actors.

Another advantage of this view is its reusability. Since some organizations from
the same industry field may share certain organizational restructures, this kind of
view may be reused in a second or third application. For example, every hospital
should have the role of doctor, position Principle, agent Emergency, and so forth.

Reusable modeling patterns can save time and resource.

Selection Rule

Formally, we obtain the corresponding Abstract-Actors-Only view out of a given

AC view by applying the following query abstractActorsOnlyRule:

abstractActorsOnlyRule(v:ACViewClass) ::=
§0:0bjectClass: oev noefind_all_abstract_actors ()
Query22

find_all_abstract_actors()::=

§a:SpecifiedActorElementClass: (a in AbstractActorElementClass)

CHAPTER 5. ACTOR CLASS VIEWS 96

5.2.5 Plain-Actors-Only view

Informal description

A Plain-Actors-Only view presents plain actors, their direct specified actors, and

the “specifies” links that connect them.

Example

Figure 5.2-5 shows the corresponding Plain-Actors-Only view of the original AC
view. We can see that all specified actors have disappeared—except the one that
initiates the “specifies” link. Given our external relationship inheritance rule, we
need to specify just one direct specified actor for each plain actor. Therefore, this

view normally contains only (2*number of plain actors) actor elements.

incident
Reviewer

! I
Skeciﬂes E'keciﬂes checifies Skeciﬂes
I { |
I
}
|
|
1
1

§
[i i
| i I
i i i
{ 1 i
i I]
I ! |

; ; . LAS Resource ;
W ‘ izt Togjgen?

Figure 5.2-5 Plain-Actors-Only view derived from the original view

Justifications

Normally, at the beginning of a modeling process or when dealing with higher
management personnel, details of an application are not a great concern. Thus,
overview questions such as “How many stakeholders are there in an organization?”
and “Who are the stakeholders?” may be asked. The Plain-Actors-Only view

supplies just enough information for dealing with such questions.

CHAPTER 5. ACTOR CLASS VIEWS 97

This grouping appears natural in that it may work only on certain phases of the
modeling process or in addressing only certain levels of management requirements.
Modeling is done in a phase-by-phase manner, so plain actor information required in
the beginning phase is not required in a later one. Different management group
requires different levels of abstract information, so detailed (or maybe complex)
specified actor information is not required at the CEO level. Therefore, showing
only plain actors in a view does not incur much overhead in performing higher

abstraction level actor analysis.

Selection Rule

Formally, we obtain the corresponding Plain-Actors-Only view out of a given AC

view by applying the following query plainActorsOnlyRule:

plainActorsOnlyRule (v:ACViewClass)::=
§0:0ObjectClass: oev noe {find_all plain_actors(),
{find_direct_specified_actors(a) %Queryl9% | a € find all plain_actors()} }
Query23
find_all plain_actors()::=
§a:ActorElementClass: (a in PlainActorElementClass)

5.2.6 Agents-Only View

Informal description

An Agents-Only view presents agents, agent instances, and the association links

that connect them.

Example

Figure 5.2-6 shows the corresponding Agents-Only view of the original AC view.
We can see that this view contains only agents (e.g., LAS Management), agent
instances (e.g., John Steven), and instantiation links (e.g., the INS links between

agent and agent instances) among them.

CHAPTER 5. ACTOR CLASS VIEWS 98

R, i,
A,
raw Ehagemel
e
Resaurce CA Agert
Figure 5.2-6 Agents-Only view derived from the original view
Justifications

When tackling social issues (organization modeling), sometimes we need only
analyze the relationships between physical participant classes. The Agents-Only
view can help study the static hierarchy among employees, and may help model
organization layout; therefore, this view may help process staff layout in an

organization.

However, this view is not necessary when an organization’s process can be

clearly addressed using the Abstract-Actors-Only view.

Selection Rule

Formally, we obtain the corresponding Agents-Only view out of a given AC view

by applying the following query agentsOnlyRule:

agentsOnlyRule(v:ACViewClass)::=

§0:0ObjectClass- oev Anoefind_all_agents()
Query24
find all agents()::=
§a: SpecifiedActorElementClass-

(ain AgentElementClass) v (a in AgentInstanceElementClass)

CHAPTER 5. ACTOR CLASS VIEWS 99

5.2.7 Direct-Replaceable view

Informal description

A Direct-Replaceable view presents the family of specified actors whose external
relationships can be inherited by a given specified actor, and we call the former a
direct replaceable to the latter. This direct substitution implies that in any SD view,
the given specified actor can stand in for any of the replaceables. There may be
external relationships that belong to the given actor directly but not to its

replaceables in the SD view.

Given a parent AC view and a specified actor within that view, objects satisfying

one of the following conditions should be selected into this view:
1. The given specified actor, say a;

2. Any specified actor that has any link other than “is-Part-of” and “complete
composition” from a to it; or any specified actor that has an “is-Part-of” or

“complete composition” link to a;

3. Any specified actor that has a direct link other than “is-Part-of” and
“complete composition” link to any of the previously selected actors in

this view.

4. Any specified actor that has an “is-Part-of” or “complete composition” link

from any of the previously selected actors in this view.

Example

Figure 5.2-7 shows Direct-Replaceable views projected over the original AC view.
In (a), direct replaceables of agent CAD Software System are presented. In (b) and
(c), the direct replaceables of position Incident Reviewer and agent instance South
RA, respectively, are shown. The given specified actor is highlighted using a solid

rectangle.

CHAPTER 5. ACTOR CLASS VIEWS

em,ov%
intaine Duplicateq
mh!nﬁ;}

Incinfol

Assigher
[Reviewed
Incinto]

o

‘- 2\ Lincident
Ajocetor Reviewing) OCCUPIES

\ Madute

[ncident
Reviewsr

RH gg‘uarge
’ ;Rﬁ ocator

South RA

(b) Incident Reviewer (c) South RA

Figure 5.2-7 Direct-Replaceable Views projected over the original view

Justifications

100

The Direct-Replaceable view provides an overview of the family of actors that

has a subset of external responsibilities and vulnerabilities to a given actor. This

family draws a scope which the given actor can cover. For example, when

introducing a new automated system to some organization, we want to know “what

responsibilities of which positions occupied by which type of agents are to be

CHAPTER 5. ACTOR CLASS VIEWS 101
implemented in the system.” To answer such a question, we need to find out the
corresponding actors whose external responsibilities can be covered by the system-

to-be; we can use the Direct-Replaceable view of the system-to-be to answer it®.

Furthermore, this type of view simplifies the SD view by allowing external
dependencies to be specified in one place (as some attribute of a single actor). For
example, the two agents Human Resource Allocator and Resource Allocating
Module share most of the external dependencies (Figure 1.2.1). Under this
circumstance, we specify these dependencies to their general form—position

Resource Allocator.

Studying the scope of a single specified actor may appear inefficient, yet, in
reality, model users study responsibilities in an actor-by-actor manner. Thus, we
assume little overhead incurred in using this view. In addition, omitting the plain
actor from this view shall not harm its comprehensibility, since this kind of
responsibility scope analysis is normally performed at a more detailed level.

Abstract level plain actor information appears not relevant.

Selection Rule

Formally, we obtain the corresponding Direct-Replaceable view out of a given
AC view by applying the following query directReplaceableRule. We pass the

selected specified actor (a) as an input argument to the query.

directReplaceableRule(v:ACViewClass, a:SpecifiedActorElementClass)::=

§o:ObjectClass oe v A o€ {{a}, find_all replaceable actors(a) }

Query25

find direct replaceable actors(a:Specified ActorElementClass) ::=
§al:SpecifiedActorElementClass- 31: AssociationLinkClass-
((Iin PartsLinkClass) v (1 in CompleteCompositionLinkClass)) A

l.from=al A l.to=a)

® Here we assume that an i* model exists for the given organization

CHAPTER 5. ACTOR CLASS VIEWS 102
v
((1in ISALinkClass) v (1 in INSLinkClass) v (I in PlaysLinkClass) v
(1in CoversLinkClass) v (1 in OccupiesLinkClass)) A

l.from=a A l.to=al)

Query26

find all replaceable actors(a:Specified ActorElementClass) ::=
§al:SpecifiedActorElementClass: al € find_direct_replaceable actors(a) v
(3a2:SpecifiedActorElementClass- al € find_direct_replaceable actors(a2) A

a2 e find_all replaceable actors (a))

5.3 Summary

In this chapter, we presented relationships between the Basic AC view and six
types of partial AC views. Each of the views was also explored in detail. The AC
views studied in this section are: the Basic AC view, the Single-Network view, the
Single-Plain-Actor view, the Abstract-Actors-Only view, the Plain-Actors-Only

view, the Agents-Only view, and the Direct-Replaceable view.

View relationships were illustrated using a generic View Map that fits for all

applications. View decomposition and projection directions were also shown.

The AC views were presented formally and informally. An informal description
gives the reader a basic idea of what kinds of elements are qualified for a specific
partial view. The formal definition of the selection rule, which is attached to each
view class, makes it possible to automate these views in an i* modeling tool. Some
discussion about the benefits and limitations of the each view type are also included.
An original AC view obtained from the LASCS was used as the running example to

demonstrate the results of decomposition and projection over it.

6 Strategic Dependency Views

The purpose of the Strategic Dependency (SD) view is to express the “intentional
description of a process in terms of a network of dependency relationships between
actors” (Yu 1994), and to express the intertwined negative or positive contributions

towards those dependency relationships among actors.

The Basic SD view should, by definition, include all types of actors and all
dependency links or external intentional links among them. However, when a view
is visualized, it is normally redundant to show different forms of actors that are
basically related to the same plain actor in one diagram, since these actors share
most of the external relationships. For example, agent Resource Allocator Module
and position Resource Allocator from the London Ambulance Service case study
(LASCS) (You 2003) both depend on an Ambulance Crew to supply accurate
ambulance information (AmblInfo). Therefore, we normally present an SD view by
selecting one actor (or more non-overlapping ones) representing each plain actor. In
addition, each type of Basic SD view can still appear complex. Therefore, we need
to scale down the view to make each partial view, when visualized, more

comprehensible.

We define two basic and two partial SD view classes in our view extension, and we
discussed their meta-level constructs in Chapter 4; in this chapter we present domain
examples (as instances) of each view class and define the selection rule attached to it. We
adopt the same pattern as used in the AC views, and explore each partial view from these

four perspectives: Informal Description, Example, Justifications, and Selection Rule.

Section 6.1 uses generalized View Maps to give an overview of the relationship between
different types of SD views; Section 6.2 presents two Basic SD views and two partial SD
views from the four aspects mentioned in the previous paragraph; Section 6.3 summarizes the

results of this chapter.

103

CHAPTER 6. STRATEGIC DEPENDENCY VIEWS 104

6.1 Overview

......

plainactorsSDRule("The Baseline Model") specifiedActorsSDRule ("The Baseline Model",
DT <combination n>)---....
/‘.u"“ o o
ey » y " Basic Specified-Actor-Based
] The Basic Plain-Actor-Based SD View | g . View <combination o
Basic Specified-Actor-Based Basic Specified-Actor-Based
Vigw <combination 1> View <combination 2>
LEGEND A
Vi View . A basic
""" > pmieitv:cn decamposition E ViewName I d::':d view

Figure 6.1-1 Generalized view map showing relationships between different forms of

Basic SD views

Figure 6.1-1 presents the relationship between different forms of Basic SD views.
Each Basic SD view corresponds to one Plain Actor SD view. Several Specified
Actor SD views can be derived from the Baseline Model, and the derivation process
requires actor association information so that external relationships for a selected
actor can be calculated following the external relationship inheritance rule. For
example, if agent Resource Allocator Module is showing in some SD view standing
in for plain actor Resource Allocator, then it will inherit all the external
relationships from position Resource Allocator (following the “plays” link), and
recursively from plain actor Resource Allocator (following the “specifies” link).
Since all these forms of Basic SD views share the same external relationships
pattern, we do not distinguish them again when they are scaled down further into

partial views.

Any basic or partial SD view, regardless of the form of actors shown, can be
further decomposed into views smaller in size and simpler in inter-actor
relationships than the original. We illustrate this point using Figure 6.1-2. Our first
approach is to decompose an SD view (e.g., Any SD View) into Single-Actor-Focus

views (e.g., Single Actor<1> View). An SD view can also be decomposed into Pair-

CHAPTER 6. STRATEGIC DEPENDENCY VIEWS 105
wise-Actors views (e.g., Pair-wise Actor<l>, Actor<n> View) for the selected

other actor pairs (e.g., {Actor<1>, Actor<n>}).

| single Actor<1> View | [Single Actor<2> View | - | Single Actor<n> View |

singleActorF “Any SD
View", Actor<1>)

AnySDView |...

pairwiseAclorsﬁyle(*Any SD View”, o

Actor<1>, Actor<n> .
Pair-wise Actor<1>, Pair-wise Actor<1>, Pair-wise Actor<n-1>,
Actor<2> View Actor<n>View | Actor<n> View
LEGEND
o View ' View ViewName daf?ved 0,‘{ ";a.
...... projection decomposition view v?éw

Figure 6.1-2 Generalized view map showing possible decomposition of “Any SD View”

6.2 Details of the SD Views

6.2.1 Plain- versus Specified-Actor-Based SD View

Informal Description

Both the Plain-Actor-Based and the Specified-Actor-Based SD view are designed

to present inter-actor external relationships.

A Plain-Actor-Based SD view includes all plain actors as well as the external

dependency and contribution links among these plain actors.

A Specified-Actor-Based SD view includes selected specified actors that cover
the responsibilities of all plain actors in the Plain-Actor-Based form. External
dependency and contribution links among the selected specified actors are also

included in this view.

CHAPTER 6. STRATEGIC DEPENDENCY VIEWS 106

Example

LAS)
anagetme

£33

Timeliness
Reviewing

.".

Timeliness
Mobilization;

Reviewed incidert
Incide; g
lm%rmamm Reviewer

Accuracy
[Ambinfo]

lncident
Reviewing

Module as
Rbuser

Resource
Allocator

Figure 6.2-1 Partial Plain-Actor-Based SD view from LASCS

Figure 6.2-1 shows the external relationships between four plain actors
(Ambulance Crew, LAS Management, Resource Allocator and Incident
Reviewer) from LASCS, corresponding to the Plain-Actor-Based form of an SD
view. Given the external relationship inheritance rule along actor associations, we
can use the information from the corresponding actor associations shown in Figure

6.2-2 to substitute the plain actors with one of its specified forms.

Figure 6.2-3 presents the same part of the underlying model, yet in the Specified-
Actor-Based form. From Figure 6.2-2, we know that position Incident Reviewer
specifies plain actor Incident Reviewer, and from the inheritance rule discussed in
our reformulated 1* framework we know that the former inherits all external
relationships from the latter. Thus, the position Incident Reviewer also has the
external dependency Timeliness [Incident Reviewing]. All other substitutes of actors
shown in Figure 6.2-3 adopted a similar one-to-one manner—as described
previously. Except for plain actor Incident Reviewer who was replaced by 3
specified forms (position Incident Reviewer, agent Incident Reviewing Module,

and agent CA Agent).

CHAPTER 6. STRATEGIC DEPENDENCY VIEWS

Incident

‘Resource

Pt Reviewer

S*scializes

Indident
Reviswer

LAS
aragemes

ey

gecializes Incinfo)

Asgigner
[Reviewsd
Incinto]

COVERS

RCCUPIES

.

Reviewer Module

g — ReviEwnD
Resource accupies Incident
[émal}igg (,m_idgm Re‘ﬁewm Mﬁg‘dge?s

107

Figure 6.2-2 Partial Basic AC view from LASCS showing the associations of the four

plain actors

2y
foragem
i pAArY -. A ¥ ge e &
! imeliness
Tweithin 11 L1) i b [&ewewmg
mins] 4
WL Incident
Reviewear
g

Timeliness:
Optimal Mobﬂ!zaﬂson
b [Mobinst]

Accurscy

Resource
[Amhlnfu]

Allocator -

LA

Incident
W/ Reviewing
Module

Figure 6.2-3 The Specified-Actor-Based SD view corresponding to the Plain-Actor-

Based SD view

Abstract external relationships must be instantiated as well. In Figure 6.2-3, the

abstract external resource dependency Reviewed Incident Information is replaced

CHAPTER 6. STRATEGIC DEPENDENCY VIEWS 108
by two resource dependencies: Reviewed Incident Information (paper-based) and
Reviewed Incident Information (machine-based), each directing to one of the two
agents. The softgoal dependency Timeliness [Incident Reviewing] was redirected
to position Incident Reviewer. The external correlation link, starting from role
Incident Reviewing Module as Abuser, was also refined to affect only the
machine-based resource dependency towards agent Incident Reviewing Module; its
label changes from Unknown to Hurt. The label of the abstract correlation link is set
to Unknown because position Incident Reviewer is an abstract form of the two
agents (CA Agent and Incident Reviewing Module), yet the correlation link affects

only one of them and, thus, the combined effect is unknown.

Justifications

Both the Plain-Actor-Based view and the Specified-Actor-Based SD view are
designed to present inter-actor external relationships. The Plain-Actor-Based view
assumes the highest level of abstraction: showing stakeholders in a plain actor form
and external relationships in a generic form. The Specified-Actor-Based view
assumes more detail: replacing plain actors with their specified forms and refining

the generic external relationships according to the set of specified actors selected.

The separation of these two views appears natural since they serve different
purposes, and different levels of detail are required at different times. For example,
in an organization, the CEO may need very brief information, so the very abstract
form of information would be required; but an on-site manager may need to know

the exact and specified employee assignments, so a specified form would be a must.

The two views shown in this section could be more useful during the modeling
process; however, we do not study this issue in this thesis. The modeling process is
an ongoing one, and sometimes different levels of information are required for
storage in the same model. Using our approach, a more abstract SD view can be
systematically detailed into a concrete one with the help of actor associations from
the AC view, without duplication of any external dependencies. The Single-Plain-

Actor views (Section 5.2.3) and Direct-Replaceable views (Section 5.2.7) are

CHAPTER 6. STRATEGIC DEPENDENCY VIEWS 109
designed to serve this systematic refinement of SD views (see the corresponding

sections for more detail).

Nevertheless, external relationships should be consistently mapped between the
Plain-Actor-Based form and various Specified-Actor-Based forms. Precautions are
required when performing this conversion (mapping). There are three general cases

for this mapping:
1. The relationship is mapped as is. (e.g., Optimal [Moblnst], Accuracy [AmbInfo}).

2. An abstract relationship is decomposed or analyzed. (e.g., Reviewed Incident
Information mapped to two resource-dependums; the Unknown correlation link is
analyzed to just affect the machine-based Incident Information and is refined to
Hurt).

3. When two plain actors are replaced by a specified one that covers both of them,
the external relationships between them become internal and will not be included

in the Specified-Actor-Based view.

Selection Rule

We need to identify clearly what type of i* objects are qualified for the SD view
in general, so we first give the definition of a generic Basic SD view. Formally, we
can obtain the corresponding Basic SD view from a Baseline Model by applying the

following query theBasicStrategicDependencyView:

theBasicStrategicDependecyView(m:BaselineModelClass)::=

§o0:ObjectClass- oem noe{ {a| a in ActorElementClass},
{e | e in DependumElementClass}, {1|1in DependencyLinkClass},
{1|1 € find_all external links()} }

For any given SD view, we can obtain its corresponding Plain-Actor-Based view

by applying the query plainActorsSDRule:

plainActorsSDRule (v:SDViewClass)::=

CHAPTER 6. STRATEGIC DEPENDENCY VIEWS 110
§0:0bjectClass: oev A o€ {A=ﬁnd~ali plain_actors(), find_inter dependums(A),
find inter dependencies(A), find all inter external links(A)}

For any given SD view and a set of selected specified actors, we obtain its
corresponding Specified-Actor-Based view by applying the query
specifiedActorsSDRule:

specifiedActorsSDRule(v:SDViewClass, A={al,...,an}:ActorElementClass) ::=
§0:ObjectClass: oev A o€ { A, find_inter dependums (A),
find_inter dependencies(A), find all inter external links(A) }

Query27

find_inter_dependums(A={al,...,an}:ActorElementClass) ::=
§e:DependumElementClass:
311,12:DependencyLinkClass;al,a2: ActorElementClass: (al, a2 €A) A
(11.from=e=12.to) A (11.to=al v 11.to.parent=al) A
(12.from=a2 v 12.from.parent=al)

Query28

find inter dependencies(A={al,...,an}:ActorElementClass) ::=
§1:DependencyLinkClass- Ja:ActorElementClass,b:DependumElementClass-
(acA) A (befind_inter dependums(A)) A
(1.from.parent=a Al.to=b v l.to.parent=a Al.from=b)

Query29

find_direct_inter _external links(A={al,...,an}:ActorElementClass) ::=
§1l:IntentionalLinkClass- 3dl:DependencyLinkClass-
dlefind_inter dependencies(A) A
(Je:IntentionalElementClass-e.parente A A 1.from=e A 1.to=dl)

Query30

find_all_inter_external links(A={al,...,an}:ActorElementClass)::=
§l:IntentionalLinkClass- 1.from.parent € A A

(1 € find_direct_inter_external links(A) v

CHAPTER 6. STRATEGIC DEPENDENCY VIEWS 111
(312:IntentionalLinkClass- 1.to=12 A 12efind_all inter_external links(A)))

6.2.2 Single-Actor-Focus view

Informal Description

A Single-Actor-Focus view centers on a single actor and can apply to both SD
and SR views. In case of an SD view, the view presents the selected actor, the
dependums to which it connects, the external links that affect those dependums, the
depender/dependee actors of the dependums, and the originator of the external links.
External links that are originated from the selected actor and the links to which

these external links end at are also included in this view.

For clarity, we restate here the informal definition of an external link. An
intentional link that ends at a dependency link is an external link, and a link that
starts from an actor and ends at an external link is an external link, also. The formal

definition of external link can be found in Section 4.4.5.

Example

oot

Optimel
! Mobinst
[]

"

L1/

¥
Q‘ b

SOUFCE

Accurac
24 Wa aoator

[Ambinfol T\

R
A

Incident

Reviewing

Module as
Abuser

Figure 6.2-4 Single-Actor-Focus view for position Resource Allocator from LASCS

CHAPTER 6. STRATEGIC DEPENDENCY VIEWS 112

Figure 6.2-4 shows the Single-Actor-Focus view of position Resource Allocator
(the given actor) from LASCS. This view includes softgoal dependum Optimal
[MoblInst] (a dependum) and agent Ambulance Crew (a depender to the dependum).
This view also includes the Hurt correlation link (an external link) and role Incident
Reviewing Module as Abuser who exerts a partially negative (Hurt) effect on
Resource Allocator’s outgoing resource dependency Reviewed Incident

Information (machine-based).

Justifications

In (Yu 1994), one use of the SD view is to perform node analyses, studying the
“confluence of various incoming and outgoing [external relationships]... at an
actor...” From the outgoing dependencies, we can determine what opportunities are
available for an actor to achieve certain goals, and what vulnerabilities could make
the achievement of those goals fail. From the incoming dependencies, we learn the
responsibilities that other actors require of this actor. External links to the
dependency links (or dependums) indicate the extra difficulty or help this actor
receives from the initiator of the link. The formation of this view corresponds to the

activities performed by i* model users.

Presenting SD views in a single actor form does not introduce a large overhead to
the analysis. All external relationships surrounding the given actor are included in
this view, so questions related to the given actor can be answered without consulting
information not presented in it. Therefore, we suggest that when inter-actor
relationships in an SD view grow complex (lots of cross-over of links), i* users

apply this approach.

Selection Rule

Formally, we obtain the corresponding Single-Actor-Focus view from a given SD
view by applying the following query singleActorFocusSDRule. We pass the

selected actor as an input argument (a) to the query.

singleActorFocusSDRule(v:SDViewClass, a:ActorElementClass) ::=

CHAPTER 6. STRATEGIC DEPENDENCY VIEWS 113
§0:0bjectClass: oev Ao€e{a,
find incoming_dependencies_to_actor(a), %Query 3
find_incoming_dependeums to_actor(a),
find_indirect incoming dependencies_to_actor(a),
find_dependers_to_actor(a),
find outgoing dependencies from_actor(a), %Query 4
find outgoing dependums_from_actor(a),
find_indirect outgoing dependencies_from_actor(a), find dependees_from_actor(a),
find externallinks to incoming dependency(a),
find_externallinks_originator to_incoming_dependency(a),
find_externallinks to indirect outgoing dependency(a),
find_externallinks_originator to_indirect outgoing dependency(a),
find_externallinks from_actor(a), find_externallinks_to externallinks from actor(a),

find_externallinks target from actor(a) }
Query31
find incoming_dependums_to actor(a:ActorElementClass)::=

§d:DependumFElementClass: 31:DependencyLinkClass

l.from=d A 1 € find_incoming_dependencies_to_actor(a)

Query32
find_indirect_incoming_dependencies_to_actor(a: ActorElementClass)::=
§l:DependencyLinkClass- 3de:DependumElementClass

l.to=de A de € find_incoming dependums to_ actor(a)

Query33
find_dependers_to_actor(a:ActorElementClass)::=
§al:ActorElementClass:
3d:DependumElementClass, 1:DependencyLinkClass-
d € find_incoming_dependums_to_actor(a) A

lto=d A 1 € find_outgoing dependencies from_actor(al)

CHAPTER 6. STRATEGIC DEPENDENCY VIEWS 114
Query34
find_outgoing dependums_from_actor(a:ActorElementClass)::=

§d:DependumElementClass- 31:DependencyLinkClass:

L.to=d A 1 € find_outgoing dependencies_from_actor(a)

Query3s
find_indirect outgoing dependencies from_actor(a:ActorElementClass)::=
§l:DependencyLinkClass' 3de:DependumElementClass

l.from=de A de € find outgoing dependums_from actor(a)

Query36

find_dependees_from_actor(a: ActorElementClass)::=
§al:ActorElementClass-
dd:DependumElementClass, I:DependencyLinkClass-
d € find_outgoing dependums_from_actor(a) A

l.from=d A 1 € find_incoming_dependencies_to_actor(al)
Query37
find externallinks to_incoming dependency(a:ActorElementClass)::=

§l:IntentionalLinkClass- 3dl:DependencyLinkClass-

l.to=dl A dlefind_incoming_dependencies_to_actor(a)

Query38

find_externallinks_originator_to_incoming_dependency(a: ActorElementClass)::=
§a:ActorElementClass: Jl:IntentionalLinkClass:
lefind externallinks to incoming_dependency(a) A

(Je:IntentionalElementClass-1.from=e A e.parent=a)

Query39

find_externallinks to indirect outgoing_dependency(a:ActorElementClass)::=
§l:IntentionalLinkClass- 3dl:DependencyLinkClass-

l.to=dl A dlefind_indirect outgoing dependencies from actor(a)

CHAPTER 6. STRATEGIC DEPENDENCY VIEWS 115
Query40

find_externallinks_originator_to_indirect_outgoing dependency(a:ActorElementClass)

§a:ActorElementClass- 31:Intentional LinkClass:
lefind externallinks to indirect outgoing dependency(a) A
(3e:IntentionalElementClass-1.from=e A e.parent=a)
Query41
find externallinks from_actor(a:ActorElementClass)::=
§l:IntentionalLinkClass-Je:IntentionalElementClass-
l.from=e A e.parent=a A lefind_all_external links()
Query42
find_externallinks target from_ actor(a:ActorElementClass)::=
§10:LinkClass-3l:Intentional Link Class-
lefind_externallinks_from_actor (a) A 1.to=10
Query43
find externallinks_to_externallinks from actor(a:ActorElementClass)::=

§10:LinkClass-3l:Intentional LinkClass-

lefind_externallinks from_actor (a) A 10.to=1

6.2.3 Pair-wise-Actors View

Informal Description

A Pair-wise-Actors view presents two selected actors and the external

relationships between them. This view also applies to both the SD and the SR view.

Example

Figure 6.2-5(a) shows the Pair-wise-Actors view between position Resource
Allocator and agent Ambulance Crew, and Figure 6.2-5(b) shows the view between

position Resource Allocator and role Incident Reviewing Module as Abuser. Note

CHAPTER 6. STRATEGIC DEPENDENCY VIEWS 116
that in (b), agent Incident Reviewing Module appears just for added clarity and it

can be ignored.

imal
[Mokinst]

I

Incident
Reviewing
Module

Resource
Allocator

Resaurce:
Ailocgnr

Accliracy
[Ambinfo]

Abuser

(a) Ambulance Crew vs. Resource Allocator (b) RA vs. Incident Reviewing
Module as Abuser

Figure 6.2-5 Pair-wise-Actors SD views from LASCS

Justifications

Even though this view can sometimes dramatically simplify representation, we do
not recommend excessive use of the view—because applying it can create a
combinatorial explosion problem (number of different pairs of actors). Thus, this

view should be used conservatively and selectively, so we give these guidelines:

1. The number of total actors is manageable (say < 20).
2. There are significant requests that the relationships between some pair of actors be

addressed.

3. Choose only the pairs that require this level of analysis.

Selection Rule

Formally, we obtain the corresponding Pair-wise-Actors view from a given SD
view by applying the following query pairwiseActorsRule. We pass the selected

actor pair {a0, al} as the input arguments to the query.

pairwiseActorsRule(v:[SDViewClass | SRViewClass], {a0, al }:ActorElementClass) ::=
§o:0ObjectClass: oev A oe{ {a0, al},
find_inter_dependums({a0, al}), %Query27
find_inter_dependencies({a0, al}), %Query28
find_all_inter external links({a0, al}) } %Query30

CHAPTER 6. STRATEGIC DEPENDENCY VIEWS 117

6.3 Summary

We presented in this chapter various views we can use to simplify the Basic SD
views. We defined the Plain-Actor-Based and Specified-Actor-Based views to
represent the inter-actor relationship network. These two types of basic views are at
different levels of abstraction and, thus, contain different levels of detail. We also

defined two types of partial Strategic Dependency (SD) views in our view extension.

The relationship between different view types was illustrated using generalized
view maps. Two View Maps are presented: one for explaining the relationship
between different forms of Basic SD views, and another for explaining the

relationship between the basic view and the partial views.

We presented the SD views from both informal and formal aspects. An informal
description gives the reader a basic idea of what kinds of elements are qualified for
a specific partial view. The formal definition of the selection rule attached to each
view class makes it possible to automate these views in an i* modeling tool. We

included also some justification for each view.

7 Strategic Rationale Views

The Strategic Rationale (SR) view aims to “provide the intentional description of
processes in terms of process elements and the rationales behind them.” In other
words, the layout of the reasoning structure internal to an actor, based on its
relationship with others presented in the SD model, is represented in the SR model.
(Yu 1994)

The Basic SR view should, by definition, include all types of elements involved
in the SD view (actors, dependency links, and external links), and intentional
elements and intentional links inside the boundary of each actor. However, when the
view is visualized, it is extremely hard to show all information contained in the
Basic SR view just by using one diagram for most real-world projects. The modeling
tool could get out of memory when the diagram reaches a certain size. Even though
a huge diagram is produced, it would be difficult for users to retrieve information.
As a result, the Basic SR view needs to be communicated using a set of inter-

connected smaller views.

We scale down the Basic SR view first by Single-Actor-Focus views. Since any
SR view shares information external to actors with its corresponding SD view, we
can focus on a single actor each time, and proceed to other actors through the
external connection. In some cases, even a Single-Actor-Focus view could appear
complex. Therefore, we need to further scale it down to make each sub-view, when

visualized, more comprehensible.

We define in our view extension seven new partial SR view classes—besides the Single-
Actor-Focus and Pair-wise-Actors view defined in the previous chapter. The meta-level
constructs of these view classes were discussed in Chapter 4; in this chapter we present
domain examples (as instances) of the view classes and define the selection rule attached to

each of them. We adapt the same pattern as used in the AC views, and explore each partial

118

CHAPTER 7. STRATEGIC RATIONALE VIEWS 119
view from these four perspectives: Informal Description, Example, Justifications, and
Selection Rule. Examples from the London Ambulance Service case study (LASCS) (You

2003) are cited as examples.

Section 7.1 gives an overview of the relationship between different types of SR views
using a generalized View Map; Section 7.2 presents the basic Single-Actor-Focus SR view
and 7 newly defined partial SR views from the four aspects discussed in the previous

paragraph; Section 7.3 summarizes the results of this chapter.

7.1 Overview

The relationship between the Basic SR view and a Single-Actor-Focus SR view
appears the same as the one presented in the SD views. Since we discussed that in
the previous chapter we do not repeat it here; furthermore, we use a Single-Actor-

Focus SR view as our original view.

| The Basic SR view |- gingleActorFocusSRRule ('The, >§ Single Aclor<i> SR View |

singleActorfternalRule("Single Actor <i> View")

| Single Actor<i> Intsmal View |

irnternalFunctionalRule("Single internalNonfunctionalRule(*Singi
Actor <T Internalview") e Actor<i> InternalView™)
Internal-Functional View | | Internal-Non-functional View |
nonfunctionalSingleSoftgoalRule(’internal Non- singleActorExternalRule(]Single Actor <i> View")

Functional Elements View", Softgoal<1>}] 1

[single Safigoal<1> View | **[Single Softgoal<j> View | =

[Single Actor<i> External View I

singleAffectedActorRule("Single Actor<i>
Extemal View", Actor<m>)

singleAffectedDepenrdumRule{"Single
Actor<i> External View”", Dependum<1>)

Single Affected Single Affected Single Affected
Dependum=<i>View | Dependum<k> View | Actor<rm> View
LEGEND Abasi
Vi Wiew - . asic or
~~~~~ > smomion s o

Figure 7.1-1 Generalized view map showing decomposition hierarchy from a Single-

Actor-Focus SR view to its sub-views



CHAPTER 7. STRATEGIC RATIONALE VIEWS 120

Figure 7.1-1 shows a generalized hierarchy of the decomposition of a Single-
Actor-Focus SR view. Any such view (e.g., Single Actor<i> SR View) can be
further decomposed into an Internal (e.g., Single Actor<i> Internal View) and an
External view (e.g., Single Actor<i> External View). An Internal view can be
further decomposed into a Functional (e.g., Internal-Functional Elements View)
and a Non-functional view (e.g., Internal-Non-functional Elements View), and the
Non-functional view can again be decomposed into a set of Single-Softgoal views
(e.g., Single-Softgoal<j> View). An External view can be decomposed into a set of
Single-Affected-Dependum views (e.g., Single Dependum<1> View) or Single-
Affected-Actor views (e.g., Effects to Actor<m> View).

| Single Actor<x> EVLR View |

| Single Actor<i> EVLR View |

. BE=

| Single Actor<i> Intemal View |

l ]nterna]-FunGﬁona‘ View ] I 'nternag'NOn'FunCtiUna' View |
[ single Softgoal<1> View |-----| Single Sofigoal<j> View |----
| Single Actor<i> External View
Single Affected - Bingle Affected | ----- Bingle Affected
Dependum<1> View Dependum<k> View Acotr<m> View
LEGEND
Label A partial A hasic

— g o
diraction actor view actorl view

Figure 7.1-2 Generalized view map showing the label propagation direction for the

evaluation process using the hierarchy of SR sub-views

The decomposed hierarchy of SR views can be used in a reverse direction to
perform the evaluation process across different EVLR views in a systematic manner.

Figure 7.1-2 shows an example of how this idea can be applied. The sample shows



CHAPTER 7. STRATEGIC RATIONALE VIEWS 121
the label propagation direction from Single-Affected-Dependum views and Single-
Softgoal views to External and Internal views, respectively. From the External and
Internal views to the Single-Actor-Focus view for actor “Actor<i>”, and then
propagate to the Single Actor View for another actor (e.g., Actor<x>). However,
sometimes we cannot finish label elements in one Single-Actor-Focus view before
we move to another one, and iteration among different actors may become frequent.
This issue itself deserves further research; yet it does not affect our approach, so we

disregard it in this thesis.

7.2 Details of SR Views

Since any SR view shares information external to actors with its corresponding
SD view, we can focus on a single actor at each time and proceed to other actors
through the external information. Moreover, the purpose of an SR view is to
systematically study the internal rationales behind some external relationships of an
actor. We thus use the Single-Actor-Focus SR view as our original view in this

section.

7.2.1 Single-Actor-Focus SR View

Informal Description

A Single-Actor-Focus view centers on a single actor and can apply to both SD
and SR views. In the case of an SR view, the view presents these elements included
in the corresponding SD view: the selected actor, the dependums to which it
connects, external links that affect those dependums, the depender/dependee actors
of the dependums, and the originator of the external links. External links that are
originated from the selected actor and the links to which these external links end at
are also included in this view. In addition, the internal goal-oriented structure,
including intentional elements and links internal to the selected actor, are presented

only in the SR version.



CHAPTER 7. STRATEGIC RATIONALE VIEWS 122

Example

Figure 7.2-1 Single-Actor-Focus SR view showing internal rationales of agent

Ambulance Crew from LASCS (the original view)

Figure 7.2-1 shows an example of a Single-Actor-Focus SR view from LASCS.
From the figure, we learnt that the agent Ambulance Crew has three top-level
intentional elements: softgoal Quality [Service], task RespondTo [MobInfo], and
goal BeReported [AmbInfo]. The view also enumerates detailed elements and
routines in achieving the top-level intentions. For example, we know from the
means-ends links that AmbInfo can be reported (goal BeReported [AmbInfo]) either
manually (task Manual as the means to achieve goal BeReported [AmbInfo]) or
automatically (task Automatic as the means to achieve goal BeReported [AmbInfo]).
To report manually, an Ambulance Crew need to Connect to Radio Operator,
Report Location, and Report Status. Similar information can be obtained for the

Automatic report process.

Since our purpose in this section is to demonstrate the use of various view types,
completeness of a model is not critical. Thus, we choose as our starting point this Single-
Actor-Focus view, which includes just enough elements to show our approach. This SR view

will be used as the original view from which the sub-views derive throughout this chapter.



CHAPTER 7. STRATEGIC RATIONALE VIEWS 123

Justifications

The Single-Actor-Focus SR view does not introduce much overhead to the
analysis process. Normally, the analysis of actor’s internal structure is taken in an
actor-by-actor manner—especially when the internal structure of an actor appears
complex (multiple top-level intentions, deep decomposition tree structures). Node
analysis questions and others regarding a given actor can be answered by simply
exploring the actor’s internal structure. Moreover, all external relationships from the
selected actor towards other actors are kept in this view, so whenever information
from other actors is required, users can trace into other Single-Actor-Focus views

without confusion.

Another benefit is, given current tool support, each diagram has to be drawn
separately and there is no support for underlying structures. If one extended actor
appears in different SR diagrams, with the model not yet stable, then significant
overhead is incurred because multiple diagrams must be fixed for any tiny change to
that actor’s internal rationale. By decomposing the Basic SR view into a set of
Single-Actor-Focus views, changes internal to an actor can be localized to a sub-
view and with a single entry. Even any external dependency changes can be limited

to n diagrams, where z is the number of actors involved in this change.

Admittedly, while each SR diagram is simplified—focusing on a single actor and
its dependencies, the number of SR diagrams increased from 1 to m, where m is the
number of actors in the system. For this reason, we suggest users maintain a view

reference structure (using view map) for various decomposed SR views.

Each evaluation results (EVLR) view corresponds to an SR view, so decomposing
the Basic SR view may also affect the presentation of the EVLR views. Figure 7.2-2
and Figure 7.2-3 show two Single-Actor-Focus EVLR views from LASCS. The
weakly denied label of softgoal dependum BeArrived [within 11 mins] is
propagated from the Single-Actor-Focus view for agent Ambulance Crew (Figure
7.2-2) to the view for agent LAS Management. The imported label is highlighted in

Figure 7.2-3 using a dashed rectangle.



CHAPTER 7. STRATEGIC RATIONALE VIEWS 124

Since our focus of this thesis is to provide a means of representing an i* model
we do not define here new label propagation algorithms. The EVLR views vary
according to different algorithms, so we demonstrate in this section one way in

which some decomposed EVLR views can be used. We do not discuss in the thesis

the generic scale-down rules for EVLR views.

Hbenonise g
Dinkingl/

Figure 7.2-2 Sample Single-Actor-Focus EVLR view showing evaluation results for

agent Ambulance Crew from LASCS

vy

r-ﬁ‘-l

¥
%
ds
3
i
i ¢ Y
B2
o3
d 5l
?"
hiht-t"‘

)
%
L3

ea.

Jormmiinicatd
{Mabinst]

T iRcident
’ - - Call Taker
e Resdurco .
Alloceator Caonveyor

Figure 7.2-3 Sample Single-Actor-Focus EVLR view showing evaluation results for

agent LAS (Management) from LASCS



CHAPTER 7. STRATEGIC RATIONALE VIEWS 125

Selection Rule

Formally, we obtain a Single-Actor-Focus view for a given actor from any multi-
actor SR view by applying the query singleActorFocusSRRule. We pass the
selected actor (a) as an input argument to the query. This one is similar to the
singleActorFocusSDRule, except if  includes one extra query—
find_internal_elements. We give here the definition of the rule and extra query, yet
we omit the definition for the sub queries already defined in previously (Section

6.2.2).

singleActorFocusSRRule(v:SRViewClass, a:ActorElementClass) ::=
§o:0bjectClass: oev A o € {singleActorFocusSDRule(v, a),

find_internal elements(a) } %Query2

7.2.2 Single-Actor-Internal or External View

Informal Description

A Single-Actor-Internal view presents the specified single actor and its internal

goal structure, formed by internal elements and internal links.

A Single-Actor-External view presents the specified single actor, its external
relationships, actors served as depender or dependee to it, and actors whose external

relationships affect or are affected by the selected actor.

Example

Figure 7.2-4 shows the Single-Actor-Internal view of agent Ambulance Crew
derived from the original view, and Figure 7.2-5 shows the corresponding External
view. In the former, internal structures of agent Ambulance Crew remain the same
as its parent view (the original view); in the latter, only internal elements that have
an external relationship are kept. For example, goal BeReported [AmbInfo] is

shown in the external view, while the two means to achieve it are omitted.



CHAPTER 7. STRATEGIC RATIONALE VIEWS

atice red

H N sigral from ).
: \ T AT Tecagn retenemy
‘ & ,..
\
N e
282 Lon!
“ ?) g 5 Qoo ol
R forin ,. forgwrita .,

Figure 7.2-4 Single-Actor-Internal view derived from the original view

BN
-
\ﬁ
\‘
\ bl Caliector
s Tsance [Ambinfo]
]
\
DeRaporte 3
Ri e [8mbinfo] eButfar
SOLECe ! ¥ - "
Asdtor Y vty |\
[Amblnfo] .
‘ eNifie ] 530 é?n
ViaRadio | ¥
[obiist] g~ HaFed

S [ ronste ]
g espong t
"o [Moblnst]
N o
) &
Public -

Bspond t
IMobinst]

Figure 7.2-5 Single-Actor-External view derived from the original view



CHAPTER 7. STRATEGIC RATIONALE VIEWS 127

Justifications

In some cases, even a Single-Actor-Focus view could appear complex (e.g., our
original view). Therefore, we need to scale it down further so as to make each sub-
view, when visualized, more comprehensible. The first step we take is to separate

internal rationales from the external ones.
This separation appears natural for i* models.

Answering questions that relate to the internal process elements and routines does
not require external relationship information. From the internal view, we can still
find out what top-level intentions the actor has, what the alternatives that will
achieve those intentions are, and what the routines of each alternative are. For
example, using elements shown in Figure 7.2-4, we can also find out the two
alternative routines available to achieve goal BeReported [AmbInfo]. In this light,

external relationships of an actor are not relevant.

The elements included in the external view appear sufficient for linking internal
elements from an actor to the ones that reside in another. When tracing to other
Single-Actor-Focus views, the user needs to know only which internal element is
connected with which dependum, and which dependum is connected to which actors
other than the selected one. For example, from Figure 7.2-5 we know that role
Collector [AmbInfo] depends on goal BeReported [AmbInfo] to furnish resource
Ambulance Information. If we want to identify which internal element of role
Collector [AmblInfo] requires that piece of information, we shift to the Single-Actor-
Focus view of the role, locate the same dependum, and follow the incoming
dependency link “to” the dependum to locate the internal depender. For this purpose,

the internal goal structure of an actor does not appear critical.

Selection Rule

Formally, we obtain a Single-Actor-Internal view from a Single-Actor-Focus

view (for actor a) by applying the query singleActorInternalRule, and a Single-



CHAPTER 7. STRATEGIC RATIONALE VIEWS 128
Actor-External view from a Single-Actor-Focus view by applying the query

singleActorExternalRule.

singleActorInternalRule(v_a:SingleActorFocusSRViewClass)::=

§0:0bjectClass: oev_a noe{a, find internal elements(a)}

singleActorExternalRule(v_a:SingleActorFocusSRViewClass)::=
§o:ObjectClass: oev A

o€ { singleActorFocusSDRule(v, a), find_internal connectors(a)}

Query44

find_internal_connectors(a: ActorElementClass)::=
§e:IntentionalElementClass- e.parent=a A
(311:DependencyLinkClass: 11.from=¢ v 11.to=¢) v
(312:IntentionalLinkClass: 12.from=e A 12efind_externallinks from_actor(a) )

7.2.3 Internal-Non-functional and Functional View

Informal Description

An Internal-Non-functional view presents the selected actor, its top-level
softgoals, and all the descendents (reasoning structure) of these softgoals. An
Internal-Functional view presents the selected actor, its top-level non softgoals, and

all the descendents towards these (reasoning structure) non softgoals.

For clarity, we restate here the informal definition of descendent: A descendent
of a given element is a sub-element either that has a direct intentional link to the

given element or whose direct ancestor is a descendent of the given element. The

formal definition of ancestor and descendent can be found in Section 4.4.6.



CHAPTER 7. STRATEGIC RATIONALE VIEWS

129
Example
G T
Gualty.. ¥ ‘\
[Service] *
- . »
%,
JOnste “
Traatrent \
.
L
»
erly. )
ppe%l L
»
1
»
!
L
]
»
y “Claim- /
30060 ’
" 2 S
. (Be qt%&‘@le Rydio’ _o’
\‘ : Mobinst]) ¥ 4
.~ pliohes *
.

Figure 7.2-6 Single-Actor-Internal-Non-functional view derived from the Single-Actor-

Internal view for agent Ambulance Crew

\~ e

oodid

Figure 7.2-7 Single-Actor-Internal-Functional view derived from the Single-Actor-

Internal view for agent Ambulance Crew



CHAPTER 7. STRATEGIC RATIONALE VIEWS 130

Figure 7.2-6 shows an example of the Internal-Non-functional view derived from
the Single-Actor-Internal view for agent Ambulance Crew (Figure 7.2-4), and Figure
7.2-7 shows the corresponding Internal-Functional view. In Figure 7.2-6, top-level
softgoal Quality [Service] and all its descendents are shown in a separate view from
the other two top-level intentions (task Response To [MoblInst] and goal

BeReported [AmbInfo]) that are shown in Figure 7.2-7.

Justifications

In some cases, a Single-Actor-Internal view still appears complex (e.g., the
Single-Actor-Internal view derived from our original view). Therefore, we need to
scale it down further so as to make each sub-view, when visualized, more
comprehensible; the approach we are taking now is to separate top-level non-

functional intentional elements from the functional ones.

This separation appears natural when the internal rationale of a modeled actor
gets extremely complex, featuring numerous internal elements and intertwined
internal intentional links. When internal rationale becomes difficult, typically

functional and non-functional parts are considered separately, at different times.

Functions of a system are normally considered first in order to verify the
workability of certain system configurations. During this process, softgoals that do

not serve as descendents of some given functionality appear irrelevant.

After these functions become relatively stable, and especially when alternative
routines are available, we record their side-effects using a contribution (and
correlation) network of softgoals. If necessary, an evaluation process can be
employed to decide the level of satisficeability of the top-level softgoals when
assuming each alternative. Resulting labels from different alternatives of the top-
level softgoals can be compared. During this process, those functional elements that

not contribute to any softgoals appear irrelevant.

However, redundancies are expected in the non-functional and functional views

since most process elements cast certain effects to some softgoals, and since these



CHAPTER 7. STRATEGIC RATIONALE VIEWS 131
elements may also be decomposed into softgoals. Thus, given the current level of
tool support, we do not suggest excessive use of this separation—since any change

to those overlapping elements requires synchronization to several other views.

Selection Rule

Formally, we obtain an Internal-Non-functional view from a Single-Actor-
Internal view (for actor a) by applying the query internalNonfunctionalRule, and
an Internal-Functional view from a Single-Actor-Internal view by applying the

query internalFunctionalRule.

internalNonfunctionalRule(v_a:InternalViewClass)::=
§o0:ObjectClass: oev_a Aoe {find_root_softgoals(a),

{find_all descendants(sg) | sg € find root softgoals(a) }}

Query45
find root_elements(a: ActorElementClass)::=

§e:IntentionalElementClass- e.parent=a A —(31:IntentionalLinkClass-1.from=¢)

Query46
find_root_softgoals(a: ActorElementClass)::=

§sg:SoftgoalElementClass: sge find_root_elements(a)

internalFunctionalRule(v_a:InternalViewClass)::=
§o:ObjectClass- oev_a Anoe {find_root_functionals(a),

{find_all_descendants(g) | g € find root_ functionals(a) }}

Query47

find_root_functionals(a: ActorElementClass)::=

§fe:IntentionalElementClass-

(fee find_root_elements(a)) A —(fe in SoftgoalElementClass)



CHAPTER 7. STRATEGIC RATIONALE VIEWS 132
7.2.4 Single-Softgoal View

Informal Description

The Single-Softgoal view presents a selected actor, one of its top-level softgoal,

and all the descendents of the softgoal.

Example

{ ausity.
A [Service]

Timelines
[S,er\ﬂcg

Figure 7.2-8 Single-Softgoal view derived from the Single-Actor-Internal

Nonfunctional view presented in the previous section

The view in Figure 7.2-8 is actually the same as its parent Internal-Non-
functional view shown in Figure 7.2-6. This is because our sample contains only one
top-level softgoal Quality [Service], and no further view decomposition is
necessary. This fact reminds us that rules can be selectively applied to a given

application, and that users should only apply those rules they consider necessary.



CHAPTER 7. STRATEGIC RATIONALE VIEWS 133

Justifications

In the non-functional view of a single actor, relationships towards different top-
level softgoals can be intertwined, a fact that makes it difficult to study the process

elements and the rationales behind these elements for a given softgoal.

Using a Single-Softgoal view, leaf-process elements that will affect the
satisficeability of the given softgoal are distinguished. The rationale for selecting
those leaf elements also becomes obvious. Thus, it appears natural to decompose a
Non-functional view into Single-Softgoal views when the former becomes barely

comprehensible.

However, for reasons similar to those stated in Section 7.2.3, we do not suggest

excessive use of this view.

Selection Rule

Formally, we obtain a Single-Softgoal view from an Internal-Non-functional view
(for actor a) by applying the query nonfunctionalSingleSoftgoalRule. We pass the

selected softgoal (sg) as an input argument to the query.

nonfunctionalSingleSoftgoalRule(v_a:NonFuntionalViewClas,

sg:SoftGoalElementClass)::=
§o:0bjectClass: oev_a noefind_all_descendants(sg) %Queryl2

7.2.5 Single-Affected-Dependum or -Actor View

Informal Description

A Single-Affected-Dependum view presents the selected actor and a selected
dependum that the former affects. In this context, by affect we mean that elements
from the actor exert contributions to the outgoing dependency link of the dependum.
In this light, this view also includes the internal elements that exert the effects, the

dependum, and the dependee of the dependum.



CHAPTER 7. STRATEGIC RATIONALE VIEWS 134

A Single-Affected-Actor view presents the selected actor and a selected other
actor that the former affects. In this context, by affect we mean that elements from
the actor exert contributions to the external links exerted from the other actor. In
this light, this view also includes the internal elements that exert the effects, and the

external links that these elements affect.

Example

Figure 7.2-9 shows a sample of a Single-Affected-Dependum view of role
Ambulance Crew as Impactor from LASCS. Note that agent Ambulance Crew
connecting to the dependum should be omitted from the view. Due to limitations in
tool support, we have to retain it to ensure the dependency link (from BeArrived
[within 11 mins to Ambulance Crew] does not disappear. The two internal elements

contribute negatively to the softgoal dependum BeArrived [within 11 mins] from

anagems

agent LAS Management to agent Ambulance Crew.

(osazre?

Figure 7.2-9 Sample Single-Affected-Dependum view showing one affected dependum

BeArrived [within 11 mins] from LASCS

Figure 7.2-10 shows a sample of a Single-Affected-Actor view for agent TCG to
affect role Hacker/Malicious User. This sample is taken from the Trusted
Computing Group (TCG) case study (Horkoff 2004)—since we do not have such

patterns in LASCS. From the sample, we sece that internal elements of agent TCG



CHAPTER 7. STRATEGIC RATIONALE VIEWS 135
(e.g., Isolate Applications) cast negative effects (e.g., a Hurt contribution) to the
two external links (e.g., the Break contribution to softgoal dependum Protect

[Stored Data]) exerted from role Hacker/Malicious User.

-
P ”

- ~,
d i e,
L er.
vice \0
- Provider \
»
— h )

Anonvmous

finprdve [File
Storage
Security]

-
-
N -

Protect (S;ored

7 !
4 Vi
S e o
*
\§ ./
\~ .7
Sea o
.’“'----""
Hackerf
Malicious User

i

Figure 7.2-10 Sample Single-Affected-Actor view showing the effects to Hacker from
agent TCG from the TCG case study

Justifications

In a Single-Actor-External view, multiple internal elements may contribute
different effects to the same dependum (e.g., Protect [Stored Data]) or to the
external links exerted from the same actor (e.g., Hacker/Malicious User). Sometimes
these effects get complex, and thus we further decompose the External view to a set

of Single-Affected-Dependum and Single-Affected-Actors views.

Under certain circumstances, users may want to study the external effects of a
certain dependum on a certain actor individually. In this light, using a Single-
Affected-Dependum or a Single-Affected-Actor view provides just sufficient
information for users to understand which internal elements of an actor may
contribute what effects to a selected subject. These types of views are normally
quite simple, and users of them are not distracted by unnecessary information

towards other external elements.



CHAPTER 7. STRATEGIC RATIONALE VIEWS 136

However, there may exist too many external dependums or external links that one
actor can affect. Applying this type of view excessively could result in a huge
amount of fragmented views. Thus, we suggest using this view only when it is
absolutely necessary —when the circumstances described in the above paragraph
become totally fulfilled. Or a user may combine a few of these types of views so

long as the complexity of the resulting visualization is acceptable.

Selection Rule

Formally, we obtain a Single-Affected-Dependum view from a Single-Actor-
External view (for actor a) by applying the query singleAffectedDependumRule.
We pass the selected dependum (d/) which gets affected as input arguments to the

query.

singleAffectedDependumRule(v_a:ExternalViewClass, dl:DependencyLinkClass) ::=
§o:0bjectClass oev_a noe{find_contribution to dependum(a, dl),

find_contributer to_dependum(a, dl) }

Query48

find_contribution_to_dependum(a: ActorElementClass,dl:DependencyLinkClass)::=
§l:IntentionalLinkClass-(1.from.parent=a) A (1.to=dl)

Query49

find_contributor_to_dependum(a: ActorElementClass,dl:DependencyLinkClass)::=
§e: ElementClass- 3l:Intentional LinkClass-

(Lfrom=e A lefind_contribution_to_dependum(a,dl))

Formally, we obtain a Single-Affected-Actor view from a Single-Actor-External

view (for actor a) by applying the query singleAffectedActorRule. We pass the

selected actor (a/) who gets affected as input arguments to the query.

singleAffected ActorRule(v_a:ExternalViewClass, al:ActorElementClass)::=
§o:0bjectClass: oev_a noe {find_contribution_to_actor(a,al),

find_contributor_to actor(a,al)}



CHAPTER 7. STRATEGIC RATIONALE VIEWS 137
Query50
find_contribution_to_actor (a,al:ActorElementClass)::=

§l:IntentionalLinkClass- (l.from.parent=a) A

(311:IntentionalLinkClass- (11.from.parent=al) A (L.to =I1))

Query51
find_contributor_to_actor (a,al:ActorElementClass)::=
§e:ElementClass: 31:ContributionLinkClass-

(L.from=e A lefind_contribution_to_actor(a,al))

7.3 Summary

In this chapter, we presented a hierarchy of partial SR views, and each of the
views was explored in detail. These eight SR views were studied in this section: the
Single-Actor-Focus SR view, the Single-Actor-Internal view, the Single-Actor-
External view, the Internal-Non-functional view, the Internal-Functional View, the
Single-Softgoal view, the Single-Affected-Dependum view, and the Single-
Affected-Actor view.

The hierarchy of partial SR views was illustrated using a generalized view map.
The Single-Actor-Focus SR view is placed as the top-level node in this hierarchy.
We also presented a way of using the sub-SR views to work with the evaluation

process and showed how to organize the set of resulting EVLR views.

The SR views are presented from both informal and formal aspects. An informal
description gives the reader a basic idea of what kinds of elements are qualified for
a specific partial view. The formal definition of the selection rule attached to each

view class makes it possible to automate these views in an i* modeling tool. Some

justifications for the each view are included.

Examples from LASCS was used to illustrate the idea of an original Single-Actor-
Focus SR view and various types of sub-SR views it can derive, making it possible

for the reader to compare the differences between the view types. One special



CHAPTER 7. STRATEGIC RATIONALE VIEWS 138
example was cited from the TCG case study (Horkoff 2004) to demonstrate the
Single-Affected-Actor view, since we did not have this modeling pattern in LASCS.



8 Re-presenting the Trusted Computing Group
Case Study

The Trusted Computing Group (TCG) case study (Horkoff 2004) was first
generated in summer 2003. The case study explored opposing viewpoints from two
groups—proponents of TCG and opponents of TCG—and, accordingly, constructed
two sets of diagrams. Each diagram is labeled as a “model” in the TCG case study.
There are approximately 120 such models in the document, and more than half of
them contain over 40 i* objects (elements and links) each. One extreme case
contains 44 elements and around 100 links. With the volume of information trying to
express in one diagram, text in each element turns out hardly readable, and links are
so intertwined that it is hard for a reader to identify connections between the
elements. The TCG case study documented in (Horkoff 2004), which we cite as
TCGCS throughout this chapter, raised considerable scalability issues in the i*

framework.

The complexity and size of TCGCS renders it a good example in validating our
newly proposed view extension. Thus, we used the resulting diagrams from TCGCS
to demonstrate that our proposed approach can simplify the representation of the
huge models, yet serve the same purpose as those diagrams shown in the original
document. In this chapter, we highlight some interesting parts from TCGCS that are
considered sufficient to illustrate the use of our view extension. The rest of the

original work can be organized following a similar manner.

Our rework and TCGCS differ in the use of terminologies and the organization of

the diagrams.

Terminologies used in our proposed view extension differ from what was used in
TCGCS. The two sets of diagrams produced in TCGCS are considered as two i*

baseline models, representing the situations of TCG from two contrasting viewpoints.

139



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 140

We name the one representing the viewpoint from TCG proponents as “TCG.Pro,”

29

and the one for the opponents as “TCG.Anti.” The term “model” (diagram) from
TCGCS corresponds to the concept of view in our extension. Each view is a
projection over the baseline model according to some predefined selection rules in
the view extension. In our rework, we name each derived view following a
consistent naming convention, prefixing it with the name of its corresponding

baseline model.

The manner we followed in presenting the views also differs from TCGCS. Views
(models) in TCGCS were created and documented as the need arose, without a
predefined systematic method. This practice appears natural during the model
acquisition process, yet model users may find it difficult to locate specific
information from the 120 models. We partition the views obtained by using the view
extension into four basic types (AC, SD, SR, and EVLR), and show the views in a

sequence according to their types.

Our rework of TCGCS resulted in a total of 37 diagrams, showing the baseline
model, 15 AC views, 8 SD views, and 13 SR views. Among these views, only 2
remain exactly the same as what was demonstrated in TCGCS, 17 of which are
newly added ones, the other 18 being modified. In addition, four view maps (VM)
for showing the relationship for basic views, AC views, SD views, and SR views,
respectively, were also supplied to make attainable the relationship among views

from the same group.

EVLR views are not presented in this chapter since we found it impractical to fit
the evaluation diagrams from TCGCS into our EVLR views. A major reason for the
difficulty is that the label propagation algorithm employed in TCGCS allows a label
be propagated from a dependum to both its depender and dependee, while we feel it
only natural to propagate a label to a depender. Any dependee, in i* semantic,
should have the autonomy to decide its own label regardless of what was assigned to
its dependum. Since this issue deserves further research, and since we cannot supply

meaningful results unless this issue is properly resolved, we have decided to omit



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 141
the EVLR views of TCG in this thesis. Nevertheless, as argued in Section 7.1,
omitting the EVLR feature does not affect our view extension, because the EVLR

views are considered as SR views with only the evaluation will be different.

Section 8.1 presents an overview of the relationships between the baseline models
and original views that will be used in the subsequent sections; Section 8.2 to 8.4
present the partial AC, SD, and SR views we obtained from the case study,
respectively; and Section 8.5 summarizes results and contributions resulting from

this reworking of TCGCS.

8.1 Overview

Figure 8.1-1 shows the VM of the basic views for our TCGCS rework. Each view
is represented using a rectangle; the view name and view type are separated by a
semi-colon; and the corresponding visualized diagram is included in the bracket.
The views shown in a dashed rectangle do not appear in this section for we
selectively apply our approach to interesting parts. Yet they do—or should—exist in
TCGCS in order to maintain the completeness of TCGCS. The view shown in a
dotted rectangle implies it does not necessarily exist even in the original TCGCS,
and can be derived from other views. A detailed definition of the graphical

notations for a VM can be found in Section 4.2.

From Figure 8.1-1(a), we see that the proponents baseline model TCG.Pro is
decomposed into four basic views. The Basic AC view (TCG.Pro.AC) and the Basic
SD basic view (TCG.Pro.SD) are visualized in both this chapter and TCGCS. We
use these two basic views as our original view to derive a set of partial AC and SD

views in the subsequent sections, respectively.

Figure 8.1-1(b) shows that TCG.Anti, the baseline model from the TCG
opponents’ viewpoint, was not presented explicitly in TCGCS. This may because
TCG.Anti differs only in the rationales surrounding actor TCG from TCG.Pro. The
SR view for actor TCG from TCG.Anti (TCG.Anti.SR.SA-TCG) is the extreme



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 142
case which containing 44 elements and over 100 links in one diagram, so we choose

it as our original view to derive a set of partial SR views.

TCG.Pro:
The Baseline Model
{Figure 8.1-2%)

| | L, ——L_

TCG.Pro.AC : TCG.Pro.5D: ! TCG.Pro.SR : ' TCG.Pro.EVLR : l
The Basic AC View The Basic SD View The Basic SR View The Basic EVLR View
(Figure 8.2-2) (Figure 8.3-2) | (N/A) l | (Nm) |

.................................................................................

...............................................................................

— e o — ‘ TCG.ANti.SR.SA-TCG :
TCG.ANt.SR : A Single-Actor-Focus View
e The Basic SR View {Figure 8.4-2)
(N/A) |

TCG.Anti ; ' TCG.Ant.EVLR : '
The Baseline Model The Basic EVLR View
(N/A) | | (NIA) |

Figure 8.1-1 View map showing the relationships among the basic views from TCGCS

Figure 8.1-2 shows the revised Baseline Model that we constructed according to
the diagrams presented for the TCG proponents’ viewpoint in TCGCS. This model
bears the name TCG.Pro. The original views used in the AC and SD sections are
derived from this baseline model. However, this baseline model is a partial one, not

showing the internal structures within each actor.



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 143

e
ivdkal

e % A 8oty P
‘ IA 0

ransac E
S\,

énuMduil
onsumer

Figure 8.1-2 Revised Baseline Model representing the viewpoints from the proponents
of TCG

8.2 Actor Class Views

In this section, the selected original view (TCG.Pro.AC) is scaled down into a
set of related partial AC views; their relationship is shown in Figure 8.2-1.
TCG.Pro.AC (or AC) is decomposed into two Single-Network views: one for
producer (AC.SN-Producers) and one for consumer (AC.SN-Consumers). AC.SN-
Consumers is further decomposed in two dimensions. One dimension is decomposed
according to element types, resulting in a Plain-Actors-Only view (AC.SN-
Consumers.PlainActors), an Abstract-Actors-Only view (AC.SN-
Consumers.AbstractActors) and an Agents-Only view (AC.SN-
Consumers.Agents). The other dimension is decomposed according to plain actors,
resulting in four Single-Plain-Actor sub-views (e.g., AC.SN-Consumers.SPA-
PCUser). A set of Direct-Replaceable views (e.g., AC.SN-Consumers.DR-

IndividualConsumer) are also derived from AC.SN-Consumers.



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 144

We have shown the decomposition of AC.SN-Consumers in Figure 8.2-1, and

there are others such as sub views of AC.SN-Producers which also belongs to this

category. Their relationship would follow the same pattern as shown for AC.SN-

Consumers in Figure 8.2-1, so we do not repeat them in this section.

[TCG.ProJAC:
The Basic AC View
(Figure 8.2-2)

AC.5N-Producers
A Single-Network View

AC.SN-Consumers.PlainActors :
A Plain-Actors-Only View, ~
(Figure 8.2-5)

{Figure 8.2-3)

AC.SN-Consumers.AbstractActors :
An Abstract-Actors-Only View, ~
{Figure 8.2-6)

AC.SN-Consumers :
A Single-Network View
(Figure 8.2-4)

AG.SN-Consumers.Agents :
An Agnets-Only View, ~
{Figure 8.2-7)

AC.SN-Consumers SPA-PCUser
A Single-Plain-Actor View, ~
{Figure 8.2-8)

AC 8N-Consumers SPA-ContentUser :
A Single-Plain-Actor View, ~
{Figure 8.2.9)

AC.SN-Consumers.SPA-MaliclousUser :
A Single-Plain-Actor View, ~
(Figure 8.2-10)

AC SN-Consumers, DR-individualCongumer :
A Dirsct-Replaceabls View, ~
(Figure 8.2-12)

e AC.SN-Consumars. DR-Government :
e A Diract-Replaceable View, ~
{Figure 8.2-13(a))

- AC.SN-Consurmers DR-MaliciousUsers :
3y A Direct-Replaceable View, ~
(Figure B.2-13(b))

AC.SN-Consumers.DR-HelenDuff :
3 A Direct-Replaceable View, ~
(Figure 8.2-14)

- AC.SN-Consumers DR-GeorgeHudson :
Y A Dirsct-Replaceable View, ~

LEGEND

View
prajection

ViewNaroe :
ViewType[, ViewType|~}

A view

AC.SN-Consumers. SPA-DataPirate :
A Single-Plain-Actor View, ~

View )y
dacomposttion {Figure 8.2-11)

(Figure 8,2-15)

Figure 8.2-1 View map for some partial AC views

8.2.1 The Basic AC view

Figure 8.2-2 shows the Basic AC view from the TCG proponents’ viewpoint, and

we name it as TCG.Pro.AC. This is an example that a basic view, direct projection

over a baseline model, still complex. In the diagram showing below, approximately

47 actors and 50 links are presented, making it almost unreadable.



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 145

A @

ak«m" !k-cmn sinmu

Figure 8.2-2 Basic Actor Class View

8.2.2 Single-Network views

Applying the single network rule (singleNetworkRule) to TCG.Pro.AC, we
obtained two  Single-Network views: TCG.Pro.AC.SN-Producers and
TCG.Pro.AC.SN-Consumers.

TCG.Pro.AC.SN-Producers (Figure 8.2-3) exhibits shows the associations
between three plain actors—Content Owner/Copyright Holder, PC Software
Manufacturer/Service Provider, and TCG—and their specified forms. There is a

corresponding diagram (model 4.3) to this view in TCGCS.

22 o6&

Since the notion of “specifies”, “complete composition”, and “agent instance” are
newly introduced in our extension, our AC views embraces extra information (e.g.,
“agent TCG specifies plain actor TCG”) and distinguished agent instances (e.g.,
IBM) than their corresponding original models in TCGCS. All AC views presented

in this section resemble these features, so we will not repeat this point again.



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 146

TN
Content
isa | Cpmart
Holder
: RRAYS s part-of

Software
Campany

Figure 8.2-4 Single-Network view for consumers from the TCG proponents’ viewpoint

TCG.Pro.AC.SN-Producers (Figure 8.2-4) is constructed based on information
collected from TCGCS (including model 4.6, model 2.6.3, model 2.6.4, and so on).

Plain actors (e.g., actor PC User), specified actors (e.g., role PC User and Content



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 147
User), and agent instances (e.g., Helen Huff) were also added. These new actor
elements are added to fill the logic gaps between actors in TCGCS so that users can
apply the external relationship inheritance rule to calculate indirect external
dependencies. In this light, actor associations expressed in AC views can support

automated substitution of actors in SD views (see Section 5.2.3 for detail).

However, with these enriched information to TCG.Pro.AC.SN-Producers, the
view appears more complex than the original one; thus, further decomposition is

required to improve its comprehensibility.

8.2.3 Plain-Actors-Only, Abstract-Actors-Only and Agents-Only views

Figure 8.2-5 shows the Plain-Actors-Only view derived from TCG.Pro.AC.SN-
Consumers by applying the plain actors rule (plainActorsOnlyRule). This view
contains only plain actors and their direct specified forms, and it is named as
TCG.Pro.AC.SN-Consumers.PlainActors. The view does not correspond to any
diagram in TCGCS, nor does it appear immediately useful in this case, yet it might
be in other cases. We show the view here to demonstrate a systematic approach in

deriving various types of views.

b
Attacker

Data Pirate

Dsts Pirate

Figure 8.2-5 Plain-Actors-Only view for consumers group

Figure 8.2-6 shows the Abstract-Actors-Only view derived from
TCG.Pro.AC.SN-Consumers by applying the abstract actors rule



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 148
(abstractActorsOnlyRule). This view contains only abstract actors and the
associations among them, and it is named as TCG.Pro.AC.SN-
Consumers.AbstractActors. The view is a revised version of its correspondence in
TCGCS (model 4.5), based on the modification we made in TCG.Pro.AC.SN-

Consumers.

PUAYS
ISA :
pvernment overniment Hacker!
4 Malioious:
AR st o g S
Fgavs PUAYS ISA
R T A
. - ,I
(g,
e - éndivldual ooroup i f
‘Business chsumer W\ individual 4 ang
\ o -OnsLamer a4 Ad L,-” ;’a{{“ﬁ
. ‘ i

.
Malicious i

Figure 8.2-6 Abstract-Actors-Only view for consumer group

Figure 8.2-7 Agents-Only view for consumers group

Figure 8.2-7 shows the Agents-Only view derived from TCG.Pro.AC.SN-
Consumers by applying the agents rule (agentsOnlyRule). This view contains only
agents and agent instances and the associations among them, and it is named as

TCG.Pro.AC.SN-Consumers.Agents. Same as TCG.Pro.AC.SN-



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 149
Consumers.PlainActors, we show this view here to demonstrate a systematic

approach in deriving various types of views.

8.2.4 Single-Plain-Actor views

tividhe
fonsyme

85
Usarand
Lontent

T P PLAYS
govemnia
A @

CLAYS

povernimey
.

INS heiend

. INS
Msllcwus -
roup I

Figure 8.2-8 Single-Plain-Actor view for “PC User”

Figure 8.2-8 to Figure 8.2-11 show four Single-Plain-Actor views derived from
TCG.Pro.AC.SN-Consumers by applying the single plain actor rule
(singlePlainActorRule) for each of the four plain actors, one at a time. This type of
view contains the selected plain actor and the specified forms that can inherit all of
its external relationships. We name the four views TCG.Pro.AC.SN-
Consumers.SPA-PCUser, TCG.Pro.AC.SN-Consumers.SPA-ContentUser,
TCG.Pro.AC.SN-Consumers.SPA-MaliciousUser, and TCG.Pro.AC.SN-

Consumers.SPA-DataPirate. These views do not have a correspondence in TCGCS,



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 150
but we show them to illustrate how a given AC view might be decomposed

according to domain knowledge plain actors.

E‘;Reciﬁes

Figure 8.2-9 Single-Plain-Actor view for "Content User"



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY

and
Ritacker(g]

~tfserts ;

i
Shecifies

Eovernmen
Attacker
RN
et B,
Mgl;icinua ’
\ “roup INS ™ INS
Malitious
' ln;di’d%ﬂtlal

I1SA [ Hacker/
E Malicious
ser

Figure 8.2-10 Single-Plain-Actor view for “Malicious User(s) and Attacker(s)”

151



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 152

Data Pirate
Skcifies

Data Pirate

PL AR e

PRANYS

ot
Pirating.
Individual -

INE

INS

vil Pirating

‘Company

Figure 8.2-11 Single-Plain-Actor view for “Data Pirate”

8.2.5 Direct-Replaceable views

Figure 8.2-12 to Figure 8.2-15 show Direct-Replaceable views derived from
TCG.Pro.AC.SN-Consumers by applying the direct replaceable rule
(directReplaceableRule) for the selected actors, one at a time. We use these views to
deduce inter-actor dependencies. The given actor can stand in for other actors shown
in this view in any SD view containing the latter. We highlight the given actor using
a solid rectangle. This type of substitution implies that the given actor has either the
exact same external relationship as, or a larger set of external relationships than, the

ones that are directly replaceable by it.



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 153

PC User

Figure 8.2-12 Direct-Replaceable actors view for agent Individual Consumer

For example, Figure 8.2-12 shows a given actor “agent Individual Consumer”
and the Direct-Replaceable view of it. There are corresponding diagrams (model
2.6.3 and model 2.6.4) for this view in TCGCS. We name this view
TCG.Pro.AC.SN-Consumers.DR-IndividualConsumer. From this view we learnt
that the given actor inherits all external relationships from role PC User, role
Content User, role PC User and Content User, or role Individual Consumer as
PC User and Content user, and that therefore agent Individual Consumer can

substitute any of these in an SD view.

SEycran \!

Ser )

Fovernmery
s EC

MlEloys 1sA

-GroLp. k?(
: o1 ckart ¥
¢ 3@%”£L%§ alﬁ:‘i%us Uss l
| Allacker and 4]
- Hacke 1 G rl

3
e

i
(a) For agent Government (b) For role Malicious Group...User

Figure 8.2-13 Direct-Replaceable views for specified actors



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 154

Some other examples are the Direct-Replaceable views for agent Government
(Figure 8.2-13(a)) and role Malicious Group...Users (Figure 8.2-13(b)), and we
name them TCG.Pro.AC.SN-Consumers.DR-Government and TCG.Pro.AC.SN-
Consumers.DR-MaliciousUsers, respectively. There are corresponding diagrams

(model 2.17.1 and model 2.19.2, respectively) for these views in TCGCS.

Malicigus

TN GroypAmeid
Fong! 2 dovelt ma
i g

Caontent

S

PLAYS

o £

ser

PLAYS

PG Usar et S~ PUAYS
" ooy Individual
Sansumel
Parlting
Individual
gA INS

INS
i g

e

Figure 8.2-14 Direct-Replaceable view for agent instance Helen Duff

Pirating ) : Yata
individualj Pirate

George |
Hudson |

Figure 8.2-15 Direct-Replaceable view for agent instance George Hudson

In addition, we show some views that do not exist in TCGCS but will be used to

derive SD views of agent instances such as Helen Duff and George Hudson. Figure



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 155
8.2-14 and Figure 8.2-15 show the Direct-Replaceable views for Helen Duff and
George Hudson, and we name them TCG.Pro.AC.SN-Consumers.DR-HelenDuff
and TCG.Pro.AC.SN-Consumers.DR-GeorgeHudson, respectively.

8.2.6 Discussion

In this section, we demonstrate the process and results of the decomposition of the basic
AC (TCG.Pro.AC) into various forms of partial views according to the selection rules.
Relationships among these views were presented in a View Map, where each view (diagram)
is modeled as a node in a tree-like structure. This view map helps increase the efficiency in

accessing the distributed views across a document.

The original Basic Actor Class view from TCGCS was developed in an ad-hoc
manner, and thus contains inconsistencies. Without a systematic method, it was
difficult to identify these problem areas through its 120 diagrams. Our research
enforced for the first time a tighter relationship between the AC and the SD views so
that modeled objects are subject to a more rigorous consistency check within one
model. Using this technique, we identified redundancy, logic gaps, and

inconsistency from the original TCG case study.

First, we identified redundancy in the original model. In Figure 8.2-16(a), there
are two “plays” links to role PC Software manufacturer/ Service Provider that
originated from agents Intel and IBM, respectively. During our revisit, we found
that these links are redundant since each of them has been implied by the “INS”
links from it (e.g., Intel) to agent PC Manufacturer/ Service Provider TCG
Member, and then by the “plays” link from the latter to role PC Software
manufacturer/ Service Provider. In fact, Intel and IBM appear to be agent instances,
and in our reformulated i* semantics, they should not relate to “plays” links.
Therefore, in our modified version (Figure 8.2-16(b)), these redundancies are
removed, and Intel and IBM are highlighted as agent instances to avoid confusion

from the agent.



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 156

Arigta
Racords

Paramotint

ntertainmen
corp Cﬂ'a’thh;

otitent -
Cavytiaht
HDY ar

Attacker:
s

ey
Sovners
< Ovner
ISA § Copyright
. Holder
orte
Owwners 'y sPart-of

<
H

'Sottware
» Company

(b) Single-Network view for consumers

Figure 8.2-16 Comparison of Actor Views (diagram) showing redundancy identified



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 157

Next, we identified logical gaps in the way actors in the SD views are substituted.
For example, in TCGCS, role Content User in Figure 8.2-17(a) was substituted by
role Individual Consumer as PC User and Content User (ICPCUCU) in Figure
8.2-17(b), and the latter seems to share the same set of external relationships as the
former. We inferred the human reasoning from this transition: First, since agent
Individual Consumer “plays” role Content User and PC User, we introduce a new
role ICPCUCU to cover all three actors; next, since role ICPCUCU covers Content
User, it should support all the external dependencies of the latter. These rationales
were not specified explicitly in the original model and this fact may have led to user

confusion, and the substitution of actors cannot be automated.

antent Be
Purchaseg

Copvrlgg{ed
Content

Andividual
cohsumer

%ontem

Copyti ht
 Holder

Ownershlp
L aﬁcs Be.

0
Comgﬁged el
Content J

Contem

Cup right
?dar

l 3
O nel:l?C yrigH
Con?é]nt] o

(b) Model 2.6.4 in TCGCS

Figure 8.2-17 Example of logic gaps in actor replacement



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 158

Figure 8.2-18 Modified representation to fill the logic gap

To make the transition from the model 2.6.3 to model 2.6.4 automatically
obtainable from the Baseline model, we modified these associations among agent
Individual Consumer, role Content User, role PC User, and role Individual
Consumer as PC User and Content User (ICPCUCU). Figure 8.2-18 shows the
result of our modification. We first separate this part of information from the SD
view and fit them into the AC view. Then we introduce a new role PC User and
Content User (PCUCU) as the whole for role PC User and role Content User. From
the implication of the “complete composition” links in the AC view, we know that
the new role (the whole) inherits all external relationships from its parts. We let role
ICPCUCU be a specialized form of role PCUCU through the “isA” link, and we
know that the former inherits all external relationships from the latter. Thus,
ICPCUCU indirectly inherits all external relationships from role Content User. The
above analysis process reaches the same result as was expected in the transition
shown in Figure 8.2-17, yet this process demonstrates a systematic approach and can

be fully automated.

Similar adaptations have been made to the substitution of PC User (Figure 8.2-19)
and Hacker/Malicious User (Figure 8.2-20). Our modified versions are shown in

(a) For Substitution of PC User (b) For Substitution of Hacker/Malicious User

Figure 8.2-21(a) and (b), respectively.



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 159

{T’hreatening
Technology]

CsISoﬂwgr
ervéceg
CsiSoMare
Setvices

flordable
achnn logy]
¢ \nnovation ‘
% ﬂ N N
chnologv LY PC User -

a0

] ?e;leéu fity PG
" Privacy
Il formationm 3]
empaab‘ill

Government} ™™ T~

Trust [PC \
Uset] 4 Security '|
s |Nation/State h
A% )

6\ 7’

»
-

(a) Diagram showing actor association

_Acce
hreatenin
U Technology

od £
AP CslSotware
Semces

ffordable
[Technology

innovation
a%u%ciufer » 4 » cr?:mgogy

Pruw ‘
Security;[PC]

Government
askC User

Lo 0

" Privacy
[I§farmation/Dafa]
ampatabilif
with Existin
- Trust[PC

Usey]

(b) Diagram showing the resulting substitution

Figure 8.2-19 Substitution of role PC User in TCGCS



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 160

— |

C Sofward =\
a;%fafiur%‘r 3 Malicious
%em 8 ,Gr_mgo

. Provider \ Individual
N

hi
Contro
~H ipon sl
‘&‘f‘ h[h]iicig I
T L
du

Bparry

ation/State
E E:‘t:url{t?t e
Harmed

Nirses L
Malicious -

Government
as PC User

Malicious '\
Gruup}lndmdua X
as_Goyernment

Altacker-and
ackegmaﬁ‘ciou
Jser

(b) Diagram showing the result of substitution

Figure 8.2-20 Substitution of Hacker/Malicious User in TCGCS



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 161

Bovemmen

(a) For Substitution of PC User (b) For Substitution of Hacker/Malicious User

Figure 8.2-21 Our modified AC views in removing the logic gaps

Finally, we identified one inconsistency (or duplicate) in the actor-type
assignment. From models 2.5.11 to model 2.5.13, agent PC Manufacturer/Service
Provider TCG Member as TCG (TCPA) (PCMSPTCGMTCG) seems to have
replaced role PC Manufacturer/Service Provider (PCMSP) in the SD diagram. If
we follow the same tacit logic explained in the previous comment, the former (agent
PCMSPTCGMTCG) has to “plays” the latter (role PCMSP) to make the replacement
in the SD view consistent. On the other hand, agent PCMSPTCGMTCG seems
related with agent TCG (TCPA) in some way. Since TCG is a group, most likely the
former should be “is-Part-of” the latter. However, there already existed an agent PC
Manufacturer/Service Provider TCG Member that has exactly the same actor
associations in the model. Thus, either agent PCMSPTCGMTCG is a duplicate or it
introduces some inconsistency; it does not seem like a duplicate in that the author
used three models to emphasize it. Based on the above assumptions, we modified
PCMSPTCGMTCG into a role that is a specialized form of role PCSMSP and is
played by agent PCMSPTCGM. It still can replace role PCSMSP in any SD view.

The modified version is shown in Figure 8.2-22.



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 162

aﬂ'ﬁ}
acture
Ce

Service

Figure 8.2-22 Modified version showing PCMSPTCGMTCG as a role

The AC view appears to be the weakest part in TCGCS, but this is a result of the
lack of definitions, rules and guidelines in previous i* literature. With the
clarification in our reformulated i* framework—and especially with the introduction
of the external relationship inheritance rule along association links—redundancies,
logical gaps and even inconsistencies that existed in the original model were
revealed. Thus, our approach not only scales down complex AC views, but also

helps verify the validity of large scale i* models.

8.3 Strategic Dependency Views

Pair-wise-Actors and Single-Actor-Focus SD views were extensively used in
TCGCS. This intuitive approach matches exactly what we have proposed in Chapter
6. We can stay with the Specified Actor Based SD view throughout our rework
because the two baseline models documented in TCGCS only contain specified
actors. Thus, the only problem is the lack of a reference structure for the SD

diagrams in the original document.

In this section we present related SD views in a centralized manner and provide
their relationships in a view map. Our purpose is to verify our proposed view

extensions, so we choose just enough diagrams from TCGCS to test each type of



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 163
view. There are other diagrams in TCGCS correspond to SD views, since they would
follow the same pattern as the ones we discuss in this section, we do not show them

here.

We choose the Basic SD view (TCG.Pro.SD) from TCG proponents’ view point
as the original view. Figure 8.3-1 shows the relationships between TCG.Pro.SD and
the sub-views derived from it. TCG.Pro.SD (abbreviated as SD) is first decomposed
into a set of Single-Actor-Focus SD views, and we select five of them in this section,
as follows: role Government as PC User (SD.SA-GovernmentPCU), role
Individual Consumer as PC User and Content User (SD.SA-IndividualPCUCU),
role Malicious User, agent TCG (SD.SA-TCG), and agent instance George Hudson
(SD.SA-GeorgeHudson). SD.SA-GovernmentPCU and SD.SA-TCG are further
scaled down to Pair-wise-Actors views SD.PW-GovernmentPCU-PCSMSP and
SD.PW-TCG-HackerMU, respectively.

SD.SA-GovernmentPCLU :
—1 A Single-Actor-Focus 8D View |-........ SD.PW-GovernmentPCU-PCSMSP :
(Figure 8:3-3) T A Pair-wise-Actors SD View, ~
(Figure 8.3-8)

SD.SA-IndividualPCUGU -+ .
— A Single-Actor-Focus SD View

(Figute 8.3-4)
[TCG.Pro.JSD : S RpA
The Baslc 8D View J=— N 5D .SA-MaliciousUser
(Figure 8,3-2) — ‘A Single-Actor-Focus 8D View

" {Figure 8.3-5)

SD.SA-TCG: SD PW-TCG-HackerMU
— A Single-Actor-Focus SD Vigw [~ “3M A Pair-wise-Actors SD View, ~
{Figure 8.3-6) (Figure 8.3-9)
SD.8A-GeorgeHudson ;

i A Single-Actor-Focus 8D View
{Figure 8.3-7)

LEGEND
View ViewNams : .
~~~~~~ / View
> projection —{: dacomposlicr: ViewTypal, ViewTypel~, .] | AVview

Figure 8.3-1 View map for partial SD views from the Pro TCG view point

CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 164
8.3.1 The Basic SD view

Figure 8.3-2 shows the Basic SD view from the TCG proponents’ viewpoint; we
name it as TCG.Pro.SD. This view shows an extremely complex relationship among
actor PC User, TCG (TCPA), PC Software Manufacturer/Service Provider, and
Hacker/Malicious User. It appears quite difficult to read.

ment
gg‘fgc Oser PLAYS

ey
S b XPewes
avsrme) ! reatening
echnglogy

21 M
e 58 O i
E RN)
@ ~-~"’M‘S{}}!’l” ""
N2 % v 2

y

¥ [Owned
V=T Copyrighted
N Nraak A oML
g A J ~ o e e ve
S /‘ SR o rmas|
Zli; o
o CIGUIAE irale
P 3

Affordabls:
ec?rr?ulo

PC|
;gmwyara
GRS

Figure 8.3-2 Basic SD view from the TCG proponents’ viewpoint

8.3.2 Single-Actor-Focus SD views

We apply the single actor rule (singleActorFocusSDRule) to TCG.Pro.SD and
obtain a set of Single-Actor-Focus SD views. Those for the following five actors are
presented: role Government as PC User, role Individual Consumer as PC User
and Content User, role Malicious Group/Individual as Government Attacker

and Hacker/Malicious User, agent TCG, and agent instance George Hudson.

Figure 8.3-3 shows the Single-Actor-Focus SD view of role Government as PC
User. We mname it TCG.Pro.SD.SA-GovernmentPCU. There are two
correspondence diagrams (models 2.20.1 and 2.18.1) to this view in TCGCS.

CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 165

-~
Py

W

Threatening
gchnolog

e Cf
ganware
ervices

Figure 8.3-3 External relationships for role Government as PC User

T 0
ST,

fl
rdable
athnolog

e
aomae

Figure 8.3-4 External relationships for role Individual Consumer as PC User and

Content User

CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 166

Figure 8.3-4 shows the Single-Actor-Focus SD view of role Individual Consumer
as PC User and Content User (ICPCUCU). We name it TCG.Pro.SD.SA-
IndividualPCUCU. It summarizes the information contained in TCGCS (model
2.3.1 for PC Manufacturer, model 2.4.1 for Hacker, model 2.5.1 for TCG, and model
2.6.1 for Content Owner). Using actor associations (shown in Figure 8.2-12) and the
external relationship inheritance rule, we know that role ICPCUCU shall inherit all
external relationships for role PC User and role Content User. That is the method

we used to calculate the external relationships for ICPCUCU.

Figure 8.3-5 shows the Single-Actor-Focus SD view for role Malicious
Group/Individual as Government Attacker and Hacker/Malicious User (MGIGAHM).
We name it TCG.Pro.SD.SA-MaliciousUser. There is a correspondence in TCGCS
(model 2.4.1) to this view. We replaced role Hacker/Malicious User (HMU) with
role MGIGAHM in our version—because the former is a specified form (ISA) of
role Government Attacker and Hacker/Malicious User (GAHMU), while
GAHMU is the whole of HMU. According to the external relationship inheritance
rule, MGIGAHM inherits all external relationships from HMU. Therefore, the

replacement in this SD view is legal.

Malicious

Group!
ey
Men Reduc
tfﬁ %%%arn: [Spam?

irsi
=

Figure 8.3-5 External relationships for Malicious Group/Individual as Government

Attacker and Hacker/Malicious User

CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 167

Figure 8.3-6 shows the external tasks and goals of agent TCG and illustrates how
they affect the effects exerted by role Hacker and role Data Pirate. We name it
TCG.Pro.SD.SA-TCG. Information shown in this view corresponds to three
diagrams (models 2.5.1, 2.10.1, and 2.14.1) in TCGCS. Note that in the diagram
shown below, we use the full name of each dependum to indicate its depender and
dependee in the form “(depender, dependee)”’. For example, Reduce [spam]
(PCUser, PCMSPTCG) denotes that PC User depends on PC Software
Manufacturer/ Service Provider as TCG Member (PCMSPTCG) to reduce spam.

Unknown

nadiCopyrighted
contant Sold .online)
(ContentOwnet!
CopyrightHoldar,

=
el \
sf
5

irise
8{ ll:

‘

wnei; nip a&ﬂs

(Contantowner

CopyrightHolder,
gntenttise

= SR

Romas s

Unknown

Figure 8.3-6 External relationships for agent TCG (TCPA)

Figure 8.3-7 was derived from the Single-Actor-Focus SD view for role Data
Pirate and the Direct-Replaceable view of agent instance George Hudson (Figure
8.2-15). Since the agent instance “plays” role Data Pirate, it inherits all external
relationships of that role. In addition, we know from TCG.Pro.SD (Figure 8.3-2)
that this agent instance has extra dependencies to another agent instance Helen Duff.

Therefore, we combined the above information and produced the Single-Actor-Focus

CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 168

SD view for George Hudson below. Part of our information is obtained two
diagrams (models 2.6.8 and 2.6.6) in TCGCS. We name this view TCG.Pro.SD.SA-

GeorgeHudson.

CG(TCPAY

Unknown

Content
Owhner./
Copyright
Holder

Qwned [
Copyrightad
Cortent

Figure 8.3-7 External relationships for agent instance George Hudson

8.3.3 Pair-wise-Actors SD views

Figure 8.3-8 shows the Pair-wise-Actors view for PC Software Manufacturer/
Service Provider and Government as PC User. We obtained it by applying the pair-
wise rule (pairwiseActorsRule) over TCG.Pro.SD or TCG.Pro.SD.SA-
GovernmentPCU. We name this view TCG.Pro.SD.PW-GovernmentPCU-
PCSMSP. This view appears exactly the same a diagram (model 2.18.1) in
TCGCS-—except for the omission of the dangling dependum Access [Threatening
Technology].

CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 169

tusted [PC
User]

PMiruses!
Malli:u:n I3

anufacturs
Serwce o

Py
Software
Services

Figure 8.3-8 Pair-wise view for PC Software Manufacturer/Service Provider and

Government as PC User

Figure 8.3-9 shows the Pair-wise-Actors view for TCG and Hacker/Malicious
User. We obtained it by applying the pair-wise rule (pairwiseActorsRule) over
TCG.Pro.SD or TCG.Pro.SD.SA-TCG. We name this view TCG.Pro.SD.PW-TCG-
HackerMU. This view conveys the same information as does its correspondence
diagram (model 2.5.1) in TCGCS. Yet it appears much simpler and more
comprehensible, with the omission of the depender (PC User) and dependee
(PCMSPTCQG) of the six dependums (e.g., Reduce [Spam]) and the 12 corresponding
dependency links.

CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 170

Hacker/
Malicious
ser

Manutacturer/
| ServiceProvider as
TCGMember)

([Virusess

Malicious.

Cantrol [PC)

Secure
Wransactiony

[ed
Datal

Figure 8.3-9 pair-wise view for TCG (TCPA) against Hacker/Malicious User

8.3.4 Discussion

In this section, we validate our approach in reducing a Basic SD (TCG.Pro.SD)
into various forms of partial SD views so as to increase its comprehensibility. The
reduction was performed manually according to the selection rules defined for each
SD sub-view. Resulting partial views were presented in a top-down flavor—that is,
from the complex and complete basic view to the simplified partial views.

Relationships among these views are presented in a View Map.

In TCGCS, intuitive Pair-wise-Actors SD views are used extensively.
Consequently, the presentation makes it difficult to perform node analysis centering
on a given actor. To study the vulnerability and opportunity of a given actor, model
users need to study several diagrams, usually shown in separate chapters. During our
rework of TCGCS, Single-Actor-Focus SD views were summarized according to all
Pair-wise-Actors SD views related across the original document to the following

selected actors: role Government as PC User, role Individual Consumer as PC

CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 171
User and Content User, role Malicious Group/Individual as Government
Attacker and Hacker/Malicious User, agent TCG, and agent instance George

Hudson.

A difference also exists in the way we should express external contribution from
an actor to a dependum. For example, the external break contribution from role
Hacker/Malicious User ends at softgoal dependum Reduce [spam] (Figure
8.3-10(a))in TCGCS, but according to our reformulated i* semantics it should end at

the corresponding outgoing dependency link of the dependum (Figure 8.3-10(b)).

Hacker/
Maé]clqus
ISer:

R

Hacker/

Reguce (Span]] 4
(PCU, PCMSP) I\

Cortrol IPC1
(PCLI, PCMSP)

(a) Style used in this chapter (b) Style proposed in Chapter 6

Figure 8.3-10 Differences in expressing external contributions to dependums

In fact, the style applied in TCGCS appeared more concise in the graphical
representation (no extra actor PCMSP, highlighted with dashed rectangle, shown in
the part (b) of the above diagram), and easier for defining selection rules (since
fewer elements need to be selected). We removed the TCGCS style from our
proposal because this difference could have different implications in terms of i*
semantics; we show our concern by way of the example shown in Figure 8.3-10.
Breaking a dependum (e.g., Reduce [Spam]) directly suggests that this dependum
will not stand, so the corresponding dependee’s (e.g., PCMSP) internal rationale
might be affected. This conforms to the label propagation algorithm employed by
TCGCS, which propagates labels from a dependum along both directions of the
dependency links, towards internal elements, to both its depender (e.g., PCU) and
dependee (e.g., PCMSP). By breaking a dependum’s outgoing dependency link, we
restricted the break effect to only the depender (e.g., PCU). This style of label

CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 172
propagation algorithm is employed in the LAS case study (You 2003) and other
previous literatures (Yu and Liu 2000; Liu et al. 2003). However, this issue lays in
the 1* semantic itself, and its description is not an intent of this thesis. Furthermore,
once a consistent semantic and graphical representation is selected, we can adjust
the definition of the single actor focus selection rule (singleActorFocus[SD{SR]Rule)

to make our view extension compatible.

We could have converted the style to our proposed one; however, we did not
modify it, for the difference does not affect our reduction of views. For simplicity,

we assume the different graphical notions are semantically equivalent.

The difference between TCGCS and the reformulated i* framework in presenting
the external break contribution shown in Figure 8.3-10 incurs other differences in
graphical representation. One is the extra actor PC Software Manufacturer/
Service Provider (PCMSP) shown in part (b) of the above diagram. For emphasis,
we highlighted with a dashed rectangle, but there is no semantic meaning behind this
graphical notation. Another is the naming of the dependums. Since we do not show
the dependees the dependums depend on in part (a) of Figure 8.3-10, we use the full
name of each dependum to indicate its depender and dependee in the form of
“(depender, dependee)”. For example, Reduce [spam] (PCU, PCMSP) denotes that
PC User depends on PC Software Manufacturer/ Service Provider (PCMSP) to

reduce spam.

Despite the differences existing in the SD diagrams, we consider that our
approach can present what was modeled in the SD diagrams from TCGCS. The
major contribution is that we offered overview information, rules to reduce complex

SD views, and guidelines to present related SD views in a systematic manner.

8.4 Strategic Rationale Views

Given the complexity of the Basic SR view from TCG, we cannot conveniently
show it in one diagram. The Basic SR view can be reduced to a set of Single-Actor-

Focus views, one for each actor, following a similar single actor focus rule as

CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 173
described in the SD view. These sets of views can be further reduced in a similar
manner following the set of partial SR view selection rules. Therefore, we can use
the Single-Actor-Focus view of one actor to validate the effectiveness of the SR part

of our view extension.

SR.SA-TCG.Internal.NonFunc.§S-LockinPCL
SR.SA-TCG.Internal Functional : — A Single-Softgoal View
An Inlernal-Functional View (Figure 8.4-7)
{Figure 8.4.5)
SR.SA-TCG.Internal : SR.SA-TCG.Internal NonFunc SS-SupportORM
— A Single-Actor-Intemal View || A Single-Softgoal View
{Figure 84-3) {Figure 8.4-8)
SR.SA-TCG.Intermal.NonFune ¢
An Iniernal-Non-functional View SR.SA-TCG.intarnal.NonFunc.SS-FightPiracy :
(Figure 8.4-5) — A Single-Sofigoal View
(Figure 8.4-9)
SR.SA-TCG Internal.NonFunc. §§-TrustedPCU
[TCGARLISR SA-TCG : — A Single-Softgoal View
A Single-Actor-Focus SR {Figure 8.4-10)
View
{Figure 8.4-2)
SR.SA-TCG.External. SAD-Compatible+SAD-innovation :
A Single-Affocted-Dependum View+
A Single-Affected-Dependum View
{Figure 8.4-11)
SR.SA-TCG. Extormal : SR.SA-TCG Extermal SAD-ControlPC :
| ASingle-Actor-External View —— A Single-Affacted-Dependum View
{Figure 8.4-4) {Figure 8.4-12)
SR.SA-TCG.External. SAD-ProtectSD :
P—_ A Single-Affectad-Dependum View
(Figure 8.4-13)
LEGEND
g MView View ViewName: I A visw SR.SA-TCG External.SAA-loHaCKerMU |
projaction i YiowTypol, ViewTyper~. -] L] A Single-Affected-Actor View
{Figure 8.4-14)

Figure 8.4-1 View map for partial SR views from the Anti-TCG viewpoint

In this section, we choose the Single-Actor-Focus view for agent TCG (the
extreme complex case) from the opponents’ viewpoint (TCG.Anti.SR.SA-TCG) as
our original view. This original view was scaled down into a set of related partial
SR views; their relationships are shown in Figure 8.4-1. TCG.Anti.SR.SA-TCG
(abbreviated as SR.SA-TCG) is first decomposed into a Single-Actor-Internal view
(SR.SA-TCG.Internal) and a Single-Actor-External view (SR.SA-TCG.External).
The Internal view is further decomposed into an Internal-Functional view (SR.SA-
TCG.Internal.Functional) and an Internal-Non-functional view (SR.SA-
TCG.Internal.NonFunc). The Non-functional view is further decomposed into four
Single-Softgoal views (e.g., SR.SA-TCG.Internal.NonFunc.SS-LockinPCU). The
External view can be further decomposed into four Single-Affected-Dependum

views (e.g., SR.SA-TCG.External.SAD-ControlPC) and one Single-Affected-

CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY

Actor view (SR.SA-TCG.External.SAA-toHackerMU).

Dependum views,

SR.SA-TCG.External. SAD-Compatible

174
Two Single-Affected-

and SR.SA-

TCG.External. SAD-Innovation, are shown in one diagram, and we name the

combined one TCG.External. SAD-Compatible+SAD-Innovation.

8.4.1 The Single-Actor-Focus SR View for agent TCG

Figure 8.4-2 shows the Single-Actor-Focus SR view for agent TCG, derived by

applying the single actor focus rule (singleActorFocusSRRule) over TCG.Anti.SR. It

corresponds to the SR model for agent TCG (model 3.2.5) in TCGCS, and we name

it TCG.Anti.SR.SA-TCG. This view is used as our original view from which other

partial views presented throughout this section will be derived.

-
- -
b T

-

Trisk[PG -
Usery ’,p' Seg
.
’»" b “
. .
o' ~
Inngvation K .
Techaolog * ~,
’/ s ~,
e LY
Holp
RE User e A
i Existi N
'8chnology L g lis} \
Ininigmant Issldsl H D
ut o s T'g:tulgc . F ight P! \'
A o N Pira
aaj’u'% x) Ui s [&7"'*”"0';]v \
H
- unt <. ackdogr
& implemenl %ﬂl]
¥ nj: R .
o oo Y usted stgd X Tonoed
o I, (G Bt
it e o] s ‘
v B ! ¢) p
1 - implamentye 5 pacitc
] '. nupm«mn - p s]"o?ﬁ]" Dl;ﬂm‘?ﬂ y
OnYTOUS eak ¢ et DT 2 :
& o B o | N Sjision 8o 52 ST A ofine Gl
\ ange) L fn "%ﬁ%ﬁ“u‘“‘ 1‘”\‘%“’ Prime Defing TBE
Hu] Ehaiant S S Slorige o
\'~4 22 ot * 4 it
iy o 69 T i ,
o LoekiniPe 2 & '/ Encyption
L ‘Uswﬂ'l‘ . ﬂﬁt ok 3 ﬂ'a.mo y IMFI'ET;M Keys with
5 o Hi ;
ControlFPe] reak Ndurt
x
Hed D ot
eitinavaili toedt
B " mg’r‘\ eetan) (. Piptory N\Regslrato ﬁunv te
andom
Profact Lo e mplomenty, N
Totcrad e Rd J
Break ALY Tt .
mpeme: .
. { P Chip i Sorl CHEEE s
NG dentlty Regisiery Servars Be *
5 ECR) loman 4
acke ~ !
Malitious « 4
Set 4 s
N\ "
\\\ ".
S ad
R

Figure 8.4-2 Single-Actor-Focus SR view from the Anti-TCG viewpoint of TCGCS

CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 175

8.4.2 Single-Actor-Internal and External views

Figure 8.4-3 shows the Single-Actor-Internal view for agent TCG, derived by
applying the internal rule (singleActorInternalRule) over TCG.Anti.SR.SA-TCG. It
corresponds to the same diagram (model 3.2.5) in TCGCS, and we name it

TCG.Anti.SR.SA-TCG.Internal.

(ars
Usalg

— ?{igm Piracy.
2 oware)

Bha
{ o Soocified
BE7ZE 25 -
P \‘ efine CRTH)
D Ddfing TBB
miprove [File
glara?e
‘ I\ Securi] Ayaws

NPT
Encrypiion

tmplement Keys with
NCAg. Hardvears

’ N\ ée\gm

[} \
* : & Brarate
\‘ Y Nachanlsmeé) ’%S#‘ ﬁef:é
A ’ Inngtement
“ Newas /
* Implamant
NoA FazChip
kY : R d - i %
’\ - 4 GR) ¥ e -'4

Figure 8.4-3 Single-Actor-Internal view for agent TCG

Figure 8.4-4 shows the Single-Actor-External SR view for agent TCG for agent
TCG, derived by applying the external rule (singleActorExternalRule) over
TCG.Anti.SR.SA-TCG. This view does not appear in TCGCS. We introduced it as

an intermediate model summarizing all external relationships of TCG. We name this

view TCG.Anti.SR.SA-TCG.External.

CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 176

o

- -
TSP - -~
Usen e ST
P .~.
>
Inngvation o “
Technolog: e *
o g >
- Tiaee
PCUser - Halp e % e ant "
it o e T S
‘achnolog " Specilic N,
plamsnatiol N
Spocf 3
)
dyc \ Logk-in IPC 'y
[opam ! Vsers|)
! b
»
e i [pcn Ierplemal ent ‘l
aé“:%{f I a g ‘ 3 Fm o5 nuo e%ms
anvice PSS! Sl '
i N : wlic 0ys: ! K o '.
o ckdo& 1
L}
™ H o Fiohied ;
ORYTIOUS 83K Hyrt o h
Al
NS Exchange] K !
Hurt : H
: - Certlfy
eak \ g “{ Machiness v 0 *
\ Sorure Break X Caraote. N weXppilcation gtun & 1
ransaction; e . Dam“&“ HoJ i e eyl 'l
\\)) "
i s urt . g . uyma) 2
@ Unavallal s
: - - K
{Sortrol Py e\ Hut / T Fooltations 4 K4
urt . - . 0l 4
BNk Hunt 5 ‘ a0 s
5 ’
Protect Hurt *
{starad eta 8 -
Braal he' -
‘o : o
.~ g
S -
by W L e e
Malitlous
ser.

Figure 8.4-4 Single-Actor-External view for agent TCG

8.4.3 Internal-Functional and Non-functional views

Figure 8.4-5 shows the Internal-Functional view for agent TCG, derived by
applying the functional rule (internalFunctionalRule) over TCG.Anti.SR.SA-
TCG.Internal. There is a correspondence to this view in TCGCS (model 3.1.1), and
we name it TCG.Anti.SR.SA-TCG.Internal.Functional.

Figure 8.4-6 shows the Single-Actor-Internal Non-Functional view for agent
TCG, derived by applying the non-functional rule (internalNonfunctionalRule) over

TCG.Anti.SR.SA-TCG.Internal. There is a correspondence to this view in TCGCS
(model 3.1.6), and we name it TCG.Anti.SR.SA-TCG.Internal.NonFunc.

CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 177

ight Piracy).
[Softvware]

e S5 sy £

Bacmbg

JEiSae

o acites
i,
» ,b
Defihe TBE
fimprove {File
ke

|alrn?e
Sacutity)

c Bl’\
Keys with
Haram
rogactad. 3
F He Lin 151 .
) r!ams 3
Kppiieatio , %‘%‘}.g.?&
i Numbers./
bl Imﬁlemom o
Er Cnip
\s‘ .
‘a 'I
~ ¢
Figure 8.4-5 Single-Actor-Internal-Functional view for agent TCG
L Y
4, B — N
F 4 ‘\
' *
b
b1
, (Rrgsons
_ : g TN ded
: {Sotware] | :
. - | - Suprgon
Usere] Help el SE
implement ; b Proreocdie oo s
_ > 15l g T
{ : Secunly
ake
¥ ALY Ces
sied Y n
Pia Y f
= Pﬁégt jorn
ronies Cority s
; Encryption
A Kave with
3 d argware
2 | 1N
e
0 n{ma. e,
Applications /.. g%raa Qalng
. Paiaid, Numnbers. /
" Naxs :
imptament
A Fritz Chip
4
L
‘\ ‘l

Figure 8.4-6 Single-Actor-Internal Non-functional view for agent TCG

CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 178

8.4.4 Single-Softgoal views

Figure 8.4-7 shows the Single-Actor-Internal Single-Softgoal view of softgoal
Lock-in PC Users internal to agent TCG, derived by applying the single softgoal
rule (nonfunctionalSingleSoftgoalRule) over TCG.Anti.SR.SA-
TCG.Internal. NonFunc. There is a correspondence to this view in TCGCS (model

3.1.2), and we name it TCG.Anti.SR.SA-TCG.Internal.NonFunc.SS-LockinPCU.

Pl 2
* .
P ‘s
»
2 pn ‘ N
. G « Hurt Luck In[PC .
/ o implement b - :
s A e) i
, v
[
¥
J/
¥
I
r
']
I 5
'l Dgcumant
i - Ountrul
K
3
] " O
u nptatacted .
" Nppncatruns Piatfo
Con uratm
. e Checkedd
\ .
L
1 o
t\ “
“\“ o
. R /
L3 i ’
\;‘ : ‘l
< 4

Figure 8.4-7 Internal Single-Softgoal view for softgoal Lock-in PC Users

Similarly, Figure 8.4-8 to Figure 8.4-10 show the Single-Actor-Internal Single-
Softgoal view of softgoal Support [DRM], Fight Piracy [Software], and Trusted
[PC User], and there correspondences to these views in TCGCS (models 3.1.5, 3.1.4,
and 3.1.3, respectively). We name them as TCG.Anti.SR.SA-
TCG.Internal.NonFunc.SS-SupportDRM, TCG.Anti.SR.SA-
TCG.Internal.NonFunc.SS-FightPiracy, and TCG.Anti.SR.SA-
TCG.Internal.NonFunc.SS-TrustedPCU, respectively.

CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY

.

R 2.
(censorshis
Delsiion Bs

Available

s P
0’ Unprotaciag
Applications J

Zimplemente
\ FrizChip 7

Y

FightPiracy).
[Sofware] |

Remos)
Cansarship
Dglelion Be
Available

Ce‘?x’(?érgrrat 0
BeC

eckey/ :
3 e Implement
b X fnfrastiuciure A\ Nexus
\, ; (B Eeesy ’
\ : Suvers Be
i i@ blementeg
A i
. R .
bl z ® 4

Figure 8.4-9 Internal Single-Softgoal view for softgoal Fight Piracy [Software]

179

CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 180
’ R, GRS

#” o
* i 55
¢ o
-+ Ve
’
, -

\ Trust[PC) Hu
Usei} ?

Fight Pirac
{glztﬂware]y

R

grova j[FtIa Y
torage
Secumv]

FlaomBe) 4
st
lssues] \
; smote

Immsmem X
FritzChip / ‘Numbers

Figure 8.4-10 Internal Single-Softgoal view for softgoal Trusted [PC User]

8.4.5 Single-Affected-Dependum or Actor views

Single-Affected-Dependum views presented in this section are all derived by
applying the single affected dependum rule (singleAffectedDependumRule) over
TCG.Anti.SR.SA-TCG.External.

Figure 8.4-11 shows the Single-Affected-Dependum views for softgoal dependum
Compatibility [with existing Technology] and Innovation [PC Technology].
There is a correspondence to this view in TCGCS (model 3.2.2). We name it
TCG.Anti.SR.SA-TCG.External. SAD-Compatible+SAD-Innovation. TCGCS
shows these two external dependums in one diagram since their relationship to each
other is simple and it would be a waste of space to use two diagrams. However, this
is human decision; the step we recommend in applying our view extension is for
users to obtain single dependum views first and then combine into a multiple-

dependum view the ones they consider related.

CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY

RC Softward
a u&%rer
EEM @

rovider

N oa”

ap T ——
-
,,a

Help Py ;

¢ ;

Help P “implement
Hurt ™% /
¥

4
s

F B
v . Implement

* nda&semen
[t . : CREY o
I N\ »

NG
(&

'

 §

- Craste: X D%cumant
Pro{ectmn& ceas! |
Profiles Un%ro Locks;r:s(rc

i

[}
\
.

\

s Protected Dat

\ Fe UnavalPag e

Hurt ‘\ o_Unprotected
o « N\ Abplications.

Figure 8.4-11 External Affected Multiple-Dependums view for dependums

Compatibility and Innovation

181

We omitted the internal rationale for TCG in Figure 8.4-11—because we are

concerned only with the external effects of TCG. We consider it sufficient to show

only the elements that contribute to external objects in answering questions such as

“How would the application of the Trusted Computing Group affect the control of

PC to each PC user?” (See Section 7.2.2 for detailed justifications).

Figure 8.4-12 and Figure 8.4-13 show the Single-Affected-Dependum views for

softgoal dependums Control [PC] (model 3.2.3) and Protect [Stored Data] (model
3.2.4), respectively. We name the former TCG.Anti.SR.SA-TCG.External.SAD-

ControlPC and the latter TCG.Anti.SR.SA-TCG.External.SAD-ProtectSD.

CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 182

ey
O - -
T
'*'
Vi Censorshml
s Deletion Be
‘s Ava%:ame
&
o v Backdogr
Hurt ! ’gcess 8
’ ’ rovided.
Break
' i ' ~ ‘ Bung
Caontrol [PC] liteam ———
~ ’ .
, — .
o Document'\
— ACCBSS
e \. Contral
¥, . ;
\§ . . Isolate
\ . T Apphcatwns
: Pro 3
\%3&%{'{%(‘\ fBe: Unavaan e
Savice . o_Unprotected
Provider ~, Applications R
e ——) \~~ ""

P .
*a
erice”
rovider Backdoor
: ; cessBe
o rowded \
Protect - ' ‘
[Stn‘reéeData
'

Figure 8.4-13 External Single-Affected-Dependum view for Protect [Stored Data]

Figure 8.4-14 shows the Single-Affected-Actor view to role Hacker/Malicious
User, derived by applying the single affected actor rule (singleAffectedActorRule)
over TCG.Anti.SR.SA-TCG. There is a correspondence to this view in TCGCS
(model 3.2.1), and we name it TCG.Anti.SR.SA-TCG.External.SAA-toHackerMU.

CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 183
PC Software ‘ ¢
"""é“.fﬁﬁé‘é‘a” ;

Pravider-
Iimplement -
Endo&semari rovo ile
1698

Socurlty]

Celify
Machines!
Apiplications

. % Mﬁgms /

" Yot . ‘/
N ’
~ /'
~~~ -
- -
Ny -
- Hacker!
Malicious User

e

-

Figure 8.4-14 External Single-Affected-Actor view to Hacker/Malicious User

8.4.6 Discussion

In this section, we demonstrate the process and results of dividing the Single-
Actor-Focus SR view for TCG (TCG.Anti.SR.SA-TCG). A hierarchy of sub-views
of TCG.Anti.SR.SA-TCG was derived following the guidelines in our view

extension, and their relationships were presented in a View Map.

The intuitive approach taken in TCGCS to break down the complex SR views
conforms to what we propose in this thesis. Therefore, there exists a one-to-one

mapping between the set of partial views and the original “models” in TCGCS.

Our work has enhanced the current state of the art by, first, producing a view map
showing the layout and connection among the views. Another improvement is the
reduced complexity in each view, a reduction attributed to the formally defined
selection rules associated with each type of view. Unnecessary elements are
removed in the views—especially the external ones. Compared with their

corresponding original models shown in TCGCS, the new views appear concise and

more comprehensible.



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 184

However, during real applications, some of the views could appear over-
simplified, and displaying them separately would be a waste of space. In this sense,
views can be combined as long as they remain comprehensible. For example, the
two Single-Affected-Dependum views SR.SA-TCG.External. SAD-Compatible and
SR.SA-TCG.External.SAD-Innovation are shown in one diagram (Figure 8.2-12).
This action is subject to human decision. We recommend users apply our view
extension to obtain single dependum views first, and then combine in a single

diagram the ones they consider closely related.

The perfect matching between the SR views presented in this section and the
original ones from TCGCS demonstrate the ability of our approach in conveying the
same amount of information to i* model users. Our major contribution is that we

offer overview information and clear-cut rules.

8.5 Contributions and Results

We tested the validity of our proposed view extension against TCGCS, and we
outline our result in this chapter. This process resulted in a total of 37 diagrams,
showing the baseline model, 15 AC views, 8 SD views, and 13 SR views. Among
these views, only 2 remain exactly the same as what was demonstrated in TCGCS,
17 of which are newly added ones, the other 18 being modified. In addition, 4 View
Maps for showing the relationship for basic views, AC views, SD views, and SR
views were also supplied to make attainable the relationship among views from the

same group.

Our approach is NOT to redo the case study. Therefore, the name or type of any
modeled elements remains intact from their original forms. Even the greatly
enhanced AC views only experienced changes in some association links and the
addition of some extra (or intermediate) actor elements. No actor that existed in the

original models was removed from our views.

However, our approach is to reorganize the diagrams designed for representing

the same model in a systematic manner. Consequently, the sequence in which we



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 185
present the views in this chapter differs from that in TCGCS; this is because the two
approaches emphasize on different processes: TCGCS focuses on the model
generation, but our approach targets on model representation. Accordingly, the
organization of views also differs between the two approaches: We organize views
according to their types (meta-concept driven approach), while TCGCS organizes
according to the actor pairs each view presented (application-domain knowledge

driven approach).

Our approach offers a method to enhance the consistency, clarity, and
accessibility of the two models in TCGCS. These benefits are achieved by applying
the concepts streamlined in the reformulated i* framework, by the reference
structure offered by the view extension, and by the formal definition of selection

rules associated with each type of view.

The reformulated i* framework enforces the bonds among the basic views. From
the discussion of applying the AC views (Section 8.2.6), we learnt that the enforced
bond between the AC and SD views helped identify inconsistencies and correct
logical gaps out of the original model. Therefore, the reformulated i* framework

helps increase the consistency of i* models.

The reformulated i* framework also formulates an external relationship
inheritance rule over actor associations. This rule can help remove duplicated
dependency links in the SD view. For example, Figure 8.5-1 shows the original SD
level baseline model summarized from diagrams in TCGCS. In our revised version
(Figure 8.1-2), the redundant external relationships surrounding role PC Software
Manufacturer/Service Provider TCG Member as TCG (PCSMSPTCGMTCG) is
removed. Since following the “ISA” link to role PC Software
Manufacturer/Service Provider, we know that PCSMSPTCGMTCG can inherit
all external relationship from PCSMSP. Thus, we can safely remove all 12 incoming
dependency links towards the former actor without losing any modeled information.
With less intertwined links in our revised presentation, clarity of relationships

among modeled elements increases.



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 186

<~
<> L)

TigokE]
nglogy

orvenssooonne)
e
Individual.
Coreroveoporesd

B WAl /, y N\ ’ A )
franiifactireny  Is-Part-of ez s Y v“ (I('/ o
Cria = RONSE2 ) 3 ]
S oSy D
A\. /. Jransactiongl/ A ’ land Lol urt
Y B> 2 LR T '4.”4@
 ndivdiial Copyighied

ansumer,

-
- omene” ol
d '3 d O
A L7 {o

Pirsting
7 INs | Indvidual A INS

e

Figure 8.5-1 The original model from the Pro TCG viewpoint

The introduction of the reference structure helps organize views (or diagrams)
derived from the same baseline model in a systematic manner. The reference
structure is realized by 4 view maps during our revision of TCGCS. For each view
presented in a view map, users can identify its type, parent view(s), and child view(s)
(if applicable). Its corresponding caption (e.g., Figure 8.1-2) in this documentation
is also displayed. It is convenient to locate any view and switch to any of its
relatives—even inside a huge document. This action appeared time-consuming if
one had browsed through the 200-page TCGCS. Apparently, applying the reference
structure improves accessibility of views designed to represent the same model, and
we presume the efficiency of this structure increases proportional to the size of the

model.

The formally defined selection rules associated with each type of view help
remove irrelevant elements from a view. By removing unrelated information from
some complex views (or diagrams), we make them more concise and comprehensible.

Removing unrelated information would also increases the maintainability of an i*



CHAPTER 8. RE-PRESENTING THE TRUSTED COMPUTING GROUP CASE STUDY 187
model when tool support for automated view synchronization is not attainable (the
current situation). Moreover, we have demonstrated that views derived following the
proposed selection rules can serve the same objectives as those in TCGCS. With
reduced complexity in each view, information that is to communicate with model
users becomes obvious. If every view from a model appears concise, then the clarity

of the entire model certainly increases.

Applying the view extension to revise TCGCS made the presentation of models in

TCG case study clear, consistent, and accessible.



9 Conclusions

9.1 Summary of Results

The main result of this research is a view extension compatible with the original
i* framework presented by Yu (Yu 1994). The extension offers a set of guidelines
and rules on decomposing or segmenting a large-scale i* model to multiple views.
Each view has a type, and the view type decides the type of i* objects (elements and
links) that view should allow. Information contained in each view, when visualized,
should be readily comprehensible to humans using the model. The extension also
provides a reference structure so that the views are organized in a systematic manner
and are easy to access. This reference structure is visualized using View Map, a
built-in type of diagram supported by the view extension. Notations used in the

View Map are also formalized—graphically—in the view extension.

A secondary result of this research is the reformulating of the i* framework. The
reformulated framework distinguishes and formalizes a notion of view, categorizes
meta-level i* concepts into four basic views, and enforces the implicit bonds among
the meta-concepts in the basic views. The four types of basic views are the Actor
Class (AC) view, the Strategic Dependency (SD) view, the Strategic Rationale (SR)

view, and the Evaluation Results (EVLR) view.

Representation constructs of meta-level concepts from the original and the
reformulated i* framework are embedded in Telos (Koubarakis et al. 1989). Telos is
the conceptual modeling language chosen by Yu to embed the original i* framework
(Yu 1994). However, the formal constructs shown in Yu’s original thesis and the
Organization Modelling Environment (OME) tool (OME 2003) differ in style, and
we base our formal constructs on those that are used in the OME tool. Concepts
introduced in the view extension such as model, view (basic and partial), and

selection rule are also embedded in Telos. These concepts are embedded in Telos

188



CHAPTER 9. CONCLUSIONS 189

following the same style as concepts in i*. For example, the concept model is
represented by a meta-level model class, and each type of view is represented by a
meta-level view class. An i* model or a physical view is represented as an instance

of the corresponding model class or view class, respectively.

While basic view types are defined in the reformulated i* framework, partial view
types are defined in the view extension. Partial view types further differentiate each
basic view type, resulting in four groups of Telos view classes. In this thesis we
discuss three of them in detail—AC, SD and SR, each in a separate chapter. In these

detailed discussions, each type of view is illustrated in terms of

e An informal description of what type of meta-level object should be

included in the specific view type.

e A simplified example of the use of the type of view in the London
Ambulance Service (LAS) case study (You 2003).

e Justifications of the applicability of the partial view type and the

consequences of using it.

e A formal definition of the selection rule that is attached to the
corresponding Telos view class of the given view type. The selection rule
is presented in the form of First Order Logic (FOL) using meta-level

classes embedded in Telos.

The validity of the view extension was examined against the Trusted Computing
Group (TCG) case study which was originally documented by Horkoff (Horkoff
2004). Comparisons with the diagrams (called models by Horkoff) presented by
Horkoff (Horkoff 2004) were made for each of the three types (AC, SD, SR) of
views. The view extension demonstrated a more organized approach in presenting
the set of diagrams designed for the same i* model. A diagram is the visualized form
of a view. Three View Maps for AC, SD and SR views, respectively were also

supplied to make attainable the relationship among views from the same group.



CHAPTER 9. CONCLUSIONS 190

9.2 Contributions

This work offers a systematic approach to presenting large scale i* models. The
foundation of this approach lies in the notion of view and the meta-level concepts of
the i* framework. By defining views, this approach splits a baseline i* model into a
set of self-containing views that can address some specific application domain-

related questions.
This work advances i* into a more practical and ready-to-use stage:

e It streamlines into a unified style graphical i* notations scattered through

previous literature and appearing sometimes in different forms.

e It enforces the bonds among the basic views. Each SD view is considered
an abstraction of its corresponding SR view. Each EVLR view has an SR
view on which it is based. Actor associations expressed in the AC view can

be used to facilitate the substitution of actors in SD views.

e [t enhances communication by breaking down the complexity and size of

the baseline model and converting it into readable-size views.

e It embeds both meta-concepts of i* and meta-concepts in the view
extension into Telos, the conceptual modeling language selected by Yu
(Yu 1994). This formalization makes it possible to automate the selection
rules defined for each view in any commercial tool. Moreover, the
formalization ensures comnsistency in applying our proposed approach

across different applications.

e It reformulates the formal representation of meta-concepts of the i*
framework into the OME style, resulting in filling the gap between the

theoretical i* model and its actual implementation.

e It transfers ideas from database systems to the knowledge-base-oriented i*

framework—treating the modeling concepts as meta-model (schema), a set



CHAPTER 9. CONCLUSIONS 191
of modeled application-domain knowledge as the baseline model (data

table), and the projection of the modeled knowledge as a view (data view).

e It borrows from IDEFO (IDEF 1993) the technique of presenting a
reference structure of diagrams (views) designed for one model. Each
diagram is treated as a node in a node tree (a visualization of the reference
structure) in IDEFO. Similarly, we denote each view as a node in a

connected graph which we call View Map.

Furthermore, this work provides an alternative way to communicate the
information from the original TCG case study (Horkoff 2004). For the AC views,
missing bonds among actors were added following the implications of actor
associations reinforced in the reformulated i* framework. For the SD views, Single-
Actor-Focus views were emphasized so as to allow an overview of the situation of
an actor within TCG. For the SR views, most of the diagrams were simplified by
eliminating half of the elements, yet they retain the ability to address the same issue

as its corresponding diagram shown in the original TCG case study (Horkoff 2004).

Overall, this work offers a better means to represent an existing i* model. With a
formally reformulated i* framework and the view extension, large-scale i* models
can be displayed in an organized manner. Relationships among different parts of a
large model can be rendered easy to observe, helping i* users to perform model
checking. The handful of guidelines and live examples offered in this work, along
with the definition of the view types, make the i* framework ready to put in practice.
Therefore, even though the work does not address all scalability issues, we consider

it has prepared and readied i* for quite a broad range of applications.

9.3 Future Directions

This work represents an important first step forward in addressing the scalability
issues in the i* framework. Further research at the forefront of knowledge in this
area is required to provide i* users a complete package of rules and guidelines to

handle large-scale applications. Other meta-concepts or domain-based patterns are



CHAPTER 9. CONCLUSIONS 192
available to help design new types of views. The guidelines for constructing an 1*
model—not just representing it—in a systematic manner are yet to be synthesized.

This work is subject to validation in broader applications.

9.3.1 Meta-model related future work

Other meta-concepts from the i* framework can be employed in designing new
selection rules. Associating these rules with view class can define new view types,

and thus extend the view extension as follows:.

e The concept of routine “is a sub-graph in the visualized SR view with a
single link to a ‘means’ node from each ‘end’ node” (Yu 1994). In other
words, a routine refers to a particular alternative to achieve some goal that
is considered a decision point. A decision point is a goal that has multiple
means-ends linked to it, originating from different tasks (see Section 3.2.3
for more details). A new view type that presents a single routine can be

designed.

e Yu (Yu 1994) provides for “three degrees of dependency strength: open
(uncommitted), committed, and critical.” New view types could be

designed so that only dependencies at a certain degree are to be presented.

o The direction of a dependency link can also be exploited to derived views

including only incoming or outgoing dependencies.

Moreover, in this document we have not discussed in detail the Evaluation
Results (EVLR) view and naming conventions; these issues require follow-up

investigation to compensate this work.

9.3.2 Use generic knowledge-base driven techniques

Given the rich set of meta-concepts defined in i*, meta-concept-based scalability
controls already result in considerable scale-downs. In other words, by partitioning
elements in the model according to their ¢ypes alone, we can reduce the size of the

basic views proportionally.



CHAPTER 9. CONCLUSIONS 193
However, domain knowledge may contribute to generic guidelines from another

dimension.

Applications from similar application domains may possess similar characteristics
that can be generalized and reused. For example, security-related applications tend
to categorize actors by normal actors, attackers, and defenders (Yu and Liu 2000;
Liu et al. 2003; Horkoff 2004). In reliability-critical applications, actors can be
categorized into normal actors, abusers, and mitigators (Alexander 2003; You 2003).
These patterns might be used to design new types of views (e.g., a view presents

only normal actors).

Organizations may demonstrate similar organization structures, which follow a
“headquarter—division—sub-division—sub-sub-division...” hierarchy. Actors can
be partitioned according to their division or sub-division (e.g., a view presents only
actors from the same division). An intermediate abstraction level actor, such as “a
division,” may also be introduced to the extension to allow a view to show

relationships among divisions.

This line of future direction is considered important in that the distributed nature
of the i* framework is quite appropriate for modeling open-ended applications
which are richer in domain knowledge. Actors may be categorized into several
groups. However, criteria in organizing an object in an i* model according to this

line of reasoning require further investigation.

9.3.3 Guidelines for the modeling process

Guidelines in addressing scalability issues during the modeling process are most
critical. When an application reaches a certain size, the resulting work should be
distributed among different modelers; the model should be constructed over a period,
and be refined continually as domain knowledge is accumulated during the modeling
process. Without general guidelines in breaking down the workload and the methods

for maintaining model-wise consistency, either the modelers must spend extra time



CHAPTER 9. CONCLUSIONS 194
defining application-specific rules, or the integrity and correctness of the targeted

model will be jeopardized.

However, the forward engineering (modeling) process of i* requires intensive
human interaction and decision; this is because the modeling process embeds deeply
into each specific application domain, and significant features vary drastically from
one application to another. For example, the LAS project, as a close-end application,
1s required to analyze what mistakes each participant makes during a normal
operation; on the other hand, the TCG project, as an open-ended environment, is
required to analyze what impacts TCG should be dealt with from a third-party

stakeholder. It is thus more difficult to generalize the rule in the modeling process.

As a result of the foregoing, even though this work has demonstrated the strength
of the view extension in presenting large-scale i* models, to what extent it can help
the modeling process remains unclear. Nonetheless, we believe that the manner in
which we present the view can help modelers plan their procedures in constructing
and analyzing the models. Further in-depth study is required to provide direct and

useful guidelines on this issue.

9.3.4 Broader applications

Over the past 10 years, the application area of i* has changed continually. From
1996 to 1997, the i* research group explored intensively in Business Process
Reengineering, and conducted organization impacts analyses—mostly by studying
the graphical models (which we call views) along various links. From 1997 to 1999,
the strength of i* in Requirements Engineering (RE) and System Architecture were
presented from various perspectives. From 2000 until now, focus has shifted onto
internet-related non-functional requirements, including trust (Yu and Liu 2000),
privacy (Yu and Cysneiros 2002; Liu et al. 2003), security (Liu et al. 2002; Liu et al.
2003), and protection of Intellectual Property (Yu et al. 2001). The utility of i*
shifted from a more internal process reengineering to an open-ended distributed

agent-oriented approach.



CHAPTER 9. CONCLUSIONS 195

The view extension is validated against one medium-size application, but more
applications may be used to further validate the concept. Due to the richness of the
i* concepts and the uncertainty in open-ended agent-oriented application areas, we
anticipate variations in i* utility. As a result, we believe that the current defined

views are likely insufficient to present an i* model from other discipline.

To explore and implement the full potential of this research, a broader scope of
applications than now available is recommended to validate this work. A clear
advantage is that the design of the view extension is extensible, and new types of
views can be added to the current one following the Telos syntax as long as a

selection rule is provided.



Appendices

A. Transformation of FOL Formula

To verify the correctness of the formula encoded in the First Order Logic (FOL)
form across this thesis, we prototyped them using ConceptBase. ConceptBase is a
“prototype deductive object base [manager] supporting the Telos data model” (Jarke
et al. 1995). O-Telos is a variant of Telos that is implemented in ConceptBase (Jarke
et al. 1995). In this section, we illustrate the method to transform a FOL formula to

an O-Telos class.

This thesis presents two means in defining concepts introduced in the view
extension. The first one is to define new meta-classes by restraining an existing one
with a deduction rule. The other method is to define queries that include instances of
only a certain type. The two methods can both defining concepts and can appear
equivalent, when instantiated, in constructing an i* baseline model. Both means use

some FOL expression as the criterion for selecting qualified elements.

Section A.1 discusses the transformation of the definition of meta-classes;
Section A.2 presents the transformation of the definition of queries. Section A.3

presents the transformation of the expressions.

A.1 Transform definition of meta-classes

The FOL format for defining a meta-level class takes the following pattern. The

class name is bolded. Texts in brackets <> denote variables appeared in the formulae.

<class_name>::=<var>:<base_class_name> with “<rule name> rule”
<rule_name>_rule::= <expression (FOL style)>

The corresponding O-Telos format is as follows:

Individual <class_name>
in Class, MetaClass

196



APPENDICES 197

isA <base_class_name>

with
rule
<rule_namesrule:
$ for all <var>/<base_class_nam>
<expression (O-Telos style)s> =>
(<var> in <class name>) $§
end

For example, the definition of external link takes the following format, where the

assignment of the variables in the formulae is shown in Table 1.

Table 1 Variable assignment for defining meta-class “external link”

Variable Value
<class _name> ExternalLinkClass
<var> 1
<base class name> IntentionalLinkClass
<rule_name> external
<expression (FOL style)> | (1in find_all_external links())

The resulting definition of class ExternalLinkClass is represented as follows:

ExternalLinkClass::=l:IntentionalLinkClass with “external rule”
external rule::= (1 € find_all external links())

The corresponding O-Telos form is as follows:

Individual ExternallLinkClass
in Class, MetaClass
isA IntentionalLinkClass
with
rule
externalrule: $ forall 1l/IntentionallinkClass
(1 in find_all_external links({())
==> (1 in ExternallLinkClass)

end



APPENDICES 198

A.2 Transform queries
To make the view extension mountable to the i* framework, most of the new
concepts are defined using query classes. The symbol “§” denotes for all those in
the FOL pattern. The definition of a query in FOL takes the following format:

<query_name>([<arglist>])::=

§<return_var>:<return_var_type > - <expression (FOL style)>

Where <arglist> is defined as follows:

<arglist>::=<arg>[,<arglist>]

<arg>::=<input var>:<input_var_type>
Queries without any input variable are mapped to QueryClass, while those with

input variables are transformed to GenericQueryClass.

Individual <query name> in QueryClass isA <return var_type>
with
attribute, retrieved attribute
<attributelists>
attribute, constraint
c: $ <expression>$
end

Individual <query name> in QueryClass 1isA <return var_type>
with
attribute, retrieved attribute
<attributelists>
attribute, parameter
<arglist_o>
attribute, constraint
c: $ <expression (in 0O-Telos style)>$
end

We use <attributelist> to denote the set of attributes that are defined in the
<return_var_type>, and <arglist_o> to denote the set of input variables in O-Telos

format. Where <arglist_o> and <attributelist> are formally defined as follows:

<attributelist>::= <attribute>[;<CR><LF> <attributelist>]
<attribute>::=<attr_var>:<attr_var_type>

<arglist_o>::=<arg>[;<CR><LF> <arglist 0>]

For example, the definition of query find_internal_connectors takes the following

format, where the assignment of the variables in the formulae is shown in Table 2.



APPENDICES 199

Table 2 Variable assignment for defining query “find_internal_connectors”

Variable Value

<query name> find internal connectors

<arg> a:ActorElementClass

<return_var> “e”

<return_var type> IntentionalElementClass

<expression> 3 1: LinkClass...v (1 in ExternalLinkClass)

The resulting definition of query “find_internal connectors” is represented in

FOL as follows:

find_internal connectors(a: ActorElementClass)::=
§e:IntentionalElementClass:
3 1: LinkClass- e.parent=a A (l.from=e v l.to=e¢)
A (1 in DependencyLinkClass) v (1 in ExternalLinkClass)

The corresponding O-Telos GenericQueryClass is as follows:

Individual find_internal connectors
in GenericQueryClass
isA IntentionalElementClass
with
attribute,retrieved attribute
name : String
attribute, parameter
a : ActorElementClass
attribute, constraint
c : S
(exists 1l/LinkClass
(this parent ~a) and ((1 from this) or (1 to this))
and (1 in DependencyLinkClass) or
(1l in ExternallinkClass) )
$

end

A.3 Transform expressions



APPENDICES 200

Each expression serves as either the deductive rule (for a meta-class) or the
integrity constraint (for a query class) is translated from the FOL style to O-Telos.
Table 3 shows the mapping of operators between FOL and O-Telos. See (Jarke et al.
2003; ConceptBase Team 2003) for detail definitions of the O-Telos language.

Table 3 Mapping of expressions and logical operators from FOL to O-Telos

FOL ConceptBase Remark
<input_var> ~<input_var>
<return_var> this

<var>.<label> =<target> | ( <var> <label> <target>)

3 exists

A4 forall

= not

A and

v or

€ in Instance of

In query find_internal_connectors, the FOL style expression is as follows, where
a is the <input_var> and e is the <return_var>.
3 1: LinkClass- e.parent=a

A (Lfrom=¢ v l.to=¢e)
A (11in DependencyLinkClass) v (1 in ExternalLinkClass)

The corresponding O-Telos translation is:

exists 1/LinkClass (this parent -~a)
and ({1 from this) or (1 to this))
and (1 in DependencyLinkClass) or (1 in ExternallLinkClass)



APPENDICES 201

B. Queries in O-Telos Style

Each of the queries defined in First Order Logic (FOL) in this thesis is translated
in its corresponding O-Telos style, and tested using ConceptBase. To perform this
test, we first constructed O-Telos representation of the reformulated i* framework
and loaded it into ConceptBase. Then we designed sample domain-level i* models
and loaded them into ConceptBase. Last, we ran each query, supplying the required
input arguments, and checked the correctness of the results (the set of returning

objects).

Hereafter are list of all the queries defined in this thesis. These queries are
defined for the purpose to test the logic of the FOL formula, so we retrieved only the
“name” attribute for each objects that will be returned by the query. While designing
queries used in any modeling tool, all attributes of the returning objects should be

retrieved.

Queries and definitions are numbered according to their sequence of appearance
in this thesis. We organize them into four .sml files. “DefinitionQueries.sml”
contains definitions and queries defined in Section 4.3; “ACViews_Queries.sml”
contains queries defined in Section 5.2; “SDViews_ Queries.sml” contains queries
defined in Section 6.2; and “SRViews Queries.sml” contains queries defined in

Section 7.2.

{

* File : DefinitionQueries.sml

* Purpose : Definitions of concepts and related query classes
* created : 09/01/04 Jane You

* last change:

* Content: Defl1-~3, Queryl-14

}
{

# Definition of extra model related types #)

{# Defl: DependumElementClass #}
Individual DependumElementClass in Class, MetaClass isA SubElementClass
with
rule
dependum_rule: $ forall e/SubElementClass



APPENDICES 202

not (exists a/ActorElementClass (e parent a)) ==> (e in
DependumElementClass)

$

end

{# Def2: InternalElementClass #}
Individual InternalElementClass in Class, MetaClass isA
IntentionalElementClass with

rule
internal_rule: § forall e/IntentionalElementClass
(exists a/ActorElementClass (e parent a)) ==> (e in
InternalElementClass)
$

end

{ this definition is not formalized in the thesis }
Individual DecisionPointElementClass in Class, MetaClass isA
GoalElementClass with
rule
dpointrule : $ forall e/GoalElementClass
(exists 11,12/IntentionalLinkClass (11<>12) and (11 to e) and (12 to
e))
==>(e in DecisionPointElementClass) $
end

{# Queryl: find parent (e:IntentionalElementClass) #}
Individual find parent in GenericQueryClass isA ActorElementClass with
attribute,retrieved_attribute
name : String
attribute, parameter
e : IntentionalElementClass
attribute, constraint
c : $ (~e parent this) $
end

{# Query2: find_internal_elements(a:ActorElementClass) #}
Individual find_internal_elements in GenericQueryClass isA
IntentionalElementClass with
attribute, retrieved_attribute
name : String
attribute,parameter
a : ActorElementClass
attribute, constraint
¢ : $ (~a children this) $
end

{# Query3: find_incoming dependencies to actor (a:ActorElementClass) #)}
{# Comments: find dependency links that targets at "a" #}
Individual find_ incoming_dependencies to actor in GenericQueryClass isA
DependencyLinkClass with
attribute, parameter
a : ActorElementClass
attribute,retrieved attribute
name : String
attribute, constraint



APPENDICES 203

c : $ (this to ~a) or (exists e/IntentionalElementClass (e parent -~a)
and (this to e)) $
end

{# Query4: find outgoing dependencies_from_actor (a:ActorElementClass) #}
{# Comments: find dependency links that starts from "a" #}
Individual find outgoing_dependencies_from_actor in GenericQueryClass isA
DependencyLinkClass with
attribute, parameter
a : ActorElementClass
attribute,retrieved attribute
name : String
attribute, constraint
¢ : § (this from ~a) or (exists e/IntentionalElementClass (e parent -~a)
and (this from e)) $
end

{# Query5: find_depender_actor (de:DependumElementClass) #)}
Individual find depender_actor in GenericQueryClass isA ActorElementClass
with
attribute, parameter
de : DependumElementClass
attribute, constraint
c : $ exists 1l/DependencyLinkClass
((exists e/IntentionalElementClass (e parent this) and (1 from
e)) or (1 from this)) and (1 to ~de)$
end

{# Query6: find_depender_element (de:DependumElementClass) #)
Individual find depender element in GenericQueryClass isA
IntentionalElementClass with
attribute, parameter
de : DependumElementClass
attribute, constraint
¢ : § exists 1l/DependencylLinkClass (1 from this) and (1 to ~de)$
end

{# Query7: find_dependee_actor (de:DependumElementClass) #}
Individual find_dependee_actor in GenericQueryClass isA ActorElementClass
with
attribute, parameter
de : DependumElementClass
attribute, constraint
c : $§ exists 1/DependencyLinkClass
((exists e/IntentionalElementClass (e parent this) and (1 to e))
or (1 to this)) and (1 from ~de)$
end

{# Querys: find_dependee_element (de:DependumElementClass) #)
Individual find_dependee_element in GenericQueryClass isA
IntentionalElementClass with
attribute, parameter
de : DependumElementClass
attribute, constraint
c : $ exists 1l/DependencyLinkClass (1 to this) and (1 from ~de) $
end



APPENDICES 204

{# Query9: find direct_external link #}
{# Comment: this definition is a walk around due to problems in
implementing recursion #}
{# we have two auxilary queries suffixed by -1 to help define this
query #}
Individual find direct external links in GenericQueryClass isA
IntentionalLinkClass with
attribute,retrieved_attribute
name : String
attribute, constraint
¢ : $ exists a/ActorElementClass dl/DependencyLinkClass
e/IntentionalElementClass
(this from e) and (e parent a) and (this to dl) $
end

{# Queryl0: find_all external links(l:LinkClass) #}
{# Comment: this definition is a walk around due to problems in
implementing recursion #}
{# we have two auxilary queries suffixed by -1 to help define this
query #}
Individual find direct_external_ linksl in GenericQueryClass isA
IntentionallLinkClass with
attribute,parameter
1 : LinkClass
attribute,retrieved_attribute
name : String
attribute, constraint
c : $ (this to ~1) $
end

Individual find_all_external linksl in GenericQueryClass isA
IntentionallLinkClass with
attribute, parameter
1 : LinkClass
attribute, retrieved_attribute
name : String
attribute, constraint
¢ : $ (this in find direct_external links1[~1/1]) or
(exists 12/IntentionalLinkClass (this in
find direct_external_links1[12/1])
and (12 in find_all_external linksl[~1/1]) ) $
end

Individual find all_external links in GenericQueryClass isA
IntentionallLinkClass with
attribute,retrieved_attribute
name : String
attribute,constraint
¢ : $ (exists dl/DependencylLinkClass (this in
find_all_external links1{dl/1])) $
end

{# Queryll: find direct_descendants(ie:IntentionalElementClass) #}
Individual find direct_descendants in GenericQueryClass isA
IntentionalElementClass with



APPENDICES 205

attribute,parameter
ie : IntentionalElementClass
attribute,constraint
c : $ exists 1/IntentionallinkClass a/ActorElementClass
(1 to ~ie) and (1 from this) and (~ie parent a) and (this
parent a) $
end

{# Queryl2: find all_descendants(ie:IntentionalElementClass) #}
Individual find_all_descendants in GenericQueryClass isA
IntentionalElementClass with
attribute, parameter
ie : IntentionalElementClass
attribute, constraint
¢ : $ (this in find _direct_descendants[~ie/ie]) or
(exists d/IntentionalElementClass a/ActorElementClass
(d parent a) and (this parent a) and
(d in find_all_descendants[~ie/ie]l) and
(this in find _direct_descendants[d/iel) ) §
end

{# Queryl3: find direct ancestors(ie:IntentionalElementClass) #)}
Individual find_direct_ancestors in GenericQueryClass isA
IntentionalElementClass with
attribute,parameter
ie : IntentionalElementClass
attribute, constraint
¢ : $ exists 1/IntentionallLinkClass a/ActorElementClass
(1 from ~ie) and (1 to this) and (~ie parent a) and (this
parent a)$
end

{# Queryl4: find all_ancestors(ie:IntentionalElementClass) #}
Individual find all ancestors in GenericQueryClass isA
IntentionalElementClass with
attribute, parameter
ie : IntentionalElementClass
attribute, constraint
c : $ (this in find direct_ancestors|[~ie/iel) or
(exists d/IntentionalElementClass a/ActorElementClass
(d parent a) and (this parent a) and
(d in find_all ancestors[~ie/ie]) and
(this in find direct ancestors[d/ie]) ) S
end

{# Def3: ExternallLinkClass #}

Individual ExternallLinkClass in Class, MetaClass isA IntentionalLinkClass
with

rule
external rule: $ forall 1/IntentionallinkClass
(1 in find_all_external_links ) ==> (1 in ExternallLinkClass)
$

end

* File : ACViews Queries.sml



APPENDICES 206

Purpose : Define the query classes for the AC views
created : 08/04/04 Jane You

last change : 09/01/04 Jane You

Contents: Queryl5-~26

— * * ¥ *

{# Queryl5: theBasicActorClassView(m:BaselineModelClass) #}
{# Comments: load m into a ConceptBase server before running this query, m
becomes the default view #}
(# following queries follow the same convention, running over a
default view #)}
Individual the basic_AC_view in QueryClass isA ObjectClass with
attribute,retrieved_attribute
name : String
attribute, constraint
¢ : $ (this in ActorElementClass) or (this in AssociationLinkClass) $
end

{# Querylé: find all links(pv:ViewClass, cv:ViewClass) #}
{# Default view: pv #}
{# Input parameters: cv #}
Individual find_all_links in GenericQueryClass isA LinkClass with
attribute, parameter
cv : QueryClass
attribute, constraint
¢ : § exists el/ElementClass e2/ElementClass
(el in ~cv) and (e2 in ~cv)
and (this from el) and (this to e2) $
end

{# Queryl7: find direct_associated_actors (a:SpecifiedActorElementClass) #}
{# Default view: v from the singleNetworkRule #}
{# Input parameters: a #)}
Individual find_direct_associated_actors in GenericQueryClass isA
SpecifiedActorElementClass with
attribute,retrieved_attribute
name : String
attribute, parameter
a : SpecifiedActorElementClass
attribute, constraint
c : $§ exists 1/AssociationLinkClass
(1 from this) and (1 to ~a) or (1 from ~a) and (1 to this) $§
end

{# Queryls: find_all associated_actors(a:SpecifiedActorElementClass) #)
{# Default view: v from the singleNetworkRule #}
{# Input parameters: a #}
Individual find_all_associated_actors in GenericQueryClass isA
SpecifiedActorElementClass with
attribute, retrieved_attribute
name : String
attribute, parameter
a : SpecifiedActorElementClass
attribute, constraint
¢ : $ (this in find_direct associated actors[~a/al) or
(exists a2/SpecifiedActorElementClass



APPENDICES 207

(a2 in find_all_associated_actors[~a/al) and
(this in find_direct_associated_actorsl[a2/al) ) §
end

{# Queryl9: find_direct_specified_actors(a:PlainActorElementClass) #)
{# Default view: v from the singlePlainActorRule #}
{# Input parameters: a #}
Individual find direct specified actors in GenericQueryClass isA
SpecifiedActorElementClass with
attribute,retrieved attribute
name : String
attribute, parameter
a : PlainActorElementClass
attribute, constraint
¢ : $ exists 1/SpecifiesLinkClass
(1 from this) and (1 to ~a) $
end

{# Query20: find direct_replacing actors(a:SpecifiedActorElementClass) #}
{# Default view: v from the singlePlainActorRule #}
{# Input parameters: a #}
Individual find direct_replacing actors in GenericQueryClass isA
SpecifiedActorElementClass with
attribute, retrieved attribute
name : String
attribute, parameter
a : SpecifiedActorElementClass
attribute, constraint
c : $ exists 1l/AssociationLinkClass
((1 in PartsLinkClass) or (1 in CompleteCompositionLinkClass))
and (1 from ~a) and (1 to this) or
((1 in ISALinkClass) or (1 in INSLinkClass) or (1 in
CoversLinkClass) or (1 in PlaysLinkClass) or
(1 in OccupiesLinkClass)) and (1 from this) and (1 to ~a) $
end

{# Query2l: find_all_replacing actors(a:SpecifiedActorElementClass) #}
{# Default view: v from the singlePlainActorRule #}
{# Input parameters: a #}
Individual find all_replacing_actors in GenericQueryClass isA
SpecifiedActorElementClass with
attribute, retrieved_attribute
name : String
attribute,parameter
a : SpecifiedActorElementClass
attribute, constraint
¢ : § (this in find direct_replacing actors[~a/al) or
(exists a2/SpecifiedActorElementClass
(a2 in find_all_replacing_actors[~a/a]) and
(this in find_direct_replacing_actors[a2/al) ) $
end

{# Query22: find all_abstract_actors() #}

Individual find_all_abstract_actors in QueryClass isA

AbstractActorElementClass with
attribute,retrieved_attribute



APPENDICES 208

name : String
attribute, constraint
¢ : $ this in AbstractActorElementClass $
end

{# Query23: find_all plain_actors() #}
Individual find_all plain_actors in QueryClass isA PlainActorElementClass
with
attribute,retrieved_attribute
name : String
attribute, constraint
¢ : $ this in PlainActorElementClass $
end

{# Query24: find_all agents() #}
Individual find_all_agents in QueryClass isA SpecifiedActorElementClass
with
attribute,retrieved attribute
name : String
attribute,constraint
¢ : $ (this in AgentElementClass) or (this in
AgentInstanceElementClass) §$
end

{# Query25: find_direct_replaceable_actors(a:SpecifiedActorElementClass) #}
{# Default view: v from the directReplaceableRule #}
{# Input parameters: a #}
Individual find_direct_replaceable_actors in GenericQueryClass isA
SpecifiedActorElementClass with
attribute, retrieved_attribute
name : String
attribute,parameter
a : SpecifiedActorElementClass
attribute, constraint
¢ : $ exists 1l/AssociationLinkClass
((1 in PartsLinkClass) or (1 in CompleteCompositionLinkClass))
and (1 from this) and (1 to ~a) or
((1 in IsALinkClass) or (1 in INSLinkClass) or (1 in
CoversLinkClass) or (1 in PlaysLinkClass) or
(1 in OccupiesLinkClass)) and (1 from ~a) and (1 to this) §
end

{# Query26: find_all replaceable_actors (a:SpecifiedActorElementClass) #)
{# Default view: v from the directReplaceableRule #}
{# Input parameters: a #)
Individual find all_replaceable_actors in GenericQueryClass isA
SpecifiedActorElementClass with
attribute,retrieved_attribute
name : String
attribute, parameter
a : SpecifiedActorElementClass
attribute, constraint
c : $§ (this in find direct_replaceable actors[~a/al) or
{exists a2/SpecifiedActorElementClass
(a2 in find all_replaceable_actors([~a/al]) and
(this in find_direct_replaceable actorsl[a2/al) ) $



APPENDICES 209

end

{

* File : SDViews_Queries.sml

* Purpose : Define the query classes for the SD views

* created : 08/04/04 Jane You

* last change : 09/01/04 Jane You

* Contents: Query27~43

}

{# Query27: find inter dependums (A=(al,...,am) :ActorElementClass) #)

{# Comments: this query find the dependums among the selected set of actors
#}
Individual find_ inter_dependums in GenericQueryClass isA
DependumElementClass with
attribute,parameter
A : QueryClass
attribute,retrieved_attribute
name : String;
links : LinkClass
attribute, constraint
c : $ exists 11,12/DependencyLinkClass al,a2/ActorElementClass
(al in ~A) and (11 from this) and (a2 in ~A) and (12 to this)

and
( (11 to al) or (exists el/al.children (11 to el)) ) and
( (12 from a2) or (exists e2/a2.children (12 from e2)) )
$
end
{# Query28: find_inter dependencies (A=(al,...,am) :ActorElementClass) #}

{# Comments: this query does not allow pending dependencies #}
Individual find_inter_ dependencies in GenericQueryClass isA
DependencyLinkClass with
attribute,parameter
A : QueryClass
attribute, retrieved_attribute
name : String
attribute, constraint
c : $ exists a/ActorElementClass b/DependumElementClass
(a in ~A) and (b in find_inter_dependums[~A/A]) and
((this in find outgoing dependencies_from_actor[a/a]) and (this
to b) or
(this from b) and (this in
find_incoming_dependencies to actor[a/al))
$

end

{# Query29:
find direct_inter_external_links (A=(al,...,am) :ActorElementClass) #}
Individual find direct_inter external links in GenericQueryClass isA
IntentionallLinkClass with
attribute, parameter
A : QueryClass
attribute,retrieved_attribute
name : String
attribute, constraint



APPENDICES 210

¢ : § exists dl/DependencyLinkClass (dl in
find_inter dependencies[~A/A]) and
(exists a/ActorElementClass e/a.children (a in ~A) and (this
from e) and (this to dl) )

$
end
{# Query30: find_all_ inter_external_ links(A=(al,...,am) :ActorElementClass)
#)

{# Comments: order of literals are important in defining recursions’ #}
Individual find_all_ inter external links in GenericQueryClass isA
IntentionalLinkClass with
attribute,parameter
A : QueryClass
attribute,retrieved attribute
name : String
attribute,constraint
¢ : $ (exists a/ActorElementClass e/a.children (a in ~A) and (this
from e)) and
( (this in find_direct_inter external links[~A/A}) or
(exists 12/IntentionalLinkClass (12 in
find_all_inter_external links{~A/A]) and (this to 12)) ) §
end

{# Query3l: find_incoming_dependums_to_actor (a:ActorElementClass) #}
{# Comments: find dependum element that depends on "a" #}
Individual find_ incoming dependums_to_actor in GenericQueryClass isA
DependumElementClass with
attribute,parameter
a : ActorElementClass
attribute,retrieved attribute
name : String
attribute, constraint
¢ : $ exists 1l/DependencyLinkClass (1 from this) and (1 in
find_incoming_dependencies_to_actor[~a/al) $
end

{# Query32:
find_indirect_incoming_dependencies_to_actor (a:ActorElementClass) #}
{# Comments: find dependency links that ends at the incoming dependums of
actor "a" #)
Individual find_indirect_incoming_ dependencies_to_actor in
GenericQueryClass isA DependencyLinkClass with
attribute, parameter
a : ActorElementClass
attribute, retrieved attribute
name : String
attribute, constraint

7 The general rule of thumb for the order of literals is: first to evaluate all extensional and direct information;
and then go into the recursion. In ConceptBase, the query optimizer should be able to do such things on its own,

but sometimes it fails.



APPENDICES

¢ : $ exists de/DependumElementClass (this to de) and (de in

find incoming dependums_to_actor{~a/al) $
end

{# Query33: find_dependers_to_actor (al:ActorElementClass) #}
{# Comments: find actors depends on "a" via a dependum #}
Individual find dependers_to_actor in GenericQueryClass isA
ActorElementClass with
attribute, parameter
a : ActorElementClass
attribute, retrieved attribute
name : String
attribute, constraint
¢ : $ exists d/DependumElementClass 1/DependencyLinkClass
(d in find_incoming_dependums_to_actor([~a/al) and

(1 in find outgoing dependencies from actor [this/al) and

(1 to d)

end

{# Query34: find_outgoing dependums_to actor(a:ActorElementClass) #}

{# Comments: find dependum elements that "a" depends on #}

Individual find_outgoing dependums_from actor in GenericQueryClass isA

DependumElementClass with
attribute,parameter
a : ActorElementClass
attribute,retrieved attribute
name : String
attribute, constraint
¢ : $ exists 1/DependencyLinkClass (1 to this) and (1 in
find_outgoing_dependencies_from actor[~a/al) $
end

{# Query3s:

find indirect_outgoing_dependencies_from actor (a:ActorElementClass) #}

211

{# Comments: find dependency links that ends at the outgoing dependums of

actor "a" #)}
Individual find indirect_outgoing_dependencies from_actor in
GenericQueryClass isA DependencyLinkClass with
attribute,parameter
a : ActorElementClass
attribute,retrieved_attribute
name : String
attribute, constraint

¢ : $ exists de/DependumElementClass (this from de) and (de in

find_outgoing dependums_from_actor([~a/al) $
end

{# Query36: find_dependees_from actor (a:ActorElementClass) #)}
{# comments: find actors who "a" depends on via a dependum #}
Individual find dependees_from_actor in GenericQueryClass isA
ActorElementClass with
attribute, parameter
a : ActorElementClass
attribute,retrieved_attribute
name : String



APPENDICES 212

attribute, constraint
c : § exists d/DependumElementClass 1/DependencyLinkClass
(d in find outgoing dependums_from_actor[~a/al) and
(1 in find_incoming dependencies_to_actor[this/al) and
(1 from d)

end

{# Query37: find_externallinks_to_incoming_dependency (a:ActorElementClass)
#}
{# Input parameters: a #}
Individual find externallinks_to_incoming_dependency in GenericQueryClass
isA IntentionallLinkClass with
attribute, parameter
a : ActorElementClass
attribute,retrieved_attribute
name : String
attribute, constraint
¢ : $ exists dl/DependencyLinkClass
(dl in find_incoming_dependencies_to_actor[~a/al) and (this to

ai) $
end
{# Query3s:

find_externallinks_originator_ to_incoming_dependency (a:ActorElementClass) #}
{# Comments: find the actor that has an external link ends at "a"'s
incoming dependency link #}
Individual find_externallinks_originator_to_incoming_dependency in
GenericQueryClass isA ActorElementClass with
attribute,parameter
a : ActorElementClass
attribute, retrieved attribute
name : String
attribute, constraint
¢ : $ exists 1/IntentionalLinkClass
(1 in find externallinks_to_incoming dependency[~a/al) and
(exists e/this.children (1 from e)) $§
end

{# Query39:
find extermallinks_to_indirect_outgoing dependency (a:ActorElementClass) #}
Individual find_externallinks_to_indirect outgoing dependency in
GenericQueryClass isA IntentionalLinkClass with
attribute,parameter
a : ActorElementClass
attribute, retrieved_attribute
name : String
attribute, constraint
¢ : $ exists de/DependumElementClass dl/de.links
(dl in find_indirect_outgoing dependencies_from actor[~a/a])
and (this to dl) $
end

{# Query40:
find_externallinks_originator_to_indirect_outgoing dependency (a:ActorElemen
tClass) #}



APPENDICES 213

Individual find_externallinks_originator_ to_indirect_outgoing_dependency in
GenericQueryClass isA ActorElementClass with
attribute, parameter
a : ActorElementClass
attribute,retrieved_attribute
name : String
attribute, constraint
¢ : § exists 1/IntentionallinkClass
(1 in find_externallinks_to_indirect_ outgoing dependency([~a/al)
and
(exists e/this.children (1 from e)) $
end

{# Query41l: find externallinks from_actor (a:ActorElementClass) #}
{# Comments: find the external links that originated from actor "a" #}
Individual find externallinks from actor in GenericQueryClass isA
IntentionallinkClass with
attribute, parameter
a : ActorElementClass
attribute, retrieved_attribute
name : String;
from : ElementClass;
to : ObjectClass
attribute, constraint
¢ : $ (exists e/IntentionalElementClass (this from e) and (e parent
~a)) and
(this in find all external links)
$

end

{# Query42:
find_externallinks_to_externallinks from actor(a:ActorElementClass) #}
{# Comments: find the external links that affect the external links
originated from actor "a" #}
Individual find_externallinks_to_extermallinks_from_actor in
GenericQueryClass isA IntentionalLinkClass with
attribute, parameter
a : ActorElementClass
attribute,retrieved_attribute
name : String;
from : ElementClass;
to : ObjectClass
attribute, constraint
c : $ exists 1/IntentionallLinkClass (1 in
find_externallinks_from actor[~a/al)
and (this to 1) $
end

{# Query43: find_externallinks_target_from_actor (a:ActorElementClass) #)
{# Comments: find the links that the external links originated from actor
"a" ends at #}
Individual find externallinks_target_from actor in GenericQueryClass isA
LinkClass with

attribute, parameter

a : ActorElementClass
attribute,retrieved attribute



APPENDICES 214

name : String;
from : ElementClass;
to : ObjectClass
attribute, constraint
c : $ exists 1l/IntentionallLinkClass (1 in
find_externallinks_from_actor[~a/a])
and (1 to this) $

end

{

* File : SRViews_Queries.sml

* Purpose : Define the query classes for the SR views
* created : 08/05/04 Jane You

* last change : 09/01/04 Jane You

* Contents: Query44-~51

}

{# Query44: find_internal_connectors (a:ActorElementClass) #)}
{# Comments: find the internal elements that has an external link connected
#)
Individual find_internal_connectors in GenericQueryClass isA
IntentionalElementClass with
attribute, retrieved_attribute
name : String
attribute, parameter
a : ActorElementClass
attribute, constraint
¢ : $ (this parent ~a) and
(exists 11/DependencyLinkClass (11 from this) or (11 to this))
or
(exists 12/IntentionalLinkClass (12 in
find_externallinks_from actor[~a/a]) and (12 from this))
$

end

{# Query45: find root_elements (a:ActorElementClass) #}
Individual find_ root_elements in GenericQueryClass isA
IntentionalElementClass with
attribute,retrieved_attribute
name : String
attribute, parameter
a : ActorElementClass
attribute, constraint
¢ : $ (this parent ~a) and
(not (exists 1l/IntentionallLinkClass (1 from this)) )$
end

{# Query46: find root softgoals(a:ActorElementClass) #)}
Individual find_root_softgoals in GenericQueryClass isA
SoftgoalElementClass with
attribute,retrieved_attribute
name : String
attribute,parameter
a : ActorElementClass
attribute, constraint
¢ : $ (this in find root_elements[~a/al) $



APPENDICES 215

end

{# Query47: find root_functionals (a:ActorElementClass) #}
Individual find root_functionals in GenericQueryClass isA
IntentionalElementClass with
attribute,retrieved_attribute
name : String
attribute, parameter
a : ActorElementClass
attribute, constraint
¢ : $§ (this in find_root_elements[~a/a]) and not (this in
SoftgoalElementClass) $
end

{# Query48: find contribution_to_dependum(a:ActorElementClass,
dl:DependencyLinkClass) #}
Individual find_contribution_to_dependum in GenericQueryClass isA
IntentionallLinkClass with
attribute,retrieved_attribute
name : String
attribute,parameter
a : ActorElementClass;
dl: DependencyLinkClass
attribute, constraint
¢ : $ (this to ~dl) and
(exists e/IntentionalElementClass (e parent ~a) and (this from
e) )$

end

{# Query49: find_contributor_to_dependum(a:ActorElementClass,
dl:DependencyLinkClass) #}
Individual find contributor_to_dependum in GenericQueryClass isA
IntentionalElementClass with
attribute, retrieved_attribute
name : String
attribute, parameter
a : ActorElementClass;
dl: DependencylLinkClass
attribute, constraint
¢ : $§ exists 1l/IntentionallLinkClass
(1 in find_contribution_to_dependum(~a/a,~dl/dl]) and (1 from
this) $§
end

{# Query50: find_contribution_to_actor(a, al:ActorElementClass) #}
{# Input argument: "al" is the affected actor #}
Individual find contribution to actor in GenericQueryClass isA
IntentionallLinkClass with
attribute,retrieved attribute
name : String
attribute, parameter
a0: ActorElementClass;
al: ActorElementClass
attribute, constraint

¢ : $ (exists e0/IntentionalElementClass (e0 parent ~a0) and (this
from e0) )and



APPENDICES 216

(exists 11/IntentionallLinkClass el/IntentionalElementClass

(11 from el) and (el parent ~al) and (this to 11)) $
end

{# QueryS1l: find contributor_to_actor(a, al:ActorElementClass) #}
{# Input argument: "al" is the affected actor #}

Individual find_contributor to_actor in GenericQueryClass isA
IntentionalElementClass with

attribute,retrieved_attribute
name : String
attribute, parameter
a0: ActorElementClass;
al: ActorElementClass
attribute, constraint
¢ : § exists 1/IntentionallinkClass

(1 in find contribution_to_actor[~a0/a0,~al/all) and (1 from
this) $§

end



APPENDICES 217

C. Sample Query Results in O-Telos Format

The result of each query is a set of objects, and in our case, a set of O-Telos
simple classes. In this section, we show the resulting simple classes of running
query find_internal_elements over the given sample model. Figure C-1 shows the
graphical representation of the sample model. Figure C-2 shows the four resulting
simple classes (objects) after running query find internal_elements(Element 0),
where Element 0 corresponds to agent Ambulance Crew in Figure C-1. The

corresponding graphical notations of the simple classes in Figure C-2 are quoted by
%%.

Figure C-1 Sample baseline model used to test query find_all_inter_external_links



APPENDICES 218

% Internal elements of agent Ambulance Crew %
% Softgoal Timeliness [Arrival Location] %
Element 28 in find internal elements[Element 0 / a] with
name
DefaultLabel3 : "Timeliness [Arrival Location]"
end

% Softgoal Timeliness [Service] %
Element 27 in find internal elements[Element 0 / a] with
name
DefaultLabel2 : "Timeliness [Service]"
end
% Softgoal Accuracy [AmbInfo] %
Element 26 in find_internal elements[Element 0 / a] with
name
DefaultLabel2 : "Accuracy [AmbInfo]"
end

% Softgoal Quality [Service] %
Element 25 in find_internal elements[Element 0/ a] with
name
DefaultLabel2 : "Quality [Service]"
end

Figure C-2 Resulting objects after running query find_all_inter_external_links




APPENDICES 219

D. Facts about the London Ambulance Service Computer Aided
Despatch System

We cite in this section the source of information on which we based for our
London Ambulance Service (LAS) case study. All paragraphs appear in this section
are items stated in the “Report of the Inquiry into the London Ambulance Service”
(LAS-Report 1993). We select the part the describes the manual process, the
constructs of the Computer Aided Despatch (CAD) system, and the system

requirements for performance.
The manual system operates as follows:

Call Taking

3002 When a 999 or urgent call is received in Central Ambulance Control the
Control Assistant (CA) writes down the call details on a preOprinted form (AS1 or
AS2). The incident location is identified from a map book, together with the map
reference coQordinates. On completion of the call the incident form is placed into a
conveyor belt system with other forms from fellow CA’s. The conveyor belt then

transports the forms to a central collection point within CAC.
Resource Identification

3003 Another CAC staff member collects the forms from the central collection point
and, through reviewing the details on the form, decides which resource allocator
should deal with it (based on the three London Divisions—North East, North West,
and South). At this point potential duplicated calls are also identified. The resource
allocator then examines the forms for his/her sector and, using status and location
information provided through the radio operator and noted on forms maintained in
the “activation box” for each vehicle, decides which resource should be mobilized.

This resource is then also recorded on the form which is passed to a despatcher.

Resource Mobilisation



APPENDICES 220
3004 The despatcher will telephone the relevant ambulance station (if that is where
the resource is) or will pass mobilisation instructions to the radio operator if the

ambulance is already

3005 According to the ORCON standards this whole process should take no more

than 3 minutes.

The System Structure:

3119 The complete CAD system had a number of different elements including:
a) CAD software;
b) CAD hardware;
¢) RIFS Communication Interface;
d) radio system;
e) Datarak Sub System;
f) Gazekeer and Mapping Software;
g) Mobile Data Terminals.

System Performance Requirements:

6082 We recommend that LAS makes available to interested parties such as
Community Health Councils, purchasers of the service and London MPs its

performance levels in respect of:
a) 999 telephone answering times;
b) activation percentage within three minutes;
c) response percentage within 8 minutes;

d) response percentage within 14 minutes.



Bibliography

Alexander 1. 2003. “Misuse Cases: User Cases with Hostile Intent,” IEEE Software,
20(1), Jan.-Feb. 2003: 58-66.

Breitman KK, Leite JC, and Finkelstein A. 1999. “The World’s a Stage: a Survey on

Requirements Engineering Using a Real-life Case Study”, Journal of the Brazilian

Computer Society, 6.1, Campinas, July 1999.

Bubenko JJ, Persson A, Stirna J. 2001 Oct. User Guide of the Knowledge
management Approach Using Enterprise Knowledge Patterns. Stockholm (Sweden):

Department of Computer and Systems Science, Royal Institute of Technology. 52 p.

Carlson CR, Ji W, Arora AK. 1990. Elsevier Science Publishers B.V. In F.H.
Lochovsky, editor. “The Nested Entity-Relationship Model,” Entity-Relationship
Approach to Database Design and Querying, North-Holland, 1990: 221-236.

Campbell LJ, Halpin TA, Proper HA. 1996. “Conceptual Schemas with
Abstractions—Making Flat Conceptual Schemas More Comprehensible,” Data &
Knowledge Engineering, 20.1 (1996): 39-85.

Chung L, Nixon B, Yu E. 1997. “Dealing with Change: An Approach Using Non-
Functional Requirements,” Requirement Engineering, Springer-Verlag, 1.4 (1997):
238-260.

Chung L, Gross D, Yu E. 1999. Kluwer Academic Publishers. In: Patrick Donohue,

editor. “Architectural Design to Meet Stakeholder Requirements,” Software
Architecture, 1999: 545-564.

Chung L, Nixon BA, Yu E, Mylopoulos J. 2000. Kluwer Academic Publishers. Non-
Functional Requirements in Software Engineering. 472 p. ISBN 0-7923-8666-3.

221



BIBLIOGRAPHY 222

ConceptBase Team. 2003. ConceptBase Tutorial. Aachen(Germany): Informatik V.,
RWTH Aachen. 10 p.

Castano S, DE ANTONELLIS V, FUGINI MG, PERNICI B. 1998. “Conceptual
Schema Analysis: Techniques and Applications,” ACM Transactions on Database
Systems, 23.3 (Sep 1998): 286-333.

Damm W, Harel D. 2001. Klumer Academic Publishers. “LSCs: Breathing Life into
Message Sequence Charts,” Formal Methods in System Design, 19 (2001): 45-80.

Douglass BP. 2003. “UML 2.0 Incrementally Improves Scalability and
Architecture.” Available:

http://www.elecdesign.com/articles/print.cfm?articleID=5881 (Oct. 2003).

Dubois E, Yu E, Petit M. 1998. IEEE Computer Society. “From Early to Late

Formal Requirements: a Process Control Case Study,” Proceedings of the 9th

International Workshop on Software Specification and Design, Ise-Shima, Japan,
Apr. 1998: 34-42.

Feldman P, Miller D. 1986. “Entity Model Clustering: Structuring a Data Model by
Abstraction,” Computer Journal, 29.4 (Aug. 1986): 348-360.

Ghandi M, Robertson EL, Gucht DV. 1992. Springer-Verlag. In P. Loucopoulos,
editor. “Leveled Entity Relationship Model,” Proceedings of the Fourth

International Conference CAIiSE’92 on Advanced Information Systems Engineers,

volume 593 of Lecture Notes in Computer Science, May1992; Manchester, United
Kingdom. p 456-473.

Gross D, Yu E. 2001. “Evolving System Architecture to Meet Changing Business
Goals: an Agent and Goal-Oriented Approach,” ICSE-2001 Workshop: From

Software Requirements to Architectures (STRAW 2001), Toronto, Canada, May
2001: 13-21.




BIBLIOGRAPHY 223
GRL. 2003. “URN — Goal-oriented Requirement Language (GRL),” Recommendation

Z.150: User Requirements Notation (URN)}—Language requirements and framework, Sep.

2003.Available: http://www.usecasemaps.org/urn/z_151-ver3_0.zip . Last view Aug.
2004.

Harel D. 1988. “On Visual Formalisms,” Communications of the ACM, 31.5 (May
1988): 514-530.

Horkoff J. 2004. “A Study of Trusted Computing Using the i* Framework.”
Working Paper, Knowledge Management Lab, Bell University Labs, University of
Toronto. 135 p.

IDEF0. 1993. IDEF Family of Methods, Knowledge Based Systems, Inc. (KBSI).
Available: http://www.idef.com/idef0.html. Last view Aug. 2004.

Jarke M, Jeusfeld MA, Quix C. 2003. ConceptBase V6.1 User Manual.
Aachen(Germany): Informatik V., RWTH Aachen. 98 p.

Jarke M, Gallersdorfer R, Jeusfeld MA, Staudt M, Eherer S. 1995. “ConceptBase - A
Deductive Object Base for Meta Data,” Journal on Intelligent Information Systems,
2.4 (Mar 1995): 167-192.

Koubarakis M, Mylopoulos J, Stanley M, Borgida A. Feb. 1989. Telos: Features and

Formalization. Toronto (ON): Department of Computer science, University of
Toronto. Report nr KRR-TR-89-4. 84 p.

Kramer J, Wolf A. 1996. ACM SIGSOFT. “Succeedings of the 8" International
Workshop on Software Specification and Design,” Software Engineering Notes, 21.5,
Sep. 1996: 21-35.

Lamsweerde AV. 2003. “Goal-Oriented Requirements Engineering: from System
Objectives to UML Models to Precise Software Specifications,” Tutorial Presented
at ICSE’03, Portland, May 2003. 159 p.



BIBLIOGRAPHY 224
LAS-Report. 1993. Report of the Inquiry into the London Ambulance Service,
electronic version prepared by prof. A. Finkelstein, available at

http://www.cs.ucl.ac.uk/staff/A.Finkelstein/las.html with permission from the

communications directorate, South West Thames Regional Health Authority,
original ISBN: 0 905133 70 6, 1993

Letier E. 2001. Reasoning about Agents in Goal-oriented Requirements Engineering
[dissertation]. Belgium: Department of Computing Science and Engineering,

Université catholique de Louvain. 283 p.

Liu L, Yu E. 2001. “From Requirements to Architectural Design - Using Goals and
Scenarios,” ICSE-2001 Workshop: From Software Requirements to Architectures

(STRAW 2001), Toronto, Canada, May 2001: 22-30.

Liu L, Yu E, Mylopoulos J. 2002. “Analyzing Security Requirements as

Relationships Among Strategic Actors,” 2nd Symposium on Requirements

Engineering for Information Security (SREIS’02), Raleigh, North Carolina, Oct.
2002.

Liu L, Yu E, Mylopoulos J. 2003. “Security and Privacy Requirements Analysis
within a Social Setting,” 11™ IEEE International Conference on Requirements

Engineering (RE’03), Monterey, California, Sep. 2003: 151-161.

OME. 2003. Organization Modelling Environment (OME) [Tool]. Knowledge
Management Lab, Bell University Labs, University of Toronto. Available:
http://www.cs.toronto.edu/km/ome/. Last view Aug. 2004.

You Z. 2003. “Applying the GRL Framework to the LAS-CAD Case Study.”
Working Paper, Knowledge Management Lab, Bell University Labs, University of
Toronto. 65 p. Available:
http://www.cs.toronto.edu/~janeyou/avs/csc2150Project.doc (Aug. 2003). Last view
Aug. 2004.




BIBLIOGRAPHY 225

Yu E. 1994. Modelling Strategic Relationships for Processing Reengineering

[dissertation]. Toronto (ON): Department of Computer science, University of

Toronto. 124 p.

Yu E. 1997 Jan. “Towards Modeling ad Reasoning Support for Early-Phase
Requirements Engineering,” Proceedings of the 3" IEEE International Symposium

on Requirements Engineering, Washington D.C., USA, Jan. 1997: 226-235.

Yu E. 1997 Jun. Presses Universitaires de Namur. In: E. Dubois, A.L. Opdahl, K.
Pohl, editors. “Why Agent-Oriented Requirements Engineering,” Proceedings of 3rd

International Workshop on Requirements Engineering: Foundations for Software

Quality, Barcelona, Catalonia, June 1997.

Yu E, Liu L. 2000. “Modelling Trust in the i* Strategic Actors Framework,”

Proceedings of the 3rd Workshop on Deception, Fraud and Trust in Agent Societies,

Barcelona, Catalonia, Spain, June 2000.

YuE, Liu L, Li Y. 2001. Spring Verlag. “Modelling Strategic Actor Relationships to
Support Intellectual Property Management,” 20th International Conference on
Conceptual Modeling (ER-2001), Yokohama, Japan, Nov. 2001: 164-178. LNCS
2224

Yu E, Cysneiros LM. 2002. “Designing for Privacy and Other Competing
Requirements,” 2nd Symposium on Requirements Engineering for Information

Security (SREIS’02), Raleigh, North Carolina, Oct. 2002.




