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Characterizing Spaces by Disconnection Properties 

In curve theory there is a long histoty of taking some interesting disconnection property 

and then studying the class of spaces determined by this property. In this thesis we study 

the spaces in which every countably infinite set disconnects. 

The disconnection number, DS(X), of a connected space X is defined to be the smallest 

cardinal number tc such that X becomes disconnected upon removal of any set A with 

\A( = I( and IX \ A1 2 2 provided such 6 exists. We write X E DH, if D s ( X )  No and call 

X a DH0-space. We write X E D, if X E DN, and if each separator F of X between any 

two points a and b of X contains a separator between a and b consisting of finitely many 

points and call X a D,,-space. 

Stone [St] obtained a characterization of connected, locally connected, separable, metric 

Dn,-spaces. It is a corollary of Stone's theorem that every locally connected, separable, 

metric DH,-space X is a D,-space for some integer n. Stone asked for an independent proof 

of this fact ( i .  e., one which does not rely on Stone's characterization theorem). We present a 

characterization theorem of these spaces and in the process we obtain an answer to Stone's 

quest ion. 

We obtain a structure theorem for the class of connected, Hausdorff spaces in D,,: If 

X is a connected, HausdorfT space in D ,  , then there exists a weaker topology for X which 

makes X a locally connected, Tychonoff, Dm-space. Under this weaker topology X is the 

union of a rim-finite generalized R-tree and a finite set. If X is a connected, semi-colocally 

connected, separable metric D,,-space, then X is hereditarily locally connected and, hence, 

X is the union of a R-tree and a finite set. If X is a non-degenerate, countably compact, 

connected, separable, HausdorfF, Dm-space, then there exists a weaker topology for X which 

makes X a metric graph. 

For the class of non-metric continua in DHo we give a characterization theorem as  follows: 

A HausdorfF continuum X is a DNo-space if and only if X is a generalized graph. This 

generalizes a theorem of Nadler in the metric case. 
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Abstract 

In curve theory there is a long history of taking some interesting disconnection property 

and then studying the dass of spaces determined by this property. In this thesis we study 

the spaces in which every countably infinite set disconnects. 

The disconnection number, D s ( X ) ,  of a connected space X is defined to be the smallest 

cardinal number K such that X becomes disconnected upon removal of any set A with 

(A(  = K and (X \ A( > 2 provided such K exists. We write X E DN, if D S ( X )  5 No and call 

X a D&-space. We write X E D,, if X E DNo and if each separator F of X between any 

two points a and b of X contains a separator between a and b consisting of finitely many 

points and call X a I),,-space. 

Stone [St] obtained a characterization of connected, locally connected, separable, metric 

DH,-spaces. It is a corollary of Stone's theorem that every locally connected, separable, 

metric DHo-space X is a D,-space for some integer n. Stone asked for an independent proof 

of this fact ( ie., one which does not rely on Stone's characterization theorem). We present a 

characterization theorem of these spaces and in the process we obtain an answer to Stone's 

quest ion. 

We obtain a structure theorem for the class of connected, Hausdorff spaces in Dsw: If 

X is a connected, Hausdorff space in DaW, then there exists a weaker topology for X which 

makes X a locally connected, Tychonoff, Dm-space. Under this weaker topology X is the 

union of a rim-finite generalized R-tree and a finite set. If X is a connected, semi-colocally 

connected, separable metric D,,-space, then X is hereditarily locally connected and, hence, 

X is the union of a R-tree and a finite set. If X is a non-degenerate, countably compact, 

connected, separable, Hausdorff, D,,-space, then there exists a weaker topology for X which 

makes X a metric graph. 

For the class of non-metric continua in DN, we give a characterization theorem as follows: 

A Hausdorff continuum X is a DHo-space if and only if X is a generalized graph. This 

generalizes a theorem of Nadler in the metric case. 



The connectivity degree of a space is introduced and its relation with disconnection 

number is discussed. 

iii 



This thesis is dedicated to the memory of my father 

YANG Zehua (1931 - 1994) 

For his guidmce and sacrifices in my life 



Acknowledgments 

I Like to express my sincere thanks to Profasor Ed Tymchatyn, my supervisor, for his 

patient and skiufd guidance. I spent much pleasure time with him. Great thanks are also 

due to Dixie, Ed's wife, for her reading and comments of the first parts of the thesis. 

My appreciation is also expressed to other advisory committee members: Dr. J. R. 

Martin, Dr. J.  A. Brooke, Dr. A. Chigogidze, Dr. M. Koshkam, Dr. P. Mezey, external 

examiner Dr. Wayne Lewis for their suggestions and comments. 

Thanks go to the College of Graduate Studies and Research and the Department of 

Mathematics and Statistics for financial assistance. 

I greatly appreciate my mother HAN Jinyu, my dear wife Wenyan, son Yuan and the 

coming child for the life we share. This thesis is also dedicated to them. 



Contents 

Permission to Use 

Abstract 

Dedication 

Acknowledgments 

Introduction 1 

1 Preliminaries 5 

1 .I  Separating Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

1.2 Dimension and Rim-Countable Spaces . . . . . . . . . . . . . . . . . . . . . 12 

1.3 Absolute Neighborhood Retracts . . . . . . . . . . . . . . . . . . . . . . . . 13 

1.4 Hereditarily Locally Connected Spaces and Convergence Continua . . . . . 14 

1.5 Inverse Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

2 Locally Connected Separable Metric Spaces in DN, 20 

2.1 The Space X is Rim-Countable . . . . . . . . . . . . . . . . . . . . . . . . . 20 

2.2 The Space X is Arc Connected . . . . . . . . . . . . . . . . . . . . . . . . . 21 

2.3 Characterizations of The Space X . . . . . . . . . . . . . . . . . . . . . . . 27 

2.4 More Properties of The Space X . . . . . . . . . . . . . . . . . . . . . . . . 30 

3 Dd,-spaces 31 

3.1 D,,-spaces and Property (*) . . . . . . . . . . . . . . . . . . . . . . . . . . 32 



3.2 Rim-finite Topologies on U,-spaees . . . . . . . . . . . . . . . . . . . . . . 34 

4 Hausdo* Continua in DN, 44 

5 The Connectivity Degrees of Spaces 50 

6 Examples and Questions 5 4  

B ibiiograp hy 63 

vii 



Introduction 

In topology a basic problem is to determine when two spaces are homeomorphic. Topologists 

have developed many tools to  do this. In dimension theory one assumes a space can be 

separated between each closed set and each point outside that set by a subset of certain 

integral degree of complexity, called its dimension. One gets the class of one dimensional 

continua when these separators are homeomorphic to subsets of the Cantor set. Curve 

theory attempts to stratify one dimensional continua which admit such separators which are 

also in some sense s m d .  Whyburn [Whl] developed the beautiful and useful cyclic element 

theory which considers the structure of locally connected continua determined by their 

single point separators. This theory had been extended considerably by Whyburn [Wh2], 

Cornette [Cor], Lehman [Leh], Tymchatyn, Nikiel, Tuncali [NTTS], and many others. A 

tree can be characterized as a locally connected continuum in which every two distinct 

elements axe separated by a third element. A rim-finite (resp. rim-countable) continuum is 

one in which we can choose separators to be finite (resp. countable, see for example [Whl] 

or [Ku]). There is even a well-developed theory of spaces of rim-type 5 cr for a countable 

ordind a which is analogous to that of one dimensional spaces. There exist, for esample, 

universal objects (non-compact) which are analogues of the Menger curve [M-TI. In some 

cliisses of spaces all separators contain "nicen separators. For example, every separator of a 

iocally connected, metric space between two points contains a closed irreducible separator 

between those points (Mazurkiewicz's Theorem) and every separator of a hereditarily locally 

connected continuum even contains a metrizable separator [NTT 11. 

Dimension theory was not put on a firm footing until the 1920's although Poincark in 

1912 had deeply perceived the inductive nature of dimension and the possibility of discon- 

necting a space by certain subsets. Poincard was not alone. Janiszewski in 1912 charac- 



terized simple arcs as metric continua with exactly two non-separating points. Later, A. 

J. Ward in 1936 characterized the real line topologically as a connected, locally connected, 

separable metric space which is separated by each of its points into exactly two components. 

Bing in 1946 characterized the 2-sphere as a locally connected metric continuum in which 

no pair of points separates it, but every simple closed curve does separate it. 

M o e  generally in curve theoy  one often decides on an internsting disconnection property 

and investigates the class of spaces which it chamcterizes. 

Nadler [Nal] defined the disconnection number, Ds(X), of a connected space X to be 

the smallest cardinal number K such that X becomes disconnected upon removal of any set 

A with IAI = K and IX \ A( 2 2 provided such K exists. We write X E D, if D S ( X )  5 K 

and call X a D,-space. We write X E Dss if X E D, and if each separator F of X between 

any two points a and b contains a separator of X between a and b consisting of a t  most K 

points. 

Almost forty years ago, M. Shimrat [Sh, Theorem 2J characterized locally connected, 

connected, separable, metric Dl-spaces as locally connected, connected, separable, metric 

spaces which have no endpoints, contain no simple dosed curves and are locally arc con- 

nected. Applying Shimrat's result, A. H. Stone [St] gave a characterization of the class 

of locally connected, connected, separable, metric space in DH, as follows: Every locally 

connected, connected, separable, metric DN,-space X is a D,-space for some finite integer 

n, and consists of a connected finite linear graph L, together with a countable family of 

pairwise disjoint open ramifications (i.e., locally connected Dl-spaces) such that these ram- 

ifications are open subsets of X \ L, and the frontier of each in X is a single point of L. 

In [Nal] Nadler proved that every metric Duo-continuum is a D,-space for some finite n, 

and, hence, that X is a graph. In [Pi], Pierce gave an example of a subspace X of with 

dim(X) = 1 and Ds(X) = No. Pierce's example is necessuily not locally connected and 

not locally compact. In [GI], Gladdines gave an example of a metric hereditarily locally 

connected space X with dirn(X) = 1 and Ds(X) = No. Gladdines' example is necessarily 

not separable. 

In this thesis we shall study certain classes of &,-spaces motivated by Pierce's and 

Gladdines' examples. In particular, we give another proof of Stone's theorem, we study the 



structure of D,,-spaces and extend Nadler's theorem to the non-metric case. In all of this 

local connectedness plays a central role. The layout of this thesis is as follows. 

In Chapter 1 we present some necessary definitions and related theorems which will be 

used in the following chapters. 

In Chapter 2 we investigate locally connected, connected, separable, metric spaces which 

have disconnection numbers less than or equal to No. We show that locdy connected, 

connected, separable, metric spaces X with Da(X) 5 NO are rim-countable, hereditarily 

locally connected, a-compact ANRs which contain only finitely many simple closed curves 

and finitely many endpoints and, hence, X becomes a R-tree upon removal of finitely many 

selected points. Converssly, if X is a locally connected, connected, separable, metric space 

which contains only finitely many simple closed curves and is the union of a R-tree Y with 

finitely many endpoints and a finite set 2, then X is in DNo. Stone [St] had obtained a 

characterization of these spaces. As a corollary he obtained that each such Duo-space is D, 

for some positive integer n. He asked for an independent proof of this corollary which our 

work provides. The work in this chapter can be regarded as a special case of the topics in 

Chapter 3. We have chosen to keep it separate because it is a relatively simple setting for 

the ideas of Chapter 3. 

In Chapter 3 we introduce DSw-spaces and study their structure. We say a space X 

is a D,-space if X Duo and if each separator F of X between any two points a and b 

contains a finite separator of X between a and 6. We have the following structure theorem: 

If X is a connected, Hausdorff space in D,, then there exists a weaker topology for X 

which makes X a locally connected, Tychonoff, Dm-space. Under this weaker topology X 

is the union of a rim-finite generalized R-tree and a finite set. If X is a connected, semi- 

colocaUy connected, separable metric D,,-space, then X is hereditarily locally connected 

and, hence, X is the union of a R-tree and a finite set by the work in Chapter 2. If X 

is a non-degenerate, countably compact, connected, separable, Hausdorff, D,,-space, then 

there exists a weaker topology for X which makes X a metric graph. 

Nadler [Nal] had proved that a connected, compact, metric Dh-space is a graph. In 

Chapter 4 we extend Nadler's result to the non-metric case: A Hausdorff continuum X is 

a generalized graph if and only if D S ( X )  5 No. 



In Chapter 5 we introduce the connectivity degree of a space and study its relation 

with disconnection number. The connectivity degree of a space is the maximal number 

of independent connections between some two points of the space. We use Tymchatyn's 

n-open connections theorem, which generalizes Whyburn's n-arc theorem, to show that if 

X is a locally connected and connected separable metric space with D J ( X )  _< No then X 

has finite connectivity degree. 

In Chapter 6 we give some examples around the theory we have established in the 

previous chapters. In particular, we show that for any R E (1,2 ...., oo) there is a connected 

separable metric space Z with D S ( Z )  = 1 and dim(Z) = n (Example 6.1). By the results of 

Chapter 3 this space is homeomorphic to the real line in a coarser topology. Hence, in general 

DNo has little to do with dimension. Example 6.12 shows that the n-open connections 

theorem fails for non-locally connected spaces and this example also gives a negative answer 

to a question in [Tym]. 



Chapter 1 

Preliminaries 

In this chapter we state some definithns and related theorems which will be used in the 

following chapters. A topological space is a pair of (X, 7) consisting of a set X and a 

collection 7 of subsets of X satisfying the following conditions: (TI) 8 E 7 and X E 7. 

(T2) If Ul f T and U2 E 7, then Ul n U2 E 7. (T3) If A C 7, then U A  E 7. The set X 

is called a space, the elements of X are called points of the space, each element U E 7 is 

called an open set of X and its complement X \ U is called a closed set of X. The coUection 

7 is called a topology on X. Let A be a subset of a topological space X. The closure of A, 

denoted by cl(A) (or clx(A)), is the smallest closed set containing A. The interior of A, 

denoted by A' (or in t (A)) ,  is the largest open set contained in A. We define the boundary 

of A to be the set bd(A) = cl(A)ncl(X\ A). We denote the cardinality and the complement 

of A by IAI and Ac = X \ A respectively. Let (X, T) and (Y, 7') be two topological spaces. 

A mapping f of X to Y is called continuous if /-' ((I) E 7 for any U E 7'. Throughout 

this thesis all mappings are continuous. 

1.1 Separating Points 

In this section, unless stated otherwise, X denotes a non-degenerate, connected, TI space. 

Let A, B and S be subsets of a topological space X. If X \ S = P u Q where A C P, 

B c Q and cl(P) n Q = P n cl(Q) = 0, we then say that S sepamtes A and B in X. A set 



which separates two nonempty subsets of X is called a sepamtor of X. If p  E X and if {p} 

is a separator of X between some two points in the component of p in X, then p is called a 

sepamting point of X .  A point p  of a topological space X is called a local separating point 

of X provided there exists an open neighborhood U of p  such that { p }  separates U between 

some two points of the component of U  containing p. We say in this case that p is a local 

separating point of X with respect to U. 

Lemma 1.1.1 Let p  be a local sepamting point of X with respect to an open set U in 

X .  Then V \ { p }  is disconnected for every open set V such that p  E V c U. 
Proof. We have a separation U \ ( p }  = P U Q where P and Q each contain some points 

of the component of U containing p. Let V be open such that p  E V C: U. Suppose V \ {p) 

is connected. Then V \ { p )  is either in P or in Q. Assume V \ {p) C P. Hence V n Q = 0. 

It follows that p 4 cl(Q), i.e., Q is open and closed in U. This contradicts that Q contains 

some points of the component of U containing p. Therefore V \ {p} is disconnected. 

Lemma 1.1.2 If G is any uncountable set of sepurutingpoints of a separable, connected, 

TI space X then some two points of G are sepamted in X by a thid point of G. 

Proof. Let G = { P ~ } ~ ~ ~  where Irl is uncountable and p, = pp iff y = P. Suppose that 

for each 7 E I' we have a separation X \ { p y }  = U7 U Vy with G \ { p T )  c U.. Then for each 

pair a, p E I', a # p, X = (U, u U B )  U(V, n Vp)  is a separation of X unless Va ',n Vo = 0. 

Since X is connected V, n Vp = 0 for a # p. Hence, X contains uncountably many mutually 

disjoint open sets {V7)rEr which contradicts that X is a separable space. Therefore, there 

exists E I' such that {p , )  separates some two points of G in X. 

Theorem 1.1.3 If X is a connected TI space and p  E X then the following statements 

are equivalent: 

(a) p  is a sepamting point of X .  

(b)  X \ { p }  = U u V where LI and V are disjoint open sets, cl(U) = U u { p } ,  c l (V)  = 

V U { p )  and cl(U) and c l (V)  are connected. 

(c) X = MU N where M and N are non-degenemte closed and connected sets such that 

M n  N = { p ) .  

P m f .  ((o implies (b). Let p be a separating point of X. Then X \ ( p }  = U u V 

where cl(U) n V = U n c l (V)  = 0 and U and V are nonempty. Since X \ { p )  is open, so 



are U and V. Next, U U {p} = X \ V is dosed, so c l (U)  C U U { p } .  If p c l (U) then 

c l (U)  c X \ ( ( p )  u V )  = U .  Hence, cl(U) = U which is a dosed and open proper subset in 

X, contrary to the connectivity of X. So p  E cl(U) and, hence, cl(U) = U U ( p ) .  Finally 

suppose cl(U) = A U B where A and B are disjoint closed subsets of X such that p E A. 

Since B n cl(.4 U V )  = B n ( A  U V u { p ) )  = 0 ,  X = B u ( A  U V) will be a separation of X 

unless B = 8. Therefore, c l (U)  is connected. Similarly, c l (V)  is connected. 

(b) implies (c). Let M = U U { p }  and N = V U { p )  as in ( b ) .  Then M and N are 

non-degenerate closed and connected sets such that M f7 N  = { p )  as required. 

(c) implies (a). Let X = M U N be given as in (c).  Put A = M \ ( p )  and B = N \ { p }  . 
Then X\ {p )=  M u N \ ( p )  = (M\{p) )u(N\(p) )  = A u B , ~ ~ ( A ) ~ B c  M n ( N \ ( p ) )  = 8 

and A n  cl(B)  c ( M  \ ( p ) )  n N = 0. Therefore X \ (p) = A U B is a separation and, hence, 

p is a separating point of X. 

Let P be a set. A partial ordering of P is a relation 4 on P such that: (a) if x 4 y and 

y 4 z then x 4 z;  (b) z < y and y 4 x,  if and only if x = y .  A pair (P ,  +) where P is a 

set and 4 is a partial ordering of P is called a partially ordered set. An ordering 4 is said 

to be linear if the following supplementary condition is satisfied: (c) for every x, y E X, 

either x 4 y or y 4 2.  A subset of P on which < is a linear ordering is c d e d  a chain in 

the ordered set (P, 4) .  

HausdorR Maximality Principle ([Ward], p.8) If X i s  a partially onlewd s e t  then 

every chain in X is contained in a rnazimal chain in X .  

A compact, connected, Hausdorff space is called a continuum. 

Theorem 1.1.4 (Non-Separating Point Existence Theorem) A non-degenerate 

continuum has at least two non-sepamting points. 

Proof. Suppose X is a continuum with at most one non-separating point. Let p E X 

be the non-separating point of X if one exists or an arbitrary point of X, otherwise. Then, 

each z E X \ {p) is a separating point of X. By Theorem 1.1.3 let X = M, U N ,  where Mz 

and N, are non-degenerate subcontinua such that p E M, and M, n Nz = {z). 

Claim For every two distinct points x, y E X \ { p } ,  if x E N y  then Nz c N, \ {y]. 

Ptaof of Claim. If x E N, then x Mv. So M, C (M, U N,) \ (2). The sets Mz \ {x) 

and Nx \ {r} are disjoint and p E My n (Mz \ { x ) ) .  Then Mu C M, \ ( x }  since My is 



connected. So Nz = ( X  \ Mz) U {x) C X \ Mv. It follows that N, C N, \ {Y} as claimed. 

Let N = (N=)zEx\~) be partially ordered by inclusion, i.e., sets N, 5 N, iff N, C Ny- 
Applying the Hausdorff Maximality Principle, there exists a maximal chain No (o Af. We 

index No = {No),BA. Since No is a chain it has the finite intersection property. Since X 

is compact, f3& = floe* N, # 0. Pick a point q E fI&. Then Nq C N, for all o E A by 

the Claim. By the maximality of No, Nq E and Np is the smallest element of NO. 

Let z E N, \ {g). By the claim we have Nz < N, and, hence, N, $ N, for all a E A. 

By the maxirnality of No, N, E No. But N, 5 N, which is a contradiction. The theorem 

is proved. 

Corollary 1.1.5 If X is a continuum then no proper connected subset of X contains 

all of the non-sepamting points of X .  

P m f .  Suppose there exists a proper connected subset Y of X which contains all of the 

non-separating points of X. Let x E X \ Y. Then we have a separation X \ {z) = U U V. 

Since Y is connected we may assume Y c U. Then V does not contain any non-separating 

point of X. But cl(V) = V U {x} is a subcontinuurn. Applying Theorem A.4 we pick a point 

p E d ( V )  \ {z) = V which is a non-separating point of cl(V), i.e., d(V)  \ { p )  is connected. 

Since cl(U) n (cl(V) \ { p ) )  = {z), X \ { p )  = d ( U )  U (d(V) \ {p)) is connected and, hence, 

V contains a non-separating point p of X. This is a contradiction. Therefore, no proper 

connected subset of X contains all of the non-separating points of X .  

Let X be a connected, HausdorfF space and let a and b be two points of X. Let 

Ex(a, b) = ( x  E X : x separates a and b in X ) ~ { a ,  b) and we define a natural order 

on Ex(a,  b) as follows: For each z E Ex(a, b) \ {a ,  b )  let X = L, u M, where L, and 

M, are proper subcontinua of X such that L, n M, = { x )  and a E L, and b E M,. Let 

LL = L, n Ex(a,  b) and M: = M. n Ex@, b). For x, y E Ex(a, b) \ {a, b )  we define 

(*) x ,< y e y E Mr and 

a < t 5 b for every z E Ex(a, b) 

Theorem 1.1.6 Let X be a connected Hausdorfl space and a and b two points of 

X .  The relation 5 is a linear ordering on Ex(a ,  b) and the o d e r  topology on Ex(a ,  6 )  is 



coarser than the subspace topology on Ex(a, b) inherited from X. 

Proof. Claim 1 For each z E Ex(a, b) \ {a,  b} L: = {y E Ex(a, 6 )  : y 5 2) and 

M : = ( Y E  Ex(a,b): y). 

Proof of Claim 1. For x, y E Ex(a,b), since y < z implies z E My or x # L,. This 

implies L, C (Lt U Mz) \ ( x )  and, hence, implies L, c L, \ {x). So y E L, or y E L:. Next 

suppose y E LL (y # x). This implies y M, and, hence, implies M, C (L, U My) \ {y} 
which implies M, C M,\(y}or z E M,. Soy 5 z. Therefore, Lk = {y E Ex(a,b) : y 5 x). 

The second statement is clear by definition of (*). 

Claim 2 the relation 5 is a linear ordering on Ex(a, 6) \ {a, b}. 

P m f  of Claim 2. (i) x 5 x since z E Mz. (ii) If z y and y 5 x .  By Claim 1 

y E L, n M,. Then y = x. (iii) If z y and y 5 z. Suppose z # y. By Claim 1 

Mz C Mv \ {y} and M, C M= \ (z}. Thus z E Mz or z z. (iv) For any pair I, y E X we 

have either y E L, or y E M,. That is, by Claim 1, either y 5 z or x _< y. Therefore, 5 is 

a linear order on Ex(a,  6). 

Since a 5 z _< b for every z E Ex(a,b), a and b are the smallest element and largest 

element of Ex(a, b) respectively. Hence, by Claim 2, the relation < is a linear ordering on 

Exb, 4. 
Finally suppose 7 is the subspace topology on Ex(a, b) inherited from X. The elements 

of a subbase for the order topology 0 of Ex(a,  b) each have one of the following forms: 

[a, 2) = L r  \ {x} and (x, b] = M z  \ (x}- 

All are elements of 7 and, hence, the identity function 

id : (Ex(a, b), 'T) .--t (Ex(a ,  b), 0) is continuous. This completes the proof of Theo- 

rem 1.1.6. 

A subset S of a space X is called an irreducible sepamtor of X between two subsets A 

and B provided S separates A and B in X and there exists no proper subset of S which 

separates X between A and B. We say a space X is hereditarily nonnol if every subspace 

of X is normal. 

Lemma 1.1.7 Every sepamtor of a hereditarily normal space X between two subsets 

A and B of X contains a closed separator of X between A and B. 



Proof. Let S be a separator of X between two subsets A and B. Let X \ S = P u Q 

where P and Q are separated sets, A c P and B C Q. Since X is hereditarily normal, 

there exist two disjoint open subsets U and V of X containing P and Q respectively. Then 

So = X \ (U U V) c S is a dosed separator of X between A and B. 

Lemma 1.1.8 (Mazurkiewicz's Theorem) Let X be a looally connected, hereditarily 

normal space. If F c X sepamtes two points a and b in X, then F contains an irreducible 

closed subset Fo which sepamtes a and b in X. 

Proof. By Lemma 1.1.7 we may assume F is dosed. Let C be the component of X \ F 

containing a. Since X is locally connected, C is open. Now Bd(C)  = cl(C) \ C c F and 

b E: X \ cl(C). Let D be the component of X \ cl(C) containing b. Then D is open and 

Bd(D) = cl(D) \ D C cl(C) \ C C F. Put FD = Bd(D).  Then X \ Fo = D u ( X  \ cl(D)) is 

a separation and a E C C X \ cl(D) and b E D. I f  z E & then z E Bd(C) n Bd(D)  and 

C U {x) U D is a connected subset of (X \ Fo) u {z) containing a and b. Therefore, Fa is 

the required set. 

Let A be a set and 5 a relation on X. We say that the relation L directs X if 5 is 

reflexive, transitive and for any XI, X2 E A there exists a X3 E A such that XI 5 X3 and 

A2 A3. A net in a topological space X is an arbitrary function from a nonempty directed 

set to the space X. Nets will be denoted by {zx)%* where rA is the point of X assigned to 

the element X of the directed set A. We say a net (zA)xeA is fwquently in every neighborhood 

of a point x of a space X if for every neighborhood U of x and for every X there exists a 

A' 2 X such that 3 x 1  E U. We say a net {xx)xEA is event.~ally in every neighborhood of a 

point x of a space X if for every neighborhood U of x there exists a A. such that xx E U 

for each X 2 Xo. 

Theorem 1.1.9 Let X be a connected, locally connected, TI, regular space and let a 

and b be two points of X .  Then &(a, b )  is compact and the order topology on E x ( a ,  b )  

introduced by 5 and the subspace topology on Ex(a,  6 )  are identical. 

P m j .  Let { Y ~ ) ~ ~ ~  be a net in Ex(a, 6). Suppose there exists no cluster point for this 

net. Then for each x f X there exists a connected neighborhood U, of x and a(x) E A with 

y, 4 Us for each a 2 a ( z ) .  Since X is connected there exists a finite chain, say U,, , m a - ,  U,, 



from a to b. Let U = Ur=, (Izi. Let a0 E A with oo 2 &(xi) for each i E 11, ., n). If 

a E A with a 2 a0 then y, 4 U, i.e., y, does not separate X between a and b  which is a 

contradiction. So every net in Ex(a, b )  has a cluster point y. Next we show that y is in 

Ex(a,  b). Suppose y $ Ex(a,  b) and let C c X \ {y} be the component containing a and b. 

Since X is locally connected C is open. As above we can find a finite chain C of connected 

open sets from a to  b with c f ( ~ C )  C C. Then y $ cl(uC) and Ex(u, b )  C cl(UC) since U C  is 

connected. It follows that y $ el( Ex(a, b))  which is a contradiction. Therefore, E x  (a ,  b )  is 

compact. 

Suppose 7 is the subspace topology on Ex(a, 6) and 0 the order topology on Ex(a,  b) 

introduced by 5. By Theorem 1.1.6 the identity function 

id : (Ex(a,  b), 7) -+ (Ex(a ,  b), 0) is conthuons. Since Ex(a, b) is compact in 7, 

the identity on EX(a ,  b) is a homeomorphism onto (Ex(a,  b) ,  0). This completes the proof 

of Theorem 1.1.9. 

A subset G of X is said to  be saturated provided that if g  € G and p is any point of 

X \ { g }  there exists at  least one point q in G which separates p and g in X. A point p is 

said to have potential order less than or equal to n in X ,  for some nonnegative integer n ,  

relative to G provided there exists a neighborhood basis {Ua) of open subsets in X at { p }  

such that for each a ,  bd(U,) is a subset of at  most n points of G. If p is of potential order 

less than or equal to n in X relative to G but not of potential order less than or equal to 

n-1 in X relative to G, p is said to be of potential order n in X relative to G. 

The following theorem is due to Whyburn w h l ,  Theorem 2.2, p.451. 

Theorem1.1.10 EachsetGofsepolmtingpointsofasepamblemetricspaceX 

contains a saturated subset Q such that G \ Q  is countable and each point ojQ is of potential 

order 2 in X dative to Q and separates X into exactly two components. 



1.2 Dimension and Rim-Countable Spaces 

In this section, unless stated otherwise, let X denote a non-degenerate, separable, metric 

space. 

Definition of dimension n. The empty set and only the empty set has dimension 

-1. A space X has dimension n (n 1 0) at a point p if p has a basis of neighborhoods 

whose boundaries have dimension 5 n - 1. The space X has dimension 5 n iff X has 

dimension 5 n at each of its points. We say a space X has dimension n i f  dim X 5 n is 

true and dim X 5 n - 1 is false. Finally, X has dimension oo i f  dim X 5 n is false for 

each integer n. 

The following three results will be used later. The reader may find the proofs of these 

results in any book on dimension theory (see for example [H-W]). 

Theorem 1.2.1 (The Sum Theorem for 0-dimensional Sets). A spuce which is 

the countable union of 0-dimensional closed subsets is itself 0-dimensional. 

Corollary 1.2.2 The union of two 0-dimensional subsets of a space X at  least one 

of which is closed is 0-dimensional. 

Theorem 1.2.3 A subspace C of a space X has dimension < n i f  and only i f  every 

point of C has arbitmrily small neighborhoods in  X whose boundaries have intersections 

with C of dimension 2 n - 1. 
We recall that a space X is said to have order less than or equal to K; at a point p of X ,  

denoted by ord(p, X) < 6, b r  some cardinal number n provided that X has a neighborhood 

basis at p of open sets {U,) whose boundaries have cardinality lbd(U,)I c. I f  X is of 

order less than or equal to  c at  p but not of order less than or equal to c' at  p for each 

r;' < in X, then X is said to be of order K at p. I f  X has order _< No at p then X is 

said to be rim-countable at p. I f  X is rim-countable at each of its points, it is said to be 

rim-countable. Similarly, we say a space X to be rim-finite provided X has order < No at 

each of its points. 

Lemma 1.2.4 A separable metric space X is rim-countable if and only i f  it is the 

union of two subsets one of which is at most 0-dimensional and the other is countable. 

Proof. Let X be rim-countable, and let (Ui)g1 be a basis for X such that lbd(Ui)l < No 
for each i. Put D = UzPr, bd(Ui). Then D is countable and dim(X \ D) 5 0 since the sets 



(Ui  \ D ) g l  are dosed and open in X \ D and form a basis for X \ D. 

Conversely let D be a countable set with dim(X \ D) < 0. For p E X ,  dim((X \ D) U 

{ p ] )  = 0 by Corollary 1.2.2. Applying Theorem 1.2.3 there exists for each r > 0 an open 

neighborhood G of p with diameter < r and bd(G) n ( X \  D )  = 0, i.e., bd(G) c D. I t  follows 

that tbd(G)I < No. Hence, X has order 5 No at  p. Since p is arbitrary X is rim-countable. 

Theorem 1.2.5 The union of countably many closed rim-countable sets in X is a 

rim-counta ble set. 

Proof. Let A = Uzl Ai where each Ai is closed and rim-countable. Set A; = At, 

A: = An \ U~Z; A;. By Lemma 1.2.4 for each n 4 = Bn U D, where dim (B , )  5 0, 

I D,I No and B, n Dn = 8. Hence, A = UrZl Bn U UFZI Dn and ( DnI 5 No. Observe 

that each A; is open in An and, hence, an F, set in X. Then Bn = A: n ( U g l  Bi) is an F' 

set in U:=, B,. By Theorem 1.2.1 dim(&!Ll B,) 0. It follows from Theorem 1.2.4 that 

A is rim-countable. 

1.3 Absolute Neighborhood Retracts 

In this section by a space we mean a separable metrizable space. We say that a space X 

is an absolute neighborhood retract (abbreviated A N R )  if, for every space Y containing 

X as a closed subspace there exists a neighborhood U of X in Y such that there exists a 

continuous function r : U ---, X such that r is restricted to X is the identity idx (such 

a function is called a retraction). It is well-known that a space X is an ANR if and only 

if for each closed subset A of a space Y, every mapping f : A ---, X has a continuous 

extension F : U ---, X defined on some neighborhood U of A in Y (ANE, [vanM, 1.5.2, 

p.451). A space is said to be an ANR locally at a point p if there exists a neighborhood of 

p which is an ANR. 

The following theorems of Hanner can be found in [Bor, p.96-991. 

Theorem 1.3.1 Everyopensubspaceofan A N R i s a n A N R .  

Theorem 1.3.2 Let X = UE, Gi where each G, is an ANR and an open subset of 

X .  Then the space X is an A NR. 



Theorem 1.3.3 A sepamble metric space is an ANR i f  and only i f  it is locally an 

ANR at each of its points. 

1.4 Hereditarily Locally Connected Spaces and Convergence 

Continua 

A HausdorfT space is said to be hereditarily locally connected provided each of its connected 

subsets is locally connected (see [Tyml]). 

Let { K A ) x f A  be a net of subsets of a topological space X. The topological upper limit 

Lim sup Kx (respectively lower limit Lirn i n f K A  ) of the net (KA}AeA is the set of all points 

x f X such that the net {KX)xEd  is frequently (resp. eventually) in every neighborhood of 

x. Evidently Linr i n f K x  C Lirn sup KA. I f  Lirn inf& = Lirn sup K x  then the net {Kx)xEn  

is said to be convergent and the set Lirn sup K x  is denoted by Lirn K x .  A subcontinuum 

K of a topological space X is called a convergence continuum in X provided there exists a 

net {Kx)xEa  of continua of X such that Lirn KA = I<, Kxl n K x  = K x  or Kxl K x  = 4 for 

A', X E A 'and Kx n K = 4 for each A. 

The following theorem is due to Frolik [Fr, Corollary 4.51 and Simone [Si, Theorem 31. 

Theorem 1.4.1 A Hausdorfl continuum X is hereditarily locally connected if and only 

i f  it contains no convergence continuum. 

1.5 Inverse Limits 

An inverse sequence is a sequence of pairs (X;, f;)C, of spaces X;, c d e d  coordinate spaces, 

and continuous functions f;: Xi+* - Xi called bonding maps. The inverse limit of 

(Xi, fi)E1, denoted by lim C (Xi, fi), is defined by 

lim c (Xi, f i )  = {(+;)El E nc Xi: f i ( ~ i + l )  = zi for d i). 

Let xi: lim (Xi, f,) ---+ Xi denote the i th projection map and let 
C 

fij = f ; o . - - ~  fj-l : Xj --4 X ; i f j > i + I .  



Lemma 1.5.1 Let X = lim C (X i7 f ; )  then the collection 

{ a )  : U is open in Xi and i = 1,2, 0 )  

fonns a basis for the topology of X .  

P m j .  Let U be an open subset in X and let z = ( z i ) z 1  E U. Since X has the subspace 

topology inherited from nz, Xi there &st Ul, =, Uk open in Xi,, -,Xi, respectively 

such that z E n;=, i , ' ( ~ j )  c U. Let n be a positive integer such that i, n for each 

j 5 L. All the sets f;:(uj) and their intersection Un = nLl f;;(Uj) are open in Xn; 

further, as fiJn(zn) = zi, we have Z, E Un. Since a;' f ~ ; ( ~ l j )  = *i;'(uj) we obtain 

z E ~rc'(U,) = T,'(& f..;(uj)) = & x i ; ' ( ~ j )  c U which completes the proof of 

Lemma 1.5.1. 

Lemma 1 A.2 Let X = lim (Xi ,  fi). Then for any subset A of X we have 
C 

d ( A )  = lim C (cl(Ai), f i l d ( ~ ~ + , ) )  = [nZl d (A i ) ]  n X 
where A; = q ( A )  for each i. 

P m f .  Since fi 0 *i+l = Ri for each i it follows that f i (~ l (Ai+l ) )  = f i ( ~ l ( q + l ( A ) ) )  C 

d ( f i  0 xi+l(A)) = c1(xi(A)) = cl(Ai) and, hence, (c1(Ai), fild(Ai+,)) is an inverse sequence. 

It is easy to see that lim - (cl(Ai), fil J(Ai+l))  = [ngl cl(Ai)] n X ;  moreover, it is a dosed 

subspace of X .  Indeed, for every I = (%;)El E X\ Ern C (d(Ai ) ,  f i ld(Ai+l))  there exists a 

xi E Xi\d(Ai) for some i by Lemma 1.5.1, so that T;'(X~\CZ(A~)) is a neighborhood of z dis- 

joint from lim c ( d ( A i ) ,  fild(Ai+l)). Clearly A C Em c (cl(Ai), f i l c l ( A i + l ) ) 7  we then have d ( A )  C 

Lim C ( ~ l ( A i ) ,  f i l d ( A i + l ) ) *  TO complete the proof let z = (x i )El  E lim t ( d ( A i ) ,  fiJcl(Ai+l ,). By 

Lemma 1.5.1 the collection of  d sets T~T ' (U) ,  where U is a neighborhood of x;  in X; and 

i E (1,2, . -1, is a local base at z in X .  For every member rr;' (u) of that base we have 

xi E cl(Ai) f l  U ,  so that Ai n U # 0 or A n +;'(U) # 0. This implies that x E cl(A), proving 

that cl(A) = Em C (cl(Ai), f i l d ( ~ ~ + ~ ) ) -  

R e c d  that a surjective mapping f : X - Y is said to be quotient if U c Y is open 

if and only if f- l(U) is open in X. A surjective mapping f : X + Y is said to be 

hereditarily quotient if for each A c Y the restriction : f-'(A) - A is quotient. 

Note that the mapping f : X - Y is hereditarily quotient if and only if, for each y E Y 

and each open subset U of X containing f - l ( y ) ,  the set f ( U )  is a neighborhood of y in 



Y (see [Eng, p.1341). All surjective open mappings and surjective dosed mappings are 

hereditarily quotient. 

Theorem 1.5.3 Let X = lh - ( X i ,  f i )  where each Xi is connected. Then X is 

connected if one of the following conditions is satisfied: 

(a) each Xi is compact; 

(6) each fi is monotone, surjective and he~ditorily quotient. 

Proof. Suppose the condition (a) holds. For each positive integer n we define 

Pn = {(s;),",~ E flgl Xi : fi(zi+1) = Z i  for dI i 5 n). 

Then (1) Pn+1 C P,; ( 2 )  lim + (Xi, f ; )  = m=l Pn; (3) Pn is homeomorphic to nE,+l Xi 

for each n and, hence, is compact and connected. Indeed, for each n we define 

h : P, -- nE,+, Xi by h(( t i )&)  = for each (z i )El  E Pn. 

Then h is a homeomorphism as desired. Applying (I), (2) and (3) we obtain that X is 

connected since the intersection of a nest of continua is a continuum. 

Now suppose that condition (b) holds. Below we follow the idea of Puzio [Pu]. We shall 

prove a claim first. 

Claim For each i the projection a; : X ---+ Xi is hereditarily quotient. 

Subclaim I For each i the projection xi : X --+ Xi is a surjection. 

P m f  of Subclaim 1. For X i  E Xi let zj = fj i(zi)  E Xj for j < i. Inductively, pick 

E f ~ ' ( ~ i ) ,  z;+z E f G ( ~ i + l ) , *  *, we then obtain a sequence x = ( x ; ) ~ ~  E X such 

that n i ( z )  = 2;. 

Subclaim 2 For each i the pmjection a; : X - Xi is quotient. 

P m f  of Subclaim 2. Let A be a subset of Xi such that T;'(A) is open in X. Suppose 

that A is not open in X, Le., there exists an zi E A such that xi E Bd(A) .  Note that 

f )  C ; + l l ( ~ ) .  I f  f:'(x;) C i n t ( ~ ~ + ~ ~ ~ l ( ~ ) )  then, since fi is quotient, xi E 

i n t ( f i ( i n t ( r ; + l t ~ l ( ~ ) ) ) )  c A which is a contradictian. Hence, there exists an  E 

B ~ ( * ~ + ~ T ; '  ( A ) )  n fcl (x i ) .  This process may be continued inductively t o  obtain a sequence 

x = ( z j )  E X SU& that zj € B ~ ( T ~ T F ' ( A ) )  for each j 2 i .  Since X \ a;'(~) is closed 

and zj E cl(irj(X \ r ; ' ( ~ ) ) )  for every j > i .  By Lemma 1.5.2, z E X \ r r l ( ~ )  which is in 

contradiction with x ;  E A. This proves Subclaim 2. 

Pmof of Claim. Now we show that n; is hereditarily quotient. For Y, c Xi we have 



+;'(K) = Em C (k;., fj jv,+,)  where 

f )  for j 5 i ; 
f )  for j > i. 

Since each mapping fjlv,+, for j 2 i is hereditarily quotient, from the proof of Subclaim 

2, it follows that the mapping ~ ; l ~ ; r  : ail (x)  :.)---. Y; is quotient. This completes the 

proof of Claim. 

Finally, we show that X is connected. Suppose there exists a separation X = Ul u U2 
where Ul and U2 are open, nonempty and disjoint. By the above Claim the mapping 

x; : X -4 Xi is hereditarily quotient. Suppose that Ai = q ( U 1 )  n xi(Uz) = 0 for some 

i .  Then Uk = T,"T~(u~)  for k = 1, 2, and Xi = r i (U1)  U r i (U2) .  Since X i  is quotient, the 

sets r i (U l )  and r i (Uz )  are open, nonempty and disjoint. This is in contradiction with the 

connectivity of Xi;  thus all sets A; are not empty. 

Clearly, fi(Ai+,)  C Ai. We shall shaw that fi(Aj+1) = Ai. Take xi E Ai. Let Bk = 

f y l ( z i )  n for k = 1, 2. Then, f r l ( z i )  = Bl U B2. TO see that Bl n Bz = 

f r l ( z i )  n Ai+l # 0 suppose the contrary. Then rZl (Bk) = ~ z ~ L - l ( t ~ )  f~ Uk = Uk n x ; l ( z i )  

and this set is open in T ~ ' ( z ~ ) .  Since the restriction ri+l ,-I (,i, : n y l ( z i )  - fi l i  - ' (x i )  is 

quotient, the sets Bk are open in f;'(zi) for k = 1, 2 which contradicts the assumption 

that /rl(zi) is connected since fi is monotone. 

The sequence ( A i ,  filAi+l)zl is an inverse sequence of nonempty spaces with surjective 

bonding mappings. Thus Lim (A i ,  fila,+, ) # 0 and is contained in Ul n U2 since the sets (Ik 
C 

are closed, which contracts the assumption that Ul r l  U2 = 0 and, hence, Theorem 1.5.3 is 

proved. 

Theorem 1.5.4 Let X = lirn ( X i ,  f i)  where each bonding mapping is monotone and 
C 

one of the following two conditions is satisfied: 

(a) each Xi is compact; 

(b) each fi is hereditarily quotient. Then 

(i) for each i the pmjection Ti  : X - Xi is a monotone surjection and 

(ii) if every Xi is  locally connected then X is locally connected. 

Pmof. (i). Suppose the condition (a) holds. For X ;  E Xi let A = X,:'(X;). Since A is 

compact, applying Lemma 1.5.2, we have A = lim C (Aj, f j l A , + , )  where Aj = T , ( A ) .  Note 



that rj o T ~ T ~ ( X ; )  = f;l(x;) for j > i, so that each q ( A )  is connected for j > i and, hence, 

x j ( A )  is connected for j > 1 since fj o rj+l = rj for each j 2 1. By Theorem 1.5.3, 

A = r,7'(xi) is connected. 

Suppose the condition (b) holds. For zi E Xi  we have = Lim C ( A j ,  fj lA,+, ) where 

f j i ( ~ i )  for j 5 i ; 
Aj = 

f ) for j > i. 
Since each bonding mapping f j  is monotone and hereditarily quotient, each Aj is con- 

nected and /,la,+, : Aj+1 - A, is monotone and hereditarily quotient. Thus. by Theorem 

1.5.3, the inverse limit lim C- (A,, fjla,+r) = T,T ' (x~ )  is connected. 

(ii). Let x f X and U be a neighborhood of x in X. By Lemma 1.5.1 there exists an 

integer i and an open subset Ui in Xi such that x E r;'((li) C U .  Then z;  E Ui C Xi. 

Since Xi is locally connected, there exist a connected neighborhood V; of z ;  such that 

2; E Vi :: Ci. *sy'(Vi) is connected by ( i )  and is a neighborhood of x contained in U as 

desired. 

Theorem 1.5.5 Anderson-Choquet Embedding Theorem ([Nal], Theorem 

2.10, p.23) Let (X, d) be a compact metric spuce. Let { X i , f i ) g l  be an inverse sequence 

where each Xi is a nonempty compact subset of X and each fi maps Xi+1 onto Xi. Assume 

( I )  and (2) below: 

(1) For each c > 0 there exists C such that for all p E Xk diarneterIuj,k f~'(p)] < c and 

(2) For each i and each b > 0 there exists 6' > 0 such that whenever j > i and p, q E X j  

such that d( f i j (p) ,  f i j (q) )  > 6 then d(p, q )  > 6'. 

Then lim + ( X i ,  ji) is homeomorphic to r)gl(U,,,,i - X,).  In particular, i f  Xi c Xi+l for 

each i then lim ( X i ,  f;) is homeomorphic to @, Xi .  
C 

Let X and Y be metric spaces. A mapping f : X --+ Y is called an E-map provided 

that f is continuous and the diameter of f - l ( f ( x ) )  < c for all x E X. Let P be a given 

collection of metric spaces. Then X is said to be P-like provided that for each 6 > 0 there 

exists an €-map f, from X onto some member of P. The union of the simplices (regarded 

as a subset of Rn for some positive integer n ) belonging to a complex in Rn forms a closed 

subset of Rn and is called a polyhedron in Rn. 

Theorem 1.5.6 P-Iike Theorem ([Nal], Theorem 2.13, p.24) I j X  is a continuum 



and P is a collection of compact connected polyhednz then X is P-like if and only if X is 

homeomorphic to lim (8, fi) where each Pi E P and fi is surjective. 
C 



Chapter 2 

Locally Connected Separable 

Metric Spaces in DNo 

In this chapter X denotes a non-degenerate, locally connected , connected, separable met- 

ric space in Duo- We show that a locally connected, connected, separable, metric space 

X with D 8 ( X )  5 No is a rim-countable, hereditarily locally connected, a-compact ANR 

which contains only finitely many simple closed curves and finitely many endpoints and, 

hence, X becomes a R-tree upon removal of finitely many selected points. Conversely, if 

X is a locally connected, connected, separable, metric space which contains only finitely 

many simple closed curves and is the union of a R-tree Y with finitely many endpoints and a 

finite set 2, then X is in Ds. Stone [St] had given another characterization of these spaces. 

Stone's proof was based on work of Shimrat on Dl-spaces. In the course of obtaining our 

characterization we abstract properties which allow us to obtain directly Stone's result that 

every locally connected, connected, separable, metric DNo-space X is a D,-space for some 

integer n. 

2.1 The Space X is Rim-Countable 

Lemma 2.1 Let A. = {z E X : z is not a local sepamting point of X } .  Then the set 

A. is finite. 



Prvoj Suppose A. is infinite, then A. contains an infinite relatively discrete subset A1. 

Since D S ( X )  < No A1 separates X. Let us suppose A1 separates some two points a and b in 

X. By Lemma 1.1.8, A1 contains an irreducible subset A2 separating a and b in X. If lAll 

= 1 then A2 = {c) for some c E X. Then c is a separating point of X which is impossible. 

So IA21 2. 2. Let X \ A2 = G U H where G and H are nonempty separated sets containing 

the points a and b respectively. Let d E cl(G) n c l (H)  and let U be a connected open 

neighborhood of d such that U n A2 = { d ) .  Then ( d }  sepwates U which is a contradiction 

since d E Ao. Therefore, A. must be finite. 

Theorem 2.2 The space X is a-compact. 

Proof. Let {ai}g1 be a countable dense subset of X and let {Ui}g, be a countable 

basis for X with each U; connected. For each x E X \ Ao, by Lemma 1.1.1 there exists an 

integer k such that x E Uk and (2) disconnects Uk. Since U { a i } ~ l  is dense there exist 

ai, aj E Uk which are separated by x in Uk. Put 

L& =( x E Uk : x separates ai and a j  in Uk)  U { U ~ , U ~ ) .  

Since each Uk is connected and locally connected, by Theorem 1.1.9, each L& is a 

compact, naturally linearly ordered subspace of X. Note that the collection of all such ~ $ 3  

is countable, and their union covers X \ Ao. Thus, X is a-compact. 

Theorem 2.3 The space X is rim-countable. 

Proof. From the proof of Theorem 2.2 we have X = Ugo A;, where A. is finite and, for 

each i > 0, Ai is a compact, naturally linearly ordered subspace of X. We then have for each 

i 2 0 A; is rim-countable and closed in X. Applying Theorem 1.2.5 X is rim-countable. 

Remark The space X may not be rimfinite. Such an example is given in Example 

6.2. 

2.2 The Space X is Arc Connected 

Lemma 2.4 If U is an open connected subset of X.  Then D8(U) 5 D S ( X ) .  

P m $  Let A C U with JAJ = D a ( X ) .  Suppose U \ A is connected. Then c l (U)  \ A is 

connected. Since X is locally connected, the closure of each component of X \ c l (U)  meets 

cl(U) \ A. We then have that X \ A = (c l (U)  \ A)  U ( X  \ c l (U))  is connected. This is a 

contradiction and Lemma 2.4 is proved. 



By  an open arc we mean a homeomorphic copy of the open interval (0, 1). 

Lemma 2.5 Let L be an open an: in X and let z E L \ Ao. There ezists an c, > 0 

such that for any connected open neighborhood U of z in X with diam(U) 5 cz z separates 

in U the two components of L n U which have z as a common boundary point. 

Proof. Since x is a local separating point of X there is a connected open neighborhood 

Ul of z such that diam(Ul j 1 and z separates Ul . If z does not separate in Ul the two 

components rl and sl of L n Ul which have z as a common boundary point, then there exists 

a finite simple chain Cl of connected open sets with closures in Ul \ { z )  from rl to sl .  Let Uz 

be a connected open neighborhood of z with U2 c Ul and diam (U2) 5 f d(z ,  el(uC1)) 5 f. 
Then (z) separates U2. If 2 does not separate in U2 the two components rz and sz of 

L n U2 which have z in their common boundary, then there exists a finite simple chain 

C2 of connected open sets with closures in U2 \ {z) from r2 to s2. This process can be 

continued. If it stops after finitely many steps, the Lemma will be proved. If the process 

can be continued through infinitely many steps, we get a decreasing sequence of connected 

open neighborhoods {Ui}gl of z with di=(Ui) 5 $ d ( ~ , c l ( ~ C ; - ~ )  < 2-'+', a sequence of 

simple chains {Ci)gl of connected open sets with closures in Ui \ { x )  from T i  to si where r; 

and S i  are the components of L n Ui with z in their common boundary and Ti+l c r; and 

Si+l C si. 

Each r; U {x) U si U (uCi) is connected and no point of the component int(ri)  of x in 

riusi u { x )  \cl(uCi) disconnects t i ~ { z ) ~ s i L J ( M i ) .  By Lemma 1.1.2, there are only countably 

many separating points of X in int( t i ) .  Let pl E int ( r l )  \ cl(U2) be a non-separating point 

of X. If pi, .. ., pi-1 have been defined k t  pi E int(r;) \ C ~ ( U ; + ~ )  be a non-separating point 

of X \ (p,, ..., pi-1). Then {p i )g l  converges to z .  But U(pi )g l  separates X. B y  Lemma 

1.1.8 U { p i ) z l  contains a dosed separator of X. Since lim(pi) = x this dosed separator 

must be finite which is impossible by the construction and Lemma 2.5 is proved. 

We recall that a space X is said to have order n at a point p of X ,  denoted by 

ord(p, X)  = n, for some positive integer n provided that X has a neighborhood basis 

at p of open sets {U,) whose boundaries are exactly n-point sets. The following lemma is 

a stronger version of Lemma 2.5 . 
Lemma 2.6 If L is an an: in X then there am uncountably many points of L having 



order 2 in X .  

Pmf. By Lemma 2.5, for x E L \ Ao, there exists a rational number Tz > 0 such that if 

U is a connected open neighborhood of z with diam(U) 5 r,, then {z) separates in X the 

two components of C n U which have z as a common boundary point in U. Take ro such 

that F = { x  E L : r ,  = ro)  is uncountable and take a connected open subset Uo C X such 

that diam(Uo) 5 ro and Uo contains uncountably many points of F. Each z E F f~ Uo is a 

separating point of (Io and separates in Uo the two components of L n U (which have z as 

a common boundary point) in Uo. Since F n Uo is uncountable, applying Theorem 1.1.10, 

there exists Q C F n Uo, such that (F n Uo) \ Q is countable ( hence, Q is uncountable) and 

each x E Q is of order no more than two in Ub. Since each z E Q separates Uo between two 

points of the component of z in L n Uo it follows that x has order 2 in Uo and, hence, in X 

as required. 

Lemma 2.7 The space X does not contain infinitely many mutually disjoint simple 

closed curves. 

Proof. Suppose {Si);"O=l is a collection of mutually disjoint simple closed curves in X. 

By Lemma 1.1.2 each Si contains only countably many separating points of X. Take 

pl E S1 \ A. to  be a non-separating point of X and let €1 > 0 as in Lemma 2.5 for pl, i.e., 

for each connected open neighborhood U of pl in X with diam(U) 5 €1, fi  separates in 

U the two components of S1 f l  U which have z in their common boundary. By induction, 

take p,+l E Sn+l \ (Ao U {m , ..., pn)) to be a non-separating point of X \ ( p l ,  ..., p,) ,  and 

let €,+I > 0 as in Lemma 2.5 for p,+l. In this manner, we get an infinite sequence of 

points { p l y  h, ......I. We may assume U { p i } g ,  is a discrete subset of X. For each i ,  let Ui 

be a connected open neighborhood of pi with diam(U;) 5 ci and Uj n ( U { P ~ } $ ~ )  = { p i ) .  

Since D 8 ( X )  5 No, X \ U { p i ) g l  is the union of two separated sets P and Q. By Lemma 

1.1.8 we may assume U{pi)$,  is an irreducible separator of X with respect to some two 

points a and b in P and Q respectively, i.e., b d ( P )  = bd(Q) = U ( p i ) z l .  Now for each i, 

Ui \ U{pj}gl = Ui \ { p i )  is the union of the separated sets U; n P and Ui n Q. By the choice 

of pi, Si n (Ii  n P # 0 and Si n Ui n Q # 0. However, S; \ U ( p j ) s 1  = Si \ {pi} is connected 

because Si is a simple closed curve. This is a contradiction and Lemma 2.7 is proved. 

Theorem 2.8 The space X contains only finitely many simple closed curues. 



Proof. Suppose { S i ) g l  is an infinite sequence of simple closed curves in X. We may 

suppose for each i Si+l 6 l&o S j .  By Lemma 2.7 we may suppose there is an io such that 

Sio meets infinitely many simple dosed c w e s  (Si,)& of { S i ) z l .  

Consider Xo = UK-, S;,. Let Co = Sio, E Si, \ (Sio U Ao), and ll the component of 

Si, \ Sio containing zl . Let C1 be a simple dosed curve formed from LI and a su barc of Co. 

Let 22 E Sil \ (CO u Cl ) and let l2 be the component of Si2 \ (Co u Cl ) containing 22 .  Since 

Xo is not the union of finitely many simple closed curves we continue in the above manner 

to  get a sequence of simple closed curves {Ci)zl , open arcs { l i } ~ l ,  and points { x ; ) ~ ,  

such that 

(*) For all i ,  zi E C Ci; li+l n (Ujsi  C j )  = 4; d ( l i + l )  C li+l U (Uj<; - Cj) .  

Now choose pl E 11 \ ( A ~ u  (uzl ( d ( l i )  \ t i ) ) )  t o  be a non-separating point of X. By induc- 

tion, choose p,+l E \ (A0 U (Uzl bd(1;))) t o  be a non-separating point of X \ {pl  , . . . , p,) 

and ail the p,'s have the properties in Lemma 2.5. Now if necessary, we could have chosen 

each Ci more carefully s ~ c h  that pj 4 Ci for j < i by induction on i .  Again with the 

argument in the proof of Lemma 2.7 we induce a contradiction. This proves Theorem 2.8. 

In the following we need to use some results from Whyburn's cyclic element theory (see 

[Whl], [WhP], [Leh] ). For the convenience of the reader we state some essential definitions 

and properties here. For a, b E X let Lx(a, 6 )  = (z E X : z sepamtes a and b  in X 1 and 
E x ( a ,  b )  = Lx(a, 6 )  u {a,  6 ) .  We say a and b are conjugate in X if Lx(a, 6) = 4. A subset 

E c X is an &-set of X if E is non-degenerate, connected, has no separating point of 

itself, and is maximal with respect to  these properties. An A-set of X is a closed subset 

B of X such that X \ B is the union of a collection of open sets each bounded by a single 

point of 8. The cyclic chain in X fmm a to b is Cx(a, b) = n ( B  : B is an A-set of X and 

a, b E B). Then we have the following properties. 

a)  I f  B is an A-set of X and if Z is a connected subset of X, then B n Z is connected. 

b) If a and b are distinct conjugate points of X, then Cx(a, b )  is an Eo-set of X. 

Theorem 2.9 The space X is an: connected. 

Proof. We prove first that each arc component of X is closed. Let R be an arc component 



of X. Suppose z E cl(R) \ R. Take xi E R such that ( X ~ } Z ~  converges to z. Since X has 

only finitely many simple dosed curves there are only finitely many arcs from zi to xi+1 

for each i .  Let z;zi+l denote an arc h m  I; to +;+I of minimal diameter in X. We may 

suppose d(z ,  5 fd (x ,  A) where A is any arc in X with endpoints xi and xi+l. 

Claim There exists g > 0 such that d i a m ( ~ ~ , z ~ ~ + ,  ) 2 €0 for some subsequence {xi,}& 

of {xi )h 
Proof of Claim. If the claim fails, then {diarn(z;zi+t)}gl converges to 0. Hence, 

Ugl -U {z) is compact, connected and locally connected. It follows that Ugl ziri+l U 

(2) contains an arc from z1 to  z. This is a contradiction since x @ R and the claim is proved. 

Let U be a connected open neighborhood of x with diarn(U) i min(co, 1). We may 

assume by passing to a subsequence if necessary that xk = zik E U for all k. So in U there 

is no arc connecting xi and x j  for i # j ,  i.e., the zi's belong to distinct arc components 

of U. Now we consider the subspace U which is still connected, locally connected and 

Da(U) No. Since Eu(x,zl) is compact but not connected, it has a gap, ie., there exist 

two elements a1 and bl of Eu(x, zl) such that there is no element of Eu(z, zl)  between a1 

and bl when &(al, bl) is given its naturd order from x to 31. So in U, El = Cu(al, b l )  is 

an Eo-set of U. Pick pl E El to be a non-separating point of U. Let Ul = U, xi, = X I  and 

repeat the above argument in U \ (pl}. Take Uz c Ul to be a connected open neighborhood 

of x with diam(ll,) 5 f and pi @ el(U2). Let xi2 E U2. Then E(x, zi2) c U2 and E(z ,  xi2) 

has a gap, say o2 2nd b2, and so E2 = Crr\~p,l(a2, bz) is an Eo-set in II \ {pl). Pick 

E E2 n (I2 to be ;r non-separating point of U \ { p l ) .  By induction, we get a decreasing 

sequence of connected open neighborhoods {Ui}gl of z with diam(Ui) 5 i, a sequence of 

points {pi}zl and a sequence SU& that each Ei is an Eo-set of U \ {pi, ..., 
pi E Ui n Ei is a non-separating point of U \ {pl, ..., pi-1}, and pj c ~ ( U ~ + ~ )  for each i > 1. 

Therefore, U \ {pl , . . . , pi} is connected for each i 2 1. The sequence {pi}PO,, converges to x 

and U{pi}zl is a separator of U. By Lemma 1.1.8 U(pi)zl contains a finite separator of 

U. This is impossible by the construction. Therefore, the arc component R is closed. 

It remains to show that each arc component of X is open. Let R be an .arc component 

of X and a f R. It suffices to show that a is not a ljmit point of X \ R. Otherwise, since 

arc components are closed , we could pick a sequence (ai)Zl in X converging to a and such 



that the ai's belong to distinct arc components of X .  Now as  in the proof that R is dosed 

and taking U = X we derive a contradiction. Therefore, R is open. Hence, R = X and X 

is arc connected. 

Obviously, the above argument works for any connected open subset of X . 
Theorem 2.10 The space X is locally an: connected. 

As a consequence of Theorem 2.10 and Lemma 2.6 we have the following theorem. 

Theorem 2.11 The set of points of order 2 in X is uncountable and dense in X .  

Lemma 2.12 If z is a local sepamting point of the space X which is n d  a separating 

point of X then x is contained in a simple closed curve of X .  

P m f .  Let U be a connected open neighborhood of z such that (I \ {x) = V U W, where 

V and W are two disjoint, nonempty, open sets. Let B be an arc in U which contains one 

endpoint in V and one in W. Since X \ {z) is connected there is an arc C in X \ (z) which 
meets each of the components of B \ (2) in exactly one point. Then B u C contains a simple 

closed curve D and x E D. 

Theorem 2.13 (Stone [St]) A locally connected, connected, separable, metric Duo - 
space X is a D,-space for some positive integer n. 

Proof. By Lemma 2.1 the set A. of all non-local separating points of X is finite. By 

Theorem 2.8 and Theorem 2.10 the space X contains only finitely many simple closed curves 

and is locally arc connected. By the above and Lemma 2.5 A. is the set of al l  endpoints 

of X. Let E(X) denote the number of endpoints of X. By Theorem 2.8 and Theorem 2.9 

the fundamental group r(X) is a free group on finitely many generators. Let p ( X )  be the 

number of these generators. 

We show that X becomes disconnected upon the removal of any set of p(X) + E ( X )  + 1 

distinct points: If p(X) = 0 then X contains no simple closed curve. Let A be a subset of X 

of cardinality E(X) + 1. Then there is an a E A which is not an endpoint of X. By Lemma 

2.12 z is a separating point of X and, hence, A separates X. Assume Theorem 2.13 is true 

for locally connected, connected, separable, metric DH,-spaces with p < k, k > 1. Let X 

be a locally connected, connected, separable, metric DNo-space with p(X) = k and let A be 

a subset of X of cardinality p(X) + e ( X )  + 1. Let z E A which is not an endpoint of X. 



Then x is a local separating point of X. If z is a separating point of X then A separates X. 

Assume z is not a separating point of X. By Lemma 2.12 z is contained in a simple dosed 

curve of X. Then X \ {z) is a locally connected, connected, separable, metric Dw,-space 

with p(X \ { x } )  < k. By the inductive assumption A \ (z) separates X \ {x) and, hence, 

A separates X. Therefore, X is in D, for n = p ( X )  + E(X) + 1. 

2.3 Characterizations of The Space X 

A R-tree is a uniquely arc connected, locally arc connected, metric space (see for example 

[MMOT]). R-trees are 1-dimensional imd contractible ARs. An AR is a separable metric 

space A such that for every separable metric space Y containing A as a closed subspace 

there is a continuous function r : Y -+ A such that r restricted to A is the identity. If X 

is a locdy  connected, connected, separable metric space with D S ( X )  5 No then X becomes 

a R-tree upon removal of finitely many selected points. 

Theorem 2.14 Let X be a locally connected, connected, sepanzble, metric Duo- 

space. Then X has finitely many simple closed curves and X is the union of a R-tree with 

finitely many endpoints and a finite set. Conversely, if X is a locally connected, connected, 

separable, metric space which contains only finitely many simple closed curves and is the 

union of a R-tree Y with finitely many endpoints and a finite set 2, then X is in Duo. 

Proof. Let X be a locally connected, connected, separable, metric &,-space. By 

Theorem 2.8 X contains at most finitely many simple closed curves. If X contains no 

simple closed curve then X is a R-tree. Assume Theorem 2.14 holds for all such X which 

contain no more than n simple closed curves. Now suppose X contains n + 1 simple closed 

curves. Let C be a simple closed curve in X .  Remove a point x with order 2 (in X) on C by 

Lemma 2.6. The resulting space X \ { x )  is connected, locally connected, Ds(X \ { x ) )  < No 

and X \ (2) contains no more than n simple closed curves. By the hypothesis X becomes 

a R-tree upon removal of no more than n + 1 selected points. Hence, X is the union of a 

R-tree and a finite set. The proof of the converse is clear by the definition of disconnection 

number. 

Stone gave another characterization of the class of locally connected, connected, sepa- 

rable, metric RHO-spaces using Shimrat's characterization of locally connected, connected, 



separable, metric Dl-spaces. We have given our proof because its arrangement makes dear 

what is really needed for the proof of Stone's corollary (as Stone had requested). Below we 

show in Theorem 2.18 that Stone's characterization is equivalent to ours. 

Theorem 2.15 Stone's characterization [St, Theorem 11: Every locally connected, 

connected, sepamble, metric DN,-space consists of a connected finite gmph L,  together with 

a countable family of painuise disjoint open rnmifications (i.e., locally connected Dl  -spaces); 

these rnmifications are open subsets of X\ L and the boundary of each in X is a single point 

of L. Conversely, every such space i f  it is locally connected, connected, sepamble and metric 

then it is in DNo. 

A point p of a space X is called a bmnch point of X provided that ord(p, X) > 2. 

Lemma 2.16 The space X has only countably many bmnch points. 

Proof. Since the space X is the union of a R-tree and a finite set, without loss of 

generality, we assume X is a separable R-tree. Let B be the set of all branch points of X. 

Suppose B is uncountable. 

Claim There exist two points a and c in X and an uncountable subset Bo c B such 

that each b f Bo separates a and c in X .  

P m f  of Claim. Let {pi)gl be a dense subset of X and let Bij = {b E B : b separates 

pi and pj} for i # j. Since each branch point is a separating point in a R-tree, we obtain 

B = U(Bij : i # j } .  Then there exist i and j such that Bij is uncountable. Let a = p; and 

c = pj and Bo = &j as desired in the Claim. 

Let A be the only arc from a to c. Then Bo c A \ {a,  c}. For each b E Bo we 

have that A \ {b) has exactly two components and X \ { b )  has at least three components 

since ord(b, X)  > 2. We pick a component Rb of X \ ( b }  such that Rb n A = 0. For 

bl , b2 E Bo, bl # bS. Suppose x E Rb, n Rh . Then one of b1 and b2 separates the other 

two of bl, bz and 2, assume bl separates z and bz. This means there exists an arc from x 

to b2 through bl. Then bz can not separate x and bl,  or x 4 Rb which is a contradiction. 

Hence &, n Rs, = 0 for b1 # bz.  It follows that {Rb}beBo is an uncountable collection of 

mutually disjoint open subsets of X. This contradicts that X is a separable metric space. 

Therefore B must be countable. 



Remark. We observe from the proof of Lemma 2.16 that the rnetrizability in Lemma 

2.16 is not necessary. We will use this fact in Chapter 3. 

Theorem 2.17 A11 save possibly a countable number ofpoints of X a= of order 2 in 

X. 

Proof. The theorem follows from Theorem 2.14, Lemma 2.16 and the fact that X has 

only finitely many endpoints since D s ( X )  No. 

Theorem 2.18 The following two statements an? equivalent. 

( I )  X is a locally connected, connected, sepamble, metric DN,-space which has finitely 

many simple closed curves and X is the union of a R-tree with finitely many endpoints and 

a finite set. 

(2) X is a locally connected, connected, sepamble, metric D%-space consists of a con- 

nectedfinite gmph L,  together with a countable family of pairwise disjoint open ramifications; 

these ramifications are open subsets of X \ L and the boundary of each in X is a single point 

of L. 

Proof. Let X be a locally connected, connected, separable, metric space which contains 

only finitely many simple closed curves and X is the union of a R-tree Y with finitely many 

endpoints and a finite set 2. Let E be the set of endpoints of Y. Let L be the smallest closed 

connected set in X which contains E and aJl of the simple closed curves in X .  Then L is a 

finite graph and X \ L C Y. Since Y is a separable R-tree, X \ L has only count ably many 

components and each component is open in X and is a R-tree and, hence, a ramification 

with singleton boundary in L. 

Conversely, let X be a locally connected, connected, separable, metric space which con- 

sists of a connected finite graph L, together with a countable family of pairwise disjoint 

open ramifications (i.e., locally connected, Dl-spaces) such that these ramifications are 

open subsets of X \ L and the boundary of each in X is a single point of L. Applying 

Theorem 2.17 let Z be the smallest set such that X \ Z is connected and contains no simple 

closed curve. Then Z is finite and Z C L. Each point of X \ Z separates X \ Z and, hence, 

X \ Z is a R-tree. Therefore, these two statements are equivalent. 



2.4 More Properties of The Space X 

Theorem 2.10 The space X is an ANR. 

Proof. From Hanner's Theorem ( Theorem 1.3.3) it suffices to note that for each z E X 

there exists a open neighborhood U, of z which is a R-tree. For each x E X let U, be a 

connected open neighborhood of z which contains no simple closed curve. Then U, is an 

ANR. Hence, X is an ANR. 

Theorem 2.20 The space X is hereditarily locally connected. 

P m J  From the proof of Theorem 2.19 we know that X is locally a R-tree. For any 

connected subset A of X and each z E A let U, be a small open neighborhood of z in X 

such that U, is a R-tree. It s d c e s  to show that U, n A has only finitely many components. 

Since A is connected A is also arc connected by Theorem 2.8 aad Theorem 2.9. If R1 

and Rz are two components of U, n A, pick two points a f R1, b E R2. Then there is an arc 

L1 in U, from a to  b and an arc Lz in A from a to  6. Hence Ll u L2 contains a simple closed 

curve. But we know there are only finitely many simple closed curves in X. Therefore, 

Us n A has only finitely many components as required. 

We call a space X a hereditarily DNo-space proved that each connected subspace is a 

DN, -space. 

Theorem 2.21 Let X be a locally connected, connected, separable, metric, hereditarily 

DNo -space, then X is a finite graph. 

Proof. Let X be a locally connected, connected, separable, metric, hereditarily DNo- 

space. By Theorem 2.14, X is the union of a R-tree and a finite set M where each point 

of M is in a simple closed curve. Without loss of generality we may assume that X is 

a R-tree. To see that X is a union of finitely many open or closed arcs we suppose the 

contrary. Then, starting from a fixed point of X, we obtain a closed connected subspace 

Xo which is a union of countably many closed arcs such that one of the endpoints of each 

of these arcs is an endpoint of Xo. This is in contradiction with D8(Xo)  5 No. 



Chapter 3 

We write X E D, if X E Dno and each separator F of X contains a separator of X 

consisting of finitely many points. We write X E D, if X E Dno and each separator F 

of X between any two points a and b of X contains a separator of X between a and b 

consisting of finitely many points. Note that every D,-space, for some positive integer n, 

is Dw and every D,,-space is D,. In this chapter we study the structures of D,,-spaces. 

In Section 3.1 we show that if X is a connected, semi-colocally connected, separable 

metric D,,-space, then X is hereditarily locally connected and, hence, X is one of the 

spaces in Chapter 2. 

In Section 3.2 we show that if X is a connected, Hausdorff space in DaW, then there 

exists a weaker topology for X which makes X a locally connected, Tychonoff, D,,-space. 

Under this weaker topology X satisfies all hypotheses of Theorem 2.14 except (possibly) 

metrizability. 



3.1 D,,-spaces and Property (*) 

We say that a topological space X has property (*) provided that for each connected subset 

U of X and for each sequence Al, Az, - - of dosed, connected subsets of X each of which 

meets U and such that Ai n A, C c l (U)  for each i # j we have Lim sup A; C c l (U)  (see 

[G-TI). 
Lemma 3.1 DaW -spaces have pmpert y (*). 

P m f .  Let X be a D,,-space and let U be a connected subset of X. Let Al, Ap,  . 
be a sequence of closed, connected subsets of X each of which meets U and such that 

A; n Aj C cl(U)  for each i # j. If there exists x E (Lim sup Ai )  \ c l ( U )  and let V be a 

neighborhood of x such that V n cl(U)  = 0 .  Then, infinitely many A; meet Bd(V)  and the 

collection (V n A;) is pairwise disjoint. Let p E U. Then, B d ( V )  separates x and p and, 

hence, there exists a finite subset B of Bd(V) separating z and p. Let X \ B = P U Q with 

P separated from Q, z E Q and p E U C P. This is impossible since infinitely many Ai are 

disjoint from B and meet both Q and (p). Hence, Lirn sup A; C c l (U)  as required. 

A topological space X is semi-colocally connected provided that for each point x f X 

and for each neighborhood U of z, there exists a neighborhood V of z such that V C U and 

X \ V has finitely many components. A normal space is said to be finitely Suslinian provided 

it is locally connected and each net {AaIaEI of distinct, closed, connected, pairwise disjoint 

subsets of it is null (i.e., for every open cover U of X, there exists I' c I such that I \ I' is 
finite and each element of {Aa)oEI,  is contained in some element of 24.) 

Theorem 3.2 If X is a connected, semi-colocally connected, first countable, normal, 

TI, D,,-space, then X is hereditarily locally connected and, hence, X is  finitely Suslinian. 

In particular, i I X  is a connected, semi-colocally connected, separuble metric D,,-space then 

X is the union of a R-twe and a finite set. 

P m f .  By Lemma 3.1, X has property (*). By [G-T, Theorem 4.11 X is hereditarily 

Iocally connected. By [G-T, Theorem 4.21 X is finitely Suslinian. The last statement now 

follows by Theorem 2.12. 

Remark. Here is a very simple example of a separable metric D3-space which is not a 



Dm-space. Let X = {(x, sin(!))  E R ~ :  0 < z < 1) U ((0, 0), (0, 1)). The infinite set 

(R x { f 1) n X separates X between (0, 0) and (0, I), but no finite set separates X between 

(0, 0) and (0, 1). This example is not locally connected. However, it follows from Corollary 

2.17 that a locally connected, separable, metric DNo-space is a D,,-space. 

Gladdines' example [GI] is a hereditarily locdy connected, metric DH,-space which is not 

in D,,. We present Tymchatyn's description (unpublshed) of Gladdines' example. We feel 

this description is more readable than the original one. Let C = [0, 1) x [0, 1 ) ~ ( ( 1 ,  0)). We 

define ametric d on C: For (XI, yl), (22, y2) E CxC, if 21 = 2 2 ,  let d((zl, yl), (x2, y2)) = 

1 ~ 2  - ~11;  if # 221 let d((z17 yl), (22, 32)) = 1x2   XI^ + 91 + y2. Then (C7 d, is a R-tree* 

Let N denote the set of natural numbers. Let W = {A c N : JAl = No}. For each A E Nw 

let TA be the quotient space of C x A x {A) obtained by identifying the set ((0, 0)) x A x (A) 

to a point. Let X = (eAeNw TA)/- be the adjunction space where the equidence relation - is defined by ((1, 0), n, {A)) - ((1, O), n, (B}) for each n E A n B and A # B E Nw. 

A metric on X is introduced as follows. 

Let Pl = (2, na, {A)), P2  = (y, n, ( B ) )  E X. 

(i) If A = B and 

(a) na = n, let d(Pl, Pz) = d(z, y); 

(b) rn # 72, let d(Pi, P2) = d(z, (0, 0)) + d((0, O), Y). 

(ii) If A # B and 

(c) m = n, let d(P1, P2) = 4% (1, 0)) + d((1, O), y); 

(d) m # n, then there exists C Nw \ (A, B )  such that m, n E C and we then 

define d( PI, P2) to be the minimal diameter of arcs which connect PI and Pz 

in X. 

Then (X, d) is a metric space in DH, but not in Daw. Since for every point x of X 

there exists a small neighborhood of z which is a R-tree by the construction of X, X is 

hereditarily locally connected. Here X is necessarily not a separable metric space. 

An example of a locally connected continuum not in DNo in which each separator of it 

contains a separator consisting of finitely many points may be found in Example 6.2. 

The subspace X = {(z, sin(;))  E R ~ :  0 < z 5 1) U {(O, 0)) of the plane R~ is an 



example of Dm-space which is not locally connected. But in the following section we will 

construct a locally connected coarser topology for such a Dm-space. In particularly, the 

above space X is an arc in a coarser topology obtained by an order topology (Notice from 

page 8 that X = Ex(a,  b) where a = (0, 0) and b = (1, sin(1))).  

3.2 Rim-finite Topologies on Dm-spaces 

Let (X, 7 )  be a Hausdorff D,-space. For an arbitrary point z E X let N, = {U C X : 

there exists a point y E X and o sepomtion X \ F = U U V for some finite subset F such 

that z E U and y E V ) .  Then, we have the following properties: 

(BPO) For every x E X each U E Nz is open in (X, 7) and its boundary Bd(U) is 

finite. 

(BPI) F o r e v e r y z E X N , # 0 a n d f o r e v e r y U ~ N , , z E U .  

(BP2) If z E U E Ny then U E N,. 

(BP3) Ebr any Ul, U2 E Nz there exists U E Nz such that U C Ul n U2. 

Properties (BPO), (BPI) and (BP2) follow directly from the definition of N,. Property 

(BP3) also follows from the definition of N, because Bd(Ul n (12) c Bd(U1) U Bd(U2). 

Let 7 be the collection of all subsets of X that are unions of subcollections of UzEX N2. 
Then, F is the topology generated by the neighborhood system (Nz)IEX. Clearly 3 is 

coarser than 7. The topological space (X, 3) is rim-finite (see p.12). Clearly (X, 3) is 

still a D,,-space. 

Proposition 3.3 Every rimfinite Hausdorfl space is Tychonofl. 

Pmf. Let X be a rim-finite Hausdorff space. Let x E X and let B be a closed set not 

containing z. We shall construct a continuous mapping f : X 3 [O, I] such that f (z)  = 0 

and f ( B )  = 1. 

Claim 1 X is regular. 

Pmf of Claim 1. For every point x E X let Nz be a neighborhood basis of X at x 

such that each member of Nz has finite boundary. Let z f X and let B be a closed set not 

containing z. Let U E N, such that U C X \ B. For each y E Bd(U), there exists U, E J%, 

such that Bd(Uy) separates z and y. Let V = U \ Uypgd(U) cl(UY). Since Bd(U) and each 



Bd(U,) are finite and B d ( V )  c UyEBd(LT) Bd(Ug) we have V E and c l ( V )  C U C X \ B 

and, hence, X is regular. 

Claim 2 If U and V a= two open sets of X such that cl(U) c V and U has finite 

boundary, then there exist two disjoint open sets U, and V, with finite boundaries such that 

c l (U)  C U, C V,C C v. 
Praof of CIoim 2. Since X is regular, for every y E Bd(U) ,  there exists Uv E Nv such 

that cl(U,) C V .  Let U, = UuUv,Bd(u) cl(U,). Since Bd(U)  and each Bd(Uy)  are finite and 

Bd(Ur) C UvEBqu) Bd(Uv) we have Bd(UT)  is finite and cl(U,) c V .  Let V, = X \ cl(U,). 

We then have Bd(V,) = Bd(U,) and c l (U)  C U, C cl(U,) = V,' c V as required. 

Now we prove X is TychonofE Since X is regular, there exist two disjoint open sets 

UlI2 and V1lZ with finite boundaries such that 

z E Ul12 C VG2 C Be. 

Again by regularity there exist two disjoint open sets Ul14 and V1/.4 with finite boundaries 

such that 

E U1/4 C V;/, C 4 2 .  

The set Vf12 = d ( X  \ cl(Vl12)) has finite boundary, so by Claim 2 there exist disjoint 

open sets U3l4 and Vj14 with finite boundaries such that 

VfI2 C U3/4 C Vj/, C Bc. 

Combining the above chains, we have 

E C V;/4 C Ullz C VG2 C U3/, C Vij4 C Be. 
We can further extend this chain by induction: For any integer rn there is a chain 

2 E Ul12m C VG2" C U2/2m C V&m C a C U(2m-1)/2m C y2m-1)12m c Bc, 

where Ukl2m and VkIZm are open sets with finite boundaries for each integer k, 1 5 k < 

2". The construction of this chain results in the following properties: 

(i) For each dyadic rational in [0, 11, T = k/2*, k and m integers, there exist disjoint 

open sets U, and V, with finite boundaries such that 

z E U, c V,'c Bc; 

(ii) For any two dyadic rationals rl < r2 we have 

Uq c v,: c u, c v=,. 
Henceforth, T and T I  will denote dyadic rationals in (0, 1). 



We define our function f : X - [O, 11 by 

By our construction, s E Ur for every dyadic rational r ,  and if z E B,  then x $? U, for 

any r. Thus f(x) = 0 and f ( B )  = 1. 

To complete the proof we need only show that f is continuous. It is enough to show 

that f (P) is open for P an arbitrary member of a subbasis B for the topology of [0, 1 1. 
Since we are assuming the usud topology for [O, 11, one such subbasis is 

j[O, a), (6, 11 : a, b are irrationals in [0, I]}. 

We need only show that f-l[0, a) and f-'(b, 11 are open for each irrational a and b in 

[O, 11. But f-l[0, a )  = U,<, U, and f-'(6, 11 = Ub<, V,, so both of these sets are open 

and f is continuous. 

Lemma 3.4 If (X, 7) is a sepmble Hausdorf Dm-space then ( X ,  3) is a sepmble 

Tychonofl D,, -space. 

Proof. (X, 3) is separable since the identity idx : (X, 7) - (X, F) is continuous. 

To complete the proof, by Proposition 3.3, it suffices to show that (X, 3) is Hausdorft Let 

z and y be two distinct points in X. Since (X, 7) is Hausdorff, let W be a neighborhood 

of z such that y $ cl(W), in., Bd(W) separates z and y in ( X ,  7) and, hence, contains a 

finite separator F of X between x and y. Let X \ F = U U V be a separation such that 

z E U and y E V. Then, U E N+ and y $ cl(U) in (X, 3). This implies that (X, F) is 

Hausdorff and, hence, (X, 3) is Tychonoff by Proposition 3.3. 

Lemma 3.5 If U is an open set with finite boundary in a connected Hausdor# space 

X, then cl(U) has only finitely many components. 

Proof. Let U be an open set with finite boundary in a connected HausdorlT space X. 

Just suppose the number of components of cl(U) is infinite. Since cl(U) is not connected, 

there exists a separation cl(U) = PI u 9, where PI and P2 are disjoint nonempty dosed 

sets. Note that Bd(U) = Bd(Pl) u Bd(P2) and Bd(Pl) n Bd(P2) = 0. If one of PI and 

4, say Bd(Pl) ,  is empty, then Pl will be a dosed and open proper subset of X which 

contradicts the connectedness of X. So both Bd(Pl) and Bd(P2) are nonempty. One of PI 

and Pz, say PI,  contains infinitely many components of cl(U). We may repeat the above 



argument for PI. Since Bd(U) is finite and I Bd(Pl)l < I Bd(U)I,  continuing in this process 

at most IBd([l)l-  1 steps we find a nonempty dosed and open subset P of cl(U) such that 

Bd(P)  = 0. This implies that P is a nonempty proper dosed and open subset of K which 

contradicts the connectivity of X. The proof of the lemma is completed. 

Proposition 3.6 A connected, rim-finite, Hausdorn space is hemditarily locally con- 

nected. 

P m f .  To prove that a space is locdy  connected it suffices to prove that  components of 

open sets are open. Let X be a connected, rim-finite, HausdorfT space and let U be an open 

set of X and x E U. Since X is regular by Proposition 3.3, let V be an open neighborhood 

of z with finite boundary such that cl(V) c U. Then, the set cl(V) has only finitely many 

components by Lemma 3.5. Let C1, -, C, be an enumeration of the components of cl(V) 

and assume x E GI. Since z 4 Ug2 C; and each C; is closed, V \ UE2 Ci is an open 

neighborhood of z contained in C1 and, hence, C1 is a connected neighborhood of x .  So x 

is in the interior of the component of U which contains x. Hence, X is locally connected. . 

Note that subspaces of rim-finite spaces are rim-finite. This implies that every connected 

subspace of X is locally connected since it is rim-finite. Hence, X is hereditarily locally 

connected. 

Combining the above results, we have the following theorem. 

Theorem 3.7 If ( X ,  I )  is a non-degenerate, connected, separable, Hausdorfl D,,- 

space then ( X ,  F) is a hereditarily locally connected (in fact, rim-finite), connected, sepa- 

rable, Tychonoff D,,-space. 

A genemlized arc Y is a HausdorfF continuum with exactly two non-separating points. 

If a and b are the two non-separating points of Y, then Y = Ey (a, 6)  (see p.8). Thus a 

generalized arc Y can be linearly ordered in such a way that the order topology and the 

original topology coincide. We will denote Y by [a, b] .  By a genernlized generalized simple 

closed curve we mean a Hausdorff continuum which is separated by each of its two points 

subsets. 

Lemma 3.8 Let X be a non-degenemte, connected, TI, D,-space and let 

A. = (x E X : x is not a local separating point of X ) .  



Then the set A. is finite. 

Proof. Suppose is infinite. Then A. contains a countably infinite subset A1. B y  our 

assumption Al contains a finite subset A2 separating X and such that no proper subset of 

Az separates X .  If lAzl = 1 then A2 = ( c )  for some c E X. Then c is a separating point of 

X which is impossible. So IA2[ 2 2. Let X \ A2 = G U H where G and H are nonernpty 

separated sets. Let d E cl(G) n c l ( A )  and let U = X \ (A2 \ {d)) which is a connected open 

neighborhood of d such that U f~ Az = {d). Then {d) separates (I which is a contradiction 

since d Ao. Therefore, A. must be finite. 

If ( X ,  7) is a connected, HausdorfT Dm-space, then (X, T )  is a connected, Tychonoff 

D,,-space. The set A. of al l  non-locally separating points of ( X ,  F) is finite by Lemma 

3.8. 

Lemma 3.9 Suppose (X, 7) is a connected, sepamble, HausdorflD,-space. Then, the 

space ( X ,  3) does not contain infinitely many mutually disjoint genemlized simple closed 

curves. 

Proof. Below we use the topology of (X, 3). Just suppose (Si)iQO,, is a collection of 

mutually disjoint generalized simple closed curves in X .  B y  Lemma 1.1.2 each Si contains 

only countably many separating points of X. Take pl f S1 \Ao to  be a non-separating point 

of X. Suppose for i = 1, * - * ,  n pi E Si\Ao SO that X\ {pl, ..., pn) is connected. By induction, 

take p.+l E \ (A* U {pl, ..., p,))  to be a non-separating point of X \ {pl, ..., pn). In 

this manner, we get an infinite sequence of points {pl, f i ,  ......I. The set U{pi)gl separates 

X because X is in D, and, hence, contains a finite separator of X. This is impossible by 

the construction and Lemma 3.9 is proved. 

Theorem 3.10 Suppose (X, 7) is a connected, sepamble, Rausdorfl D,-space. 

Then, the space ( X ,  7 )  contains only finitely many generalized simple closed curves. 

P m f .  Suppose (S;)g, is an infinite sequence of generalized simple closed curves in X. 

We may suppose for each i, &o Sj is a finite graph, Si+l &, Sj and, by Lemma 3.9, 

we may suppose there is an io such that Sio meets infinitely many generalized simple closed 

curves {Sir]& of { S i ) g l .  

Consider Xo = U g o  Sik. Let Co = Si0 , X I  E Sil \ (SiO U AO) and let ll be the component 



of Sil \ S;, containing 21. Let Cl be a generalized simple closed curve formed fiom il and a 

subarc or a point (if cl( l l )  = Sil ) of Co. Let 2 2  E Si2 \ (CO U Cl) and let l2 be the component 

of S;, \ (Co u Cl) containing 2 2 .  Since Xo is not the union of finitely many generalized simple 

closed curves we continue in the above manner to get a sequence of generalized simple closed 

curves { C i ) ~ l ,  open arcs { l i )E1  and points {2i)z1 SU& that 

( *  For all i ,  zi E li C Ci; li+l n (Uj<i - C j )  = 4; d(l i+l)  C [;+I U (Ujsi C j ) -  
Now choose pl E 11 \ (Ao U ( U ~ l ( ~ l ( l i )  \ 1;))) to be a non-separating point of X. By 

induction, choose pn+l E \ (Ao u (w=l bd(1;))) to be a non-separating point of X \ 

{m, ..., pn). Now if necessary, we could have chosen each Ci more carefully such that 

p, 6 C; for j < i by induction on i .  Again with the argument in the proof of Lemma 3.9 

we obtain for each i ,  u&, Cj \ {n , ..., pi} is connected which contradicts with that X is in 

D,. This proves Theorem 3.10. 

As a consequence of Theorem 3.10 we have the following theorem. 

Corollary 3.1 1 Eve y separnble Hausdorff D,-space contains only finitely many 

genemlized simple closed curves. 

Remark. The separability in Corollary 3.11 is essential. There exists a metric Dl-space 

containing infinitely many generalized simple closed curves: Let A = N E Nw in Gladdines' 

example (Tymchatyn's description). Let X be the quotient space of C x A x {A) obtained 

by identifying the set ( ( 0 ,  O), (1, 0)) x A x {A) into a point p. Since the quotient mapping 

is perfect, X is metrizable. Clearly, every point of X separates X and there are infinitely 

many generalized simple closed curves pass through the point p. 

Theorem 3.12 If (X, 7) is a connected Hausdorfl D,,-space, then ( X ,  3) is 

generalized arc connected and locally generalized am connected. 

Proof. Since the space (X, F) is Tychonoff and rim-finite, by [Is, Theorem VI.30, 

p.1111, (X, 3) has a compactification Y that has a basis B of open sets whose boundaries 

are contained in X. By the construction in the proof of [Is, Theorem VI.301 we may assume 

the boundary of every member of L3 is finite and, hence, Y is a hereditarily locally connected 

continuum since it is rim-finite and (X, 3) is connected. 



Claim Y is genernlized am connected and locally generalized am connected. 

Proof of Claim. It suffices t o  show that Y is locally generalized arc connected. Let U be 

a connected open set in Y and a, b E U. Let C be a finite chain of connected open subsets 

from a to b in U such that c l ( ~ C )  C U. Then cl(uC) is a subcontinuum containing a and b. 

Let Z be an irreducible subcontinuum of c l ( ~ C )  between a and 6. Since Y is hereditarily 

locally connected, Z is locally connected. For x E Z \ {a, b ) ,  if Z \ {z) is connected, then we 

can take a finite chain V of connected open sets from a to b in Z \ { x }  such that x fZ c l ( ~ V )  

and, hence, cl (uD)  is a proper subcontinuum of Z containing a and b which contradicts the 

irreducibility of 2. Therefore, there exist exactly two non-separating points ( i -e . ,  a and b )  

in 2. This implies that Z is a generalized arc from a to b and the Claim is proved. 

Now we prove that (X, 3) is generalized arc connected. Let a, b E X and Z be an arc 

from a to b in Y. Suppose z E Z \ X. We denote [a, z] and [z, b] be the irreducible arcs in 

Z from a to z and from z to 6 respectively and [a, I) = (a, z] \ {z), (2, bj = [z, b] \ { r ) .  

Let Zo = (Y \ 2) u (2). Then Y \ Zo = Y \ [(Y \ Z )  U { z } ]  = Z \ { z )  = [a, t) u (2 ,  b] is 

a separation between a and b. In particularly, Zo n X separates X between a and b and, 

hence, contains a finite separator F separating 4 and b in X. By [Is, Theorem VI.39, p.1151, 

F separates a and b in Y, in particular, r E F C X. This is a contradiction since z was 

supposed to be in Y \ X. Therefore, Z C X and, hence, X is generalized arc connected. 

Finally we prove that (X, 7)  is locally generalized arc connected. Let U be a connected 

open set in X and a, b E U. The set Ex(U) = Y \ cly(X \ U )  is open in Y. We claim that 

Ex(U) c cl(U):  For every z E Ex(U) = Y \ c ly (X \ U ) ,  x $! d y ( X  \ U ) .  Let V be a neigh- 

borhood of z in Y such that V n (X \ U) = @. But X is dense in Y, so must have V n U # 0 
and, hence, x E d ( W ) .  Further, Xn Ex(U)  = X \ clu(X \ (I) = X \ [X n c l y ( X  \ U ) ]  = 0. 

We then have that Ex(U) is a connected open set in Y containing a and 6 .  Since Y is locally 

generalized arc connected, there is an arc Z from a to b in Ex(U).  By the above argument 

we get Z c X. Hence Z C Xn Ex(U) = U. This proves that X is locally generalized arc 

connected. 

We define a genernlized R-tme to be a uniquely generalized arc connected, locally gen- 

eralized arc connected, Tychonoff space. 



Theorem 3.13 If ( X ,  I) is a connected, sepamble, Hawdorfl D,-spuce, then ( X ,  F) 

is the union of a rimfinite genemlized R-tme with finitely many endpoints and a finite set.  

Proof. We observed earlier that (X, F) is rim-finite. By Theorem 3.10 (X, F) contains 

at most finitely many generalized simple dosed curves. If (X, 3) contains no generalized 

simple dosed curve then (X, f ) is a generalized R-tree by Theorem 3.12. Assume Theorem 

3.13 holds for all such (X, 3) which contain no more than n generalized simple dosed curves. 

Now suppose X contains n + 1 generalized simple dosed curves. Let  C be a generalized 

simple dosed curve in X. Remove a non-separating point x (in X )  on C by Lemma 1.1.2. 

The resulting space X \ (z} is connected, locally connected, Da(X \ { x ) )  < No and X \ {x) 

contains no more than n generalized simple closed curves. By the hypothesis X becomes a 

generalized R-tree upon removal of no more than n + 1 selected points. This completes the 

proof. 

Remark. Pierce's example (see Example 6.10 when W = N the natural numbers) shows 

that Theorem 3.13 is not always true for D,-spaces. In fact, there exists even an example 

[Ma, Theorem n] of a countable, connected, Hausdorff Dl-space. 

Theorem 3.14 Every sepamble genemlized R- tee  in D,, is the union of countably 

many metric ams. 

Proof. Let X be a generalized R-tree in D,,. Since the set of endpoints of X is finite, 

let (ai}gJ be the union of a countable dense set of X and the set of endpoints of X. For 

every a, j, let Aij be the unique arc from a; t o  aj. For each z E X, if z is an endpoint of x, 

then x = a; for some i and, hence, z E Ui, jeN Aij.  If x is not an endpoint, then it is a sepa- 

rating point. Let U be a connected open neighborhood of z. Then, there exists a separation 

U \ {x) = Ul U U2. Pick a, E U, and aj E U2. Then, z separates ai and aj in U. This implies 

that x is OII the unique arc from ai to aj ,  or z E Aij C Ui, jeN AU. Hence, X = Ui, j c ~  Aij .  

To complete the proof we show that each Aij is metrizable. Since each Aij is compact we 

only need to show that each Aij is separable. Let A = Aij and let D be a countable dense 

set of X. Let B be the set of aU branch points of X. B is countable by the remark of 

Lemma 2.14. If A n D is not dense in A, then for every subarc L of A \ A n D we show 

L n B is dense in L. Suppose not, then there exists an open subarc Lo C L \ L n B (without 



endpoints) such that every point of Lo has order 2 in X .  Hence, Lo itself is an open subset 

of X which contradicts with the separability of D. So L n B is dense in L for every subarc 

of A \ A n  D. It follows that A n  (D u B) is dense in A and, hence, A is separable as required. 

Theorem 3.15 If X is a non-degenenzte, connected, sepamble, Hausdorfi D ,  -space, 

then we have X = r=o A;, whem A. is finite and, for each i > 0, Ai is a closed linearly 

onieted set with o d e r  topology coarser than the subspce toplogy of X and under the order 

topology each Ai is a metric am. 

P m f .  Let (X, I) be a connected, separable, Hausdorff, D,,-space. By Theorem 

3.13 (X, 3) is the union of a generalized R-tree Y and a finite set 2. By Theorem 3.14, 

Y = Uz, A;, where each A; is a metric arc in (X, 3). The inverse image of each A; under 

the identity idx : (X, 7) -+ (X, F) is a closed linearly order set induced by the topology 

in (X, F). 

Note. Theorem 3.15 is not true for Dw-spaces. Such an example can be found in Example 

6.10 when the set W is chosen to be a countable discrete set. Inspired by Theorem 3.15, we 

ask the following question: If (X, 7) is a non-degenerate, connected, separable, Hausdorff, 

Dm-space, does there exist a weaker topology 0 of X in which (X, 0) is generalized arc 

connected, locally generalized arc connected a d  metrizable? Actually, it suffices to show 

that such a (X, 0) is first-countable. We note from [C-MI that there exists a nonmetrizable, 

a-compact space which is the union of two separable, metrizable, &-subsets. The following 

result is a partial answer to the question. 

Corollary 3.16 If ( X ,  7) is a non-degenemte, countably compact, connected, sepa- 

rable, Hausdorff, D,-space, then the space ( X ,  3) is an generalized an: connected, locally 

genemlized arc connected and metrizable continuum. 

P m f .  (X, 7)  is countably compact since the identity i d x  : ( X i  7) ---, (X, 3) is 

continuous. By Theorem 3.15, (X, F) is a-compact and, hence, (X, 7 )  is compact [Eng, 

Theorem 3.10.1, p.2581. To complete the proof it suffices to show that (X, 3) is metrizable. 

Since X = Uzo A;? where A. is finite and, for each i > 0, A; is a separable metric arc in 

(X, F), by [Eng, 4.4.H(a), p.3591, ( X ,  F) is metrizable since it is cech-complete. 



Remark. We will see fiom Theorem 4.15 that the space (X, 3) in Corollary 3.16 is 

actually a metric graph. We still do not know whether (X, 7) is compact in Corollary 

3.16. We note from [Jo, Theorem 51 that there exists a subspace A of the plane R~ which 

is a Dl-space and is not an arc, but there exists a weaker topology on A which makes A an 

open arc. We will construct, in Example 6.1, a connected separable metric space Z with 

D8(Z)  = 1 (2 is in D,) and dim(Z) = n for any n E (1,2 ...., 00). Hence, in general 

being an element of D, does not carry an implication concerning the dimension of a space 

without compactness or locd connectedness assumptions. 



Chapter 4 

Hausdorff Continua in DN, 

We recall that a compact and connected space is called a continuum. A generalized an: is 

a HausdorfF continuum with exactly two non-separating points. A Hausdorff continuum is 

called a genemlized gmph if it is a union of finitely many generalized arcs any two of which 

intersect only in a subset of their endpoints. A generalized atc Y can be linearly ordered in 

such a way that the order topology and the original topology coincide. We will denote Y 

by [a, b] where a and b are the two non-separating points of Y. In [Nal] Nadler proved that 

if X is a metric continuum, then Da(X) 5 No if and only if D s ( X )  < No, and, hence, that 

X is a graph. In this chapter we generalize this theorem to the class of Hausdoff continua. 

Our proof parallels Nadler's initially but later follows the idea of Chapter 2. A Hausdorff 

continuum is indecomposable if it is non-degenerate and if it is not the union of two of its 

proper subcontinua. If X is a continuum and p E X, then the set of all x E X such that 

{p, x} is contained in a proper subcontinuum of X is c d e d  a composant of X .  Any two 

distinct composants of an indecomposable continuum are disjoint. In this chapter, unless 

stated otherwise, X denotes a non-degenerate Hausdorff continuum with Ds(X) 5 No. 

We are going to use the following two theorems. 

Bellamy's Theorem ([Be], Corollary 5 )  If X is a non-degenerate indecomposable 

continuum, then X contains an indecomposable subcontinuum Y with at least c composants. 

Gordh's Theorem ([Gor], Theorem 2.7) If X is a continuum which is irreducible 

between a pair of points and contains no indecomposable subcontinuum with interior, then 



there exists a monotone continuous map f of X onto a generalized am such that each point 

inverse under f has empty interior. 

By using Nadler's met hod we prove the following Lemma 4.1. 

Lemma 4.1 If Y is a non-degenemte subcontinuum of X ,  then DS(Y) No. 

P m f i  Let Y be a proper subcontinunm of X, and let A C Y with IAj = No. Suppose 

that Y \ A is connected. 

C l a i m  The number of components of X \ Y is finite. 

P m f  of Claim. I f  not, we could choose infinitely many components, {C;)gl, of X \ Y. 

Since Ci U Y is a continuum for each i, by the Non-Separating Point Existence Theorem 

(Theorem 1 . lA)  and Corollary 1.1.5, no proper connected subset of Ci U Y contains the set 

of all non-separating points of C; u Y. For each i let pi be a non-separating point of Ci LJ Y 

such that pi E Ci. Hence 

x \ {pi}zl = Uzl[(Ci U Y) \pi] U U{C : C is a component which is different from that 

of Ci's } is connected. This contradicts that Ds(X) No and the claim is proved. 

Let C1,-**,C,,, be all components of X\Y. We pick q; E cl(Ci) nY for each 1 5 i 5 m. 

Since Y \ A C (Y \ A) U {ql,. -, qm) C Y = cl(Y \ A), (Y \ A) u {ql, 0 ,  q,) is connected. 

Hence - 

x \ ( A  \ {91* *, 9mH = UZdG u { q d )  U(Y \ A) u {91, ., qm} 

is connected. This contradicts that D 3 ( X )  5 No and Lemma 4.1 is proved. 

Lemma 4.2 The space X is hereditarily decomposable. 

Proof. I f  there exists an indecomposable subcontinuum Y in X, by Bdamy's theorem, 

Y contains an indecomposable subcontinuum Z with at least c composants. By Lemma 4.1, 

DS(Z) < No. So for m y  countable subset A c Z there exists a composant C of Z missing 

A. But C is dense in 2, so Z \ A is connected. This is contrary to D S ( Z )  5 No and the 

lemma is proved. 

Lemma 4.3 If Y is a subcontinuum of X which is irreducible between a pair of points, 

then Y is a generalized arc. 

PmoJ By Lemma 4.1 and Lemma 4.2 we know that Ds(Y) < No and Y is a hereditarily 

decomposable continuum. Using Gordh's theorem, let f be a monotone continuous map 

from Y onto a generalized arc [a, b] with o and b two non-separating points of [a, b] such 



that h t (  f - l ( t))  = t$ for each t E [a, b]. W e  only need t o  show that for each t E [a, b] 

f ( t )  is a singleton. If not, there exists a to E [a, b] such that f -'(to) is non-degenerate 

and connected and, hence, uncountable. If b = a (or to = b) then f-'(a, b] (or f-'[a, 6 ) )  

is a connected dense subset in Y since f is monotone and Int ( f (t )) = 4 for each t E [a, b] . 
Hence, if A is an infinite subset of f 'l ( to) ,  the subset Y \A is still connected. This is contrary 

to D 3 ( Y )  2 No. I f  a < to < 6 then (cl( f -'[a, to) )  n f -' ( to) )  U(cl( f -'(to, b ] )  n f - ' ( to)) = 

f ( to )  since Int( f-I ( t o ) )  = 4. Without loss of generality we assume el( f -'[a, to))n f ( t o )  

is infinite. Let B be an infinite subset of d( f -'[a, to ) )  n f-'(to). Since cl( f -'[a, t o ) )  is a 

subcontinuum of Y with f [a, to)  as a connected dense subset, the subset cl( f -'[a, t o ) )  \ B 

is still connected. This is contrary to Lemma 4.1. This completes the proof of Lemma 4.3. 

Corollary 4.4 Every non-degenemte subcontinuum of X is genemlized arc connected. 

Theorem 4.5 The space X is hereditarily locally connected. 

Proof. I f  not, by Theorem 1 A.1, there exists a convergence continuum K with a net of 

continua (Kx)xEa such that Lim K x  = K ,  KAlnKx = Kx or KxtnKA = #for A', X E A and 

h'x  n K = # for each A. Since K is non-degenerate, by Lemma 4.2, K = AU B where A and B 

are two proper subcontinua of K. By Corollary 4.4, for each A E A, let LA be an irreducible 

generalized arc from K x  to a point a,, of K such that LA n K = {ax). Since U{aA)AEA C 

A U B,  either A or B contains a cohal  subset of U { U ~ ) ~ ~ ~ .  We assume by passing to a 

cofinal subset if necessary that U{aA)xsr C A. Then Y = c l (K U UAEa K A  U UxcA LA)  i s  a 

subcontinuum of X with A U Uxen KA U UXpd LA connected and dense in Y. Let C c B \ A 

be a countably infinite subset. Then Y \ C is connected. This is contrary to DS(Y)  < No 
and Theorem 4.5 is proved. 

Lemma 4.6 If U is a connected open set in  X then B d ( U )  is finite. 

P w J  Suppose Bd(U) is infinite. Let A be a countable infinite subset of Bd(U) .  Since 

U C c l (U)  \ A c ct(U),  cl(U) \ A is connected which contradicts with Dd(cl (U))  5 No by 

Lemma 4.1. Therefore, Bd(U) is finite. 

Combining Theorem 4.5 and Lemma 4.6, we have 

Corollary 4.7 The space X as a rim-finite space and, hence, a D,,-spttce. 

Lemma 4.8 If Y and Z are generalized gmphs such that Y n Z is nonernpty and finite 

then Y U Z is a genemlized gmph. 



PmoJ The proof is clear. 

For a given integer n 2 3 a generalized simple n-ud A is the union of n generalized arcs 

A1, ..., A, such that there exists a point p E A with Ai fl Aj = (p} for i # j and p is an 

endpoint of each of Ai and Aj .  The point p is called the vertez of A. When n = 3 we say 

A is a genemlized simple tnbd. 

Lemma 4.9 If the sptace X contains no genemlized simple triod, then X is a generalized 

an: or a genemlized simple closed curve. 

Proof. Let p and q be two non-separating points of X. Let A be a generalized arc in 

X with endpoints p and q. Since X \ (p) is open and connected, by Theorem 4.5, it is 

generalized arc connected. Suppose X contains no generalized simple closed curve. Then 

X is uniquely arc connected and locally arc connected. Let a and b be two non-separating 

points of X. Since X contains no generalized simple triod, X = [a, b] , an arc. Now suppose 

X contains a generalized simple closed curve S. Since X is generalized arc connected and 

contains no generalized simple triod, X = S as required. 

Corollary 4.10 Let Y is a locally connected continuum. For each x E Y ord(z, Y )  5 2 

if and only if Y is a genemlized arc or a genemlized simple closed curve. 

Lemma 4.11 Let p E X such that ord(p, X )  = n < No. Then thew exists a local base 

{ B x ) x E ~  at p such that each BA is an open and connected subset of X and (bd(BA)I = n. 

Proof. Let be a local base at p such that each U, is open and lbd(U,)l = n. 

For each 7 E r let VT be the component of p in U,. Since X is locdy connected each V, is 

open. Also, bd(V,) c bd(U,) and V = {V7)7Er is a local base at p. Hence, B = {B E V : 

Ibd(B)I = n) will be a local base at p with the required property. 

Lemma 4.12 Suppose the space X has only one point p of order 2 3 and ord(p, X )  = 

n < No. Then p is the vertex of a generalized simple n-od which is a neighborhood o fp  in 

X .  

Proof. We use the idea in the proof of [Nal, Lemma 9.91. By Lemma 4.11 let 8 = 

{ B A ) x E A  be a local base at p such that each Bx is an open and connected subset of X and 

Ibd(Bx)l = n. If for each A E A there exists zx E b d ( B x )  such that zx is not a limit point 

of X \ Bx then B' = { B x  u {xA}) forms a local base a t  p such that lbd(Bx U {xA}) I  = n - 1 

which contradicts that ord(p, X) = n < No. Hence there exists A0 E A such that for each 



pi E bd(BAo), 1 5 i 5 n, is a limit point of X \ BAo. Note that c l ( B ~ , )  is arc connected and 

locally arc connected (Corohry 4.4) and ord(x, X) = 2 for d z # p in cl(Bb). It follows 

that each p; must be an end point of any arc in d(BAo) to which p; belongs. Let Ai c cl(BAo) 

be an arc with endpoints p and p; such that Ai n Aj = (p) for i # j. Then Uzl A; is a 

generalized n-od with vertex p. Since ord(p, X) = n it follows that c l ( h , )  = flZl A; as 

required. 

Theorem 4.13 A Hausdorfl continuum X is a generalized gmph if and only if 

D s ( X )  5 No and ord(z, X )  5 2 for all but finitely many z E X. 

Pmf. The necessity is clear. To prove sufficiency let X be a Hausdorff continuum 

such that D s ( X )  5 No and ord(x, X) 5 2 for all but finitely many x E X. By Corollary 

4.7, ord(z, X) < No for all z E X. If no points are of order 2 3 in X then, applying 

Corollary 4.10, X is a generalized graph. We assume inductively that Theorem 4.13 holds 

for all continua with at most n points of order > 3. Now suppose X has exactly n + 1 

points,  pi}^..^, of order > 3. Since X is locally connected let U be a connected open, 

neighborhood of pl such that p; 4 cl(U) for any i 2 2. In cl(U),  pl is the only point of 

order > 3. Let ord(pl, c l ( U ) )  = n. Applying Lemma 4.12 let V be a connected open 

neighborhood of pl in cl(U) such that cl(V) is a generalized n-od. Since Ibd(V)I = n, X \ V 

has at most n components, K1, - -, K ,  ( m  5 n). Since pl 6 K; for each i 2 1 by the 

inductive assumption each Ki is a generalized graph. Note that 0 # Ki n cl(V) C bd(V) 

and (d(V) U K i )  n K j  = d(V) U K j  for i # j. By Lemma 4.8 Ki U d(V) is a graph for 

each i and hence X = cl(V) U pS1 Ki is a generalized graph. This completes the proof of 

Theorem 4.13. 

Lemma 4.14 Let X be a Huusdorfl continuum with D d ( X )  5 No then ord(x, X )  5 2 

for all but finitely many x E X .  

P m J  Suppose there exists an infinite subset C of X such that for each x E C 

ord(x, X) 2 3. Without loss of gener&ty, we assume the set C is countable and con- 

tains no cluster point of itself. We shall define a subcontinuum L of X such that the set of 

endpoints of L is infinite which is contraxy to Da(L)  < No, and, hence, completes the proof. 

If there exists a generalized arc A such that A contains an infinite subset (xl, ..., z,, ...) 
of C. Since for each i, ord(xil X)  2 3 and ord(z;, A) 5 2, let Ui be an open neighborhood 



of X; and pi E Ui \ A such that Ui n Uj = 4 for i # j and let L; be a generalized arc in Ui 

with endpoints z; and pi. Then L = c l ( A  U Uzl L;) is a subcontinuum with I j z l { p i }  in 

its set of endpoints. 

We assume that no generalized arc contains infinitely many points of C. Let zo be a 

limit point of C. Let Ul be a connected open neighborhood of zo and take XI E Ul n C .  

Let L1 be a generalized arc in Ul from z l  t o  zo. By induction, suppose we have defined 

21, ..., zn, U l ,  ..., Un and L1, ..., Ln such that each U; is a connected open neighborhood of 

2, C Z ( U ~ + ~ )  c Ui,  L; is a generalized arc in & from X; t o  xo and xj $ cl(Uj) for j < i. Let 
U,+l be a connected open neighborhood of zo such that C ~ ( U , + ~ )  c U, and x; 4 C ~ ( U , + ~ )  

for each i < n. Take zn+l E Un+1 n C \ UrZl Li and let L,+* be a generalized arc in 

from z,+1 to 20. With this construction we have that for each i ,  z; cl(Uj+; L,).  Then 

the subcontinuum L = ~l(Iff"=~ Li) has ( x ; ) ~ ,  contained in its set of endpoints as required. 

Theorem 4.15 A nondegenemte, Hausdorf continuum X i s  a genernlized graph if 

and only if DS(X) 5 No. 

P m f .  The theorem follows from Theorem 4.13 and Lemma 4.14. 

We recall from Chapter 2 that, since the space X contains only finitely many simple 

closed curves by Theorem 4.15, there exists the smallest nonnegative integer rn, denoted 

by p(X) ,  such that if we remove some rn points X becomes a generalized R-tree. Let E ( X )  

denotes the number of endpoints of X which is finite. We then have the following corollary 

from Theorem 4.15. 

Corollary 4.16 Let X be a nondegenemte, Hausdorff continuum with X E DN,. There 

is a positive integer n such that D8(X) < n. In fact, D 8 ( X )  = p(X)  + e(X) + 1. 



Chapter 5 

The Connectivity Degrees of 

Spaces 

Let X be a topological space and let a and b be two points of X. A subset of X is said to 

join a and b if a and b are contained in the closure of some component of the set. The space 

X is said to be n-point connected between a and b i f  no subset of X with fewer then n-points 

sepaxates a and b in X. We say there exist r; independent connections between a and b in 

X i f  there exist rs disjoint open sets in X which join a and b (see [Wh3] and [Tym]). We 

define the connectivity degree, C,(X) ,  of X by C,,,(X) = sup{ r; : there ezist two points a 

and b in X with r; independent connections between a and 6). In this chapter we begin to 

study the relations between connectivity degree and disconnection number. 

We are going to use the following theorem. 

The n-Open Connections Theorem ([Tym], Theorem 1) The locally connected, 

regular, Tl space X is n-point connected between two points a and b i f  and only if there ezist 

n disjoint open sets in X which join a and b. 

Corollary 5.1 If X is a hereditarily locally connected, locally an: connected, connected, 

metric space that is n-point connected between two points a and 6, then X contains n disjoint 

open arcs joining a and b. 

P m f .  By the n-Open Connections Theorem there exist n disjoint open sets Ul,. ., U,, 



in X which join a and b. Since X is locally arc c o ~ e c t e d  and U; is open for each i we 

may suppose Ui is connected and locally arc connected for each i. For each i let c; E U; 

and let (zij)z1 be a sequence in (li converging to  a. Inductively, we construct for each 

j an arc Gzij from Ci to zij such that for each n, cizij is a tree. Since U; U { a }  is 

connected and locally connected we may suppose >li(~z: Gzij \ c=, eizij) = { a ) .  Then 

c l ( G = ,  qzij) = EzI Gzij u {a) is a compact tree. So there is an arc in U; U (a) from ci 

to a. Similarly, there is an arc in Ui u {b) from ci to b. Hence, there is an open arc in Ui 

which joins a and b. Therefore, X contains n disjoint open arcs joining a and b. 

Theorem 5.2 If X is a loccllly connected and connected sepamble metric space with 

D S ( X )  5 No then X has finite connectivity degme. 

P m f .  Let X be a locdy connected and connected separable metric space with DS(X) 5 

No. By Theorem 2.8 X contains only finitely many simple closed curves. Let k be the number 

of simple closed curves in X. Then there exist at  most k + 1 independent arcs between any 

pair of points (the interiors of these arcs are mutually disjoint). By Theorem 2.10, X is a 

locally arc connected. Therefore, by Corollary 5.1, we have C,(X) 5 k + 1. 
Theorem 5.3 If X is a 1ocall;r connected and connected sepamble metric s p c e  with 

finite connectivity degwe then every two p i n t s  of X can be sepamted by a finite subset of 

X .  

Proof, Since C,(X) = k for some positive integer k for any pair of points a and b in X 

there do not exist k + 1 independent connections between a and b in X. By Corollary 5.1 

again X is not (k  + 1)-point connected between a and b. So there exists a subset of X with 

fewer than (k + 1) points and which separates a and b. 

Theorem 5.4 I f  X is a locally connected and connected sepamble metric space with 

D S ( X )  No then C,,,(X) < D s ( X ) .  

Pmf'.  Let X be a locally connected and connected separable metric space with D s ( X )  _< 

No. By Corollary 2.19 D s ( X )  = n for some positive integer n. Let a and b be two points 

of X. Suppose there exist n independent arcs A1, -, A, from a to b. For each arc A; we 

pick an interior point pi in A, of order 2 (Lemma 2.6) in X. Let A = ( p l ,  * , p , ) .  Then we 

must have PC = IAI 5 n. Therefore C,(X) 5 Da(X). 



With analogous arguments we have the following two theorems. 

Theorem 5.5 if X is a Hausdorfl wntinuum with Da(X) 5 No then X has jinite 

connectivity degme. 

PmJ Let X be a Hausdorff continuum with Da(X) 5 No. By Theorem 4.13 X is 

a generalized graph. Hence X has only finitely many simple dosed curves. Let k be the 

number of simple closed curves in X. Then there exist at most k + 1 independent arcs 

between any pair of points of X. Therefore, C,(X) < k + 1. 
Theorem 5.6 i f X  is a Hausdor~continuurn with Ds(X) No then Cm(X) D s ( X ) .  

P m f .  Let X be a Hausdorff continuum with D a ( X )  5 No. By Corollary 4.14 DS(X) = n 

for some positive integer n. Let a and b be two points of X .  Suppose there exist K inde- 

pendent arcs from a to b. For each arc we pick an interior point of order 2 (Lemma 4.12). 

Let A be the set of those points. Then no proper subset of A disconnects X .  Thus IAl 5 n. 

Therefore, C,(X) 5 Ds(X). 

We define a continuum X a @-continuum of type n for some positive integer n provided 

there exist two points a and b in X such that X = lJ!=l A; where each Ai is an arc and 

A; n A, = { a ,  b )  for i # j. Let (X, p) and (Y, d) be compact metric spaces. A continuous 

surjection f : X -+ Y is called a near homeomorphism provided that for any E > 0 there 

is a homeomorphism h : X -4 Y such that supZExd( f(x), h(2))  < r. 

Theorem 5.7 Let X = lim (X;, fi) where each X i  is a locally connected O-continuum 
t 

of type n and each bonding mapping fi is a monotone sujection. Then X is also a O-  

continuum of type n. 

Proof. It is easy to see that a monotone mapping from a O-continuum of type n onto a 

O-continuum of type n is a near homeomorphism. Hence, Theorem 5.7 is a direct corollary 

of Brown's Theorem [Bro, Theorem 41. 

Theorem 5.8 Let X = lim (Xi, f ; )  where each Xi is a locally connected continuum 
C 

and each bonding mapping fi is an open, monotone surjection. 

Then Cm(X) 2 s ~ p ( C ~ ( X i ) ) z ~ .  

Proof. For a fixed i let Cm(Xi) = n where n maybe infinite. Let a and b be two points 



in X such that there exist n independent connections between n;(a) and .rr;(b) in X;. Let 

Ul, - OD, U, be such n independent connections. Since the bonding ma?pings are open, rnono- 

tone and surjection, the i-th projection xi is also open, monotone and surjection by [Pu, 

Theorem 51. Since a, 6 E CZ(*C'(U~))  = T F ' ( C L ( U ~ ) )  for each j ,  ~ T ' ( u ~ ) ,  - . , r ; ' (Un) are 

n independent connections between a and b in X. Therefore Cm(X) 2 Cm(Xi) for each i 

and, hence, C,(X) 2 sup(C, (Xi ) }g l .  

Remark. In Chapter 6 we will give several examples to show how inverse limits affect 

connectivity degree and disconnection number. Theorem 5.3 fails for non-locally connected 

spaces (Example 6.12) and this example also gives a negative answer to a question in [Tym]. 

The following question is still open: Could we improve the inequality in Theorem 5.8 to be 

an equality by applying Theorem 5.7? 



Chapter 6 

Examples and Questions 

In this chapter we give some examples around the theory we have established in the previous 

chapters. We show that for any n E {1,2 ...., oo) there is a connected separable metric space 

Z with D d ( Z )  = 1 and dim(2) = n (Example 6.1). Hence, in general being an element of 

D,, does not carry an implication concerning the dimension of a space. We give an example 

of a locally connected, connected, separable metric space X with D a ( X )  = 1 such that X 

is not rimfinite (Example 6.2). This example also show that the disconnection numbers 

are not monotone: there exists a closed connected subset Y of X such that Ds(X ) = 1 and 

Ds(Y)  is not defined. Inverse limits affect disconnection numbers and connectivity degrees 

of spaces (Examples 6.6 - 6.9). Disconnection number and connectivity degree are different 

(Examples 6.10 - 6.11). The n-open connections theorem fails for non-locally connected 

spaces (Example 6.12) and this example is also a negative answer to a question in [Tym]. 

Example 6.1 For each n E {1,2, ..., 00) them exists a connected sepamble metric 

space Z with D d [ Z )  = 1 and d i m ( Z )  = n. 

The example is based on a construction of Lelek ([Lel]). We construct it by the following 

steps. Let T be the Cantor ternary set in [0, 11. Let A = T \ {O, 1) .  For any interval 

(a ,  b) C (0, 1) let A(a, b) be the image of A under the Linear homeomorphism from [0, I] 

onto [a, b].  We call A(a, b) the basic Cantor set in (a ,  b). 

Step 1. Let n be a positive integer. Ln the (n+l)-cube In+' = : k = 1, ..., n+ 1) 

where each I = [0, 11, let rr, : In+' -4 Ii denote the i-th coordinate projection. Let r ;- T ,  



and let A = (O), B = a-l(l). Let C be the collection of all subcontinua in In+' meeting 

both A and B. Then C has cardinality c. Let a : A - C be a 1-1 correspondence. For 
, each t E A let yt E a-'(t) n a(t) and put Y = { y t  : t E A}. Then (see [Lel]) Y is totally 

disconnected and dim(Y) = n. 

Step 2. Let A. = A, Co = C, a0 = a and = Y. Let ((ai, bi))zl be the sequence 

of complementary components of A in (0, 1). For every (ai, bi), let A(a;, 6;) be the basic 

Cantor set in (ai, bi). Let C( be the collection of all subcontinua in In+' meeting both 

*-'(ai) and r-'(bi). Then Ci has cardinality C. Let C1 = ugl C(. Let A1 = Ugl A(ai, bi) 

and let a1 : A1 - 9 be a function such that alla(,, b,) : A(ai, b i )  -4 Ci is a 1-1 

correspondence for each i. For each t E Al let yt E a-'(t ) rial (t) and put Yl = ( yr : t E A1 1 .  
Let {(aijr bij))zl be the complementary components of A(a;, b;) in (a;, bi) for every i. 

Step 3. Inductively, we define sequences {Ak)go,  {Ck}&, {ak)go and { Y k ) g o  

satisfying the following conditions: 

For cad: k 2 2, 

(a) Ak = Uiqp.h,--.,ik=l A(ail ,h ,--,ik, bil ,i2 , - - , ik)r  where eaf6 &(ail ,i2,--,ik 9 bi1,i2,-,ik) is the 

basic Cantor set in ,..., i r ,  bilVi2 ,..., i k )  and ,..., i k ,  bilPi2 ,..., ik)}c=',l is the sequence of 

complementary components of A(ai1 ,i2,...,ik-l , bit ,;2,..+k-1 ) ill (ail ,i2 ,..., ir-l , bil ,i2 ,..., ik-l ) for 

every sequence il , i2, - *, ik-l of positive integers. 
il ,a2,--,ik 

( b )  Ck = Uci2,-..,ik=l Ck , where c:"~'.-"'~ is the collection of all subcontinua in rn+' 
meeting both T-'(a;, ,i2 ,... , ik )  and T-' (bilVi2 ,..., i,). 

(c) a k  : Ak - Ck is a function such that 
il , i 2 ,4& 

A ( a l 2  . , bl ,2 , . - ,k  ) : A(% h , - , i k  bil ,i2,--,~) C k  

is a 1- 1 correspondence for every sequence il , ia, -, i k  of positive integers. 

(d) For each t E Ak let yt E nS1(t) n ak(t)  and let Yk = {yt : t E A&}. 

By the construction we have the following property: For every nonempty interval 

(a, 6 )  C (0, l), there exist integers i l ,  i2,  -, G such that ,... a, bilPi2 ,..., ik) c (a, b ) .  

Step 4. For every t E (0, 1) \ Uf A.c, we pick an arbitrary point yt E +- ' ( t )  and put 

20 = { y t  : t E (0, 1) \ U E o  Ak). 

Finally, let Z = Zo u UKo Yk. 
Then dim(Z) 2 n. If d i m ( 3 )  = n + 1, by [H-W, Theorem IV.3, p.441, the set Z would 



contain a nonempty subset which is open in P+'. This is impossible since Z contains 

exactly one point from each hyperplane ( y ) x In. Hence, dirn(2)  = n. We shall show that 

Z is connected. If Z is not connected, then Z = C U D where C and D are separated and 

nonempty. Let c E C and d E D. By the Phragmen-Brouwer Theorem [Wi, Theorem 5.19, 

p.601 there exists a continuum E of P+' \ (C U D )  which separates c and d in In+'. Since 

InC1 is an (n+l)-dimensional Cantor-manifold [H-W, Example VI.11, p.931, dim(E) 2 n. 

Now, r ( E )  is non-degenerate since otherwise E wodd contain a-l(t)  for some t E (0, 1) 

which contradicts with E n  Z = 8. Let (a, b) C r ( E )  for some a < b. Then, there exist 

integers il, i2,  *, i k  such that (a;,,;, ,..., ik, b;l,h ,..., ik) C (a, 6 )  and, hence, E meets both 

"-'(a;, ,;z,...,;k) and n-l(b;, ,i2,...,ik). This implies that E meets Yk. This is a contradiction. 

So Z is connected. Since IZ n +-l(t)l = 1 for each t E (0, l), Z is a Dl-space. Therefore, 

the space Z is a connected, separable, metric Dl-space with dim(Z) = n. See Figure 1 

below. 

Figure 1 (for Yo) 



By gluing infinitely many of these sets into a chain we get an infinite dimensional 

example. 

Remark. Note that for each integer m we can attach a simple m-od to Z to get a 

connected separable metric space with dimension n and disconnection number n + 1. One 

can modify Gladdines' example X (Tymchatyn's description) by replacing each arc in X by 

a copy of the space Z in Example 6.1 to  obtain a connected metric space with disconnection 

number No and and arbitrarily large finite dimension. By the results of Chapter 3 the space 

Z in Example 6.1 is homeomorphic to the real line in a coarser topology. 

Example 8.2 A lacally connected separable metric space X with D s ( X )  = 1 such 

that X is not rim-finite and Da(Y)  is not defined for some connected subset Y of X .  

In the plane R* denote a0 = (0'0) and ai = (1, ;) for i > 0. For each i > 0 denote aoai 

the segment from a0 to a;. Let X = UZl (w \ (a;)). Then X is a connected, hereditarily 

locally connected, separable metric space with D a ( X )  = 1, but X is not rim-finite at the - 
point a*. Denote b; = (), $) for i > 0. Then Y = Uzl %bi is a connected subset of X but 

D a ( Y )  is not defined. This example may be compared with Theorem 3.4. 

Inspired by Example 6.2, we ask the following question. 

Question 6.3 If X is a separable metric space with D3(X) 5 No and Y is a sub- 

continuum of X, is there a countable subset C of Y such that Y \ C is connected and 

DJ(Y \C)  No? 

Remark. For locally connected separable metric spaces, the answer to Question 6.3 is 

positive because of the existence of a universal separable R-tree (see [MNO, Section 21). 

Question 6.4 Let X be a Hausdorff hereditarily DH, -space (see p.23). 

1. Is X the union of countably many subsets Ai's (i 2 0) where A. is countable, A; 

(i > 0) is connected and admits a one-to-one map into a genemlized arc? 

2. If A is closed and disconnects X ,  do components of X \ A have interiors? 

3. If A is closed and disconnects X, for all but finitely many components C of X \ A, 

does each point of C disconnect C?  

4. If C is a component of X \ ( p ) ,  is p in the closure of C? 



5. If A is closed in X and C is a component of X \ A, does there ezist a connected 

subset C' of C such that Cf is not sepamted from A and C' has no cutpoint? 

6. Suppose A is a finite set of X not disconnecting X.  Does there exist a finite set B 

containing A such that B is mazimal with rpspect to not disconnecting X ? 

Question 6.5 Let X be a metric continuum. What is the B o d  class of the subspace 

Ex(a,  6 )  where a, b E X ? 

These subspaces may not be closed. By [Whl, (5.1), p52] Ex(a,  6) is the union of a 

Gs-set and a countable set. So Ex(a, 6 )  is Gs,. Is it Gs? It is known that Ex(a ,  b )  is closed 

if X is locally connected. 

The following examples show inverse limits affect disconnection numbers and connec- 

tivity degree. 

Example 6.6 An inverse limit of &-spaces which is not a DM,-space. This example 

is also an inverse limit of C1-spaces which is a C2-space. Our ezample is in fact an inverse 

limit of triods. 

We define f : [O,  11 - [O, 11 by 

For each positive integer i let Xi be the union of the graph of f' and its reflection in 

the plane about the graph of f '1 p, +]. Thus Xi is a simple triod. Let P = { X ; ) ~ ,  

Then each D d ( X i )  = 4 and Cm(Xi) = 1. Let X be the union of {(x, Q + $s in($) )  E 

R~ : 0 < 1x1 5 1) and the vertical segment from (0,  1) to (0,  0).  X is not a &,-space 

since a countably infinite point set in the y-axis of X can not separate X. There exist two 

disjoint open sets joining (0, 1) and (0,  4). So C,(X) = 2. For every 0 < c < 1 it is easy to 

construct an c-map of X onto Xi for i sufficiently large (See Figure 2 below). This implies 

X is P-like and, hence, X is an inverse limit of a sequence in P. 



Figure 2 

Example 6.7 An inverse limit of Dr-spaces which is a D3-space. This example is also 

an inverse limit of C2-spaces which as a Cl-space. 

Let PI be the set whose only element X is a simple triod and let Pz be the set whose 

only element Y is a simple dosed curve with two stickers: 

Y = {(z, y) E fI2 : z2 + y2 = 1) U {(z, -1) : 0 5 1x1 5 1): 

Then the element of PI has disconnection number 4 and the element of P2 has connec- 

tivity degree 2. The unit i n t e r d  [ O , l ]  has disconnection number 3 and connectivity degree 

1. It is both PI-like and P2-like: For every 0 < c < 1 we identify the pair of points f - z 
and $ + z for each 0 5 z i in (0, 11. Then the quotient space of [O, 11 is homeomorphic 

to X E PI and the quotient map is an emap. Hence, (0, 11 is A-like. Similarly, for every 

0 < 6 < 1 we only identify the pair of points - f and ) + f in [0, 11. Then the quotient 



space of [O,  1) is homeomorphic to Y E P2 and the quotient map is an €-map. Hence, [0, 11 

is P2-like. By the P-like Theorem (1.5.6), [O, 11 is an inverse limit both in PI and P2 

Example 6.8 A n  inverse limit of Drt, -spaces which is not a DNo -space. This example 

is also an inverse limit of finite connectivity degme spaces which is not a finite connectivity 

degree space. 

Xn the plane R2 we define Lo = [-I, 11 x (0) and for each i 2 1 we define 

L; = ((2, y) E R~ : z2 + (y - i)* = i2 + 1 and y < 0). 

For each i 2 0 let Xi = l$=o Lj and let f; be a natural retraction of to X; by 

pushing L;+* onto Lo. Then (Xi, f;) is an inverse sequence with each DS(X; )  < No and 

C, (X;) < No. By the Anderson-Choquet Embedding Theorem (1.5.5), 

lim c ( X i ,  fi) = Ugo Li 

without disconnection number and its connectivity degree is not finite. 

Example 6.0 An inverse limit of DN,-spaces which is not a DH,-space even though 

the bonding mappings are monotone. 

In the plane R~ let 0 = (0, 0). For each i > 0 let 

Si = ( ( x ,  9 )  E R ~ :  (2- f ) 2  + y 2  = i 2 ) .  

Let Xi = Sj and let fi be the monotone retraction of Xi+* to Xi which shrinks the 

circle Si+l into the point 0. Then (X;, f ; )  is an inverse sequence with each D8(X;)  < No 

and the bonding mappings are monotone. Again by the Anderson-Choquet Embedding 

Theorem lim ( X i ,  f;) = (Jg, S;, the Hawaiian Earring, whose disconnection number is not 
C 

defined. 

Example 6.10 There ezists a metric spce X with D d ( X )  = No but there ezist an 

uncountable number of independent connections between some two points of X .  This shows 

that the local connectivity assumption in Theorem 5.4 is necessa y. 

We modify Pierce's example [Pi]. Let W be the set of all countable (including finite) 

ordinal numbers with the discrete topology, and let A = { ( x ,  sin(!)) E R ~ :  0 < z 5 1) 

the open sin($)-curve. Let Q = {Fo}o<N, be a partition of W such that for each a < N1 



lFPl = n for some positive integer n. Let I1 = {PP) ,3<~,  be the family of ail those two 

point subsets of W which intersect two members of Q. For each P < N1 let Ap be a copy 

of A with the two points of Po as its only limits and such that Ap n k, = 0 for ,O # y. 

Defhe X to be W U Upcn, A@. Then every infinite subset of X separates X. There exist 

an uncountable number of independent connections between the two points of Po for each 

,O < N1. A metric is easily introduced as in Gladdines' example (Tymchatyn's description). 

Example 6-11 Let X be the space obtained by adding end points of all the segments 

an Ezample 6.2 then X is a l m d y  connected, sepamble metric space with D S ( X )  $ No but 

C,(X) = 1. 

Example 6.12 There exists a sepamble metric space X such that X has finite connec- 

tivity degree but them ezist two points of X which can not be sepamted by any finite subset 

of X .  Thus the loco1 connectivity assumption in Theorem 5.3 is necessary. 

Let X be the Warsaw circle in fZ2 which is the union of the closure of the set ((I, sin(!) E 

R* : 0 < x < 1) and three convex arcs, one from (0, -1) to (0, -2), one from (0, -2) 

to (1, -2), one from (1, -2) to (1, sin(1)). Then C,(X) = 2. The two points (0 ,  0) and 

(0, 1) can not be separated by any finite subset of X. It follows that Theorem 5.3 fails for 

non-locally connected continua. We note that X is 2-point connected between (0, 1)  and 

(1, sin(1))  but there do not exist two independent connections between them. This gives 

a negative answer to  a question in [Tym] which said 'if X is a regular, TI space and P and 

Q are disjoint closed sets in X such that X is n-point strongly connected between P and 

Q, do there exist disjoint open sets Ul, -, U, such that Ui cannot be separated between 

P and Q?' In other words, the n-open connections theorem fails for non-locally connected 

spaces. 

The following is a higher dimension disconnection problem. 

Question 6.13 Suppose X is a connected, locally connected, complete, metric space 

which is disconnected by the removal of any No disjoint simple closed curves. What can one 

say about the space X ?  



If one requires that each simple closed curve disconnect one has characterizations of the 

2-sphere and of 2-manifolds, respectively, as follows. 

Bing's Theorem ([Bing], p.646) If no pair of points of a locally connected metric 

continuum S sepamtes it, but every simple closed curve in S does sepamte it, then S is a 

2-sphem. 

van Kampen's Theorem ([Yo], Theorem 1.1, p.979) Let X be a non-degenemte, 

lucally compact, locally connected, connected, metric space with no local separating points. 

Suppose that for each point z of X there is a neighborhood U of x such that every simple 

closed curve in U sepomtes X .  Then X is a 2-manifold. 
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