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Characterizing Spaces by Disconnection Properties

In curve theory there is a long history of taking some interesting disconnection property
and then studying the class of spaces determined by this property. In this thesis we study
the spaces in which every countably infinite set disconnects.

The disconnection number, D*(X), of a connected space X is defined to be the smallest
cardinal number x such that X becomes disconnected upon removal of any set A with
|A| = k and | X \ A| > 2 provided such x exists. We write X € Dy, if D?*(X) < Rg and call
X a Dy,-space. We write X € D, if X € Dy, and if each separator F' of X between any
two points a and b of X contains a separator between a and b consisting of finitely many
points and call X a D,,-space.

Stone [St] obtained a characterization of connected, locally connected, separable, metric
Dy,-spaces. It is a corollary of Stone’s theorem that every locally connected, separable,
metric Dy,-space X is a D,-space for some integer n. Stone asked for an independent proof
of this fact (i.e., one which does not rely on Stone’s characterization theorem). We present a
characterization theorem of these spaces and in the process we obtain an answer to Stone’s
question.

We obtain a structure theorem for the class of connected, Hausdorff spaces in D,,: If
X is a connected, Hausdorff space in D,,, then there exists a weaker topology for X which
makes X a locally connected, Tychonoff, D, -space. Under this weaker topology X is the
union of a rim-finite generalized R-tree and a finite set. If X is a connected, semi-colocally
connected, separable metric D, -space, then X is hereditarily locally connected and, hence,
X is the union of a R-tree and a finite set. If X is a non-degenerate, countably compact,
connected, separable, Hausdorff, D,,-space, then there exists a weaker topology for X which
makes X a metric graph.

For the class of non-metric continua in Dy, we give a characterization theorem as follows:
A Hausdorff continuum X is a Dy,-space if and only if X is a generalized graph. This

generalizes a theorem of Nadler in the metric case.
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Abstract

In curve theory there is a long history of taking some interesting disconnection property
and then studying the class of spaces determined by this property. In this thesis we study
the spaces in which every countably infinite set disconnects.

The disconnection number, D*(X), of a connected space X is defined to be the smallest
cardinal number x such that X becomes disconnected upon removal of any set A with
|A| = x and | X \ A| > 2 provided such x exists. We write X € Dy, if D*(X) < No and call
X a Dy,-space. We write X € D,,, if X € Dy, and if each separator F’ of X between any
two points e and b of X contains a separator between a and b consisting of finitely many
points and call X a D,,-space.

Stone [St] obtained a characterization of connected, locally connected, separable, metric
Dy,-spaces. It is a corollary of Stone’s theorem that every locally connected, separable,
metric Dy,-space X is a D,-space for some integer n. Stone asked for an independent proof
of this fact (i.e., one which does not rely on Stone’s characterization theorem). We present a
characterization theorem of these spaces and in the process we obtain an answer to Stone’s
question.

We obtain a structure theorem for the class of connected, Hausdorff spaces in D, : If
X is a connected, Hausdorff space in D,,, then there exists a weaker topology for X which
makes X a locally connected, Tychonoff, D,,-space. Under this weaker topology X is the
union of a rim-finite generalized R-tree and a finite set. If X is a connected, semi-colocally
connected, separable metric D,,-space, then X is hereditarily locally connected and, hence,
X is the union of a R-tree and a finite set. If X is a non-degenerate, countably compact,
connected, separable, Hausdorff, D,,-space, then there exists a weaker topology for X which
makes X a metric graph.

For the class of non-metric continua in Dy, we give a characterization theorem as follows:
A Hausdorff continuum X is a Dy,-space if and only if X is a generalized graph. This

generalizes a theorem of Nadler in the metric case.
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The connectivity degree of a space is introduced and its relation with disconnection

number is discussed.
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Introduction

In topology a basic problem is to determine when two spaces are homeomorphic. Topologists
have developed many tools to do this. In dimension theory one assumes a space can be
separated between each closed set and each point outside that set by a subset of certain
integral degree of complexity, called its dimension. One gets the class of one dimensional
continua when these separators are homeomorphic to subsets of the Cantor set. Curve
theory attempts to stratify one dimensional continua which admit such separators which are
also in some sense small. Whyburn [Wh1] developed the beautiful and useful cyclic element
theory which considers the structure of locally connected continua determined by their
single point separators. This theory had been extended considerably by Whyburn [Wh2],
Cornette [Cor], Lehman [Leh], Tymchatyn, Nikiel, Tuncali [NTT2], and many others. A
tree can be characterized as a locally connected continuum in which every two distinct
elements are separated by a third element. A rim-finite (resp. rim-countable) continuum is
one in which we can choose separators to be finite (resp. countable, see for example [Wh1]
or [Ku]). There is even a well-developed theory of spaces of rim-type < a for a countable
ordinal a which is analogous to that of one dimensional spaces. There exist, for example,
universal objects (non-compact) which are analogues of the Menger curve [M-T]. In some
classes of spaces all separators contain “nice” separators. For example, every separator of a
locally connected, metric space between two points contains a closed irreducible separator
between those points (Mazurkiewicz’s Theorem) and every separator of a hereditarily locally
connected continuum even contains a metrizable separator [NTT1].

Dimension theory was not put on a firm footing until the 1920’s although Poincaré in
1912 had deeply perceived the inductive nature of dimension and the possibility of discon-

necting a space by certain subsets. Poincaré was not alone. Janiszewski in 1912 charac-



terized simple arcs as metric continua with exactly two non-separating points. Later, A.
J. Ward in 1936 characterized the real line topologically as a connected, locally connected,
separable metric space which is separated by each of its points into exactly two components.
Bing in 1946 characterized the 2-sphere as a locally connected metric continuum in which
no pair of points separates it, but every simple closed curve does separate it.

More generally in curve theory one often decides on an interesting disconnection property
and investigates the class of spaces which it characterizes.

Nadler [Nal] defined the disconnection number, D*(X), of a connected space X to be
the smallest cardinal number x such that X becomes disconnected upon removal of any set
A with |A| = x and | X \ A| > 2 provided such « exists. We write X € D, if D*(X) < &«
and call X a D,-space. We write X € D, if X € D, and if each separator F of X between
any two points a and b contains a separator of X between a and b consisting of at most
points.

Almost forty years ago, M. Shimrat [Sh, Theorem 2] characterized locally connected,
connected, separable, metric Dj-spaces as locally connected, connected, separable, metric
spaces which have no endpoints, contain no simple closed curves and are locally arc con-
nected. Applying Shimrat’s result, A. H. Stone [St] gave a characterization of the class
of locally connected, connected, separable, metric space in Dy, as follows: Every locally
connected, connected, separable, metric Dy,-space X is a Dp-space for some finite integer
n, and consists of a connected finite linear graph L, together with a countable family of
pairwise disjoint open ramifications (i.e., locally connected D,-spaces) such that these ram-
ifications are open subsets of X \ L, and the frontier of each in X is a single point of L.
In [Nal] Nadler proved that every metric Dy,-continuum is a D,-space for some finite n,
and, hence, that X is a graph. In [Pi], Pierce gave an example of a subspace X of % with
dim(X) = 1 and D*(X) = Ro. Pierce’s example is necessarily not locally connected and
not locally compact. In [Gl], Gladdines gave an example of a metric hereditarily locally
connected space X with dim(X) = 1 and D*(X) = Ro. Gladdines’ example is necessarily
not separable.

In this thesis we shall study certain classes of Dy,-spaces motivated by Pierce’s and

Gladdines’ examples. In particular, we give another proof of Stone’s theorem, we study the
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structure of D,,-spaces and extend Nadler’s theorem to the non-metric case. In all of this
local connectedness plays a central role. The layout of this thesis is as follows.

In Chapter 1 we present some necessary definitions and related theorems which will be
used in the following chapters.

In Chapter 2 we investigate locally connected, connected, separable, metric spaces which
have disconnection numbers less than or equal to Ro. We show that locally connected,
connected, separable, metric spaces X with D*(X) < Ry are rim-countable, hereditarily
locally connected, o-compact AN Rs which contain only finitely many simple closed curves
and finitely many endpoints and, hence, X becomes a R-tree upon removal of finitely many
selected points. Conversely, if X is a locally connected, connected, separable, metric space
which contains only finitely many simple closed curves and is the union of a R-tree Y with
finitely many endpoints and a finite set Z, then X is in Dy,. Stone [St] had obtained a
characterization of these spaces. As a corollary he obtained that each such Dy,-space is D,
for some positive integer n. He asked for an independent proof of this corollary which our
work provides. The work in this chapter can be regarded as a special case of the topics in
Chapter 3. We have chosen to keep it separate because it is a relatively simple setting for
the ideas of Chapter 3.

In Chapter 3 we introduce D,,-spaces and study their structure. We say a space X
is a D,,-space if X € Dy, and if each separator F' of X between any two points a and b
contains a finite separator of X between a and b. We have the following structure theorem:
If X is a connected, Hausdorff space in D,,, then there exists a weaker topology for X
which makes X a locally connected, Tychonoff, D, -space. Under this weaker topology X
is the union of a rim-finite generalized R-tree and a finite set. If X is a connected, semi-
colocally connected, separable metric D, -space, then X is hereditarily locally connected
and, hence, X is the union of a R-tree and a finite set by the work in Chapter 2. If X
is a non-degenerate, countably compact, connected, separable, Hausdorff, D,,-space, then
there exists a weaker topology for X which makes X a metric graph.

Nadler [Nal] had proved that a connected, compact, metric Dy,-space is a graph. In
Chapter 4 we extend Nadler’s result to the non-metric case: A Hausdorff continuum X is

a generalized graph if and only if D*(X) < Ro.



In Chapter 5 we introduce the connectivity degree of a space and study its relation
with disconnection number. The connectivity degree of a space is the maximal number
of independent connections between some two points of the space. We use Tymchatyn’s
n-open connections theorem, which generalizes Whyburn’s n-arc theorem, to show that if
X is a locally connected and connected separable metric space with D*(X) < Rp then X
has finite connectivity degree.

In Chapter 6 we give some examples around the theory we have established in the
previous chapters. In particular, we show that for any n € {1,2....,00} there is 2 connected
separable metric space Z with D*(Z) = 1 and dim(Z) = n (Example 6.1). By the results of
Chapter 3 this space is homeomorphic to the real line in a coarser topology. Hence, in general
Dy, has little to do with dimension. Example 6.12 shows that the n-open connections
theorem fails for non-locally connected spaces and this example also gives a negative answer

to a question in [Tym].
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Chapter 1

Preliminaries

In this chapter we state some definiiicns and related theorems which will be used in the
following chapters. A topological space is a pair of (X, 7) consisting of a set X and a
collection 7 of subsets of X satisfying the following conditions: (T1)# € 7 and X € 7.
(T2) U, €T and U € T, then U1 NU, € T. (T3) f AC T, then |JA € T. The set X
is called a space, the elements of X are called points of the space, each element U € 7 is
called an open set of X and its complement X \ U is called a closed set of X. The collection
T is called a topology on X. Let A be a subset of a topological space X. The closure of A,
denoted by cl(A) (or clx(A)), is the smallest closed set containing A. The interior of A,
denoted by A° (or int(A)), is the largest open set contained in A. We define the boundary
of A to be the set bd(A) = cl(A)Ncl(X\ A). We denote the cardinality and the complement
of A by |A| and A° = X\ A respectively. Let (X, 7) and (Y, 7’) be two topological spaces.
A mapping f of X to Y is called continuous if f~}(U) € T for any U € T’. Throughout

this thesis all mappings are continuous.

1.1 Separating Points

In this section, unless stated otherwise, X denotes a non-degenerate, connected, T} space.
Let A, B and S be subsets of a topological space X. f X \ § = PUQ where A C P,
BcQand cd(P)NQ = PNnecl(Q) =0, we then say that S separates A and B in X. A set
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which separates two nonempty subsets of X is called a separator of X. If p € X and if {p}
is a separator of X between some two points in the component of p in X, then p is called a
separating point of X. A point p of a topological space X is called a local separating point
of X provided there exists an open neighborhood U of p such that {p} separates U between
some two points of the component of U containing p. We say in this case that p is a local
separating point of X with respect to U.

Lemma 1.1.1 Let p be a local separating point of X with respect to an open set U in
X. Then V \ {p} is disconnected for every open set V such thatpe V C U.

Proof. We have a separation U \ {p} = PUQ where P and Q each contain some points
of the component of U containing p. Let V be open such that p € V C U. Suppose V \ {p}
is connected. Then V' \ {p} is either in P or in Q. Assume V \ {p} C P. Hence VNQ = 0.
It follows that p & ¢l(Q), i.e., @ is open and closed in U. This contradicts that { contains
some points of the component of U containing p. Therefore V' \ {p} is disconnected.

Lemma 1.1.2 If G is any uncountable set of separating points of a separable, connected,
Ty space X then some two points of G are separated in X by a third point of G.

Proof. Let G = {py}er where |I'| is uncountable and p, = pg iff ¥ = 8. Suppose that
for each 4 € T we have a separation X \ {p,} = U, UV, with G\ {p,} C U,. Then for each
paira, €T, a# B, X = (Us UUg)U(Va N Vp) is a separation of X unless V, N Vg = 0.
Since X is connected V,NV; = 0 for a # 8. Hence, X contains uncountably many mutually
disjoint open sets {V,},er which contradicts that X is a separable space. Therefore, there
exists yo € I such that {p.,} separates some two points of G in X.

Theorem 1.1.3 If X is a connected T} space and p € X then the following statements
are equivalent:

(a) p is a separating point of X.

(b) X\ {p} = U UV where U and V are disjoint open sets, cl(U) = U U {p}, cl(V) =
V U {p} and cl(U) and cl(V) are connected.

(c) X = MUN where M and N are non-degenerate closed and connected sets such that
Mn N ={p}.

Proof. (a) implies (b). Let p be a separating point of X. Then X \ {p} = U UV
where cl(U)NV = UNel(V) =0 and U and V are nonempty. Since X \ {p} is open, so



are U and V. Next, U U {p} = X \ V is closed, so cl(U) C U U {p}. If p & cl(U) then
cd(U)c X\ ({p}uV)="U. Hence, cl(U)= U which is a closed and open proper subset in
X, contrary to the connectivity of X. So p € ¢l(U) and, hence, cl(U) = U U {p}. Finally
suppose cl(U) = AU B where A and B are disjoint closed subsets of X such that p € A.
Since BNcl(4UuV)= BN(AUV U{p}) =0, X = BU(AUYV) will be a separation of X
unless B = §). Therefore, ¢l(U) is connected. Similarly, ¢l(V) is connected.

(b) implies (c). Let M = UU {p} and N = V U {p} asin (b). Then M and N are
non-degenerate closed and connected sets such that M N N = {p} as required.

(c) implies (a). Let X = M UN be given asin (c). Put A= M\ {p} and B= N\ {p}.
Then X\ {p} = MUN\{p} = (M\{p)U(N\{p}) = AUB, cl(A)NBC Mn(N\{p})=10
and ANncl(B) C (M \ {p})N N = 0. Therefore X \ {p} = AU B is a separation and, hence,
p is a separating point of X.

Let P be a set. A partial ordering of P is a relation < on P such that: (a) if z < y and
y<zthenz <z (b)z <yand y <z, if and only if z = y. A pair (P, <) where Pis a
set and < is a partial ordering of P is called a partially ordered set. An ordering < is said
to be linear if the following supplementary condition is satisfied: (c) for every z, y € X,
either ¢ < y or y < z. A subset of P on which < is a linear ordering is called a chain in
the ordered set (P, <).

Hausdorff Maximality Principle ((Ward], p.8) If X is a partially ordered set then
every chain in X is contained in a mazimal chain in X.

A compact, connected, Hausdorff space is called a continuum.

Theorem 1.1.4 (Non-Separating Point Existence Theorem) A non-degenerate
continuum has at least two non-separating points.

Proof. Suppose X is a continuum with at most one non-separating point. Let p € X
be the non-separating point of X if one exists or an arbitrary point of X, otherwise. Then,
each z € X\ {p} is a separating point of X. By Theorem 1.1.3 let X = M;UN, where M,
and N; are non-degenerate subcontinua such that p € M; and M; N N, = {z}.

Claim  For every two distinct points z, y € X \ {p}, if £ € Ny then N, C N\ {y}.

Proof of Claim. If z € N, then z ¢ M,. So M, C (M: U N;)\ {z}. The sets M, \ {z}
and N: )\ {z} are disjoint and p € M, N (M \ {z}). Then My C M\ {z} since M, is



connected. So N = (X \ Mz)U {z} C X \ M,. It follows that N C N, \ {y} as claimed.

Let N = {N:}zex\(p} be partially ordered by inclusion, i.e., sets Nz < Ny iff No C N,.
Applying the Hausdorff Maximality Principle, there exists a maximal chain Np C V. We
index Mg = {Na}aeca- Since Aj is a chain it has the finite intersection property. Since X
is compact, NAp = N, No # 0. Pick a point ¢ € "No. Then Ny C N, for all a € A by
the Claim. By the maximality of Ap, N, € Ap and N, is the smallest element of Np.

Let z € N, \ {q}. By the claim we have N; < N, and, hence, N» < N, for all « € A.
By the maximality of Ay, Ny € Ap. But N, < N which is a contradiction. The theorem
is proved.

Corollary 1.1.5 If X is a continuum then no proper connected subset of X contains
all of the non-separating points of X .

Proof. Suppose there exists a proper connected subset Y of X which contains all of the
non-separating points of X. Let z € X \ Y. Then we have a separation X \ {z} = U U V.
Since Y is connected we may assume Y C U. Then V does not contain any non-separating
point of X. But ¢/(V) = VU{z} is a subcontinuum. Applying Theorem A.4 we pick a point
p € cl(V)\ {2z} = V which is a non-separating point of cl(V), i.e., c!(V)\ {p} is connected.
Since cl(U) N (cl(V)\ {p}) = {z}, X\ {p} = l(U) U (el(V)\ {p}) is connected and, hence,
V contains a non-separating point p of X. This is a contradiction. Therefore, no proper

connected subset of X contains all of the non-separating points of X.

Let X be a connected, Hausdorff space and let a and b be two points of X. Let
Ex(a,b) = {z € X : = separates a and b in X } U{a, b} and we define a natural order
on Ex(a,b) as follows: For each z € Ex(a,b)\ {a, b} let X = L, U M, where L. and
M are proper subcontinua of X such that L, " M, = {z} and a € L, and b € M. Let
L. = L.n Ex(a,b)and M, = M, N Ex(a,b). For z, y € Ex(a,b)\ {a, b} we define

(*) zLy+>y€M;and
a < z < b for every z € Ex(a,b)

Theorem 1.1.86  Let X be a connected Hausdorff space and a and b two points of
X. The relation < is a linear ordering on Ex(a,b) and the order topology on Ex(a,b) is



coarser than the subspace topology on Ex(a, b) inherited from X.

Proof. Claim |  For each z € Ex(a,b) \ {a, b} L. = {y € Ex(a,b): y < z} and
M; = {y € Ex(a,b): z < y}.

Proof of Claim 1. For z, y € Ex(a,b), since y < z implies z € M, or z g L,. This
implies L, C (LU M)\ {2z} and, hence, implies L, C L;\ {z}. Soy € L. ory € L. Next
suppose y € L, (y # z). This implies y ¢ M, and, hence, implies M; C (L, U M) \ {y}
which implies M; C M,\{y} orz € M,. Soy < z. Therefore, L, = {y € Ex(a,b): y < z}.
The second statement is clear by definition of (*).

Claim 2 the relation < is a linear ordering on Ex(a,b)\ {a, b}.

Proof of Claim 2. (i) ¢ < z since z € M,. (ii) f z < y and y € z. By Claim 1
y€ LNM;. Then y = z. (iii) If z < y and y < 2. Suppose 2z # y. By Claim 1
M, C M\ {y} and My C M:\ {z}. Thus z € M, or z < z. (iv) For any pair z, y € X we
have either y € L, or y € M. That is, by Claim 1, either y < z or z < y. Therefore, < is
a linear order on Ex(a,b).

Since a < z < b for every z € Ex(a,b), @ and b are the smallest element and largest
element of Ex(a,b) respectively. Hence, by Claim 2, the relation < is a linear ordering on
Ex(a,b).

Finally suppose 7 is the subspace topology on Ex(a,b) inherited from X. The elements
of a subbase for the order topology O of Ex(a,b) each have one of the following forms:

la, 2) = L\ {z} and  (z, 8] = M \ {z}.
All are elements of T and, hence, the identity function
id: (Ex(a,b), T) — (Ex(a,b), O)is continuous. This completes the proof of Theo-

rem 1.1.6.

A subset S of a space X is called an irreducible separator of X between two subsets A
and B provided S separates A and B in X and there exists no proper subset of § which
separates X between A and B. We say a space X is hereditarily normal if every subspace
of X is normal.

Lemma 1.1.7 FEvery separator of a hereditarily normal space X between two subsets

A and B of X contains a closed separator of X between A and B.
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Proof. Let S be a separator of X between two subsets A and B. Let X \§ = PU@
where P and Q are separated sets, A C P and B C Q. Since X is hereditarily normal,
there exist two disjoint open subsets U/ and V of X containing P and @ respectively. Then
So=X\(UUV)C §is a closed separator of X between A and B.

Lemma 1.1.8 (Mazurkiewicz’s Theorem) Let X be a locally connected, hereditarily
normal space. If F C X separates two points a and b in X, then F contains an irreducible
closed subset Fy which separates a and b in X.

Proof. By Lemma 1.1.7 we may assume F is closed. Let C be the component of X \ F
containing a. Since X is locally connected, C is open. Now Bd(C) = cl(C)\ C C F and
b€ X\ clC). Let D be the componént of X \ ¢l(C) containing b. Then D is open and
Bd(D) = cl(D)\ D C cl(C)\C C F. Put Fy = Bd(D). Then X \ Fo = DU (X \ cl(D)) is
a separation and a € C C X \c¢l(D)and b€ D. If z € Fp then z € Bd(C)N Bd(D) and
CU{z} U D is a connected subset of (X \ Fy) U {z} containing a and b. Therefore, Fp is

the required set.

Let A be a set and < a relation on X. We say that the relation < directs X if < is
reflexive, transitive and for any A, A2 € A there exists a A3 € A such that A\; < A3 and
A2 € A3. A net in g topological space X is an arbitrary function from a nonempty directed
set to the space X. Nets will be denoted by {z)}:ea where z, is the point of X assigned to
the element A of the directed set A. We say a net {z)}ea is frequently in every neighborhood
of a point z of a space X if for every neighborhood U of = and for every A there exists a
A > X such that z), € U. We say a net {z)}xea is eventually in every neighborhood of a
point z of a space X if for every neighborhood U of z there exists a Ag such that z) € U
for each A > Ag.

Theorem 1.1.9 Let X be a connected, locally connected, T, regular space and let a
and b be two points of X. Then Ex(a,b) is compact and the order topology on Ex(a, b)
introduced by < and the subspace topology on Ex(a, b) are identical.

Proof. Let {ya}aca be a net in Ex(a,b). Suppose there exists no cluster point for this
net. Then for each z € X there exists a connected neighborhood U, of z and a(z) € A with

Yo € Uz for each @ > a(z). Since X is connected there exists a finite chain, say Uz,,---, Uz,
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from a to b. Let U = |U%, Uz,. Let ag € A with ag > afz;) for each i € {1,---,n}. If
a € A with a > ag then y, € U, i.e., y, does not separate X between a and b which is a
contradiction. So every net in Ex(a,b) has a cluster point y. Next we show that y is in
Ex(a,b). Suppose y € Ex(a, b) and let C C X \ {y} be the component containing a and b.
Since X is locally connected C is open. As above we can find a finite chain C of connected
open sets from a to b with c/(UC) C C. Then y & ¢l(UC) and Ex(a,b) C cl(UC) since UC is
connected. It follows that y ¢ c/( Ex(a,b)) which is a contradiction. Therefore, Ex(a,b) is
compact.

Suppose T is the subspace topology on Ex(a,b) and O the order topology on Ex(a,b)
introduced by <. By Theorem 1.1.6 the identity function

id: (Ex(a,b), T) — (Ex(a,b), O) is continuous. Since Ex(a,b) is compact in 7,
the identity on Ex(a,b) is a homeomorphism onto (Ex(a,b), O). This completes the proof
of Theorem 1.1.9.

A subset G of X is said to be saturated provided that if ¢ € G and p is any point of
X \ {g} there exists at least one point ¢ in G which separates p and g in X. A point p is
said to have potential order less than or equal to n in X, for some nonnegative integer n,
relative to G provided there exists a neighborhood basis {U,} of open subsets in X at {p}
such that for each a, bd(U,) is a subset of at most n points of G. If p is of potential order
less than or equal to n in X relative to G but not of potential order less than or equal to
n-1 in X relative to G, p is said to be of potential order n in X relative to G.

The following theorem is due to Whyburn {Wh1, Theorem 2.2, p.45).

Theorem 1.1.10 Each set G of separating points of a separable metric space X
contains a saturated subset Q such that G\ Q is countable and each point of Q) is of potential

order 2 in X relative to Q) and separates X into ezactly two components.
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1.2 Dimension and Rim-Countable Spaces

In this section, unless stated otherwise, let X denote a non-degenerate, separable, metric
space.

Definition of dimension n. The empty set and only the empty set has dimension
~1. A space X has dimension < n (n > 0) at a point p if p has a basis of neighborhoods
whose boundaries have dimension < n — 1. The space X has dimension < n iff X has
dimension < n at each of its points. We say a space X has dimension n if dim X < n is
true and dim X < n — 1 is false. Finally, X has dimension oo if dim X < n is false for
each integer n.

The following three results will be used later. The reader may find the proofs of these
results in any book on dimension theory (see for example [H-W]).

Theorem 1.2.1 (The Sum Theorem for 0-dimensional Sets). A space which is
the countable union of 0-dimensional closed subsets is itself 0-dimensional.

Corollary 1.2.2  The union of two 0-dimensional subsets of a space X at least one
of which is closed is 0-dimensional.

Theorem 1.2.3 A subspace C of a space X has dimension < n if and only if every
point of C has arbitrarily small neighborhoods in X whose boundaries have intersections
with C of dimension < n — 1.

We recall that a space X is said to have order less than or equal to x at a point p of X,
denoted by ord(p, X) < k, for some cardinal number « provided that X has a neighborhood
basis at p of open sets {U,} whose boundaries have cardinality |bd(U,)| < «. If X is of
order less than or equal to k at p but not of order less than or equal to ' at p for each
k' < kin X, then X is said to be of order xk at p. If X has order < Rg at p then X is
said to be rim-countable at p. If X is rim-countable at each of its points, it is said to be
rim-countable. Similarly, we say a space X to be rim-finite provided X has order < ®g at
each of its points.

Lemma 1.2.4 A separable metric space X is rim-countable if and only if it is the
union of two subsets one of which is at most 0-dimensional and the other is countable.

Proof. Let X be rim-countable, and let {U;}$2, be a basis for X such that |bd(U;)| < Ro
for each i. Put D = |J$2, bd(U;). Then D is countable and dim(X \ D) < 0 since the sets
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{U:\ D}, are closed and open in X \ D and form a basis for X \ D.

Conversely let D be a countable set with dim(X \ D) < 0. For p € X, dim((X \ D) U
{p}) = 0 by Corollary 1.2.2. Applying Theorem 1.2.3 there exists for each ¢ > 0 an open
neighborhood G of p with diameter < € and bd(G)N(X\ D) = @, i.e., bd{G) C D. I follows
that [bd(G)| < Ro. Hence, X has order < R at p. Since p is arbitrary X is rim-countable.

Theorem 1.2.5 The union of countably many closed rim-countable sets in X is a
rim-countable set.

Proof. Let A = |2, Ai where each A; is closed and rim-countable. Set A7 = A,
A, = A, \ U™} Ai. By Lemma 1.2.4 for each n A, = B, U D, where dim (B;) < 0,
|Da| < Ro and B, Dy = 0. Hence, A = Uy BoUU, Dy and | U, Dy < No. Observe
that each Ay is open in A, and, hence, an F, set in X. Then B, = A7 N(U, B;) is an F,
set in J32, B,. By Theorem 1.2.1 dim(J32, B») < 0. It follows from Theorem 1.2.4 that

A is rim-countable.

1.3 Absolute Neighborhood Retracts

In this section by a space we mean a separable metrizable space. We say that a space X
is an absolute neighborhood retract (abbreviated AN R) if, for every space Y containing
X as a closed subspace there exists a neighborhood U of X in Y such that there exists a
continuous function r : U — X such that r is restricted to X is the identity idx (such
a function is called a retractior). It is well-known that a space X is an AN R if and only
if for each closed subset A of a space Y, every mapping f : A — X has a continuous
extension F : U — X defined on some neighborhood U of A in Y (ANE, [vanM, 1.5.2,
p-45]). A space is said to be an AN R locally at a point p if there exists a neighborhood of
p which is an ANR.

The following theorems of Hanner can be found in [Bor, p.96-99].

Theorem 1.3.1 Every open subspace of an AN R is an ANR.

Theorem 1.3.2 Let X = U2, G; where each G; is an ANR and an open subset of
X. Then the space X is an ANR.
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Theorem 1.3.3 A separable metric space is an ANR if and only if it is locally an
ANR at each of its points.

1.4 Hereditarily Locally Connected Spaces and Convergence

Continua

A Hausdorff space is said to be kereditarily locally connected provided each of its connected
subsets is locally connected (see [Tyml]).

Let {K)}rea be a net of subsets of a topological space X. The topological upper limit
Lim sup K, (respectively lower limit Lim inf K\ ) of the net {K)}»ea is the set of all points
z € X such that the net {Kx}.ea is frequently (resp. eventually) in every neighborhood of
z. Evidently Lim inf K C Lim sup K. f Lim inf K\ = Lim sup K then the net {K)}xea
is said to be convergent and the set Lim sup K is denoted by Lim K. A subcontinuum
K of a topological space X is called a convergence continuum in X provided there exists a
net {K»}aea of continua of X such that Lim Ky = K, Ky N Ky = K or Ky:N K) = ¢ for
M, A€ Aand KN K = ¢ for each A.

The following theorem is due to Frolik [Fr, Corollary 4.5] and Simone [Si, Theorem 3].

Theorem 1.4.1 A Hausdorff continuum X is hereditarily locally connected if and only

if it contains no convergence continuum.

1.5 Inverse Limits

An inverse sequence is a sequence of pairs (X, f;)2, of spaces X;, called coordinate spaces,
and continuous functions f;: X;y1 — X; called bonding maps. The inverse limit of
(Xi, fi){2,, denoted by lim (X, fi), is defined by
lim (X;, £;) = {(2)2, € [I2) Xt fi(ina) = i for all i}.
Let 7;: lim (Xi, fi) — X, denote the ith projection map and let
fij=fiorrofim: Xj— Xiifj2i+1.
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Lemma 1.5.1 Let X = li_xp (X5, fi) then the collection
{=7Y(U): U is open in X; and i = 1,2, -}

forms a basis for the topology of X .

Proof. Let U be an open subset in X and let z = (2;){2, € U. Since X has the subspace
topology inherited from [12; X; there exist Uy, -+, Ui open in Xj,, -, X;, respectively
such that z € ﬂf=1 T, 1(U;) C U. Let n be a positive integer such that i; < n for each
7 < k. All the sets f,-;,lz(U,-) and their intersection U, = ﬂle f,-;,l.(U,-) are open in X,;
further, as f;n(zn) = zi, we have z, € Un. Since font ,-;,{(Uj) = x;l(Uj) we obtain
z € 7Y (U,) = 1:’,7‘((];5=1 f,-';,{(U,')) = ﬂf__.l WSI(UJ-) C U which completes the proof of
Lemma 1.5.1.

Lemma 1.5.2 Let X = lim (Xi, f;). Then for any subset A of X we have

cl(A) = lim (cl(A:), flagazes)) = (T2 cH(A)] N X

where A; = m;(A) for each i.

Proof. Since f; o 41 = =; for each i it follows that f;(cl(Ai+1)) = fi(cl(mis1(A))) C
cl(fi o miy1(A)) = cl(mi(A)) = cl(A;) and, hence, (cl(A4i), filci(aiy,)) is an inverse sequence.
It is easy to see that lim (cl(4:), filu(aiy,)) = [[I2; cl(A))] N X; moreover, it is a closed
subspace of X. Indeed, for every z = (zi)2, € X\ lim (cl(As), fileiaiyy)) there exists a
z; € X:i\cl(A;) for some i by Lemma 1.5.1, so that 77(X;\ ¢l(A;)) is a neighborhood of z dis-
joint from lLim (cl(As), fila(aipy))- Clearly A C lim (cl(A:), filci(aiyy)) We then have cl(A4) C
im (el(Ad), filetaigr))- To complete the proof let z = (z:){2,; € lim (cl(A), filaiqaiyr))- By
Lemma 1.5.1 the collection of all sets 7 !(U), where U is a neighborhood of z; in X; and
i € {1,2,---}, is a local base at z in X. For every member n7}(U) of that base we have
z; € cl(A;)NU,so that A;NU # @ or ANx7}(U) # 0. This implies that z € c/(A), proving
that cl(A) = Lim (cl(As), filci(aigr))-

Recall that a surjective mapping f: X — Y is said to be quotient if U C Y is open
if and only if f~'(U) is open in X. A surjective mapping f : X — Y is said to be
hereditarily quotient if for each A C Y the restriction f|s-1(4) : f1(A) — A is quotient.
Note that the mapping f : X — Y is hereditarily quotient if and only if, for each y € Y
and each open subset U of X containing f~1(y), the set f(U) is a neighborhood of y in
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Y (see [Eng, p.134]). All surjective open mappings and surjective closed mappings are
hereditarily quotient.

Theorem 1.5.3 Let X = lim (X, f;) where each X; is connected. Then X is
connected if one of the following conditions is satisfied:

(a) each X; is compact;

(b} each f; is monotone, surjective and hereditarily quotient.

Proof. Suppose the condition (a) holds. For each positive integer n we define

P, = {(z:)2; € [12, X; : fi(ziyr) = =z for all i < n}.

Then (1) Pas1 C Pa; (2) im (Xi, i) = (RZ1 Pai (3) Pn is homeomorphic to 2,4, X;
for each n and, hence, is compact and connected. Indeed, for each n we define

h: P — [[2n41 Xi by h((2i)2,) = (2:)2p4 for each (z;)2; € Pn.

Then h is a homeomorphism as desired. Applying (1), (2) and (3) we obtain that X is
connected since the intersection of a nest of continua is a continuum.

Now suppose that condition (b) holds. Below we follow the idea of Puzio [Pu]. We shall
prove a claim first.

Claim  For each i the projection w; : X — X; is hereditarily quotient.

Subclaim 1 For each i the projection n; : X — X; is a surjection.

Proof of Subclatm 1. For z; € X; let z; = f;i(z;) € X; for j < i. Inductively, pick
Tip1 € fTH(2Z:), Tit2 € ,f};’l(z{+1),- <., we then obtain a sequence z = (z;)2, € X such
that 7i(z) = z;.

Subclaim 2 For each i the projection x; : X — X; is quotient.

Proof of Subclaim 2. Let A be a subset of X; such that #71(A) is open in X. Suppose
that A is not open in X, i.e., there exists an z; € A such that z; € Bd(A). Note that
N z:) € migar Y (A). I f7Yz:) C int(xipax7)(A)) then, since f; is quotient, z; €
int( fi(int(mip1771(A)))) C A which is a contradiction. Hence, there exists an z;4; €
Bd(mi41771(A))N £7(zi). This process may be continued inductively to obtain a sequence
z = (z;) € X such that z; € Bd(r;x7'(A)) for each j > i. Since X \ 77!(A) is closed
and z; € cl(m;(X \ 771(A))) for every j > i. By Lemma 1.5.2, z € X \ 77 !(A) which is in
contradiction with z; € A. This proves Subclaim 2.

Proof of Claim. Now we show that x; is hereditarily quotient. For ¥; C X; we have
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x7(Y:) = lim (Y, fily,,,) where

f5#(Ys) forj<ij;
T {f,-;‘(Y.-) for j > .

Since each mapping fjly,,, for j > i is hereditarily quotient, from the proof of Subclaim
2, it follows that the mapping mi|,-1(y;) : 7 }(Y;) — Y, is quotient. This completes the
proof of Claim.

Finally, we show that X is connected. Suppose there exists a separation X = U; U U,
where U; and U, are open, nonempty and disjoint. By the above Claim the mapping
m; : X — X; is hereditarily quotient. Suppose that A; = =;(U;) N 7i(Uz) = @ for some
i. Then U, = 1r|-‘11r,-(Uk) for k =1, 2, and X; = m;(Uh) U mi(Us). Since w; is quotient, the
sets m;(U1) and n;(U) are open, nonempty and disjoint. This is in contradiction with the
connectivity of Xj;; thus all sets A; are not empty.

Clearly, fi(Ai41) C Ai. We shall show that f;(Ai41) = A;. Take z; € A;. Let By =
S (=) 0wy (Ux) for k = 1, 2. Then, f7}(z;) = By U B;. To see that By N B, =
f7H(z:)N Aiy1 # 0 suppose the contrary. Then 7} (Bi) = TS z)nUs = Uenr(z;)
and this set is open in 77 !(z;). Since the restriction m;4| ale P T Yzi) — frl (=) is
quotient, the sets By are open in f!(z;) for k = 1, 2 which contradicts the assumption
that f7!(z;) is connected since f; is monotone.

The sequence (A;, fila,;,)2; is an inverse sequence of nonempty spaces with surjective
bonding mappings. Thus lim (4;, filaiy1) # 0 and is contained in U; N U, since the sets U
are closed, which contracts the assumption that U, N U; = @ and, hence, Theorem 1.5.3 is
proved.

Theorem 1.5.4 Let X =lim (X, fi) where each bonding mapping is monotone and
one of the following two conditions is satisfied:

(a) each X; is compact;

(b) each f; is hereditarily quotient. Then

(i) for each i the projection m; : X — X; is a monotone surjection and

(ii) if every X; is locally connected then X is locally connected.

Proof. (i). Suppose the condition (a) holds. For z; € X; let A = =7 !(z;). Since 4 is

compact, applying Lemma 1.5.2, we have A = lim (Aj, fila,4,) where A; = m;(A). Note
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that m; o7 Y(z;) = f,-;-“(:z:;) for j > 1, so that each 7;(A) is connected for j > 7 and, hence,
r;(A) is connected for j > 1 since f; o 7j43 = w; for each j > 1. By Theorem 1.5.3,
A = n7Y(z;) is connected.

Suppose the condition (b) holds. For z; € X; we have n7(z;) = h'r_n (Aj, fila,4, ) where

fii(zi)  forj <i;
1= {f,-}l(z.') for j > 1.

Since each bonding mapping f; is monotone and hereditarily quotient, each A; is con-
nected and f;|4,,, : Aj4+1 — A; is monotone and hereditarily quotient. Thus, by Theorem
1.5.3, the inverse limit lim (A4, fjla,,,) = 77 1(z;) is connected.

(ii). Let z € X and U be a neighborhood of z in X. By Lemma 1.5.1 there exists an
integer ¢ and an open subset U; in X; such that z € 1r,»"(U;) CU. Then z; € U; C X;.
Since X; is locally connected, there exist a connected neighborhood V; of z; such that
z; € V; C Ui. #71(V;) is connected by (i) and is a neighborhood of z contained in U as
desired.

Theorem 1.5.5 Anderson-Choquet Embedding Theorem ([Nal], Theorem
2.10, p.23) Let (X, d) be a compact metric space. Let {X;, f;}2, be an inverse sequence
where each X; is a nonempty compact subset of X and each f; maps X;,, onto X;. Assume
(1) and (2) below:

(1) For each € > 0 there ezists k such that for all p € X} diameter{U;; fk'jl (p)] < € and

(2) For each i and each § > 0 there ezists §' > 0 such that whenever j > i and p, g € X;
such that d( fi;(p), fi;(q)) > & then d(p, q) > &'.

Then lim (X, f;) is homeomorphic to (24 (m In particuler, if X; C X4, for
each i then lim (X;, f;) is homeomorphic to UZ, X..

Let X and Y be metric spaces. A mapping f : X — Y is called an e-map provided
that f is continuous and the diameter of f~!(f(z)) < € for all z € X. Let P be a given
collection of metric spaces. Then X is said to be P-like provided that for each € > 0 there
exists an e-map f, from X onto some member of P. The union of the simplices (regarded
as a subset of R™ for some positive integer n ) belonging to a complex in R® forms a closed
subset of R" and is called a polyhedron in R™.

Theorem 1.5.6 7P-like Theorem ({Nal], Theorem 2.13, p.24) If X is a continuum



19

and P is a collection of compact connected polyhedra then X is P-like if and only if X is
homeomorphic to li.x_n (P, f;) where each P; € P and f; is surjective.



Chapter 2

Locally Connected Separable

Metric Spaces in Dy,

In this chapter X denotes a non-degenerate, locally connected , connected, separable met-
ric space in Dy,. We show that a locally connected, connected, separable, metric space
X with D?(X) < Ng is a rim-countable, hereditarily locally connected, o-compact ANKE
which contains only finitely many simple closed curves and finitely many endpoints and,
hence, X becomes a R-tree upon removal of finitely many selected points. Conversely, if
X is a locally connected, connected, separable, metric space which contains only finitely
many simple closed curves and is the union of a R-tree Y with finitely many endpoints and a
finite set Z, then X is in Dy,. Stone [St] had given another characterization of these spaces.
Stone’s proof was based on work of Shimrat on D;-spaces. In the course of obtaining our
characterization we abstract properties which allow us to obtain directly Stone’s result that
every locally connected, connected, separable, metric Dy,-space X is a Dy-space for some

integer n.

2.1 The Space X is Rim-Countable

Lemma 2.1 Let Ag = {z € X : z is not a local separating point of X}. Then the set

Ay is finite.

20
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Proof. Suppose Ag is infinite, then Ay contains an infinite relatively discrete subset A,.
Since D*(X) < No A separates X. Let us suppose A; separates some two points ¢ and b in
X. By Lemma 1.1.8, A; contains an irreducible subset A, separating e¢ and b in X. If |4,]
= 1 then A; = {c} for some ¢ € X. Then ¢ is a separating point of X which is impossible.
So |Az| 2> 2. Let X \ A2 = GU H where G and H are nonempty separated sets containing
the points a and b respectively. Let d € ¢l(G)N cl(H) and let U be a connected open
neighborhood of d such that U N A2 = {d}. Then {d} separates U which is a contradiction
since d € Ag. Therefore, Ap must be finite.

Theorem 2.2 The space X is o-compact.

Proof. Let {a;}$2; be a countable dense subset of X and let {U;}$2, be a countable
basis for X with each U; connected. For each z € X \ Ao, by Lemma 1.1.1 there exists an
integer k such that z € Uy and {z} disconnects Ux. Since |J{a;}2, is dense there exist
a;,a; € Up which are separated by z in Uz. Put

L% ={ z € Ui : z separates g; and a; in Ux} U{a;,q;}.

Since each Uy is connected and locally connected, by Theorem 1.1.9, each L"-‘j is a
compact, naturally linearly ordered subspace of X. Note that the collection of all such Lf-‘j’s
is countable, and their union covers X \ Ag. Thus, X is ¢-compact.

Theorem 2.3 The space X is rim-countable.

Proof. From the proof of Theorem 2.2 we have X = |2, Ai, where Ay is finite and, for
each ¢ > 0, A; is a compact, naturally linearly ordered subspace of X. We then have for each
1 > 0 A; is rim-countable and closed in X. Applying Theorem 1.2.5 X is rim-countable.

Remark The space X may not be rim-finite. Such an example is given in Example

6.2.

2.2 The Space X is Arc Connected

Lemma 2.4 If U is an open connected subset of X. Then D*(U) < D*(X).

Proof. Let A C U with |A] = D*(X). Suppose U \ A is connected. Then cl(U)\ A is
connected. Since X is locally connected, the closure of each component of X \ ¢/(U) meets
c(U)\ A. We then have that X \ A = (cl(U)\ A) U (X \ cl(U)) is connected. This is a

contradiction and Lemma 2.4 is proved.



22

By an open arc we mean a homeomorphic copy of the open interval (0, 1).

Lemma 2.5 Let L be an open arc in X and let z € L\ Ag. There ezists an €z > 0
such that for any connected open neighborhood U of z in X with diam(U) < €, z separates
in U the two components of L N U which have z as a common boundary potnt.

Proof. Since z is a local separating point of X there is a connected open neighborhood
U, of z such that diam(U;) < 1 and z separates U;. If z does not separate in U; the two
components r; and s; of LNU; which have z as a common boundary point, then there exists
a finite simple chain C; of connected open sets with closures in U \ {z} from r; to s;. Let U,
be a connected open neighborhood of z with U C U; and diam (U;) < 3d(z, cl(UCh)) < 5.
Then {z} separates U;. If ¢ does not separate in U, the two components r, and sz of
L N U, which have z in their common boundary, then there exists a finite simple chain
C, of connected open sets with closures in U; \ {z} from r; to s;. This process can be
continued. Ii it stops after finitely many steps, the Lemma will be proved. If the process
can be continued through infinitely many steps, we get a decreasing sequence of connected
open neighborhoods {U;}2, of z with diam(U;) < }d(z,cl(UCi-;) < 27*F1, a sequence of
simple chains {C;}32, of connected open sets with closures in U; \ {z} from r; to s; where r;
and s; are the components of L N U; with z in their common boundary and r;4; C r; and
8i+1 C s;.

Each r; U {z} U s; U (UC;) is connected and no point of the component int(r;) of z in
riUs; U{z }\ cl(UC;) disconnects r;U{z}Us;U(UC;). By Lemma 1.1.2, there are only countably
many separating points of X in int(r;). Let p; € int(ry) \ ¢l(Uz) be a non-separating point
of X. I p1,...,pi—1 have been defined l2t p; € int(r;) \ cl(Ui4+1) be a non-separating point
of X \ {p1,---»Pi~1}- Then {p;}2, converges to z. But |J{p;}$2, separates X. By Lemma
1.1.8 U{pi}2, contains a closed separator of X. Since lim(p;) = z this closed separator
must be finite which is impossible by the construction and Lemma 2.5 is proved.

We recall that a space X is said to have order n at a point p of X, denoted by
ord(p, X) = n, for some positive integer n provided that X has a neighborhood basis
at p of open sets {U,} whose boundaries are exactly n-point sets. The following lemma is
a stronger version of Lemma 2.5 .

Lemma 2.6 [f L is an arc in X then there are uncountably many points of L having
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order 2 in X.

Proof. By Lemma 2.5, for z € L\ Ao, there exists a rational number 7> > 0 such that if
U is a connected open neighborhood of z with diam(U) < rz, then {z} separates in X the
two components of L N U which have z as a common boundary point in U. Take ry such
that F = {z € L : r; = 1o} is uncountable and take a connected open subset Uy C X such
that diam(Uo) < 7o and Up contains uncountably many points of F. Each z € FNlp is a
separating point of Up and separates in Uy the two components of L N U (which have z as
a common boundary point) in Up. Since F N Up is uncountable, applying Theorem 1.1.10,
there exists Q@ C F N Up, such that (FNUp)\ Q is countable ( hence, @ is uncountable) and
each z € Q is of order no more than two in Up. Since each z € Q separates Uy between two
points of the component of z in LN Uy it follows that z has order 2 in Up and, hence, in X
as required.

Lemma 2.7 The space X does not contain infinitely many mutually disjoint simple
closed curves.

Proof. Suppose {S;}$2, is a collection of mutually disjoint simple closed curves in X.
By Lemma 1.1.2 each S; contains only countably many separating points of X. Take
p1 € S1\ Ap to be a non-separating point of X and let ¢, > 0 as in Lemma 2.5 for py, i.e.,
for each connected open neighborhood U of p; in X with diam(U) < €, p; separates in
U the two components of §; N U which have z in their common boundary. By induction,
take pnt1 € Sn+1 \ (Ao U {p1,.-.,Pn}) to be a non-separating point of X \ {p1,...,pn}, and
let €n41 > 0 as in Lemma 2.5 for pp41. In this manner, we get an infinite sequence of
points {p1,pz2,.-.... }. We may assume J{p;}32, is a discrete subset of X. For each {, let U;
be a connected open neighborhood of p; with diam(U;) < ¢ and U; N (U{p;}$2:) = {p:i}-
Since D?(X) < Ro, X \ U{p:i}2, is the union of two separated sets P and @. By Lemma
1.1.8 we may assume |J{p:}{2, is an irreducible separator of X with respect to some two
points a and b in P and Q respectively, i.e., bd(P) = bd(Q) = U{pi}2,. Now for each 1,
Ui \U{p;}221 = Ui\ {p:} is the union of the separated sets U; N P and U; NQ. By the choice
of pi, SiNU; NP #0and 5;nU; NQ # 0. However, S; \U{p;}{2, = S \ {pi} is connected
because S; is a simple closed curve. This is a contradiction and Lemma 2.7 is proved.

Theorem 2.8 The space X contains only finitely many simple closed curves.
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Proof. Suppose {5;}$2, is an infinite sequence of simple closed curves in X. We may
suppose for each ¢ S;4; ¢ U§‘=o S;. By Lemma 2.7 we may suppose there is an ip such that
S, meets infinitely many simple closed curves {S;, }2, of {5;}2;-

Consider Xo = U Si,- Let Co = Sip, 1 € S;, \ (Si, U 4o), and I, the component of
Si, \ Si, containing z;. Let C) be a simple closed curve formed from /; and a subarc of Cp.
Let z; € S;; \ (CoUC)) and let I; be the component of Sj, \ (Co U C1) containing z,. Since
X is not the union of finitely many simple closed curves we continue in the above manner
to get a sequence of simple closed curves {C;}32, , open arcs {I;}32,, and points {z;}$2,
such that |

(*) Foralli, z; e i CCis LiyaN(Uj<iCi) = & cl(livr) C lig1 U (Uj<i C)-

Now choose p; € {1\ (AoU(U2,(cl(1)\1i))) to be a non-separating point of X. By induc-
tion, choose pn4+1 € Int1\ (AoU (U2, bd(l;))) to be a non-separating point of X \ {p1, ..., pn}
and all the p,’s have the properties in Lemma 2.5. Now if necessary, we could have chosen
each C; more carefully such that p; ¢ C; for j < i by induction on ¢. Again with the

argument in the proof of Lemma 2.7 we induce a contradiction. This proves Theorem 2.8.

In the following we need to use some results from Whyburn’s cyclic element theory (see
[Wh1], [Wh2], [Leh]). For the convenience of the reader we state some essential definitions
and properties here. For a,b € X let Lx(a,b) = {z € X : z separates a and b in X } and
Ex(a,b) = Lx(a,b)U {a,b}. We say a and b are conjugate in X if Lx(a,b) = ¢. A subset
E C X is an Ep-set of X if E is non-degenerate, connected, has no separating point of
itself, and is maximal with respect to these properties. An A-set of X is a closed subset
B of X such that X \ B is the union of a collection of open sets each bounded by a single
point of B. The cyclic chain in X from a to bis Cx(e,b) = N{B : B is an A-set of X and
a,b € B}. Then we have the following properties.

a) If Bis an A-set of X and if Z is a connected subset of X, then BN Z is connected.

b) If a and b are distinct conjugate points of X, then Cx(a,b) is an Eg-set of X.

Theorem 2.9 The space X is arc connected.

Proof. We prove first that each arc component of X is closed. Let R be an arc component
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of X. Suppose z € cl(R)\ R- Take z; € R such that {z;}32, converges to z. Since X has
only finitely many simple closed curves there are only finitely many arcs from z; to z;4,
for each i. Let T;Z;77 denote an arc from z; to z;4; of minimal diameter in X. We may

suppose d(z,z;42) < L1d(z, A) where A is any arc in X with endpoints z; and z;4;.

Claim There ezists o > 0 such that diam(Z7,T5,,,) > €o for some subsequence {z;, }32,
of {zi}&,-

Proof of Claim. If the claim fails, then {diam(ZiZ:37)}2; converges to 0. Hence,
U2, ZTiZiz1 U {z} is compact, connected and locally connected. It follows that U2, Ziziq7 U
{z} contains an arc from z, to z. This is a contradiction since z ¢ R and the claim is proved.

Let U be a connected open neighborhood of z with diam(U) < min(e,1). We may
assume by passing to a subsequence if necessary that zx = z;, € U for all k. So in U there
is no arc connecting z; and z; for i # j, i.e., the z;’s belong to distinct arc components
of U. Now we consider the subspace U which is still connected, locally connected and
D*(U) < No. Since Ey(z,z,) is compact but not connected, it has a gap, t.e., there exist
two elements a; and b, of Ey(z,z;) such that there is no element of Ey(z,z;) between a;
and b, when Ey(ay,b,) is given its natural order from z to z;,. Soin U, E, = Cy(a;,b) is
an Eg-set of U. Pick p; € E,; to be a non-separating point of U. Let U; = U, z;, = z; and
repeat the above argument in U\ {p1}. Take U; C U, to be a connected open neighborhood
of z with diam(U;) < 1 and p; € ¢l(Uz). Let z;, € Up. Then E(z,z;,) C U; and E(z,z;,)
has a gap, say a; and by, and so E; = Cyy\(,,}(az,b2) is an Egp-set in U \ {p;}. Pick
P2 € E2 N U, to be i« non-separating point of U \ {p;}. By induction, we get a decreasing
sequence of connected open neighborhoods {U;}2, of z with diam(U;) < 1, a sequence of
points {p;}2; and a sequence {E;}2, such that each E; is an Eg-set of U \ {p1, ..., Pi-1}>
P: € Ui N E; is a non-separating point of U \ {p, ..., pi-1}, and p; & el(Ui41) for each i > 1.
Therefore, U \ {p1,...,p;} is connected for each ¢ > 1. The sequence {p;}32, converges to z
and U{pi}2, is a separator of U. By Lemma 1.1.8 J{p;}32, contains a finite separator of
U. This is impossible by the construction. Therefore, the arc component R is closed.

It remains to show that each arc component of X is open. Let R be an arc component
of X and a € R. It suffices to show that a is not a limit point of X \ R. Otherwise, since

arc components are closed , we could pick a sequence {a;}$2, in X converging to a and such
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that the a;’s belong to distinct arc components of X. Now as in the proof that R is closed
and taking U = X we derive a contradiction. Therefore, R is open. Hence, R = X and X
is arc connected.

Obviously, the above argument works for any connected open subset of X.

Theorem 2.10 The space X is locally arc connected.

As a consequence of Theorem 2.10 and Lemma 2.6 we have the following theorem.

Theorem 2.11 The set of points of order 2 in X is uncountable and dense in X .

Lemma 2.12 If z is a local separating point of the space X which is n.! a separating
point of X then z is contained in a simple closed curve of X .

Proof. Let U be a connected open neighborhood of z such that U\ {z} = VUW, where
V and W are two disjoint, nonempty, open sets. Let B be an arc in U which contains one
endpoint in V and one in W. Since X \ {z} is connected there is an arc C in X \ {z} which
meets each of the components of B\ {z} in exactly one point. Then BUC contains a simple
closed curve D and z € D.

Theorem 2.13 (Stone [St]) A locally connected, connected, separable, metric Dy, -
space X is a D,-space for some positive integer n.

Proof. By Lemma 2.1 the set Ag of all non-local separating points of X is finite. By
Theorem 2.8 and Theorem 2.10 the space X contains only finitely many simple closed curves
and is locally arc connected. By the above and Lemma 2.5 Ag is the set of all endpoints
of X. Let £(X) denote the number of endpoints of X. By Theorem 2.8 and Theorem 2.9
the fundamental group 7(X) is a free group on finitely many generators. Let p(X) be the
number of these generators.

We show that X becomes disconnected upon the removal of any set of p(X)+¢e(X)+1
distinct points: If p(X) = 0 then X contains no simple closed curve. Let A be a subset of X
of cardinality (X )+ 1. Then there is an z € A which is not an endpoint of X. By Lemma
2.12 z is a separating point of X and, hence, A separates X. Assume Theorem 2.13 is true
for locally connected, connected, separable, metric Dy,-spaces with p < k, £ > 1. Let X
be a locally connected, connected, separable, metric Dy,-space with p(X) = k and let A be

a subset of X of cardinality p(X) + &(X) + 1. Let z € A which is not an endpoint of X.
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Then z is a local separating point of X. If z is a separating point of X then A separates X.
Assume z is not a separating point of X. By Lemma 2.12 z is contained in a simple closed
curve of X. Then X \ {z} is a locally connected, connected, separable, metric Dy,-space
with p(X \ {z}) < k. By the inductive assumption A \ {z} separates X \ {z} and, hence,
A separates X. Therefore, X is in D, for n = p(X) + e(X) + 1.

2.3 Characterizations of The Space X

A R-tree is a uniquely arc connected, locally arc connected, metric space (see for example
[MMOT]). R-trees are 1-dimensional and contractible ARs. An AR is a separable metric
space A such that for every separable metric space Y containing A as a closed subspace
there is a continuous function r : Y — A such that r restricted to A is the identity. If X
is a locally connected, connected, separable metric space with D*(X) < Ro then X becomes
a R-tree upon removal of finitely many selected points.

Theorem 2.14 Let X be a locally connected, connected, separable, metric Dy,-
space. Then X has finitely many simple closed curves and X is the union of a R-tree with
finitely many endpoints and a finite set. Conversely, if X is a locally connected, connected,
separable, metric space which contains only finitely many simple closed curves and is the
union of a R-tree Y with finitely many endpoints and a finite set Z, then X is in Dy,.

Proof. Let X be a locally connected, connected, separable, metric Dy,-space. By
Theorem 2.8 X contains at most finitely many simple closed curves. If X contains no
simple closed curve then X is a R-tree. Assume Theorem 2.14 holds for all such X which
contain no more than n simple closed curves. Now suppose X contains n + 1 simple closed
curves. Let C be a simple closed curve in X. Remove a point z with order 2 (in X) on C by
Lemma 2.6. The resulting space X \ {z} is connected, locally connected, D*(X \ {z}) < o
and X \ {z} contains no more than n simple closed curves. By the hypothesis X becomes
a R-tree upon removal of no more than n + 1 selected points. Hence, X is the union of a
R-tree and a finite set. The proof of the converse is clear by the definition of disconnection
number.

Stone gave another characterization of the class of locally connected, connected, sepa-

rable, metric Dy,-spaces using Shimrat’s characterization of locally connected, connected,
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separable, metric D,-spaces. We have given our proof because its arrangement makes clear
what is really needed for the proof of Stone’s corollary (as Stone had requested). Below we
show in Theorem 2.18 that Stone’s characterization is equivalent to ours.

Theorem 2.15 Stone’s characterization [St, Theorem 1): Every locally connected,
connected, separable, metric Dy, -space consists of a connected finite graph L, together with
a countable family of pairwise disjoint open ramifications (i.e., locally connected D, -spaces);
these ramifications are open subsets of X \ L and the boundary of each in X ts a single point
of L. Conversely, every such space if it is locally connected, connected, separable and metric

then it is in Dy,.

A point p of a space X is called a branch point of X provided that ord(p, X) > 2.

Lemma 2.16 The space X has only countably many branch points.

Proof. Since the space X is the union of a R-tree and a finite set, without loss of
generality, we assume X is a separable R-tree. Let B be the set of all branch points of X.
Suppose B is uncountable.

Claim  There erist two points a and ¢ in X and an uncountable subset By C B such
that each b € By separates a and ¢ in X.

Proof of Claim. Let {p;}32, be a dense subset of X and let B;; = {b € B : b separates
pi and p;} for i # 7. Since each branch point is a separating point in a R-tree, we obtain
B ={B;j: i # j}. Then there exist i and j such that B;; is uncountable. Let a = p; and
¢ = p; and By = B;; as desired in the Claim.

Let A be the only arc from a to ¢. Then By C A\ {e, ¢}. For each b € By we
have that A \ {6} has exactly two components and X \ {b} has at least three components
since ord(b, X) > 2. We pick a component Ry of X \ {4} such that Ryn A = 0. For
by, b2 € By, by # by. Suppose z € Ry, N Ry,. Then one of b, and b, separates the other
two of by, b, and z, assume b, separates z and b,. This means there exists an arc from z
to bs through b;. Then b, can not separate z and b,, or z € R, which is a contradiction.
Hence Ry, N Ry, = 0 for by # bz. It follows that {Rs}seB, is an uncountable collection of
mutually disjoint open subsets of X. This contradicts that X is a separable metric space.

Therefore B must be countable.
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Remark. We observe from the proof of Lemma 2.16 that the metrizability in Lemma
2.16 is not necessary. We will use this fact in Chapter 3.

Theorem 2.17 All save possibly a countable number of points of X are of order 2 in
X.

Proof. The theorem follows from Theorem 2.14, Lemma 2.16 and the fact that X has
only finitely many endpoints since D*(X) < Ro.

Theorem 2.18 The following two statements are equivalent.

(1) X is a locally connected, connected, separable, metric Dy,-space which has finitely
many simple closed curves and X is the union of a R-tree with finitely many endpoints and
a finite set.

(2) X is a locally connected, connected, separable, metric Dy,-space consists of a con-
nected finite graph L, together with a countable family of pairwise disjoint open ramifications;
these ramifications are open subsets of X \ L and the boundary of each in X is a single point
of L.

Proof. Let X be a locally connected, connected, separable, metric space which contains
only finitely many simple closed curves and X is the union of a R-tree Y with finitely many
endpoints and a finite set Z. Let E be the set of endpoints of Y. Let L be the smallest closed
connected set in X which contains £ and all of the simple closed curves in X. Then L is a
finite graph and X \ L C Y. Since Y is a separable R-tree, X \ L has only countably many
components and each component is open in X and is a R-tree and, hence, a ramification
with singleton boundary in L.

Conversely, let X be a locally connected, connected, separable, metric space which con-
sists of a connected finite graph L, together with a countable family of pairwise disjoint
open ramifications (i.e., locally connected, D;-spaces) such that these ramifications are
open subsets of X \ L and the boundary of each in X is a single point of L. Applying
Theorem 2.17 let Z be the smallest set such that X \ Z is connected and contains no simple
closed curve. Then Z is finite and Z C L. Each point of X \ Z separates X \ Z and, hence,

X \ Z is a R-tree. Therefore, these two statements are equivalent.
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2.4 More Properties of The Space X

Theorem 2.19 The space X is an ANR.

Proof. From Hanner’s Theorem ( Theorem 1.3.3) it suffices to note that for each r € X
there exists a open neighborhood U of z which is a R-tree. For each z € X let U; be a
connected open neighborhood of z which contains no simple closed curve. Then U; is an
ANR. Hence, X is an ANR.

Theorem 2.20 The space X is hereditarily locally connected.

Proof. From the proof of Theorem 2.19 we know that X is locally a R-tree. For any
connected subset A of X and each z € A let U, be a small open neighborhood of z in X
such that U is a R-tree. It suffices to show that U; N A has only finitely many components.

Since A is connected A is also arc connected by Theorem 2.8 and Theorem 2.9. If R,
and R, are two components of Uz N A, pick two points a € R;, b € Rz. Then there is an arc
Ly in U; from a to b and an arc L; in A from a to b. Hence L, U L, contains a simple closed
curve. But we know there are only finitely many simple closed curves in X. Therefore,

U N A has only finitely many components as required.

We call a space X a hereditarily Dy,-space proved that each connected subspace is a2
Dy,-space.

Theorem 2.21 Let X be a locally connected, connected, separable, metric, hereditarily
Dy, -space, then X is a finite graph.

Proof. Let X be a locally connected, connected, separable, metric, hereditarily Dxy,-
space. By Theorem 2.14, X is the union of a R-tree and a finite set M where each point
of M is in a simple closed curve. Without loss of generality we may assume that X is
a R-tree. To see that X is a union of finitely many open or closed arcs we suppose the
contrary. Then, starting from a fixed point of X, we obtain a closed connected subspace
Xo which is a union of countably many closed arcs such that one of the endpoints of each

of these arcs is an endpoint of Xp. This is in contradiction with D*(Xg) < Ro.



Chapter 3

Dg ,~spaces

We write X € D, if X € Dy, and each separator F' of X contains a separator of X
consisting of finitely many points. We write X € D,, if X € Dy, and each separator F'
of X between any two points a and b of X contains a separator of X between a and b
consisting of finitely many points. Note that every D,-space, for some positive integer n,
is D, and every D,,-space is D,. In this chapter we study the structures of D,,-spaces.

In Section 3.1 we show that if X is a connected, semi-colocally connected, separable
metric D,w-spa.ce, then X is hereditarily locally connected and, hence, X is one of the
spaces in Chapter 2.

In Section 3.2 we show that if X is a connected, Hausdorff space in D,,, then there
exists a weaker topology for X which makes X a locally connected, Tychonoff, D,.-space.
Under this weaker topology X satisfies all hypotheses of Theorem 2.14 except (possibly)
metrizability.

31
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3.1 D,.-spaces and Property (*)

We say that a topological space X has property (*) provided that for each connected subset
U of X and for each sequence A;, A, - - - of closed, connected subsets of X each of which
meets U and such that A; N 4; C cl(U) for each ¢ # j we have Lim sup A; C cl(U) (see
[G-T)).

Lemma 3.1 D,,-spaces have property (*).

Proof. Let X be a D,,-space and let U be a connected subset of X. Let A,, 4,, ---
be a sequence of closed, connected subsets of X each of which meets U and such that
Ai N A; C c(U) for each i # j. If there exists z € (Lim sup A;)\ cl(U) and let V be a
neighborhood of z such that V N el(U) = 0. Then, infinitely many A; meet Bd(V') and the
collection {V N A;} is pairwise disjoint. Let p € U. Then, Bd(V') separates r and p and,
hence, there exists a finite subset B of Bd(V') separating z and p. Let X \ B = PUQ with
P separated from @, z € Q and p € U C P. This is impossible since infinitely many A; are
disjoint from B and meet both @ and {p}. Hence, Lim sup A; C cl(U) as required.

A topological space X is semi-colocally connected provided that for each point z € X
and for each neighborhood U of z, there exists a neighborhood V of z such that V' C U and
X\V has finitely many components. A normal space is said to be finitely Suslinian provided
it is locally connected and each net {A,}qer of distinct, closed, connected, pairwise disjoint
subsets of it is null (i.e., for every open cover & of X, there exists I' C I such that I'\ I’ is
finite and each element of {A,},¢r is contained in some element of U.)

Theorem 3.2 If X is a connected, semi-colocally connected, first countable, normal,
Th, D,,-space, then X is hereditarily locally connected and, hence, X is finitely Suslinian.
In particular, if X is a connected, semi-colocally connected, separable metric D, -space then
X 1is the union of a R-tree and a finite set.

Proof. By Lemma 3.1, X has property (*). By [G-T, Theorem 4.1] X is hereditarily
locally connected. By [G-T, Theorem 4.2] X is finitely Suslinian. The last statement now
follows by Theorem 2.12.

Remark. Here is a very simple example of a separable metric D3-space which is not a
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D,,-space. Let X = {(z, sin(1)) € R%: 0 < z < 1} U {(0, 0), (0, 1)}. The infinite set
(Rx {$})N X separates X between (0, 0) and (0, 1), but no finite set separates X between
(0, 0) and (0, 1). This example is not locally connected. However, it follows from Corollary
2.17 that a locally connected, separable, metric Dy,-space is a D,,-space.

Gladdines’ example [Gl] is a hereditarily locally connected, metric Dy,-space which is not
in D,,. We present Tymchatyn’s description (unpublished) of Gladdines’ example. We feel
this description is more readable than the original one. Let C = [0, 1)x[0, 1)u{(1, 0)}. We
define a metric d on C: For (z;, 1), (22, ¥2) € CxC,if 21 = 22, let d((z1, 11), (z2, 1)) =
ly2 = ml; if z; # z2, let d((z1, 11), (22, ¥2)) = |22 — 1| + y1 + ¥2. Then (C, d) is a R-tree.
Let N denote the set of natural numbers. Let N = {A CN : |A| = Ro}. For each A € N¥
let T4 be the quotient space of C x Ax {A} obtained by identifying the set {(0, 0)} x Ax {A}
to a point. Let X = (@ senw Ta)/~ be the adjunction space where the equivalence relation
~ is defined by ((1, 0), n, {4}) ~ ((1, 0), n, {B})foreachn€ AN B and A # B € N“.
A metric on X is introduced as follows.

Let P, = (z, m, {A}), P, =(y, n, {B}) € X.

(i) If A= B and

(a) m = n, let d(Py, P,) = d(z, y);
(b) m # n, let d(P,, P;) = d(z, (0, 0)) + d((0, 0), y).
(ii) ¥ A# B and '
(¢) m =mn, let d(P,, P} =d(z, (1, 0)) +4d((1, 0), v);
(d) m # n, then there exists C € N“ \ {A, B} such that m, n € C and we then
define d(P;, P) to be the minimal diameter of arcs which connect P; and P,
in X.

Then (X, d) is a metric space in Dy, but not in D,,. Since for every point z of X

there exists a small neighborhood of z which is a R-tree by the construction of X, X is

hereditarily locally connected. Here X is necessarily not a separable metric space.

An example of a locally connected continuum not in Dy, in which each separator of it
contains a separator consisting of finitely many points may be found in Example 6.2.

The subspace X = {(z, sin(1)) € R%: 0 < z < 1} U {(0, 0)} of the plane R? is an
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example of D,,-space which is not locally connected. But in the following section we will
construct a locally connected coarser topology for such a D,,-space. In particularly, the
above space X is an arc in a coarser topology obtained by an order topology (Notice from

page 8 that X = Ex(a, b) where a = (0, 0) and b = (1, sin(1))).

3.2 Rim-finite Topologies on D, -spaces

Let (X, T) be a Hausdorff D,,-space. For an arbitrary point z € X let Az = {U C X :
there ezists a point y € X and a separation X \ F = UUV for some finite subset F' such
that z € U and y € V}. Then, we have the following properties:

(BPO) For every z € X each U € A is open in (X, 7) and its boundary Bd(U) is

finite.

(BP1) Foreveryz € X N; # @ and forevery U € N;,z € U.

(BP2) IHzeUeN,thenU €N;.

(BP3) For any U;, U, € N there exists U € N such that U C Uy N Us.

Properties (BP0), (BP1) and (BP2) follow directly from the definition of Az. Property
(BP3) also follows from the definition of A because Bd(U; N U;) C Bd(Uy) U Bd(Us).

Let F be the collection of all subsets of X that are unions of subcollections of U, ¢ x NV:-
Then, F is the topology generated by the neighborhood system {N:}:ex. Clearly F is
coarser than 7. The topological space (X, F) is rim-finite (see p.12). Clearly (X, F) is
still a D,,-space.

Proposition 3.3 Every rim-finite Hausdorff space is Tychonoff.

Proof. Let X be a rim-finite Hausdorff space. Let z € X and let B be a closed set not
containing z. We shall construct a continuous mapping f : X — [0, 1] such that f(z) =0
and f(B)=1.

Claim I X is regular.

Proof of Claim 1. For every point z € X let A; be a neighborhood basis of X at z
such that each member of A has finite boundary. Let z € X and let B be a closed set not
containing z. Let U € N such that U C X \ B. For each y € Bd(U), there exists Uy € N,
such that Bd(U,) separates z and y. Let V = U \ Uyenqw) cl(Uy)- Since Bd(U) and each
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Bd(U,) are finite and Bd(V) C Uyepq) Bd(Uy) we have V € Mz and (V) CU C X\ B
and, hence, X is regular.

Claim 2 IfU and V are two open sets of X such that cl(U) C V and U has finite
boundary, then there ezist two disjoint open sets U, and V, with finite boundaries such that
d(U)cU,CcVFCV.

Proof of Claim 2. Since X is regular, for every y € Bd(U), there exists U, € N, such
that cl(Uy) C V. Let U, = UUU,epau) ¢!(Uy)- Since Bd(U) and each Bd(Uy) are finite and
Bd(U,) C U,epqu) Bd(Uy) we have Bd(Uy,) is finite and cl(U,) C V. Let V; = X \ cl(U,).
We then have Bd(V;) = Bd(U,) and cl(U) C U, C cl(U,) = V£ C V as required.

Now we prove X is Tychonoff: Since X is regular, there exist two disjoint open sets
Uy/2 and V;;, with finite boundaries such that

zely,C Vf/z C B

Again by regularity there exist two disjoint open sets U/} /4 and V; /4 with finite boundaries

such that
z € Uys C VY C Uy

The set 12 = (X \ ¢/(V1/2)) has finite boundary, so by Claim 2 there exist disjoint

open sets Uy 4 and V;,, with finite boundaries such that
Vij2 C Usys C V35, C BS.
Combining the above chains, we have
z € Uypa C Vi3 C Uy C Vi, C Uy C V) C BS
We can further extend this chain by induction: For any integer m there is a chain
z € Uryom C Viggm C Uzpam C Vyypm C #+ - C Upgmoyyyam C Viam_1)/2m C BS,

where Uy jom and Vj ,m are open sets with finite boundaries for each integer &k, 1 < k <
2™, The construction of this chain results in the following properties:

(i) For each dyadic rational in [0, 1], » = k£/2™,k and m integers, there exist disjoint
open sets U, and V; with finite boundaries such that

z e U, CVFC B

(ii) For any two dyadic rationals r; < r, we have

U., CVE C U, CVE.

Henceforth, 7 and r; will denote dyadic rationals in (0, 1).
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We define our function f: X — [0, 1] by

inf{r: z€U,} fzelYU,;
flz)= ,
1 fzgUU,.
By our construction, z € U, for every dyadic rational r, and if z € B, then z ¢ U, for

any r. Thus f(z) =0 and f(B) = 1.

To complete the proof we need only show that f is continuous. It is enough to show
that f~1(P) is open for P an arbitrary member of a subbasis B for the topology of [0, 1].
Since we are assuming the usual topology for [0, 1], one such subbasis is

{[0, a), (b, 1] : a, b are irrationals in [0, 1]}.

We need only show that f~1[0, a) and f~!(b, 1] are open for each irrational ¢ and b in
(0, 1). But f[0, @) = U,, Ur and f71(b, 1] = U, V+, so both of these sets are open
and f is continuous.

Lemma 3.4 If(X, T) is a separable Hausdorff D,,-space then (X, F) is a separable
Tychonoff D, -space.

Proof. (X, F) is separable since the identity idx : (X, T) — (X, F) is continuous.
To complete the proof, by Proposition 3.3, it suffices to show that (X, F) is Hausdorff. Let
z and y be two distinct points in X. Since (X, T) is Hausdorff, let W be a neighborhood
of z such that y € cl(W), i.e., Bd(W) separates z and y in (X, 7) and, hence, contains a
finite separator F of X between z and y. Let X \ F = U UV be a separation such that
z€UandyeV. Then,U € N; and y € cl(U) in (X, F). This implies that (X, F) is
Hausdorff and, hence, (X, F) is Tychonoff by Proposition 3.3.

Lemma 3.5 IfU is an open set with finite boundary in a connected Hausdor[f space
X, then cl(U) has only finitely many components.

Proof. Let U be an open set with finite boundary in a connected Hausdorff space X.
Just suppose the number of components of cl/(U) is infinite. Since c!(U) is not connected,
there exists a separation cl(U) = P, U P, where P, and P, are disjoint nonempty closed
sets. Note that Bd(U) = Bd(P,) U Bd(P;) and Bd(P,) N Bd(P;) = @. If one of P, and
P;, say Bd(P,), is empty, then P, will be a closed and open proper suhsét of X which
contradicts the connectedness of X. So both Bd(P,) and Bd(P,) are nonempty. One of P,

and P,, say P;, contains infinitely many components of ¢/(U). We may repeat the above
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argument for P;. Since Bd(U) is finite and | Bd(P,){ < |Bd(U)|, continuing in this process
at most |Bd(U)| — 1 steps we find a nonempty closed and open subset P of c/(U) such that
Bd(P) = 0. This implies that P is a nonempty proper closed and open subset of X" which
contradicts the connectivity of X. The proof of the lemma is completed.

Proposition 3.6 A connected, rim-finite, Hausdorff space is hereditarily locally con-
nected.

Proof. To prove that a space is locally connected it suffices to prove that components of
open sets are open. Let X be a connected, rim-finite, Hausdorff space and let U be an open
set of X and z € U. Since X is regular by Proposition 3.3, let V be an open neighborhood
of z with finite boundary such that ¢/(V) C U. Then, the set ¢/(V') has only finitely many
components by Lemma 3.5. Let Cy,-- -,C,, be an enumeration of the components of c/(V)
and assume z € C). Since z ¢ U2, C; and each C; is closed, V \ U, C; is an open
neighborhood of z contained in Cy and, hence, C; is a connected neighborhood of z. So z
is in the interior of the component of U which contains z. Hence, X is locally connected. -
Note that subspaces of rim-finite spaces are rim-finite. This implies that every connected
subspace of X is locally connected since it is rim-finite. Hence, X is hereditarily locally
connected.

Combining the above results, we have the following theorem.

Theorem 3.7 If (X, T) is a non-degenerate, connected, separable, Hausdorff D, -
space then (X, F) is a hereditarily locally connected (in fact, rim-finite), connected, sepa-

rable, Tychonoff D, -space.

A generalized arc Y is a Hausdorff continuum with exactly two non-separating points.
If e and b are the two non-separating points of Y, then Y = Ey(a, b) (see p.8). Thus a
generalized arc Y can be linearly ordered in such a way that the order topology and the
original topology coincide. We will denote Y by [a, b]. By a generalized generalized simple
closed curve we mean a Hausdorff continuum which is separated by each of its two points
subsets.

Lemma 3.8 Let X be a non-degenerate, connected, T\, D, -space and let

Ap = {z € X : z is not a local separating point of X }.
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Then the set Ag is finite.

Proof. Suppose Ap is infinite. Then Ag contains a countably infinite subset A;. By our
assumption A, contains a finite subset Az separating X and such that no proper subset of
A, separates X. If |42 = 1 then A; = {c} for some c € X. Then c is a separating point of
X which is impossible. So |A;| > 2. Let X \ A2 = GU H where G and H are nonempty
separated sets. Let d € cl(G)Ncl(H)and let U = X \ (A, \ {d}) which is a connected open
neighborhood of d such that U N Az = {d}. Then {d} separates U which is a contradiction
since d € Ag. Therefore, Ag must be finite.

If (X, T) is a connected, Hausdorff D,.-space, then (X, F) is a connected, Tychonoff
D,.-space. The set Ag of all non-locally separating points of (X, F) is finite by Lemma
38.

Lemma 3.9 Suppose (X, T) is a connected, separable, Hausdorff D, -space. Then, the
space (X, F) does not contain infinitely many mutually disjoint generalized simple closed
curves.

Proof. Below we use the topology of (X, F). Just suppose {S;}2, is a collection of
mutually disjoint generalized simple closed curves in X. By Lemma 1.1.2 each S; contains
only countably many separating points of X. Take p; € S;\ Ag to be a non-separating point
of X. Suppose fort = 1, .-+, np; € §;\ Ap so that X\{p1, ..., pn} is connected. By induction,
take pn41 € Sn+1 \ (Ao U {p1,..-,Pn}) to be a non-separating point of X \ {p1,...,pn}. In
this manner, we get an infinite sequence of points {p;, p2, ......}. The set J{p;}2, separates
X because X is in D, and, hence, contains a finite separator of X. This is impossible by
the construction and Lemma 3.9 is proved.

Theorem 3.10 Suppose (X, T) is a connected, separable, Hausdorff D, -space.
Then, the space (X, F) contains only finitely many generalized simple closed curves.

Proof. Suppose {S;}2, is an infinite sequence of generalized simple closed curves in X.
We may suppose for each i, |-, §; is a finite graph, Sit1 ¢ Uj—o S; and, by Lemma 3.9,
we may suppose there is an i such that S;, meets infinitely many generalized simple closed
curves {5, }52, of {S:}2,-

Consider Xo = Ujep Si,- Let Co = Sy, 21 € Si; \ (Si; U Ag) and let /; be the component
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of S;, \ S;, containing z,. Let C; be a generalized simple closed curve formed from /; and a
subarc or a point (if ¢l(l;) = S;;) of Co. Let z2 € S;; \(CoUC)) and let I2 be the component
of §;, \(CoUC1) containing z2. Since X is not the union of finitely many generalized simple
closed curves we continue in the above manner to get a sequence of generalized simple closed
curves {C;}$2,, open arcs {;}%, and points {z;}32, such that

(*) Forall i, z; € i CCi; litaiN(Uj<iCj) = & el(lita) Clit1 U (Uj<i Ci)-

Now choose py € I3 \ (Ao U (U2, (cl(l) \ Ii))) to be a non-separating point of X. By
induction, choose pn4+1 € a1 \ (Ao U (UZ, bd(l;))) to be a non-separating point of X \
{p1,...,Pn}. Now if necessary, we could have chosen each C; more carefully such that
p; € C; for j < i by induction on i. Again with the argument in the proof of Lemma 3.9
we cbtain for each i, U§=o Ci\ {m, ..., pi} is connected which contradicts with that X is in
D,,. This proves Theorem 3.10.

As a consequence of Theorem 3.10 we have the following theorem.

Corollary 3.11 Every separable Hausdorff D,-space contains only finitely many

generalized simple closed curves.

Remark. The separability in Corollary 3.11 is essential. There exists a metric D;-space
containing infinitely many generalized simple closed curves: Let A = N € N in Gladdines’
example (Tymchatyn’s description). Let X be the quotient space of C x A x {A} obtained
by identifying the set {(0, 0), (1, 0)} x Ax {A} into a point p. Since the quotient mapping
is perfect, X is metrizable. Clearly, every point of X separates X and there are infinitely

many generalized simple closed curves pass through the point p.

Theorem 3.12 If (X, T) is a connected Hausdorff D,,-space, then (X, F) is
generalized arc connected and locally generalized arc connected.

Proof. Since the space (X, F) is Tychonoff and rim-finite, by [Is, Theorem VI.30,
p.111], (X, F) has a compactification Y that has a basis B of open sets whose boundaries
are contained in X. By the construction in the proof of [Is, Theorem VI.30] we may assume
the boundary of every member of B is finite and, hence, Y is a hereditarily locally connected

continuum since it is rim-finite and (X, F) is connected.
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Claim Y is generalized arc connected and locally generalized arc connected.

Proof of Claim. It suffices to show that Y is locally generalized arc connected. Let U be
a connected open set in Y and a, b € U. Let C be a finite chain of cornected open subsets
from a to b in U such that ¢/(UC) C U. Then ¢l(UC) is a subcontinuum containing a and b.
Let Z be an irreducible subcontinuum of ¢/(UC) between a and . Since Y is hereditarily
locally connected, Z is locally connected. For z € Z\{a, b}, if Z\ {z} is connected, then we
can take a finite chain D of connected open sets from a to b in Z \ {z} such that z ¢ cl(UD)
and, hence, ¢l(UD) is a proper subcontinuum of Z containing @ and b which contradicts the
irreducibility of Z. Therefore, there exist exactly two non-separating points (i.e., a and b)
in Z. This implies that Z is a generalized arc from a to b and the Claim is proved.

Now we prove that (X, F) is generalized arc connected. Let a, 6 € X and Z be an arc
from a to bin Y. Suppose z € Z \ X. We denote [a, 2] and [z, b] be the irreducible arcs in
Z from a to z and from z to b respectively and [a, z) = [a, 2]\ {2}, (2, 8] = [z, ]\ {z}.
Let Zo= (Y\Z2)U{z}. Then Y\ Zo =Y \[(Y \Z2)U{z}] = 2\ {2} = [a, 2)U(z, b]is
a separation between ¢ and b. In particularly, Zo N X separates X between a and b and,
hence, contains a finite separator F separating a and b in X. By [Is, Theorem VI.39, p.115],
F separates a and b in Y, in particular, 2 € F' C X. This is a contradiction since z was
supposed to be in Y \ X. Therefore, Z C X and, hence, X is generalized arc connected.

Finally we prove that (X, F)is locally generalized arc connected. Let U be a connected
open set in X and a, b € U. The set Ex(U) =Y \ ely(X \U) is open in Y. We claim that
Ex(U) C cl(U): For every z € Ex(U) =Y \cly(X\U), z € cly(X \U). Let V be a neigh-
borhood of z in Y such that VN (X \U) = 0. But X is dense in Y, so must have VAU # 0
and, hence, z € cl(U). Further, XN Ex(U) = X \ ely(X\U) = X \[X Ney(X\U)]=TU.
We then have that Ex(U) is a connected open set in Y containing a and b. Since Y is locally
generalized arc connected, there is an arc Z from a to b in Ex(U'). By the above argument
weget Z C X. Hence Z C XN Ex(U) = U. This proves that X is locally generalized arc

connected.

We define a generalized R-tree to be a uniquely generalized arc connected, locally gen-

eralized arc connected, Tychonoff space.
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Theorem 3.13 If(X, 7) s a connected, separable, Hausdorff D,,,-space, then (X, F)
is the union of a rim-finite generalized R-tree with finitely many endpoints and a finite set.

Proof. We observed earlier that (X, F) is rim-finite. By Theorem 3.10 (X, F) contains
at most finitely many generalized simple closed curves. If (X, ) contains no generalized
simple closed curve then (X, F) is a generalized R-tree by Theorem 3.12. Assume Theorem
3.13 holds for all such (X, F) which contain no more than n generalized simple closed curves.
Now suppose X contains n + 1 generalized simple closed curves. Let C be a generalized
simple closed curve in X. Remove a non-separating point = (in X) on C by Lemma 1.1.2.
The resulting space X \ {z} is connected, locally connected, D*(X \ {z}) < Ro and X \ {z}
contains no more than n generalized simple closed curves. By the hypothesis X becomes a
generalized R-tree upon removal of no more than n + 1 selected points. This completes the
proof.

Remark. Pierce’s example (see Example 6.10 when W = N the natural numbers) shows
that Theorem 3.13 is not always true for D,-spaces. In fact, there exists even an example

[Ma, Theorem II} of a countable, connected, Hausdorff D;-space.

Theorem 3.14  Every separable generalized R-tree in D,, is the union of countably
many metric arcs.

Proof. Let X be a generalized R-tree in D,,. Since the set of endpoints of X is finite,
let {a;}2, be the union of a countable dense set of X and the set of endpoints of X. For
every i, j, let A;; be the unique arc from a; to a;. For each z € X, if = is an endpoint of z,
then z = q; for some i and, hence, z € |J; jen Aij- If z is not an endpoint, then it is a sepa-
rating point. Let U be a connected open neighborhood of z. Then, there exists a separation
U\{z} = U,UU,. Pick a; € U and a; € Uz. Then, z separates a; and a; in U. This implies
that z is on the unique arc from a; to e;, or z € A;j; C U; jen Aij- Hence, X = U; jen Ay;-
To complete the proof we show that each A;; is metrizable. Since each A;; is compact we
only need to show that each A;; is separable. Let A = A;; and let D be a countable dense
set of X. Let B be the set of all branch points of X. B is countable by the remark of
Lemma 2.14. If AN D is not dense in A, then for every subarc L of A\ AN D we show
LN B is dense in L. Suppose not, then there exists an open subarc Ly C L\ L N B (without
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endpoints) such that every point of Lo has order 2 in X. Hence, Lq itself is an open subset
of X which contradicts with the separability of D. So LN B is dense in L for every subarc
of A\AND. It follows that AN(DUB) is dense in A and, hence, A is separable as required.

Theorem 3.15 If X is a non-degenerate, connected, separable, Hausdorff, D,,-space,
then we have X = |J2, Ai, where Aq is finite and, for each i > 0, A; is a closed linearly
ordered set with order topology coarser than the subspace toplogy of X and under the order
topology each A; is a metric arc.

Proof. Let (X, T) be a connected, separable, Hausdorff, D,,-space. By Theorem
3.13 (X, F) is the union of a generalized R-tree Y and a finite set Z. By Theorem 3.14,
Y =2, Ai, where each A; is a metric arc in (X, F). The inverse image of each A; under
the identity idx : (X, T) — (X, F) is a closed linearly order set induced by the topology
in (X, F).

Note. Theorem 3.15is not true for D,-spaces. Such an example can be found in Example
6.10 when the set W is chosen to be a countable discrete set. Inspired by Theorem 3.15, we
ask the following question: If (X, 7') is a non-degenerate, connected, separable, Hausdorff,
D, -space, does there exist a weaker topology O of X in which (X, O) is generalized arc
connected, locally generalized arc connected and metrizable? Actually, it suffices to show
that such a (X, O) is first-countable. We note from [C-M] that there exists a nonmetrizable,
o-compact space which is the union of two separable, metrizable, F,-subsets. The following
result is a partial answer to the question.

Corollary 3.16 If (X, 7) is a non-degenerate, countably compact, connected, sepa-
rable, Hausdorff, D,,-space, then the space (X, F) is an generalized arc connected, locally
generalized arc connected and metrizable continuum.

Proof. (X, F) is countably compact since the identity idx : (X, 7) — (X, F)is
continuous. By Theorem 3.15, (X, F) is o-compact and, hence, (X, F) is compact [Eng,
Theorem 3.10.1, p.258). To complete the proof it suffices to show that (X, F)is metrizable.
Since X = (2, Ai, where Ag is finite and, for each ¢ > 0, A; is a separable metric arc in

(X, F), by [Eng, 4.4.H(a), p.359], (X, F) is metrizable since it is Cech-complete.
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Remark. We will see from Theorem 4.15 that the space (X, F) in Corollary 3.16 is
actually a metric graph. We still do not know whether (X, 7) is compact in Corollary
3.16. We note from [Jo, Theorem 5] that there exists a subspace A of the plane R? which
is a Dy-space and is not an arc, but there exists a weaker topology on A which makes A an
open arc. We will construct, in Example 6.1, a connected separable metric space Z with
D*(2) =1 (Z is in D,,) and dim(Z) = n for any n € {1,2....,00}. Hence, in general
being an element of D,, does not carry an implication concerning the dimension of a space

without compactness or local connectedness assumptions.



Chapter 4

Hausdorff Continua in DNO

We recall that a compact and connected space is called a continuum. A generalized arc is
a Hausdorff continuum with exactly two non-separating points. A Hausdorff continuum is
called a generalized graph if it is a union of finitely many generalized arcs any two of which
intersect only in a subset of their endpoints. A generalized arc Y can be linearly ordered in
such a way that the order topology and the original topology coincide. We will denote Y
by (a, b] where @ and b are the two non-separating points of Y. In [Nal] Nadler proved that
if X is a metric continuum, then D*(X) < Ny if and only if D*(X) < R, and, hence, that
X is a graph. In this chapter we generalize this theorem to the class of Hausdoff continua.
Our proof parallels Nadler’s initially but later follows the idea of Chapter 2. A Hausdorff
continuum is indecomposable if it is non-degenerate and if it is not the union of two of its
proper subcontinua. If X is a continuum and p € X, then the set of all z € X such that
{p, z} is contained in a proper subcontinuum of X is called a composant of X. Any two
distinct composants of an indecomposable continuum are disjoint. In this chapter, unless

stated otherwise, X denotes a non-degenerate Hausdorff continuum with D*(X) < Ro.

We are going to use the following two theorems.

Bellamy’s Theorem ([Be], Corollary §) If X is a non-degenerate indecomposable
continuum, then X contains an indecomposable subcontinuum Y with at least ¢ composants.

Gordh’s Theorem ([Gor], Theorem 2.7) If X is a continuum which is irreducible

between a pair of points and contains no indecomposable subcontinuum with interior, then

44
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there exists a monotone continuous map f of X onto a generalized arc such that each point
inverse under f has empty interior.

By using Nadler’s method we prove the following Lemma 4.1.

Lemma 4.1 IfY is a non-degenerate subcontinuum of X, then D*(Y) < Ro.

Proof. Let Y be a proper subcontinuum of X, and let A C Y with |A] = Ro. Suppose
that Y \ A is connected.

Claim The number of components of X \ Y is finite.

Proof of Claim. If not, we could choose infinitely many components, {C;}2,,of X \Y.
Since C; UY is a continuum for each i, by the Non-Separating Point Existence Theorem
(Theorem 1.1.4) and Corollary 1.1.5, no proper connected subset of C;UY contains the set
of all non-separating points of C; UY . For each i let p; be a non-separating point of C;UY
such that p; € C;. Hence

X\ {pi}2, = U2, [(C:uY)\ piJUU{C : C is a component which is different from that
of Ci’s } is connected. This contradicts that D*(X) < R and the claim is proved.

Let Cy,:-+,Cr, be all components of X\ Y. We pick ¢; € c/(C;)NY foreach 1 < i< m.
Since Y\AC Y \A)U{q, ",qm} CY =c(Y\A), Y\ A)U{q, -, qm} is connected.
Hence -

X\ (A\{q1,* 1 ¢m}) = UR1(Ci U {a DU \ A} U {q1, ", gm}

is connected. This contradicts that D*(X) < Ry and Lemma 4.1 is proved.

Lemma 4.2 The space X is hereditarily decomposable.

Proof. I there exists an indecomposable subcontinuum Y in X, by Bellamy’s theorem,
Y contains an indecomposable subcontinuum Z with at least ¢ composants. By Lemma 4.1,
D*(Z) < Rp. So for any countable subset A C Z there exists a composant C of Z missing
A. But C is dense in Z, so Z \ A is connected. This is contrary to D*(Z) < ®o and the
lemma is proved.

Lemma 4.3 I[fY is a subcontinuum of X which is irreducible between a pair of points,
then Y is a generalized arc.

Proof. By Lemma 4.1 and Lemma 4.2 we know that D*(Y) < Rg and Y is a hereditarily
decomposable continuum. Using Gordh’s theorem, let f be a monotone continuous map

from Y onto a generalized arc [a, b] with a and b two non-separating points of [a, b] such
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that Int(f~1(t)) = ¢ for each t € [a, b]. We only need to show that for each t € [a, b]
f~1(t) is a singleton. If not, there exists a tg € [a, b] such that f~!(Z) is non-degenerate
and connected and, hence, uncountable. If ¢, = a (or to = b) then f~!(a, b] (or f~1[a, b))
is a connected dense subset in Y since f is monotone and Int(f~!(t)) = ¢ for each t € [a, b].
Hence, if 4 is an infinite subset of f~1(t), the subset Y '\ A is still connected. This is contrary
to D3(Y) < Ro. H a < tg < b then (cl(f~[a, o)) N F~ (o)} U(el(f2(to, b)) N f~1(t)) =
f~1(to) since Int( f~1(tp)) = ¢. Without loss of generality we assume cl(f~[a, 25))N f~1(to)
is infinite. Let B be an infinite subset of cl(f~[a, to)) N f~1(%y). Since cl(f~1[a, o)) is a
subcontinuum of Y with f~![a, t) as a connected dense subset, the subset c/( f~1[a, %))\ B
is still connected. This is contrary to Lemma 4.1. This completes the proof of Lemma 4.3.

Corollary 4.4 FEuvery non-degenerate subcontinuum of X is generalized arc connected.

Theorem 4.5 The space X is hereditarily locally connected.

Proof. If not, by Theorem 1.4.1, there exists a convergence continuum K with a net of
continua {K)}.ea such that Lim K, = K, KyNKy, = Kyor KxyNK) = ¢ for A, € A and
K)\NnK = ¢ for each A. Since K is non-degenerate, by Lemma 4.2, K = AUB where A and B
are two proper subcontinua of K. By Corollary 4.4, for each A € A, let L, be an irreducible
generalized arc from K to a point a) of K such that Ly N K = {a,}. Since J{ar}rea C
AU B, either A or B contains a cofinal subset of (J{a)}rea.- We assume by passing to a
cofinal subset if necessary that (J{ar}rea C A. Then Y = cl(K U Uyep KaUUsea L) is a
subcontinuum of X with AUUyep KxUUpea L connected and densein Y. Let C C B\ A
be a countably infinite subset. Then Y \ C is connected. This is contrary to D*(}Y) < Rg
and Theorem 4.5 is proved.

Lemma 4.6 If U is a connected open set in X then Bd(U) is finite.

Proof. Suppose Bd(U) is infinite. Let A be a countable infinite subset of Bd(U). Since
UcCecl(U)\ACcU),c(U)\ Ais connected which contradicts with D*(cl(U)) < Rg by
Lemma 4.1. Therefore, Bd(U) is finite.

Combining Theorem 4.5 and Lemma 4.6, we have

Corollary 4.7 The space X is a rim-finite space and, hence, a D, -space.

Lemma 4.8 IfY and Z are generalized graphs such that Y N Z is nonempty and finite
then Y U Z is a generalized graph.
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Proof. The proof is clear.

For a given integer n > 3 a generalized simple n-od A is the union of n generalized arcs
Ay, ..., Ap such that there exists a point p € A with A; N A; = {p} for 7 # j and p is an
endpoint of each of 4; and A;. The point p is called the vertez of A. When n = 3 we say
A is a generalized simple triod.

Lemma 4.9 If the space X contains no generalized simple triod, then X ts a generalized
arc or a generalized simple closed curve.

Proof. Let p and ¢ be two non-separating points of X. Let A be a generalized arc in
X with endpoints p and q. Since X \ {p} is open and connected, by Theorem 4.5, it is
generalized arc connected. Suppose X contains no generalized simple closed curve. Then
X is uniquely arc connected and locally arc connected. Let @ and b be two non-separating
points of X. Since X contains no generalized simple triod, X = [a, ], an arc. Now suppose
X contains a generalized simple closed curve S. Since X is generalized arc connected and
contains no generalized simple triod, X = § as required.

Corollary 4.10 LetY is a locally connected continuum. Foreachz € Y ord(z, Y) <2
if and only if Y is a generalized arc or a generalized simple closed curve.

Lemma 4.11 Letp € X such that ord(p, X) = n < Ro. Then there ezists a local base
{Bx}xea at p such that each B) is an open and connected subset of X and |bd(B))| = n.

Proof. Let {U,}.er be a local base at p such that each U, is open and |bd(U,)| = n.
For each v € T let V, be the component of p in U,,. Since X is locally connected each V, is
open. Also, bd(V,) C bd(U,) and V = {V,},er is a local base at p. Hence, B={B¢c V:
|bd(B)| = n} will be a local base at p with the required property.

Lemma 4.12 Suppose the space X has only one point p of order > 3 and ord(p, X) =
n < No. Then p is the vertex of a generalized simple n-od which is a neighborhood of p in
X.

Proof. We use the idea in the proof of [Nal, Lemma 9.9]. By Lemma 4.11 let B =
{B>x}xea be alocal base at p such that each B) is an open and connected subset of X and
|bd(By)| = n. If for each A € A there exists z) € bd(B)) such that z, is not a limit point
of X \ B then B’ = {B) U {z}} forms a local base at p such that [bd(ByU {z,})|=n-1
which contradicts that ord(p, X) = n < Ro. Hence there exists Ao € A such that for each
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p;i € bd(B),), 1 < i < n,is alimit point of X \ B),. Note that cl(B),) is arc connected and
locally arc connected (Corollary 4.4) and ord(z, X) = 2 for all z # pin cl(B.),). It follows
that each p; must be an end point of any arc in ¢/(B),) to which p; belongs. Let A; C cl(B),)
be an arc with endpoints p and p; such that A; N A; = {p} for i # j. Then U2, A4; is a
generalized n-od with vertex p. Since ord(p, X) = n it follows that cl(B),) = U, Ai as
required.

Theorem 4.13 A Hausdorff continuum X is a generalized graph if and only if
D*(X) < Ng and ord(z, X) < 2 for all but finitely many z € X.

Proof. The necessity is clear. To prove sufficiency let X be a Hausdorff continuum
such that D*(X) < X and ord(z, X) < 2 for all but finitely many z € X. By Corollary
4.7, ord(z, X) < Rg for all z € X. If no points are of order > 3 in X then, applying
Corollary 4.10, X is a generalized graph. We assume inductively that Theorem 4.13 holds
for all continua with at most n points of order > 3. Now suppose X has exactly n + 1
points, {p;}?}!, of order > 3. Since X is locally connected let U be a connected open-
neighborhood of p; such that p; € cl(U) for any i > 2. In ¢l(U), p; is the only point of
order > 3. Let ord(p1, cl(U)) = n. Applying Lemma 4.12 let V be a connected open
neighborhood of p; in ¢l(U) such that ¢l(V') is a generalized n-od. Since |bd(V)| = n, X \V
has at most n components, Ky,- -+, Ky (m < n). Since p; ¢ K; for each i > 1 by the
inductive assumption each K; is a generalized graph. Note that @ # K; N cl(V) C bd(V)
and (c(V)U K;)N K; = cl(V)U K; for ¢ # j. By Lemma 4.8 K; U cl(V) is a graph for
each ¢ and hence X = cl(V) UUZ, K; is a generalized graph. This completes the proof of
Theorem 4.13.

Lemma 4.14 Let X be a Hausdorff continuum with D*(X) < Ry then ord(z, X) < 2
for all but finitely meny z € X.

Proof. Suppose there exists an infinite subset C of X such that for each z € C
ord(z, X) > 3. Without loss of generality, we assume the set C is countable and con-
tains no cluster point of itself. We shall define a subcontinuum L of X such that the set of
endpoints of L is infinite which is contrary to D*(L) < R, and, hence, completes the proof.

If there exists a generalized arc A such that A contains an infinite subset {z, ...,Zn, ...}

of C. Since for each i, ord{z;, X) > 3 and ord(z;, A) < 2, let U; be an open neighborhood
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of z; and p; € U; \ A such that U; N U; = ¢ for i # j and let L; be a generalized arc in U;
with endpoints z; and p;. Then L = cl(4A U U2, L;) is a subcontinuum with 2, {p:} in
its set of endpoints.

We assume that no generalized arc contains infinitely many points of C. Let zo be a
limit point of C. Let U; be a connected open neighborhood of zo and take z; € Ui nC.
Let L; be a generalized arc in U; from z; to zo. By induction, suppose we have defined
Z1yeeeyZny Uyyeeey U and Ly, ..., L, such that each U; is a connected open neighborhood of
z, cl(Uiy1) C U;, L is a generalized arc in U; from z; to zo and z; & cl(U;) for j < i. Let
U,n+1 be a connected open neighborhood of z¢ such that ¢l{(Unyy) C Up and z; € cl(Un41)
for each i < n. Take zp41 € Unyy NC \ U Li and let L, 4, be a generalized arc in Up4q
from z,41 to zo. With this construction we have that for each i, z; € cl(U;£; L;).- Then
the subcontinuum L = cl(UR, L;) has {z;}{2, contained in its set of endpoints as required.

Theorem 4.15 A nondegenerate, Hausdorff continuum X is a generalized graph if
and only if D*(X) < Rq.

Proof. The theorem follows from Theorem 4.13 and Lemma 4.14.

We recall from Chapter 2 that, since the space X contains only finitely many simple
closed curves by Theorem 4.15, there exists the smallest nonnegative integer m, denoted
by p(X), such that if we remove some m points X becomes a generalized R-tree. Let £(.X)
denotes the number of endpoints of X which is finite. We then have the following corollary
from Theorem 4.15.

Corollary 4.16 Let X be a nondegenerate, Hausdorff continuum with X € Dy,. There
is a positive integer n such that D*(X) < n. In fact, D*(X) = p(X) + e(X) + 1.
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Chapter 5

The Connectivity Degrees of

Spaces

Let X be a topological space and let @ and b be two points of X. A subset of X is said to
join a and b if a and b are contained in the closure of some component of the set. The space
X is said to be n-point connected between a and b if no subset of X with fewer then n-points
separates a and b in X. We say there exist x independent connections between a and b in
X if there exist s disjoint open sets in X which join e and b (see [Wh3] and [Tym]). We
define the connectivity degree, Cn(X), of X by Cm(X) = sup{ & : there ezist two points a
and b in X with x independent connections between a and b}. In this chapter we begin to

study the relations between connectivity degree and disconnection number.

We are going to use the following theorem.

The n-Open Connections Theorem ([Tym], Theorem 1) The locally connected,
regular, T\ space X is n-point connected between two points a and b if and only if there ezist
n disjoint open sets in X which join a and b.

Corollary 5.1 If X is a hereditarily locally connected, locally arc connected, connected,
metric space that is n-point connected between two points a and b, then X contains n disjoint
open arcs joining a and b.

Proof. By the n-Open Connections Theorem there exist n disjoint open sets Uy,-- -, Uy,

50
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in X which join a and b. Since X is locally arc connected and U; is open for each i we
may suppose U; is connected and locally arc connected for each i. For each i let ¢; € U
and let {z;;}%2, be a sequence in U; converging to a. Inductively, we construct for each
j an arc ¢;z;; from ¢; to z;; such that for each n, U}, ¢izi; is a tree. Since U; U {a} is
connected and locally connected we may suppose lim (U3 eizi; \Uj=i €ii5) = {a}. Then
(U2, cizij) = U2y cizij U {a} is a compact tree. So there is an arc in U; U {a} from ¢
to a. Similarly, there is an arc in U; U {b} from c; to b. Hence, there is an open arc in U;
which joins a and b. Therefore, X contains n disjoint open arcs joining a and b.

Theorem 5.2 If X is a locally connected and connected separable metric space with
D3(X) < Rg then X has finite connectivity degree.

Proof. Let X be alocally connected and connected separable metric space with D*(X) <
Ro. By Theorem 2.8 X contains only finitely many simple closed curves. Let k be the number
of simple closed curves in X. Then there exist at most k£ + 1 independent arcs between any
pair of points (the interiors of these arcs are mutually disjoint). By Theorem 2.10, X is a .
locally arc connected. Therefore, by Corollary 5.1, we have Cpy (X) < k+ 1.

Theorem 5.3 If X is a locally connected and connected separable metric space with
finite connectivity degree then every two points of X can be separated by a finite subset of
X.

Proof. Since Cy(X) = k for some positive integer k for any pair of points a and bin X
there do not exist k£ + 1 independent connections between ¢ and b in X. By Corollary 5.1
again X is not (k + 1)-point connected between a and b. So there exists a subset of X with
fewer than (k + 1) points and which separates e and b.

Theorem 5.4 If X is a locally connected and connected separable metric space with
D*(X) < Rg then Cn{X) < D*(X).

Proof. Let X be alocally connected and connected separable metric space with D*(X) <
Ro. By Corollary 2.19 D*(X) = n for some positive integer n. Let a and b be two points
of X. Suppose there exist x independent arcs A;,---, A< from a to b. For each arc A; we
pick an interior point p; in A; of order 2 (Lemma 2.6) in X. Let A = {py,---,p<}. Then we
must have & = |A| < n. Therefore Cp, (X) < D*(X).
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With analogous arguments we have the following two theorems.

Theorem 5.5 If X is a Hausdorff continuum with D*(X) < Ro then X has finite
connectivity degree.

Proof. Let X be a Hausdorff continunm with D*(X) < Nyg. By Theorem 4.13 X is
a generalized graph. Hence X has only finitely many simple closed curves. Let k be the
number of simple closed curves in X. Then there exist at most k 4+ 1 independent arcs
between any pair of points of X. Therefore, Cpr(X) < k+ 1.

Theorem 5.8 If X is a Hausdorff continuum with D*(X) < Ro then Cp(X) < D*(X).

Proof. Let X be a Hausdorff continuum with D*(X) < Rg. By Corollary 4.14 D*(X) =n
for some positive integer n. Let a a.an b be two points of X. Suppose there exist x inde-
pendent arcs from a to b. For each arc we pick an interior point of order 2 (Lemma 4.12).
Let A be the set of those points. Then no proper subset of A disconnects X. Thus |4]| < n.
Therefore, Cph(X) < D*(X).

We define a continuum X a @-continuum of type n for some positive integer n provided
there exist two points @ and b in X such that X = (i, A; where each A; is an arc and
A;NA;j = {a, b} for i # j. Let (X, p) and (Y, d) be compact metric spaces. A continuous
surjection f: X — Y is called a near homeomorphism provided that for any € > 0 there
is a homeomorphism A : X — Y such that sup;exd(f(z), h(z)) < e.

Theorem 5.7 Let X = ligl (X, fi) where each X; is a locally connected O-continuum
of type n and each bonding mapping f; is a monotone surjection. Then X is also a O-
continuum of type n.

Proof. 1t is easy to see that a monotone mapping from a ©-continuum of type n onto a
O-continuum of type n is a near homeomorphism. Hence, Theorem 5.7 is a direct corollary

of Brown’s Theorem [Bro, Theorem 4].

Theorem 5.8 Let X = lim (X, f;) where each X; is a locally connected continuum
and each bonding mapping f; is an open, monotone surjection.

Then Cp(X) 2 sup{Cm(X:)}2,.

Proof. For a fixed ¢ let C,,(X;) = n where n maybe infinite. Let a and b be two points
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in X such that there exist n independent connections between r;(a) and =;(d) in X;. Let
Uy, -+, Uy be such n independent connections. Since the bonding mappings are open, mono-
tone and surjection, the i-th projection 7; is also open, monotone and surjection by [Pu,
Theorem 5]. Since a, b € cl(x71(U;)) = 7 (cl(U;)) for each j, x7Y(Uh),- - -, x7}(U,) are
n independent connections between a and b in X. Therefore Cp(X) > C,n(X;) for each i

and, hence, Cn(X) > sup{Cm(X:)}2,.

Remark. In Chapter 6 we will give several examples to show how inverse limits affect
connectivity degree and disconnection number. Theorem 5.3 fails for non-locally connected
spaces (Example 6.12) and this example also gives a negative answer to a question in [Tym)].
The following question is still open: Could we improve the inequality in Theorem 5.8 to be

an equality by applying Theorem 5.77



Chapter 6

Examples and Questions

In this chapter we give some examples around the theory we have established in the previous
chapters. We show that for any n € {1,2....,00} there is a connected separable metric space
Z with D*(Z) = 1 and dim(Z) = n (Example 6.1). Hence, in general being an element of
D, does not carry an implication concerning the dimension of a space. We give an example
of a locally connected, connected, separable metric space X with D*(X) = 1 such that X
is not rim-finite (Example 6.2). This example also show that the disconnection numbers
are not monotone: there exists a closed connected subset Y of X such that D*(X) =1 and
D*(Y) is not defined. Inverse limits affect disconnection numbers and connectivity degrees
of spaces (Examples 6.6 - 6.9). Disconnection number and connectivity degree are different
(Examples 6.10 - 6.11). The n-open connections theorem fails for non-locally connected

spaces (Example 6.12) and this example is also a negative answer to a question in [Tym].

Example 6.1 For each n € {1,2,...,00} there erists a connected separable metric
space Z with D*(Z) =1 and dim(Z) = n.

The example is based on a construction of Lelek ([Lel]). We construct it by the following
steps. Let T be the Cantor ternary set in [0, 1]. Let A = T\ {0, 1}. For any interval
(a, b) C (0, 1) let A(a, b) be the image of A under the linear homeomorphism from [0, 1]
onto [a, b]. We call A(a, b) the basic Cantor set in (a, b).

Step 1. Let n be a positive integer. In the (n + 1)-cube I™*! =[[{l : k= 1,...,n+ 1}

where each I = [0, 1], let m; : I"*! — [; denote the i-th coordinate projection. Let = = m;
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and let A = 71(0), B = r~1(1). Let C be the collection of all subcontinua in I"*! meeting
both A and B. Then C has cardinality c. Let @ : A — C be a 1-1 correspondence. For
each t € Alet y, € v~'(t)Na(t) and put Y = {y: : t € A}. Then (see [Lel]) Y is totally
disconnected and dim(Y) = n.

Step 2. Let Ag=A,Co=C,ap=aand Yo =Y. Let {(a;,5;)}2, be the sequence
of complementary components of A in (0, 1). For every (a;, b;), let A(a;, b;) be the basic
Cantor set in (a;, b;). Let C{ be the collection of all subcontinua in I™*! meeting both
©~1(a;) and 71(b;). Then C] has cardinality c. Let C; = U2, C}. Let A; = UR, A(a;, b;)
and let o : A; — C; be a function such that oy|a(q,,s) : A(ai, b)) — Ciisal-l
correspondence for each i. For each t G‘Al let y, € 7~ (t)Nay(t) and put Yy = {y, : t € A1}
Let {(a.-‘,-,b.-,-)}g‘;1 be the complementary components of A(a;, b;) in (a;, b;) for every .

Step 3. Inductively, we define sequences {Ai}§2q, {Ck}io, {@r}i2, and {¥i}2,
satisfying the following conditions:

For ead. k > 2,
(@) Ak = UT iy ie=1 D8iy g msins Bigsia,myis)» Where each A(@i iy, s g iz,nii) i the
basic Cantor set in (@i i, ixs iy iz,eesin) 20 {(iy iz, 0ixs i sig,nnin ) }50=1 is the sequence of
complementary components of A(;,,iy,mix_ys Oisiz,incy) IR (@i ig,mrinmys Diyiiz,eesiey ) fOT
every sequence ?, ¥z, - -, tx—1 of positive integers.
(6) Ck = ULy, ip=1 Ci ™, where C{**** is the collection of all subcontinua in I™+!
meeting both #=3(a;, i;,..i, ) and 771 (i, i ,m1in)-
(¢) ai : Ag ~— Ci is a function such that

Ck|A(aiy g s Bigugeng) OB sizsins big iz, i) — Cpriaix

is a 1-1 correspondence for every sequence 11, #2, *-+, 3 of positive integers.
(d) Foreach t € Aglet y; € 7~1(t) N ax(t) and let Vi = {y: : t € Ak}

By the construction we have the following property: For every nonempty interval
(a, b) C (0, 1), there exist integers 1,82, ~ -+, t such that (@i i;,...ipy biy,iz,ix) C (@, b).

Step 4. For every t € (0, 1)\ U2 Ak, we pick an arbitrary point y; € #~1(¢) and put
Zo = {ye : t € (0, 1)\ UiZo &k}

Finally, let Z = ZoU U2, Yi.

Then dim(Z) > . If dim(Z) = n + 1, by [H-W, Theorem IV.3, p.44], the set Z would
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contain a nonempty subset which is open in /™*!. This is impossible since Z contains
exactly one point from each hyperplane {y} x I". Hence, dim(Z) = n. We shall show that
Z is connected. If Z is not connected, then Z = C U D where C and D are separated and
nonempty. Let ¢ € C and d € D. By the Phragmen-Brouwer Theorem [Wi, Theorem 5.19,
p.60] there exists a continuum E of I**! \ (C U D) which separates ¢ and d in I™*!. Since
I**! is an (n+1)-dimensional Cantor-manifold [H-W, Example VI.11, p.93], dim(E) > n.
Now, r(E) is non-degenerate since otherwise £ would contain #~1(¢) for some t € (0, 1)
which contradicts with ENZ = 0. Let (a, b) C #(E) for some a < b. Then, there exist
integers 1,13, ~~-,4; such that (ai, i, ixs Biysiz,-ii) C (@, b) and, hence, E meets both
7 1(aiy iz, i) @0d T73(d;, iz -i ). This implies that E meets Yi. This is a contradiction.
So Z is connected. Since [Z N r~1(t)] = 1 for each t € (0, 1), Z is a D;-space. Therefore,
the space Z is a connected, separable, metric D;-space with dim(Z) = n. See Figure 1

below.

e P
ik nz/ P

Figure 1 (for Y5)
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By gluing infinitely many of these sets into a chain we get an infinite dimensional
example.

Remark. Note that for each integer m we can attach a simple m-od to Z to get a
connected separable metric space with dimension n and disconnection number m + 1. One
can modify Gladdines’ example X (Tymchatyn’s description) by replacing each arc in X by
a copy of the space Z in Example 6.1 to obtain a connected metric space with disconnection
number Rp and and arbitrarily large finite dimension. By the results of Chapter 3 the space

Z in Example §.1 is homeomorphic to the real line in a coarser topology.

Example 6.2 A locally connected separable metric space X with D*(X) = 1 such
that X is not rim-finite and D*(Y) is not defined for some connected subsetY of X.

In the plane R? denote ag = (0,0) and a; = (1, }) for i > 0. For each i > 0 denote aga;
the segment from ap to a;. Let X = {J2,(aoa; \ {ai}). Then X is a connected, hereditarily
locally connected, separable metric space with D*(X) = 1, but X is not rim-finite at the
point ao. Denote b; = (1, %) for i > 0. Then Y = U, aob; is a connected subset of X but
D*(Y) is not defined. This example may be compared with Theorem 3.4.

Inspired by Example 6.2, we ask the following question.

Question 6.3 If X is a separable metric space with D*(X) < Rg and Y is a sub-
continuum of X, is there a countable subset C of Y such that Y \ C is connected and
D3 (Y \C) < Ry?

Remark. For locally connected separable metric spaces, the answer to Question 6.3 is

positive because of the existence of a universal separable R-tree (see [MNO, Section 2]).

Question 6.4 Let X be a Hausdorff hereditarily Dy, -space (see p.23).

1. Is X the union of countably many subsets A;’s (i > 0) where Ay is countable, A;
(i > 0) is connected and admits a one-to-one map into a generalized arc?

2. If A is closed and disconnects X, do components of X \ A have interiors?

8. If A is closed and disconnects X, for all but finitely many components C of X \ A,
does each point of C disconnect C ¢

4. If C is a component of X \ {p}, is p in the closure of C?
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5. If A is closed in X and C is a component of X \ A, does there ezist a connected
subset C' of C such that C' is not separated from A and C’' has no cutpoint?

6. Suppose A is a finite set of X not disconnecting X. Does there erist a finite set B
containing A such that B is mazrimal with respect to not disconnecting X ?

Question 6.5 Let X be a metric continuum. What is the Borel class of the subspace
Ex(a,b) wherea, be X ?

These subspaces may not be closed. By [Wh1, (5.1), p52] Ex(a,b) is the union of a
Gs-set and a countable set. So Ex(a,b)is Gso. Is it Gs? It is known that Ex(a, ) is closed

if X is locally connected.

The following examples show inverse limits affect disconnection numbers and connec-
tivity degree.

Example 6.6 An inverse limit of D4-spaces which is not a Dy,-space. This example
is also an inverse limit of C,-spaces which is a C,-space. Our ezample is in fact an inverse
limit of triods.

We define f : [0, 1] — [0, 1] by

IA
= N

ifo<z

f(z) 2z 0
)=
%—z 1f-1.5<z

IN

For each positive integer i let X; be the union of the graph of f* and its reflection in
the plane about the graph of fii[o. L) Thus X; is a simple triod. Let P = {X;}{2,

Then each D*(X;) = 4 and Cm(X;) = 1. Let X be the union of {(z, 3 + isin(l)) €
RZ2: 0 < |z| < 1} and the vertical segment from (0, 1) to (0, 0). X is not a Dy,-space
since a countably infinite point set in the y-axis of X can not separate X. There exist two
disjoint open sets joining (0, 1) and (0, %) So Cry(X) = 2. Forevery 0 < € < 1it is easy to
construct an e-map of X onto X; for i sufficiently large (See Figure 2 below). This implies

X is P-like and, hence, X is an inverse limit of a sequence in P.



D AL A L

v=1e y = f3(z)

map

X X

Figure 2

Example 8.7 An inverse limit of Ds-spaces which is a D3-space. This ezample is also
an inverse limit of C-spaces which is a C-space.

Let P, be the set whose only element X is a simple triod and let P; be the set whose
only element Y is a simple closed curve with two stickers:

Y={(z,9)eR?: 22+ ¢?=1}u{(z, -1) : 0< |z| <1}

Then the element of P; has disconnection number 4 and the element of P; has connec-
tivity degree 2. The unit interval {0, 1] has disconnection number 3 and connectivity degree
1. It is both P;-like and P»-like: For every 0 < ¢ < 1 we identify the pair of points % -z
and % + z for each 0 < z < £ in [0, 1]. Then the quotient space of {0, 1] is homeomorphic
to X € P, and the quotient map is an e-map. Hence, [0, 1] is P;-like. Similarly, for every
0 < € < 1 we only identify the pair of points 1 — £ and 1 + £ in [0, 1]. Then the quotient
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space of [0, 1] is homeomorphic to Y € P; and the quotient map is an e-map. Hence, {0, 1]

is P,-like. By the P-like Theorem (1.5.6), [0, 1] is an inverse limit both in P, and P;

Example 6.8 An inverse limit of Dy,-spaces which is not a Dy,-space. This example
is also an inverse limit of finite connectivity degree spaces which is not a finite connectivity
degree space.

In the plane R? we define Ly = [—-1, 1] x {0} and for each i > 1 we define

Li={(z,y)€R?: 2?2 +(y-i)) =i’ + 1l and y < 0}.

Foreach i > 0 let X; = U§'=o L; and let f; be a natural retraction of X;4; to X; by
pushing L;4; onto Lo. Then (X, fi;) is an inverse sequence with each D*(X;) < o and
Cm(X;) < Ro. By the Anderson-Choquet Embedding Theorem (1.5.5),

lim (X, fi) = UZo Li

without disconnection number and its connectivity degree is not finite.

Example 6.9 An inverse limit of Dy,-spaces which is not a Dy -space even though
the bonding mappings are monotone.

In the plane R? let O = (0, 0). For each i > 0 let

Si={(z. v eR: -+ =}}

Let X; = U§=1 S; and let f; be the monotone retraction of X;;; to X; which shrinks the
circle S;4; into the point 0. Then (X}, f;) is an inverse sequence with each D?*(X;) < No
and the bonding mappings are monotone. Again by the Anderson-Choquet Embedding
Theorem lim (Xj, f;) = U2, Si, the Hawaiian Earring, whose disconnection number is not

defined.

Example 6.10 There ezists a metric space X with D*(X) = Ro but there ezist an
uncountable number of independent connections between some two points of X. This shows
that the local connectivity assumption in Theorem 5.4 is necessary.

We modify Pierce’s example [Pi]. Let W be the set of all countable (including finite)
ordinal numbers with the discrete topology, and let A = {(z, sin(l)) € R%: 0 < z < 1}
the open sin(1)-curve. Let ® = {Fa}acn, be a partition of W such that for each a < ¥,
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|Fo| = n for some positive integer n. Let Il = {Pg}s<y, be the family of all those two
point subsets of W which intersect two members of ®. For each § < R, let Ag be a copy
of A with the two points of P as its only limits and such that AgN A, = @ for 8 # 7.
Define X to be W U g, As- Then every infinite subset of X separates X. There exist
an uncountable number of independent connections between the two points of Pz for each

B < R;. A metric is easily introduced as in Gladdines’ example (Tymchatyn's description).

Example 6.11 Let X be the space obtained by adding end points of all the segments
in Ezample 6.2 then X is a locally connected, separable metric space with D*(X) £ Rg but
Cn(X)=1.

Example 8.12 There ezists a separable metric space X such that X has finite connec-
tivity degree but there ezist two points of X which can not be separated by any finite subset
of X. Thus the local connectivity assumption in Theorem 5.8 is necessary.

Let X be the Warsaw circle in R? which is the union of the closure of the set {(z, sin(l) €
R2: 0 < z < 1} and three convex arcs, one from (0, —1) to (0, ~2), one from (0, ~2)
to (1, ~2), one from (1, —2) to (1, sin(1)). Then Cy(X) = 2. The two points (0, 0) and
(0, 1) can not be separated by any finite subset of X. It follows that Theorem 5.3 fails for
non-locally connected continua. We note that X is 2-point connected between (0, 1) and
(1, sin(1)) but there do not exist two independent connections between them. This gives
a negative answer to a question in [Tym] which said ’if X is a regular, T} space and P and
@ are disjoint closed sets in X such that X is n-point strongly connected between P and
@, do there exist disjoint open sets Uy,-- -, U, such that U; cannot be separated between
P and Q7' In other words, the n-open connections theorem fails for non-locally connected

spaces.

The following is a higher dimension disconnection problem.
Question 6.13 Suppose X is a connected, locally connected, complete, metric space
which is disconnected by the removal of any Ro disjoint simple closed curves. What can one

say about the space X ¢
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If one requires that each simple closed curve disconnect one has characterizations of the
2-sphere and of 2-manifolds, respectively, as follows.

Bing’s Theorem ([Bing], p.646) If no pair of points of a locally connected metric
continuum S separates it, but every simple closed curve in S does separate it, then S is a
2-sphere.

van Kampen’s Theorem ([Yo], Theorem 1.1, p.979) Let X be a non-degenerate,
locally compact, locally connected, connected, metric space with no local separating points.
Suppose that for each point z of X there is a neighborhood U of = such that every simple

closed curve in U separates X. Then X is a 2-manifold.
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