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ABSTRACT

Dynamic route guidance systems (DRG) aid drivers in choosing the best routes based on real-
time conditions in networks. Whether for the evaluation of DRG’s impact on a whole-network
traffic safety or for determination of the safest routes by DRG, suitable accident prediction
models are required. However, such models are not available for links of all kinds of roads. The
objective of this research is to develop an accident prediction approach for links on freeways and
urban streets suitable for DRG. Firstly, datasets were established by collecting accident data
from police reports, link geometric and traffic data from a simulation network. Then, based on a
concept we call “link neighbors”, a model form was set up. The model performance was
measured using the standard deviation of the model’s outputs, and through model optimization,

model parameters were determined.
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1 INTRODUCTION

When an auto driver travels on a road from one
place to another in a city, there may be many routes
to choose. Certainly an ideal one should be fast
and safe; auto drivers would try to avoid congestion
and accidents. In fact, to be safe and to be fast are
not only the goals of drivers, but also the goals of

traffic engineering in general.

To realize these goals, one approach is to help

drivers to choose optimal routes. In Intelligent
Transportation Systems(ITS)(1), dynamic route guidance systems(DRG) are designed to
provide drivers with routing information which will assist them to choose routes that are
fast and safe . ITS Architecture for Canada(2) describes DRG as:
This market package offers the user advanced route planning and
guidance which is responsive to current conditions. The package combines
the autonomous route guidance user equipment with a digital receiver
capable of receiving real-time traffic, transit, and road condition information

which is considered by the user equipment in provision of route guidance.

There are two main characteristics in DRG. One is dynamic, which means that DRG

gives route guidance based on real-time information on roads, such as current traffic



volumes or speeds. DRG should not be based on static traffic information such as
annual average daily traffic volume(AADT), because current traffic on roads changes all
the time. The other is route guidance, which means determine a route to meet drivers’
goals. Some researchers work to minimize average trip time (3-5), which definitely is
very important. However, safety is also very important. If DRG recommends drivers
with fast but less safe routes, or if with application of DRG, the travel time is lessened
but number of accident is increased for the whole network in which DRG is applied, then
the benefit of DRG will be discounted or doubtable. Therefore, safety issues have to be

concerned (6-7). In fact, some related researches were done.

Lord, D.(7), for example, developed several traffic accident prediction models, and then
applied them to determine the safest paths on digital networks and to evaluate effects of
DRG on safety. Look(8), et al, by developing a micro traffic simulation model and
integrating it with accident prediction models, established relationships between the
number of network-wide accidents and DRG market penetration to quantify the detailed
effects of DRG on traffic safety. Their work is meaningful. However, the reliability of
their results largely depended on the accident prediction models used. Proper accident
prediction models are very essential to accurate evaluation of traffic safety and

determination of safest routes.

There are two kinds of accident prediction models developed by Lord. D. One is for
nodes, which are at-grade intersections; the other is for links, the sections between

adjacent nodes. In the models for nodes, the expected number of accidents is a function



of hourly flow, which is a real-time variable. However, in the model on links, the
independent traffic variable is AADT. Apparently, this model is static one, so it dose
not meet the dyna£hic requirements of DRG. Look and Abdulhai used this model on
DRG due to lack of a model for links based on real-time traffic such as hourly traffic
flow. It was concluded that the development of a real-time accident prediction model

for links is very necessary.

The objective of this research is to develop an accident prediction approach for links of
freeways and urban roads based on key geometric features and hourly traffic
characteristics, so that the model can be used in DRG for safety evaluation or the choice

of the safest routes in a network.

The thesis firstly reviews some accident prediction models and their limitations. Then it
introduces a method of traffic data collection, which uses traffic simulation on computer
instead of unavailable field data. Next, an accident prediction model, which is based on
a new concept of “link neighbors”, is introduced. To assess model performance, an
evaluation criterion was established, which was also used in the parameter calibration

stage. Finally, the research results are obtained and analyzed.



2 LITERATURE REVIEW

2.1 FUNCTION OF ACCIDENT PREDICTION MODELS

Many accident prediction models were developed for various purposes in the literature.
Some models use one variable to identify its effect on traffic safety on only those study
roads. Some models use two or more variables to find out their combined effect on
accident occurrence on some specific class of roads. Some use macroscopic traffic data

(annual average) while others use microscopic traffic data (hourly or shorter).

The reason for developing one-variable models is mainly because the impact of that
specific variable on accident rates is of interest. Liu et al(9), for example, developed
models for casualty rate with average travel speed or speed differentials in order to
develop countermeasures on speed regulations to reduce the number of collisions on
highways in Saskatchewan, Canada. The authors claimed that both average travel speed
and speed differentials were correlated with casualty rates. Those models show that the
higher the average speeds or speed differential on those highways, the higher the casualty
rates. Garber et al(10) studied relationships between number of crashes and occupancy
for specific sites in. order to incorporate crash risk while selecting congestion-mitigation
strategies in several specific sites. Persaud et al(11) developed both microscopic and

macroscopic accident prediction models for freeways, only based on volume.



Only considering one factor that affects accident occurrence, these one-variable models
may work well on their study roads if all other neglected factors are homogeneous.
However, if other ﬁnexplained factors vary largely, the estimates from these models will
become unreliable. Therefore, multi-variable models are required to predict accident

risk.

Some multi-variable models are developed for specific kinds of road. Garber et al(12)
established models with variables of mean speed, standard deviation of speed, flow per
lane, lane width and shoulder width to predict crash rates on roadways in the state of
Virginia with speed limits of 89 or 105 km/h. Their models show that crash rate is not
solely decided by one variable, but by an interaction of those variables. Lee et al (13),
using variables including variability of speed, density, road geometry, weather and time
of day, also developed a multi-variables model based on data collected from an
expressway in Toronto, Canada. For urban arterial roadways in two cities in British
Columbia, Canada, Sawalha et al(14) established accident prediction models and claimed
that the variables with a significant effect on accident occurrence were “traffic volume,
section length, unsignalized intersection density, driveway density, pedestrian crosswalk

density, number of traffic lanes, type of median, and nature of land use”.

These three kinds of models consider several factors instead of one. However, they are
limited to only certain types of roads, freeway or urban arterials, respectively. All of
these models cannot be applied to a road network, which includes lower class of roads.

Some researchers did accident prediction studies on both urban and rural highways (15,



16), yet in their models, the measure for traffic volume is AADT, which is a static

measure, so the models are not suitable for prediction in dynamic route guidance systems.

An ideal accident prediction model for DRG should include multiple important variables,
using real-time traffic data and that is applicable to all kinds of road in a network. Up to
now, no model meets all these requirements. Establishment of such a model is the goal

of this research.

2.2 ACCIDENT RISK ESTIMATION TECHNIQUES

The usual method to develop accident prediction models [12, 13] includes the following 3
steps:

1. Data collection, including accident data on roads, and road attributes;

2. Attributes are categorized and their observed values are averaged. Then, the data
are grouped according to the combination of attribute category, so that every group is
relatively homogenous. Accident risk is then computed in one group, while attributes in
that group form a set of independent variable values are averaged.

3. Based on data generated in step 2, some regression technique is used to develop the

mathematical function or the accident prediction model.

In every step above, there are some problems that researchers face. The first is data
collection. It is not easy to collect large sets of traffic and accident data for links,
especially on low-class roads. If the dataset is not large enough, statistical precision can

not be guaranteed.



The second problem lies in step 2, where the produced group should be homogenous.
If the important attributes are not properly categorized, their variations may be so large
that within group homogeneity is jeopardized. Consider for instance the case of two
variables in a dataset and one is very important, while the other is not important. To
enhance within-group homogeneity, the former should be divided into more categories
that the latter. If both of these variables have equal number of categories, then the
categories of the important one are less homogeneous. When many variables are
considered, this problem will become very complex because it is hard to know how many

categories are suitable for each variable, and how to categorize those variables.

In step 3, there are some problems as well.  First, due to attribute categorization, sample
size in each category would be small.. Second, measurement errors could be affect
model accuracy, especially the dependent variable, which is not even measured but
statistically estimated. Third, the assumptions on which the model is developed may be
wrong. Finally, the model function may miss some important variables, or include

unimportant variables.

All these problems should be eliminated or alleviated to produce a good model. We

address those issues as explained later in the subsequent sections.



3 METHODOLOGY

This research attempts to overcome all the limitations mentioned in Chapter 2. The
main parts of this thesis include data collection, model form (or structure) establishment,

model performance evaluation and model parameter optimization.

To develop an accident risk prediction model, three kinds of data should be collected.
They are traffic data, geometric data and accident data. Because it will be very time
consuming and expensive to collect a large number of traffic data from every link in a
network, traffic data would be collected from a simulated network on computer instead of
a real network. Geometric data of links were also gathered from the simulated network
that has link dimensions and speed limits for the real network. Accident data were

obtained from police reports.

These three kinds of data formed a large dataset, which was the base for developing the
accident risk prediction model. The accident risk rate of any link can be estimated by
data (number of crashed vehicles and volume, etc. ) of those links which have similar

traffic and geometric features. The main methods include:

1. To measure the similarity between any two links, a concept of “link distance” was

introduced.



2. A concept of “link neighbors” was introduced. In the dataset the links with the
shortest “link distance” from the link whose accident risk is to be predicted are
chosen as its “link neighbors”. The accident risk rate of that link is estimated as
the total number of crashed vehicles in its “link neighbors” divided by the total
amount of exposure in its “link neighbors”. Exposure is defined as the total
traveled length of vehicles within study area during study period.

3. A threshold for “link neighbors” was set to control the size of “link neighbors”.

4. To obtain a model of the highest performance, a model performance measure was
set up.

5. By optimizing model performance, all parameters in the model were determined.

The following chapters elaborate on the above steps.



The data for developing the model were collected from two sources, a simulated network
which simulates Waterfront Network in Toronto(Abdulhai et al 2002), Canada, and police

accident reports (from 1996 to 1999) for Toronto, Canada.

The simulated network includes expressways, ramps, main arterials, collector roads and

local roads. There are 1,966 links with total length of about 242km. The length

4 DATA COLLECTION

distribution with different speed limits is shown in Table 4.1.

Table 4.1 Lengths of Study Links with different speed limits

Speed Limit(km/h)

20

30

40

50

60

70

90

Total

Link Length(M)

574

77,227

39,185

66,973

3,356

26,138

29,124

242,577

For every link, attribute values collected are as shown in Table 4.2. The reason that

these attributes were used for model developing is based on following conditions:

1. All attributes of a link should be obtainable from the simulated network and
police reports, and technically also be obtainable from real networks;

2. From the literature, these geometric and traffic attributes were taken as

important factors for accident risk prediction;

3. In the accident data set, number of crashed vehicles was used instead of
number of accidents, because this research concerns the possibility of a vehicle

getting involved in a reportable accident on a link when the vehicle runs on that

link.
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Table 4.2 Attributes Considered for every link

Geometric Data Traffic Data* Accident Data*
1. Speed limit 1.Average Moving speed Number of vehicles involved
2. Number of lanes | 2.Variance of average moving in reportable accidents during
3. Link length speed year 1996 to 1999.
3.Average volume per lane

*For the period from 8:00 a.m. to 9:00 a.m. in weekdays.

4.1 SIMULATED NETWORK

In the summer of 2002, using a software tool «called Paramics (See
http://www.paramics-online.com/), other researchers at University of Toronto finished

the simulated Waterfront Network(Abdulhai et al 2002).

Paramics is “used to model the movement and behavior of individual vehicles on urban
and highway road networks”. It is based on two inputs, road network data and travel
demand data. The traffic in the simulated network using Paramics is similar as traffic in

the real network, but it is much easier to obtain traffic data from the simulated network.

A Paramics network is made up of Paramics links and nodes. A node in Paramics is a
junction, which may be an intersection or not. For example, within a roadway section, a
junction between a tangent and curve, or a junction where number of lanes or width of
the link changes, is also a node. A Paramics link is the connection from one node to

another.
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The definition of a link in this thesis is different from that of Paramics link. In this
thesis, a link is defined as the traffic lanes in one direction between two adjacent
intersections, while an intersection should be a node connected with three or more nodes.

If a Paramics node is connected with two nodes, then it is only a point on a link.

In Figure 4-1, AD and DA are links. Node A and D are intersections. AB, BC,

CD,DC, CB and BA are Paramics links. All A, B, C and D are Paramics nodes.

D

Figure 4-1 Illustration of Different Link Definitions
in Paramics and in This Thesis
In the simulated network, nodes and links have some important attributes. The location
of a node is determined by the X and Y coordinates, which uses a plane coordinate
system called Universal Transverse Mercator(UTM). Properties of a Paramics link
include the connected nodes, road classification, speed limit, number and width of lanes,

and length.
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For all links in the Waterfront network, geometric data were gathered from the inputs of
the simulated network, while traffic data were gathered from multiple simulation runs of

the network model.

4.2 DATA COLLECTION

Geometric Data Collection

Three kinds of geometric data were collected: speed limit, number of lanes and link
length. As mentioned before, these data are collected or calculated from the Waterfront
network simulation model. It is not difficult to collect or calculate those data for every

Paramics links.

Speed limit and number of lanes of a Paramics link can be collected based on the link’s

category.

The length of any Paramics link is the distance between its two nodes. It can be calculated
from nodes’ X/Y values, and from the arc radius and X/Y values of the arc center if the link

is an arc.

Because Paramics link is different from link concept needed in this thesis, every Paramics
link which is only a part of real link(In Figure 4-1, Paramics link AB is a part of link AD)
should join its neighboring Paramics links to form a complete link, which is the

connection between two intersections. The number of lanes of the joined link is the

13



average of numbers of lanes weighted by lengths, as calculated by formula 4.1, while the
length of the joinéd link is the calculated by formula 4.2,where the width of any
intersection is supposed as 25 meters.
The number of lanes =2 _N;L;)/ 2 L; for all i, 4.1)
The length of a link=>L; - 25 for all i, 4.2)
where N;=the number of lanes of Paramics link I;

Li=the length(m) Paramics link I;

Traffic Data Collection
A Paramics Simulation model for the Waterfront network in Toronto was used for the

morning peak period in typical weekdays from 1996 to 2001.

To obtain traffic characteristics on every link from the simulation model, a loop detector
is added to the middle part of every Paramics link. While the simulation model is

running, it records the speed of any vehicle passing the detector.

The simulation period is from 7am to 9 am. Simulation before 8am is to warm up traffic
in the network and that between 8am and 9am is to collect volumes, and speeds from

which mean moving speed and standard variance of moving speed can be calculated.
For each link made of several Paramics links, mean volume and mean moving speed are

calculated from the volume and mean speed of its Paramics links. The standard

variance of moving speed of a link is calculated from all the moving speeds during that

14



hour in all its Paramics links, rather than from standard variances of moving speed of its

Paramics links.

The simulation has been run for 39 times. Because every simulation run is stochastic,
the simulation outcome is always a little different each time. This is similar as the fact
that traffic in a network every day is a little different. Since we never know which time
of simulation will occur more frequently in real world, and we do not know either which
will tend to cause more traffic accidents than the rest, it is supposed that each situation in
39 simulations has equal possibility to occur in the real word, and has same chance to

cause traffic accidents.

The volume divided by number of lanes gets volume per lane.

Accident Data Collection
From police reports, a four-years database of accidents happened from 1996 to 1999 in
Toronto is available. About 180 thousands vehicles every year were involved in
accident in this city and every accident was recorded by policemen in detail. However,
only those data meeting all following conditions are useful for the research.

1) Happened in morning peak hour(from 8:00 to 9:00)

2) Happened on weekdays( From Monday to Friday)

3) Classified by police as reportable accidents

4) Happened on links in Waterfront network.

There are no difficulties in the first 3 filtrations. For the fourth condition, it is a problem

15



of judgment on whether the location of an accident is within the range of any link.

The first step for 4) is coordinate transform of accident locations. All 4-year accident
locations in the database from police were recorded in terms of spherical coordinates
Latitude and Longitude, but those in 1996 were also recorded in terms of UTM, the
planar coordinates X and Y. Since locations in the simulated network are described in
UTM, all accident locations in Latitude/Longitude should be converted to UTM. The

operation of such a conversion is called projection.

After projections, locations of accidents and locations of nodes in waterfront network are
in same coordinates. It can be determined whether an accident happened on a specific

Paramics link, based on the following link information:
1, X/Y values of the two nodes of the Paramics link;
2, Whether the two nodes of the link are intersections or not;
3, The link direction and width;

4, Arc radius and location of center, if applicable.

After the filtration and mapping, there remained only about 300 crashed vehicles in one

year.

What may need to be mentioned here is that the damage caused to every vehicle may

16



vary greatly. In Ontario, drivers need to contact police if a vehicle collision causes
more than $1,000(before January, 1998, the reporting threshold was $700) in damages, or
any injury is caused, no matter how small is the damage estimate. The reporting
threshold refers to the total damages for all vehicles involved in the accident. Therefore,
the above accident data only indicate how many vehicles involved in reportable accidents,

no matter seriously or not.

4.3 DATASETS

It is found that some links have very low simulated volume, for example, 1 veh/h/lane,
but some accidents happened. It seems abnormal. Therefore these links should be
excluded. In this research, the links whose volume per lane is less than 60 veh/h/lane

would not be considered in model development.

Too short links will also be excluded. The threshold is: the distance between two nodes of

a link is less than 25 meters.

In the final database, there are 1966 links, 909 crashed vehicles, 249 million*km*veh of

exposure. The average accident risk is 3.639 veh/(million*km*veh).

Two data sets were produced. One dataset was used to estimate accident risk. It
recorded all traffic data in 39 times of simulation, so for each link there are 39 records.
Apart from 3 traffic attributes and 3 geometric attributes in this dataset, it also included

exposure and number of crashed vehicles. Exposure of a link was defined as over the

17



study period the number of vehicles passing the link times the link length. Since one

link has 39 simulation results, the exposure in one record of a link is estimated as:

EXP=(volume per lane)*(number of lanes)*(link length)*(5/7*365*4)*1/39

In the second dataset, each link has only one record, in which 3 traffic attributes are the
average of 39 records from the first dataset. Apart from 3 traffic attributes, 3 geometric
attributes are also included, but exposure and number of crashed vehicles are not

included.

Based on traffic and geometric attributes, accident risk of links in the second dataset can

be estimated by the first dataset. To easily distinguish the two data sets, the first one is

called Predicting Dataset, the second one Predicted Dataset.

18



S FORM OF ACCIDENT RISK PREDICTION MODEL

5.1 ACCIDENT PREDICTION MODEL FORM

The Predicting Dataset, which was obtained in the last chapter, has thousands of link
samples. Each link sample has geometric attributes, traffic attributes, exposure and
number of crashed vehicles. Given this dataset, the problem is how to predict accident
risk of a link whose geometric and traffic attributes are given. The main idea of

accident prediction in this research is based a concept called “link neighbors”.

The “link neighbors™ are chosen from the Predicting Dataset. These links have very
similar geometric features and traffic characteristics as the link whose accident risk is to
be predicted. The similarity of link attributes between two links is measured by “link
distance”, which is a function of weighted attribute differences. All “link distances”
between the link to be predicted and all links in Predicting Dataset are calculated; those
links with “link disfance” smaller than a certain value are chosen as “link neighbors”, and
then the accident risk of that link to be predicted is estimated as

the total number of crashed vehiclesin "link neighbors"

the total exposure in "link neighbors"

The description of the form of the accident prediction model in this research is as shown

in Table 5.1.
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Table 5.1 Form of Accident Involvement Rate Prediction Model

For a link, the accident involvement rate(AIR), which is defined as the expected number
of vehicles involved in reportable accidents every one million-kilometer-vehicle exposure,
is estimated as following:
AIR = N (5.1)
EXP
where, N=The total number of crashed vehicles happened on the “link neighbors” in
Predicting Dataset.

EXP=The total exposure of the “link neighbors” in Predicting Dataset;

“Link neighbors” are the links with shortest “link distance” from the link whose AIR is to
be estimated.

“Link distance” is calculated as in (5.2).

2

dx1x2)=(Y| b, ) =& 3) | yos (5.2)

a

r

where, d(x1,x2)=the “link distance” between link x1 and x2;
n=Total number of link attributes considered;
b~ A weight that determine the contribution of attribute difference between the
two links to the distance; b0,
a,= The value of attribute r (traffic characteristics or geometric features) of a link;

a,= Average of attribute r, weighted by exposure for all links in Predicting
Dataset.

The following is the procedure of choosing “link neighbors” for a link:

1. Calculate all distances between links in Predicting Dataset and the link whose AIR is
to be estimated;

2. Sort ascendingly the links according to the distances;

3. From low distance to high distance, include links in Predicting Dataset as neighbors,
until the total number of crashed vehicles happened on those neighbors is over a certain
value, which is called here as “Threshold for Link Neighbor”.

Nine variables (including composite variables) are considered for this model, their

descriptions and a; are listed in table 5.2.
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Table 5.2 Attributes Considered for the Model
and Their Average Values

r Attributes(Variables) dar
0 | Speed limit (km/h) 71.90075
1 | Number of lanes 2.799721
2 | Link length (m) 1559.189
3 | Moving speed (km/h) 70.86688
4 | Standard Variance of moving speed (km/h) 12.98597
5 | Volume per lane(veh/h/lane) 1084.349
6 | Randomly produced value(from 0 to 1)* 0.5

7 | (5)/(3)(veh/km/lane) 14.49135
81(3)-(0) (km/h) 6.752294

*A randomly produced value apparently has no use to
prediction, but it was included to test the following modeling
method.

Two tasks need completion for the model to be useful. They are:

1. What is the threshold for the neighbors?

2.  What are the values of b,

5.2 THRESHOLD FOR LINK NEIGHBORS

In function (5.1), if we consider only one link neighbor, which has the smallest “link
distance” in function (5.2), then this neighbor’s N and EXP may be very small. In the
most cases, the N is 0, and the N/JEXP will be 0. It is apparently not correct that the
accident involvement rate of a link is 0. If we consider two “link neighbors”, the
situation will be similar, but the N and EXP will all increase. The more the neighbors,
the higher the possibility that the value of N is large. In this research, I set a threshold
for N so that the neighbors included in formula (5.1) have total number of crashed

vehicles just over that threshold.
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If the threshold is too small, then the links in “link neighbors” are very similar to the link
to be predicted, but both N and EXP will be so small that the statistical precision of
estimated value for accident risk in (5.1) cannot be guaranteed. In such a case, a small
change of the threshold may change the estimate greatly, so the prediction is unstable.

Therefore, the threshold should not be too small.

However, if the threshold is too large, the “link distance” will be so great that links in
“link neighbors” are not relatively homogeneous. Those links, which have quite
different traffic and geometric features, may be considered as the “link neighbors”, so the
estimation will be inaccurate. In this case, N and EXP will be so large that the accident
risk estimate in (5.1) will be insensitive to link’s traffic and geometric features, and then
the estimates for different kinds of links will always be similar. One extreme is to set
the threshold as 909, which is the total number of crashed vehicles in Predicting Dataset,
then for any link, its estimated AIR is always 3.639 veh/(M*veh*km). It is useless if we
want to compare the traffic safety among different links. Therefore, the threshold

should not be too large.

The threshold for N should be set by balancing prediction stability and link homogeneity
in “link neighbors”. The optimal threshold was finally found to be 90 crashed-vehicles;
the reason is discussed in Chapter 7. Therefore, in formula (5.1) all the nearest

neighbors will be taken into account so that the N is just a little bigger than 90.

N> 90 | (5.3)
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5.3 ATTRIBUTE WEIGHTS

In formula (5.2), weights b(r=0,1,...8) are unknown, but they are important. These
attribute weights and attribute differences decide the “link distance”, and then have an
effect on the selection of “link neighbors”. Whether the model is good or not depends
on the selection of “link neighbors”, so parameters b, have a great effect on model
performance. Usually important attributes should be assigned high weights, while
useless attributes should have a weight of zero. Figure 5.1 illustrates influence of
attribute weights on selection of “link neighbors” and performance of a two-variable

model.

In Figure 5.1, we suppose to develop a model having one very important variable and one
not so important variable. Figure 5.1 shows 5 situations with different weights b,. The
dark shaded area is the range of selected “link neighbors™ according to the b.. We can
see 1n situation (1) the model is the worst, because the variation of the important variable
in “link neighbors” is the biggest. From (2) to (4) it is better and better. If the
unimportant variable is like a randomly produced variable which is uncorrelated with the
dependent variable, then in situation (5) the model is the best, because the “link

neighbors” are homogenous in the highest degree in term of the important variable.

Chapter 7 will discuss determination of weights b, to produce a model with the highest

performance.
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Variable 1: a very important variable
Variable 2: a not important variable

Variable 2

Variable 2

Variable Variable |
(1) b1=0, b2>0 (2)0<b1<b2
: p p
Variable 1 Variable |
(3)b1=b2 (4) b1>62>0 (5) b1>0, b2=0

Figure 5.1 Illustrations of “link neighbors” Affected by Weights br

5.4 SIMPLEST MODELS

In formula (5.2), if one of weights is set to non-zero while all others zero, then only one

attribute will be considered in the model, which should be the simplest. As shown in

Table 5.2, there are 9 variables, so nine one-variable models can be established.

With these models, the AIRs of all links in Predicted Dataset were estimated. Figure
5.1~5.9 show the results.
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Accident Involvement Rate versus Speed Limit
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Figure 5.1 Accident Involvement Rate Estimated Only by Speed Limit

Accident Risk Rate versus Number of Lanes
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Figure 5.2 Accident Involvement Rate Estimated Only by Number of lanes

25




Accident Involvement Rate versus Link Length

0 10. 20 30 40 50 60 70 80 90
Moving Speed(km/h)

[+*]
T
(14
"E —
2 2
S5
sg
g =
=%
5 2
B
O
Q
<
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Link Length(m)
Figure 5.3 Accident Involvement Rate Estimated Only by Link Length
Accident Involvement Rate versus Moving speed
(]
T
(4
"E _—
2 2
%
e
g <
=5
RS
s
(53
Q
<

Figure 5.4 Accident Involvement Rate Estimated Only by Moving Speed
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Accident Involvement Rate versus Standard Variance of Moving
Speed
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Figure 5.5 Accident Involvement Rate versus Standard Variance of Moving Speed

Accident Involvement Rate versus Voluem per lane
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Figure 5.6 Accident Involvement Rate Estimated Only by Volume per lane
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Accident Involvement Rate versus Randomly Produced Value
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Figure 5.7 Accident Involvement Rate Estimated Only by Randomly Produced
Value

Accident Involvement Rate versus (Volume per lane )/(moving
. speed)
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Figure 5.8 Accident Involvement Rate
Estimated Only by (Volume per lane )/(moving speed)
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Accident Involvement Rate versus (Speed limit —- moving speed)
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Figure 5.9 Accident Involvement Rate Estimated Only by (Speed limit — moving
speed)

From above figures, following results are likely to be drawn from above for the
Waterfront Network.

1. Generally, high-speed-limit links are safer than low-speed-limit links;

2. Links with 3 or more lanes are safer than other links;

3. Links longer than 400 meters are safer;

4. Links with moving speed of about 40km/ h are less safe than others; links with

moving speed of about 80km/h are the safest;

5. Links with high standard variance of moving speed are usually safer;

6. When the volume per lane is about 900 to 1300 veh/h/lane, the links are the

safest;
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7. Randomly produced variable is not correlated with accident involvement rate;
8. Links with high (volume per lane )/(moving speed) are safer;

9. Links with moving speeds much higher than their speed limits are less safe.

However, the above results may be incorrect, because the nine models are too simple to

give precise prediction.

5.5 COMPARING SIMPLEST MODELS

20 records were randomly chosen from Predicted Dataset. Their accident involvement
rates were estimated based on those one-variable models. The samples are shown in

Figure 5.10.

From Figure 5.10, it is found that for a link with 9 features, the accident risk estimations

based on each single feature will be quite different.

Since all variables except randomly produced variable seem to have explanatory power,
but estimation results based on only one variable differ significantly form another, more

than one variable is required to estimate accident risk.
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Comparing Among QOne-Yariable Models
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Figure 5.10 Accident Involvement Rates Estimated
by Different One-Variable Models
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6 EVALUATION OF MODEL PERFORMANCE

According to the model form in Table 5.1, when the parameters (b;) vary, an infinite
number of models can be produced, each with different performance. Therefore, to
obtain the best model, a performance measure is required to help with the parameter

optimization process.

6.1 A PROBLEM IN MODEL PERFORMANCE EVALUATION

Usually model performance is evaluated by comparing the model’s outputs with the true
values of the dependent variable. These true values are usually observed so they are

considered correct.

However, accident risk can not be observed; it is estimated. Rarely there is a link on
which many accidents happened under the same traffic characteristics. Researchers
usually categorize each attribute so that in each category that attribute is homogeneous.
From any combination of categorizations, a sample, or a set of independent variables and
a dependent variable is produced. Such a sample is used for model development or
model performance evaluation. However, the accuracy of such a sample depends on the
degree of homogeneity which is also dependent on the data, the choice of attributes and

the categorization.  Often, the data is insufficient; the choice of attributes looks easy
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but is difficult; categorization is improper. All these cause inaccurate samples, so there
is a big problem when these samples are taken as correct in model performance

evaluation.

6.2 A MEASURE FOR ACCIDENT PREDICTION MODEL PERFORMANCE

A link has many attributes, some of which are highly correlated with traffic accident risk,
while others are less or not. Here let me say the attributes that are highly correlated with
accident risk are important attributes, and the links are homogenous if they are

homogenous in aspect of their important variables.

After the threshold for “link neighbors” is determined, whether a model is good or not
depends on homogeneity of the links in “link neighbors”. Under a certain threshold for
“link neighbors”, the prediction will be more accurate if the links in “link neighbors™ are

more homogeneous.

A good model should give dispersive estimates for different links. This can be
explained as follows. For any two different links whose accident risk rates are predicted
by a good model, two sets of “link neighbors” will be produced. Although the links in
each “link neighbors” are homogeneous, the links in one set of “link neighbors™ and links
in another set of “link neighbors” will be heterogeneous, so the estimated accident risk
rates from these two “link neighbors” should be different. On the contrary, a

poor-performance model is not so able to tell the big difference among different links,
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because in any set of “link neighbors” the links are more heterogeneous. The estimate
results from a group of heterogeneous links tend to be close to an average estimated from
all links in the dataset. Therefore, a poor-performance model can not give highly
dispersive estimates. The more dispersive the estimates, the better the model. This

situation can also be seen in results in Chapter 5.

There are nine one-variable models in last chapter, as shown in Figures 5.1~5.9.
Apparently, the model in Figure 5.7, whose independent variable is a randomly produced
variable, is the worst. Because the variable is uncorrelated with accident risk, the model
can not tell the difference between different links. On the contrary, a much better model
using variable of volume per lane in Figure 5.6 can make quite different estimates about
accident risk for different links. Volume is considered as one of the most important
variables in accident prediction models in literature. From these, it shows that a good
model uses important variables, and makes the differences between different links; a
poor-performance model gives estimates close to an average so that it can not distinguish
amongst different links. This result is based on a condition that the threshold for “link

neighbors” is the same.

In this research, dispersion is measured by standard deviation. Therefore, when N, the
threshold for “link neighbors”, is the same, the best model is the one whose outputs for
all links in Predicted Dataset have the highest standard deviation. Standard deviation is

calculated as formula (6.1).

0= =0, -4 6.1)
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where, n=total number of links to be estimated in the Predicted Dataset;
y;=accident risk rate of link j estimated by a model;

4 =mean of y;,

Formula (6.1) should be improved because links have different lengths and volumes.
Therefore link length, number of lanes and volume per lane are added as weights. The
standard deviation of estimated accident involvement rate (denoted by SD) in this

research is calculated as in formula (6.2).

[,*NL;*VPL;*> (y, - 1)’
SD= =
> (I, *NL;*VPL,)

j=t

(6.2)

where, n=total number of links to be estimated in Predicted Dataset;
l;=length ofliink s
NL;=number of lanes of link j;
VPL=volume per lane of link j;
y;= estimated accident involvement rate of link j;

>, *NL, *VPL, *y,)
4= weighted mean of y;, =72 -

> (I,*NL,*VPL))

Jj=1
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The evaluation criterion for models is described as:

For a model developed from Table 5.1, after the threshold for link neighbors is
properly set, the performance of the model can be measured by the standard

deviation of accident involvement rates estimated by the model for all links in

Predicted Dataset, as calculated in (6.2).

dispersive the estimated accident involvement rates, then the better the model.

Table 6.2 lists the SD values of those 9 simplest models as shown in Figure

5.1~5.9.

Table 6.2 SD of One-Variable Models

The greater the SD, the more

(Threshold for Link Neighbors=90 Crashed-Veh)

ModelVariables b0|b1|b2|b3|b4|b5|b6|b7|b8| SD
1 |(0) Speed limit (km/h) | 1 [0]|0[0]{0/0]|0|0]0]1.733
2 |(1) Numberoflanes [0|1[0(0]|0[0|0|0]0]1.451
3 |(2) Link length 0/0[1/0[0]{0[0]|0]0]2.094
4 |(3) Moving speed 0[0[0]|1]/0]|0]0|0]0/|2.188
5 |(4) Standard Variance

of moving speed 0[0]0[0]1[0]0[0]0|1.491
6 |(5) Volumeperlane |0|0[0|/0|0[1|0]|0|0]| 2.49
7 |(6) Randomly

produced value 0({0[0]0]0|0[1]0]0|0.309*
8 (D=(5)(3) 0(0/0|0|0|0]|0]|1]0(2.256
9 |(8)=(5)-(3) o(o|lo|o|o|o|O|O|1[1.728

According to evaluation criterion, among these 9 one-variable models, the model using

the variable of volume per lane is the best one, while the model based on randomly

produced value has the poorest performance for safety evaluation.
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7 MODEL PERFORMANCE OPTIMIZATION

A model can be optimized by setting its parameters with proper values so that the model
performance is maximized. Based on results of Chapter 5 and Chapter 6, the chapter is
to determine the suitable threshold for “link neighbors™ and attribute weights for the

accident prediction model.

7.1 PARAMETERS TO BE SET IN THE MODEL

For a model as described in Table 5.1, two kinds of parameters should be set before the

application of the model. They are threshold for “link neighbors” and weights (b;).

Threshold for “link neighbors” should be set by balancing two different requirements:

1. It should be small enough so that the model’s output, the accident involvement rate
(AIR), is sensitive to the changes of link attributes. In this case, SD will be high.

2. It should be large enough so that the model’s output is insensitive to the changes of
threshold for “link neighbors”. That means a small change of the threshold would

not affect estimated AIR much. In this case, the model prediction is stable.

Weights should be set so that the model can effectively compare the differences of AIR
among different links; the standard deviation of the accident involvement rates (SD)
estimated for links in Predicted Dataset should be as high as possible. The process of
adjusting weights for the highest SD is model optimization, which requires an

optimization algorithm.
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7.2 ALGORITHMS FOR THE BEST MODEL PERFORMANCE

Table 7.1 lists algorithms of searching for suitable weights in (5.2) to obtain the highest
performance measured in SD. Under such algorithms, the optimized weights are
determined given" threshold for “link neighbors”, and the initialized weights.

Table 7.1 Model Optimizing Algorithms

e Set threshold for “link neighbors” to a certain value
e Initialize each weight b;. *
¢ Load Predicted Dataset.

e Load Predicting Dataset, calculate exposure weighted average of every attribute, a..
® SD max := f(bo, b1, .., bs);

e SearchFailCount :=0;

em:=1

e Whilem < 1000

e b :=average of b;
¢ For each attribute i:

SD (=f(bo, biy...bit 2 , b, be)
m

eThen SD gy :=Max(SD;),

if SD;=SD max, i =b; +—

e b :=average of b;
¢ For each attribute i:

b
SD =f(bo, bi,....,bi-—, bj+1..., bg)
m

eThen SD nx:=Max(SD;),
, b
if SDi=SDmax, bi:=bj-—
m

e Return SDmax and by/2b;, i from 0 to 8;

* Let oj denote SD value in Table 6.2. To reduce optimization time, b; was
initialized as a function of g, because the variable with higher ¢;is more important and is
expected to have a higher value of b; in the optimal model. To know whether different
initial b; will affect optimization result or not, 10 different sets(n=0,1,...9) of b; were
tried. In each set, b; was initialized as (¢)**".
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Table 7.2 shows the optimal (b,),

in which weights were initialized into different

values(0;>*™, see taiale 7.1 ) and thresholds of neighbors were set as 90 and 60 crashed

vehicles, respectively. The main calculation structure of obtaining results in Table 7.2 is

as shown in Figure 7.1.

Table 7.2 Final Weights Searched from Different Start Points*

Threshold Weights

for Link

Neighbors| #* | by by b, by b, bs by b, by | SD |AIRmax**AIRmin**
0 |.0000 .1171 .1739 .1846 .0004 .3794 .0000 .1447 .0000| 3.045 | 18.06 1.32
1 .0004 .1107 .1723 .1722 .0000 .4105 .0000 .1336 .0002| 3.043 | 17.33 1.32
2 [.0000 .1303 .1591 .2083 .0000 .3303 .0001 .1720 .0000| 3.038 | 18.55 1.35
3 |.0000 .1162 .1714 .1707 .0000 .4012 .0000 .1405 .0000| 3.043 | 17.85 1.32
4 1.0000 .1105 .1716 .1998 .0000 .3901 .0002 .1277 .0000| 3.042 | 18.39 1.33

90 5 |.0000 .1134 .1658 .1892 .0000 .3889 .0017 .1401 .0009| 3.043 | 17.99 1.32
6 [.0000 .1172 .1733 .1703 .0000 .3896 .0017 .1479 .0000{ 3.043 | 17.71 1.33
7 |.0004 .1314 .1503 .1987 .0000 .3394 .0000 .1796 .0000] 3.037 | 17.99 1.34
8 |.0002 .1153 .1775 .1690 .0000 .3800 .0004 .1576 .0000| 3.044 | 17.52 1.32
9 [.0000 .1167 .1732 .1845 .0000 .3800 .0009 .1447 .0000| 3.044 | 17.91 1.32
0 |0.003 0.083 0.182 0.134 0.000 0.595 0.000 0.004 0.000| 3.245 | 18.58 1.04
1 10.000 0.083 0.200 0.131 0.000 0.585 0.001 0.000 0.000] 3.242 | 19.28 1.04
2 [0.002 0.086 0.182 0.137 0.001 0.585 0.001 0.006 0.000| 3.247 | 19.18 1.04
60 3 [0.000 0.084 0.167 0.144 0.000 0.602 0.004 0.000 0.000] 3.242 | 18.39 1.04

4 10.000 0.085 0.201 0.130 0.000 0.581 0.001 0.002 0.000 3.241 | 19.26 1.04
5 10.000 0.086 0.184 0.138 0.000 0.590 0.002 0.000 0.000| 3.246 | 19.27 1.04
6 [0.000 0.083 0.178 0.134 0.000 0.595 0.000 0.009 0.000| 3.244 | 18.45 1.04
7 10.004 0.082 0.185 0.131 0.000 0.594 0.003 0.000 0.000| 3.244 | 18.40 1.04
8 10.000 0.086 0.184 0.138 0.000 0.590 0.002 0.000 0.000{ 3.248 | 18.58 1.04
9 [0.000 0.085 0.184 0.136 0.000 0.592 0.004 0.000 0.000| 3.248 | 19.27 1.04

* Initial b; = (07)*>"™.
** Highest and lowest accident involvement rates estimated from Predicted Dataset.
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Predicted Dataset
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Accident Risk
»| Prediction
Model

Figure 7.1 Structure Flow for Optimization of Weights
and Calculation of SD, AIR,,, and AIR;,

It was found from Table 7.4 that if the threshold for “link neighbors” changed, br, SD,
AlRmax and AIRmin would all change much, no matter the initialization of weights is
same or not. However, when threshold for “link neighbors” was same but initialization
of weights changed, br, SD, AIRmax and AIRmin did not change much. Therefore, we
can conclude that SD, AIRmax and AIRmin are determined only by the threshold for

“link neighbors”.

7.3 DETERMINATION OF THRESHOLD FOR LINK NEIGHBORS

Since values of SD, AIRpux and AlRy, are mainly determined by threshold for “link

neighbors”, a suitable threshold for “link neighbors” can be selected from its
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relationships with SD, AIRnax and AIRpn, so that the model under that threshold for “link

neighbors” performs well.

Figure 7.2~7.4 show the relationships between threshold for “link neighbors” and the
above three measures. The relationships were obtained from algorithms in Figure 7.1

and Table 7.1, where the threshold was set as from 10 to 145, with step=5.

SD vs.Threshold for Link Neighbors

SD (Crashed-veh/M*veh*km)

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Threshold for Link Neighbors (Crashed-veh)

Figure 7.2 SD Versus Threshold for Link Neighbors

If a model can estimate accident risk steadily, then to increase or decrease the threshold
for “link neighbors™ a little should not greatly affect estimates for most links, so the SD
should not change much. Otherwise, the model’s estimates should be taken as unstable.
From Figure 7.2, we can see that if the threshold for “link neighbors™ is less than 80, the
model’s estimate 1s unstable. When the threshold is around 90, the model seems much

better. However, if the threshold is over 90, the model outputs are insensitive to
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attributes. Therefore, to let the model be sensitive to changes of attributes, but

insensitive to changes of threshold, the threshold of 90 is a good choice.

It should be also true for the highest or lowest estimated accident involvement rates. If
a model’s estimate is stable, the estimates for the safest or least safe link should not
fluctuate much after threshold for “link neighbors” changes a little. From Figure 7.3, it
shows that the model is not reliable if the threshold is less than 45 and not very reliable if
the threshold is between 45 and 70. When the threshold is between 85 and 100, the

model prediction seems stable; It is same in Figure 7.4,

Based on above results and analyses, the threshold was set as 90 crashed vehicles.

AIRmax vs. Threshold for Link Neighbors

(veh/M*vehkkm)

AIRmax

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Threshol d for Link Nei ghbors

Figure 7.3 AIRmax versus Threshold for Link Neighbors
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AIRmin vs. Threshold for Link Neighbors
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Figure 7.4 AIRmin versus Threshold for Link Neighbors

7.4 DETERMINATION OF WEIGHTS

When the threshold for “link neighbors” is 90, Table 7.4 shows that 4 weights are always

O ornear 0 in all 10 models.  To simplify modeling, all these 4 weights were set to 0.

With algorithms in Table 7.1 and the threshold of 90, all other 5 non-zero weights were

optimized again. The final results are shown in Table 7.3.

Table 7.3 shows that although weights were initialized to different values, the optimized
weights in all 10 models were very similar. Because Model 1 has the highest SD, it is
chosen as the model we seek. Definitely, if more optimization work is done, higher SD

may be obtained, but gain of SD may be very limited, and the weights will be similar as
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those in model 1.  Actually, the difference between Model 1 and Model 2 is so small
that we cannot say that one is apparently better than the other. The case should be the
same for the real best model and Model 1. Therefore, it is reasonable that Model 1 is

taken as the best model.

Table 7.3 Optimization Results Using Five Variables
(Sorted by SD)

Model | n* | SD | br[I]** | br[2]** | br[3]** | br[5]** | br[7]**
0 |3.04497 | 0.11712 | 0.17396 | 0.18466 | 0.37955 | 0.14471
2.7 | 3.04433 | 0.11687 | 0.17331 | 0.18466 | 0.38032 | 0.14484
2.4 | 3.04348 | 0.11535 | 0.17765 | 0.16915 | 0.38029 | 0.15755
0.3 | 3.04306 | 0.11077 | 0.17246 | 0.17230 | 0.41080 | 0.13367
0.9 | 3.04249 | 0.11622 | 0.17142 | 0.17066 | 0.40123 | 0.14047
1.5 | 3.04245 | 0.11368 | 0.16623 | 0.18965 | 0.38994 | 0.14050
1.8 | 3.04231 | 0.11740 | 0.17361 | 0.17058 | 0.39028 | 0.14812
1.2 | 3.04209 | 0.11054 | 0.17168 | 0.19984 | 0.39021 | 0.12773
0.6 | 3.03829 | 0.13032 | 0.15910 | 0.20829 | 0.33030 | 0.17199
10 |2.1]3.03652 | 0.13149 | 0.15041 | 0.19884 | 0.33957 | 0.17969

* See Table 7.1
** See Table 5.1 and 5.2
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8 RESULTS AND DISCUSSION

8.1 VARIABLES USED IN THE MODEL

8.1.1 Results

Based on the accident, traffic and geographic datasets, and on the optimization algorithms
in Table 7.1 and concept of SD in (6.2), the best model, which is the most efficient but
also is stable, is established in the form described in Table 5.1. The model includes four
independent variables. They are: number of lanes, link length, average moving speed
and average volume per lane.  One composite variable is also included in the model.

It is (average volume per lane) / (average moving speed).

The parameters (see Table 5.1) of the model are listed in Table 8.1.

Table 8.1 Parameters of Accident Risk Prediction Model in Table 5.1

Variable br Z
Number of lanes 0.11712 2.7997
Link length 0.17396 1559.2m
Moving speed (peak hour) 0.18466 70.867 km/h
Volume per lane 0.37955 1084.3 veh/h/lane
(Volume per lane) / (Moving speed) 0.14471 14.491 veh/km/lane

Threshold for “link neighbors”: 90 crashed vehicles in reportable accidents
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8.1.2 Discussion

Among nine variables, four variables and one composite variable remain in the model
while other four do not. That means, for a given dataset and a given model form, the
model may not perform the best with all variables in. It also indicates that the best

model is multi-variable, not one-variable.

The final weights of those variables are the balancing result among homogeneity degrees
of important link attributes in “link neighbors”. In one-variable model, for example, the
links in “link neighbors” are relatively highly homogeneous in one attribute, while highly
different in other attributes. If another variable is added to the model, to let the links be
relatively homogeneous in the second attribute, some links in the “link neighbors” will be
eliminated, while other links originally outside will join in. As a result, compared with
the “link neighbors” in one-variable model, the “link neighbors” in two-variable model
have higher degree of homogeneity in second variable, but lower in the first variable.
This is the same for multi-variable model. When a new variable is added, the variance
of any other variable among the links in the “link neighbors” will increase. The task of
optimization algorithm in this research is to select variables and assign weights so that the
links in “link neighbors” reach the highest degree of homogeneity in consideration of all

available important link attributes.

From the weight by, the importance of a variable can be roughly measured. Volume per

lane seems the most important variable, while all other excluded variables, whose

weights are 0, are useless. Therefore among the “link neighbors” of a link, the relative
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range of an important variable will be narrower than the relative range of a less important
variable. This result increases homogeneity of important variables in the “link

neighbors” from where a link’s accident risk is estimated.

8.2 THE SAFEST AND LEAST SAFE LINKS
8.2.1 Results

The Accident Involvement rates (AIRs) of 1,966 links in the dataset were evaluated
with this model. Table 8.2 and 8.3 list the 20 safest and 20 least safe links, respectively.

Table 8.2 The Safest 20 Links Evaluated by the Model

Variables Accident
Road Category 51113:;5;1 A Lik Mo?/in 0 = Involvement rate
(knv/h) |Number of] Length | Spee dg Volume/lane D/C (Craihecil-:eh

lanes (m) (km/h) (veh/h/lane) per M*veh*km)
Expressways 90 24 726 85 1257 15 1.32
Major Arterials 50 24 567 50 1160 23 1.33
Expressways 90 4.0 220 85 1372 16 1.34
Expressways 90 3.0 667 89 1292 15 1.34
Ramps 50 1.0 379 55 1215 22 1.34
Expressways 90 4.0 776 95 1198 13 1.36
Expressways 90 4.5 1221 95 1332 14 1.36
Expressways 90 3.0 939 97 1331 14 1.37
Expressways 90 3.5 241 80 1534 19 1.38
Expressways 90 3.0 302 91 1355 15 1.41
Major Arterials 70 3.0 73 42 1153 28 1.43
Ramps 50 1.0 433 48 1290 27 1.44
Expressways 90 4.0 590 88 1021 12 1.44
Expressways 90 2.0 755 72 1711 24 1.44
Major Arterials 70 3.0 29 52 1281 25 1.45
Major Arterials 50 1.0 458 51 1136 22 1.46
Major Arterials 70 3.0 29 57 1282 22 1.46
Major Arterials 50 3.0 131 52 1328 25 1.47
Expressways 90 4.0 534 89 1800 20 1.47
Expressways 90 2.0 491 94 1067 11 1.47
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Table 8.3 The Least Safe 20 Links Evaluated by the Model

Variables '
speqd A B < D E hlvo?::rlr(ll:rrlltt rate
Foad Category (m) Number of|  Link NSIg‘e::rcllg Volume/lane |/~ (C;Zihe‘;':ﬁ?n)
lanes  |Length (m) (knvh) (veh/h/lane) per iM7ve

Minor Arterials 50 2.2 172 41 110 3 18.06
Collector Roads | 40 2.0 231 43 115 3 17.73
Transit Arterials | 30 2.0 314 40 102 3 17.55

Local Roads 40 2.0 160 43 115 3 17.29
Collector Roads | 50 2.0 172 41 120 3 17.14
Collector Roads | 40 2.0 231 42 103 2 17.08
Minor Arterials | 40 2.0 223 43 126 3 17.05
Transit Arterials | 30 2.0 317 39 118 3 16.92
Transit Arterials | 30 2.0 274 40 127 3 16.81
Minor Arterials 50 24 166 43 110 3 16.63
Collector Roads | 40 2.0 126 41 107 3 16.32
Collector Roads | 40 2.0 120 42 103 2 16.31
Minor Arterials | 50 2.0 89 43 126 3 16.26
Transit Arterials | 30 2.0 359 39 118 3 16.24
Minor Arterials | 50 2.0 97 41 111 3 16.22
Transit Arterials | 30 2.0 170 39 125 3 16.08
Transit Arterials | 30 2.0 185 39 109 3 16.08
Minor Arterials 50 2.0 128 44 104 2 15.95
Minor Arterials 40 2.0 223 43 137 3 15.87
Major Arterials 50 23 127 37 109 3 15.83

8.2.2 Discussion

The safest 20 links belong to high-class roads, with over 1000veh/h/lane of volume per

lane.

On the contrary, the least safe 20 links belong mostly to low-class roads, with

volume of a little over 100 veh/h/lane and moving speed of about 40km/h; these links

usually have 2 lanes.

with light traffic can be explained as follows.
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1. Low-class roads provide poor road and traffic conditions for driving, while

those conditions on high-class roads are much better.

2. Although the 2-lane low-class roads provide poor driving conditions, the low
traffic volume and low speed make drivers overestimate safety of the traffic conditions.

On high-class roads, because the volume is relatively high, drivers will be more alert.

3. Traffic speed on low-class roads is much lower than on high-class roads, so
drivers have to spend more time to travel same distance on low-class roads than on

high-class roads.

4. Volume and traffic safety will affect each other. Apparently safer roads with

good geometric features will attract more drivers than less safe roads.

Therefore, it is easy to understand that more time on overestimated poor
driving-condition roads is much less safe than less time on correctly-estimated good

roads.

8.3 ACCIDENT PREDICTION BY ATTRIBUTES
8.3.1 Results
Figure 8.1 to 8.5 shows the distribution of AIR estimated for all links in the

Predicted Dataset versus variables.
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Accident Involvement Rates
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Figure 8.1 Estimates of Accident Involvement Rate versus Number of Lanes
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Figure 8.2 Estimates of Accident Involvement Rate
versus Link Length and Number of lanes
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Accident Involvement Rate

(veh/M#veh*km)

Accident Involvement Rate vs
Moving Speed and Number of Lanes
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Figure 8.3 Estimates of Accident Involvement rate Versus Average Moving Speed
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Figure 8.4 Estimates of Accident Involvement Rate
Versus Volume Per Lane and Number of Lanes
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From above four figures, we do not know the detailed trends of accident risk with links of
different attributes, so in the following 4 figures(Figure 8.5~8.8), three attributes are
categorized. In each combination of categorization, we can obtain the accident risk

trends with links of the different fourth attribute.

52



139

SYUIT Jue-duQ 10J Y1Suar] yury pue due| Jad dwnjoA ‘paadg SUIAGTA] SNSIIA MSTY JUIPINY §'Q N1 J

09 08 4 0g 02 09 vwwawmmngoaow 0¢ 0% 09 vmmnmmwcgoaow 0¢ 0% 0s paads %W\,oa 0¢ 0z
paads~3utaou S— r : =} T T 1 = — T o
T T T o . e o . .
LI PO . . o i
. -~ Toe .
......................................... - e EEEERERE < I ELGRCE R EEEEE R EEEEEEPEETEES B e RS EEEEEREEEES Y- Y
> L Lo P
..................................... o I N F e
= = = =
% ® & =
09 0S 1} 0€ 02 08 09 1) 4 0¢ 0§ )4 0¢ 0%
09 0S8 (174 0g 0Z peads  Butaom peeds Sutaom peads Sutaom
poods duraou - T T T < T T < T T o
IR ] S g o TSI e « @ $onies 4\11ﬂ“ul..l.‘ﬁ.l.‘lﬂﬂ.‘ “““ S| miu ,,,,,,,,, kR Y R @
S I e R ™ I I e I —
............................................ Y CTTTTTTT T o [l bt L
- =] = =
e to o —_ —_—
=) o] o T oo
09 0S oy 0€ 0¢ 09 0S 1) 0€ 0¢ 0% )4 0¢ 0¢
09 0g 0¥ 0¢ 0g paeds” Sutaom poeds 3utaom psads Sutaom
peads™ ButaAouw - T T T = T T T o T T o
e B o =l | i PR ;Q.o”mb‘bu‘w""#o\obllw \\\\ || Feeeee- P EEE mw..\a‘»tbwbiym’ﬂw%&%llx ol | b “\*«wﬁ‘b«w«v.i.h.»ok‘.‘.\wwn,ﬂno-.....w [
= g™ g P
.................................. Y 1, P I 1 L
= =~ = =
& =) ® »
09 08 1} 7 0¢€ 02 09 0s oy 0€ 0¢ 0§ )4 0€ 02
0g oF 0g 03 peads” SutAom peads” 8utaom peads Sutasom
psads Sutaou - T T T = T T T = T T =
“““““““““““““““““““ Pt D S D ST . wir bammis S} S U 7 i i NS oiblat o SR =)
......................... YT @ R ™ e v no S . U AL RARE - 22 K oo§“§\.o . Gt o ¢
¢ > et o . I o e
............................................. Y 7 N P 1
= = = =
% % & =
WO < YU ur'y W(Op > PIUS] YUI[>UW 0S| WS > PIUS NUI>W G/, WG/, > QI3ud] Jyury

¢'1 > 'sauef Jo Iaquun N

009<TdA

009>1dA>00¢

00€>TdA>0ST

0ST1 >"TdA



123

SYUuIy sueT-oMJ, 10] YISud jury pue due] Jod omnjoA ‘paadg SUIAOIA SNSIIA ST JUIPINY 9°§ InT1g

009<1dA

oF 09 08 [ 08 4 09 05 v g 0z 09 06 oy o€ 0%
oot poads mwm\,o___ 09 - vwmnw_ Sutaou , _ = vwmaw_ Sutaou _ . o _ummnw. Sutaouw , _ o
. % . . .- T . . ey .t * e . o v .. S e
.................................... ] o3 R S e B2 e = T Y Y
= — s o
............................................. Lo S X e e PO
= ® o P~
02 09 0¢ (ig (129 0%
09 oF 09 08 (037 0g 0% 09 0S (44 0g
oot poads www:os - vwmnm. Sutaow _ . o vomqw. 3utaow _ . o ﬁmmaw_ gutAou . A -
M AN SRR o N . o toe et ] Y R & lulb..o..nvmo.vy» ey & o
.............................. P REREEEEEEEEEES S} SERARR S A \.W oﬂ A . PTY "R e o o DI g - gy &.0 A P
= — g™ =
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Y 2 T N P R T L
= = =,
s % o &
¥ 09 0G o 0¢ 0% 09 0§ (474 0 02 09 0¢ V)4 0¢ 02
001 poods wwm>os 09 0 - vmmnm. Juraouw _ _ - ﬁmmaw_ 3urAou A _ - _uwmam_ Juraou . ‘ -
- O e i A P SR e S S B I e T T W R Bk ety ] o
- . =Y mo i SETTES e oy, Bogee KOS, ..va.h&m.ﬂm;rs pes
= T oW . — s R B - o0t I A =,
.......................................... e s [ Y . P BT A M
w : : w =_
0¥ 09 08 [ti4 0g 02 09 0§ oy oe 02 09 0§ o¥ 113 0¢
001 poads mwmz_: 09 - vwmam_ 3utaou _ _ - _uwwnm_ Sutaou _ . o _ummmm_ 3utAouw . . °
yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy =) Sttty I ~2] et =] T e ] =2}
. - . .
. = .3 ey =
- ™S IR N e e ] = ] L T [ T PP KA T
““““““““““““““““““““““““““““ —t2 & A N [k [ N . L 0 = PR . . 1 =t
.“u 'to&o ﬂ o*ho . do.oﬂo on‘“ ﬁo o RS &0&% .ua
< m §oo M M m m
WOy < R3S JuI T WOy > PIUS] JUIT>U OS] WOST > YH3US] U T>W G/ wig/ > H3ua] yury

$'T> S9UP[ JO JoquInN > §'[

009>[dA>00¢

00€>TdA>08T

0ST >"TdA



199

SYUI] aue-33.1Y I, 0] [)Sud| Yury pue sue| 1od swinjop ‘paads SUIAOTA] SNSIIA MSTY JUIPIIIY L'§ 2anT1

001 08 09 oy 02 1
oot vmmn%wu:;osow ov 0% poads Fulaou o 00t vmmanwwcgosow ov 0z 00 umonmmm::oeow ov 02
T - T : = - T T T T r T o T r T =]
- . . . 3& . . . co . - ‘e @ . - - - ou . .
““““““““““““““““““““““““““““ =2 hEbth bbbt bbbt T o] O e DY
= = g >
““““““““““““““““““““““““““““““““ —to R P e . S
= = = =
= ) ™ »
001 08 09 [oi4 02
peads Suraou - oot vmwn%mm:?osom 0¥ 02 oot ﬁmoamww::oeoo ov 02
T T T : r - o T T T =
Cee . £ -
R =23 I (N PR VIO . lxmd\lolym \\\\\ > ool | R oo..’q..n..(.ubh;r*} o
g g™ E™
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr TL7U TTTTTTTmmTmmmmmmmmm s m e I7u e S N
= = =
o o »
)ep ON
001 08 09 (44 02
001 vwm&mwmcﬁ\,oaoo ov 02 peads Butaou o 00t v@mn%mwcgoaow ov 0z 001 vmwmmmm::o___ow o 0z
T T T = T T i T T T = T T v S
\\\\\\\\\\\\\\\\ g ..uy..l.:..‘:..um.:....uo.......u.u........i o> B T e R C TR S
. . LS . . M ¢ .
= = s = MR T
............................................. —bo e N e U Y
= = = =
® ) % »
001 08 09 ov 114
00t _uwoammmcgoaow ov 02 poads Jursou - oot cmmn%wwzgosow o 0z 001 vmwn%wm:.:o___ow o 02
T - T T (=4 T T T T T T < T T T [=}
“““““““““““““““““““““““““““““““““““ = e eieiieielie e iieielieietets MRS e =2 e e =)
s . ., e * .
= = . . > ‘. >
............................................. e N B S R o \11111\111111A‘oa-.ouﬂftl\tcm\w?o. o
= = w =
® © x %
WO < PIo] Jur'T w0y > PIUS] Y I>W S 1 WOST > YU YW >W g/ i/, > {3ud] yury

§'€> SOUE] JO IQUINN >G'T

009<IdA

009>1dA>00¢€

00e>TdA>0C1T

051 >"T1dA



9¢

U] U -1n0y 10} Y}Sua Jur] pue sue| 19d dwmjop ‘paadg SUIAOTA SNSI2A SR JUIPINY §°§ 31N

001 08 09 (114 02 00T 08 09 0¥ 4
oot vmwnmwm__;osom ov 0z paads Suraou oot wwon%w&:gosow ov 02 poads Suriom 0
— r v o T T T < r— T r =] T T T =)
R . oo . e . e .
......................................... o ettt T ] OO B e -
= > = =
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Im e R Il e
= = = =
= > = >
00T 08, 09 oY 02
° paads Suraou 001 vmwammw::oacm o7 0z 001 vwmamwmcgoaow ov 02
T T T (=} ¢ = r ; o T T T <
¢ . M LR -
....................................... o e o B T USRI B Y
Tk = R = MR SR g
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww Iz e P ) i SO -}
= = =
» » »
B1Ep ON
1 09 (134 02
0T 06a985ur rou 00T 0a®auy ou®? 0¥ 0z 001 o ®5ur 0w 0¥ 0z
T T T < r d . r o T T T [}
yyyyyyyyyyyyyy P AP B N U RSN PSS I N
W . = e LA > % PR =
.......................................... o bttty MY e
.u = =
o ® ®
eep ON
001 08 09 154 02
paads Suriasou 001 umma%mw::osow ov 0z oot wmmn%wm::oaow ov 0%
T T T <o T - y . (=] T T T =]
“““““““““““““““““““““““““““““““ o R BN e
.o
. = T [ et =
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ .y‘.AZ . S S ) |||||||||||||||V||l|r..|\w\w\\\14wh<<w11|0l||rIZ
=~ = =
5 = >
e1ep ON
WO < 3usf Jur] WOy > PIUS[ Jur>W OS] WOST > PSS JUIT>W G/ wg/, > ySusy ury

§'¢> SaUe] JO ISquInN >6°Z

009<TdA

00e>TdA>0ST 009>IdA>00¢

0ST >"1dA



From above 8 figures, we can predict accident risk according to link attributes as
following:

1. Among the links with same number of lanes, link length and moving speed, the links
with high volume per lane are safer(See Figure 8.4~8.8).

2. Links whose volume per lane is over 1000 veh/h/lane have similar accident risk rates,
and they are the safest, no matter what values of other three attributes(See Figure 8.4).

3. Among links with volume per lanes less than 200 veh/h/lane, one-lane links are the
safest, while two-lane links are the least safe(See Figure 8.4).

4. Among links with volume per lane between 200 and 400 veh/h/lane, four-lane links
are the least safe(See Figure 8.4).

5. Among one-lane links, link length has little effect on traffic safety(See Figure 8.5).

6. Among multi-lane links, if the link length is less than 400m, link length has little
effect on safety. If all other attributes are the same, links over 400m long are safer than
those with length less than 400m, (See Figure 8.6~8.8).

7. Among one-lane links whose volumes are less than 150 veh/h/lane, links with higher
moving speed are less safe, if all other attributes are the same(See Figure 8.5).

8. Among two-lane links whose volume is less than 300 veh/h/lane, the links are the
least safe if their moving speeds are around 40km/h(See Figure 8.6).

9. Among 3-lane and 4-lane links, the links with high moving speed are usually safer, if

all other attributes are the same(See Figure 8.7~8.8).
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8.3.2 Discussion

Based on one attribute, in most cases it is difficult to predict traffic safety. Usually three
or 4 attributes are needed to give a precise accident risk estimate. However, from
Figure 8.4, it seems that if a link’s volume and number of lanes are given, we can

estimate the accident risk roughly.

The correlation between an important attribute and traffic safety is not same for all kinds
of links. For some links, the correlation is positive, while for other links, it may be zero
or negative. For some links, the correlation is strong, while for other links, it may
become weak. Therefore, it is difficult to use a mathematic equation to express accident

risk as a function of all four attributes.

8.4 COMPARING MODELS WITH DIFFERENT NUMBER OF VARIABLES
8.4.1 Results

If the threshold for links is still set as 90 crashed-veh, but one or more variables are
excluded before optimization, models with different number of variables can be
established. Table 8.4 lists the models with the highest SD in various numbers of

variables.
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Table 8.4 Best Models with Different Numbers of Variables

Models with Highest SD
1 variable |2 variables|3 variables|4 variables| >4 variable

(1)Volume per lane 1.000 0.871 0.871 0.514 0.380
(2)Number of lanes / 0.129 0.129 0.116 0.117
Weight|(3)Moving speed / / / 0.200 0.185
(4)Link length / / / 0.170 0.174
(5)=(1)/(3) / / 0.000 / 0.145

SD 2.490 3.016 3.016 3.024 3.045

To compare differences of accident risk estimates between the more-than-4-variable
model(i.e., the best model obtained) and other models, the cumulative percentage of links

versus estimate difference was calculated as shown in Figure 8.6.

Cumulative Percentage of Links Vg. Eztimate Difference
Compared with More-than-4-variable Model
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Figure 8.6 Comparison between More-than-4-variable Model and Other Models

8.4.2 Discussion
From Table 8.4, apparently the most important variable among 6 variables is volume per

lane. The two most important variables are volume per lane and number of lanes. Just

59



by this single variable, maybe its explanatory power for accident risk estimation is not as
strong as other variables, but it is the best one to be combined with volume per lane to
form a two-variable model. The reason may be that the number of lanes has the least

correlation with the variable of volume per lane.

Figure 8.6 shows that the estimate difference between 1-variable model and
more-than-4-variable model is great. As the number of variables in a model increases,

the model performance is closer to that of the more-than-4-variable model.
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9 CONCLUSIONS

Traffic simulation on computer is a good way to collect traffic data. It saves time and
money. Traffic simulation not only is efficient but also makes it possible to obtain large

sample of traffic data.

The concept of “link neighbors” formed in this research has many advantages.

1. Based on “link neighbors”, the accident risk of a link can be directly estimated from
a dataset with traffic, geometric and accident data.

2. The estimation accuracy of accident risk is improved by increasing the homogeneity
of important variables among links in “link neighbors”. This is realized by adjusting
attribute weights in “link distance”.

3. The proper threshold for “link neighbors” makes the size of “link neighbors” be at a
reasonable value which is not too small and not too large.

4. Ttis not necessary to establish a mathematical formula which is usually error-prone.
5. Unlike most of other accident prediction models, the model based on “link

neighbors” is applicable for all kinds of roads in Waterfront Network of Toronto.

SD, or the standard deviation of the estimated accident involvement rates, is a good
performance measure for accident prediction models. The higher the SD, the better the
model. Parameters in a model can be optimized so that the model has the highest SD.

Therefore, unlike other modeling approaches, the one in this research does not require
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variable analyses. All kinds of variables, whether considered as important or not,

correlated with each other or not, can be added into the optimization model.

Accident risk of a link depends on many geometric and traffic attributes. ~ However, not
all attributes will be included in the best model. Based on the dataset, the model

includes volume per lane, number of lanes, moving speed and link length.

The correlation between an attribute and traffic safety may change as other link attributes
change. It is difficult to use a mathematic equation to correctly express accident risk as

a function of link attributes.

The model makes accident risk estimates based on accident data and exposure of the
“link neighbors”. The links in “link neighbors” should be homogeneous in attributes
which are correlated with traffic safety. The more homogeneous those attributes, the
better the estimates. If a link whose traffic and geometric features is far different from
most of the links in “link neighbors”, the estimate may be incorrect.  Therefore, the
model may not be reliable for other networks, or off-peak period of the study network.

To alleviate this problem, more data are required.

The model only predicts reportable accident involvement rates. The severity

difference among accidents has not been considered.
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