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Abstract 

A strength 2 covering array (packing array) is an array with h columns and entries 

from a g-ary alphabet such that given any two columns i and j and any ordered pairs 

of elements (gi, g2) h m  the g-ary alphabet, there exists at least (at most) one row r 

such that an = gl and a, = 92. The problem of interest is to determine the minimum 

(maximum) number b of rows for which a b x k covering (packing) array with entries 

from the g-ary alphabet exists, where k and g are given. 

Upper bounds on the size of covering arrays are constantly being improved through 

new constructions. Randomized searches can also be used to find new arrays through 

the use of metaheuristics, which are widely applicable to a number of combinatorial 

problems. It is possible that some randomized search aigorithms are more suited to 

finding better bounds on the sizes of covering and packing designs than others. 

We search for covering and packing arrays using simulated annealing, tabu and 

genetic algorit hms. We compare both the differences between these t hree search 

techniques, as well as their effectiveness in constructing covering and packing arrays. 

TVe determine that the algorithms best used to find quality covering and packing 

arrays are the sirnulated annealing algorithm and the tabu search algorithm. We give 

tables of the best known bounds on the sizes of covering and packing arrays, including 

t hose bounds improved t hrough our own met aheuristic searches. 

The primary application of covering arrays is that of software and network testing. 

In order to construct arrays which are fully applicable to software and network tests 

of any flavour, it is necessary to consider arrays where each column possesses its own 

alphabet size. We present some initial results for this problem, including a complete 

solution for the case k = 4. 
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Chapter 1 

Introduction 

There has been much research over the p s t  decade regarding the existence of covering 

arrays and, in particular, bounds on the size of said arrays. Many constructions, both 

recursive and otherwise, have been devised to produêe t hese design-like objects. While 

many of these constructions have been used i;o produce arrays with small parameter 

values, fairly little is known with regards to the strength of the bounds on the size 

of arrays with slightly larger pararneter values. A recent trend in searching for these 

covering arrays has been to implement searching algorithms which would build the 

arrays by a stochastic process. In this thesis, we implement three randomized search 

algorithms in the hope of findirig better bounds on arrays with larger parameter sizes. 

Another similar problem is that of determining bounds on the size of packing 

arrays. Packing arrays are a sort of complementary structure to covering arrays. While 

a Iower bound exists on the number of times pairs of elements can occur in a covering 

array, a packing array places an upper bound on this quantity. As the applications of 

packing arrays are subtler than those of covering arrays, these structures have been 

studied less actively. Consequently, femer good bounds on the size of these arrays are 

known, and less constructions of packing arrays have been discovered. 
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1.1 Definit ions and Notation 

In order to define the objects of study, we must first present some other definitions 

and notation. Henceforth, when reference is made to a g-set or an alphabet of size g, it 

shall be assumed that this set is Z,, the set of integers {O, 1, . . . , g - 1). Furthemore, 

unless specified otherwise, ali variables rnentioned shall only take integer values. 

The majority of tools used to construct optimal covering and packing arrays, 

as wd l  as establish results about them stem from the study of designs. We first 

define some basic design theoretic structures and then generalize t hese structures into 

covering and packing arrays. The definitions presented can be found in [5, 241. 

Definition 1.1. A Latin square of side g i s  a g x g array in which each cell contains 

a single element from a g-set such that each element of the set occurs exactly once in 

each row and exactly once in each column. T h e  e n t q  in row a and column b of Latin 

square L i s  denoted L(a, b) .  A Latin square of side g is said to  be idempotent if for 

all O 5 i 5 g - 1,  cell (i, i )  of the Latin square contains the syrnbol i. 

Definition 1.2. A pair of Latin squares of side g ,  Lo and LI are said t o  be orthog- 

onal i f  Lo(a ,  b )  = Lo(c, d )  and L l ( a ,  b) = L l ( c ,  d )  implies a = c and b = d. In other 

woîds, Lo = ( a i j )  and LI = (bij)  are orthogonal i f  euery element in 2, x 2, occurs 

exactly once among the g2 pairs ( a i j ) ,  ( b i j )  for al1 O 5 i, j 5 g - 1. A set of Latin 

squares Ll, La, . . . , Lm is a set of mutually orthogonal Latin squares, or a set of 

MOLS i f  for euery 1 5 i < j $ rn, Li and Lj are orthogonal. We let N ( g )  denote 

the maxzrnum number of Latin squares in a set of MOLS of side g .  

Definition 1.3. An orthogonal array O A ( k , g )  i s  a g2 x k array with entn'es from 

a g-set hauing the property that in any tzuo columns, each ordered pair of symbols from 

the g-set occurs exactly once. 

Orthogonal arrays and sets of mutually orthogonal Latin squares are closely re- 

lated. It is well known that a set of k - 2 MOLS of side g is equivalent to an OA(k,  g). 

Consider the set of k - 2 MOLS { L I ,  L2>.  . . , L k 4 }  of side g. The 92 x k array formed 

by the g2 rows (i ,  j, L l ( i ,  j ) ,  L2(i, j ) ,  . . . , Lb-& j))  for O 5 i, j 5 g - 1 is an orthog- 

onal array. Figure 1.1 shows a pair of orthogonal Latin squares of side 3 and the 
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Figure 1.1: A pair of orthogonal Latin squares of side 3 and the corresponding 
OA(4,3). 

corresponding orthogonal array formed by the above construction. 

If the set of MOLS used to build an OA(k,g) in this way are al1 idempotent, 

the orthogonal array will have g disjoint rows. In Chapter 4, it shall be shown hom 

orthogonal arrays are used to produce good bounds for covering arrays. Orthogonal 

arrays will also be used in Chapter 5 to constrwt portions of covering arrays having 

special alphabet restrictions. 

Definition 1.4. A transversal design of order g and blocksize k ,  denoted 

TD(k, g ) ,  is  a triple (V, G,  B) ,  where 

O V i s  a set of kg elernents; 

G is a partition of V into k groups, each of size g; 

O B i s  a collection of k-subsets of V called blocks; 

O each block intersects each group Gi in ezactly one point; and 

O each pair of points not in the same group occurs in exactiy one block. 

A TD(k, g) is also equivalent to a set of k-2 MOLS of side g and can be constructed 

frorn an OA(k, g) as follows. Let A be an OA(k, g) on the symbol set 2,. Taking V to 

be the set 2, x Zk let B be the set of blocks {(aij, j) : O 5 j 5 k - 1) for al1 i E Zg2, 
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where ai2 is the element in row i and column j of A. Then, if G is the partition of 

V whose classes are {Z, x {j) : O 5 j 5 k - 11, the triple (V, G, B) is a transversal 

design. The blocks and groups of a transversal design derived in this way from the 

OA(4,3) in Figure 1.1 are presented in Figure 1.2. 

Bloch: {OO, 01,02,03) {OO,11,12,13} {00,21,22,23) 
{lO,Ol, 12,231 {10,11,22,03) {10,21,02,13) 
{20,01,22,13) {20,11,02,23} {20,21,12,03) 

Groups: {00,10,20} { O l ,  11, 21) {OZ, 12,22) 

Figure 1.2: A TD (4,3) derived from an OA(4,3). 

D e f i n i t i o n  1.5. An i n c o m p l e t e  transversal design, denoted I T D ( k ,  g ;  bl ,  bz, . . . , b,) 

with bi 3 O ,  bi 5 g i s  a quadruple (V, G, H ,  B )  where 

V ,  G and B are as defined in Definition 1.4; 

H i s  a set of disjoint subsets Hl ,  H2,  . . . , H. of V called holes with the property 

that for each 1 5 i 5 s and each group G' E G, lG' n Hil = bi; 

every unordered pair of elements from V is  contained in eithcr a hole or a group 

and contained i n  no blocks, or contained in exactly one block, but not  in any 

group or hole. 

A construction mentioned in Chapter 5 uses ITDs to build a very specific class of 

covering arrays. 

1.2 Covering and Packing Arrays 

We shall now define covering arrays and packing arrays by first presenting some equiv- 

alent objects. 

D e f i n i t i o n  1.6. A strength-t t r a n s v e r s a l  cover, denoted t-TC(k, g : n)  is a triple 

(V, G, B)  where 



Groups: {O, 1) Covering 

(27 3) Array 
(47 5)  

Blocks: {O, 2,4) O 0 0  
{O, 3 7  5) 0 1 1  
I l ,  2,4) 1 0 0  
{L 2151 1 0  1 
(1; 3741 1 1 0  

Figure 1.3: A 2 - TC(3,2) with V = Z6 and the corresponding C.4(3,2 : 2).  

V ,  G and B are as defined in  Definition 1.4; 

each block intersects each grovp Gi in exactly one point; 

each t-set of points with no tzuo in the same Gi occvrs in at least one block; 

and 

0 there is a set of n pairwise disjoint blocks in B.  

A transversal cover is essentiaily a transversal design with a relaved pair require- 

ment. A transversal cover with k = 3 and g  = 2 is presented in Figure 1.3. These 

design-like structures can be formdated in a much more aesthetic way by letting the 

blocks be the rows of a b x k array, where [BI = b. Then, by replacing the contents of 

each group by the same 9-ary alphabet we have an array with entries from a uniform 

alphabet. This new structure is called a covering array. In defining covering and 

packing arrays, we first define the concept of disjoint rows. 

Definition 1.7. I n  any couering or packing array, any set of rows which pairwise 

d i ' e r  in each column i s  a set of disjoint rows. 

Definition 1.8. A strength-t covering array, denoted t-CA(k,g : n) i s  a b x k 

array with entries from a g-ary alphabet such that given any t columns, ci, cn, . . . , c t ,  

and for alE ordered t-sets of elements (g17g2, . . , , g t )  from the alphabet, there exists a 

row r such that = gi for al1 1 5 i 5 t .  Furthemore,  there i s  a set of at least 



CHAPTER 1. INTRODUCTION 6 

n disjoint rows. The smallest number of r o m  possible is  denoted t-ca(k,g : n). For 

n = 1,  this quantity m a y  simply be denoted b y t -ca(k ,  g )  . 

The covering property of a covering array is implied by that of a transversal cover. 

The abovementioned covering array construction can also be reversed to transform a 

covering array into a transversal cover. 

Definition 1.9. A strength-t transversal packing, denoted t - T P ( k , g  : n) i s  a 

triple (V, G,  B)  where al1 entities are as defined in Definition 1.6, except that each 

each t-set  of points, n o  two of which are in the same Gi, occurs in no more than one 

block. 

Definition 1.10. A strength-t packing array, denoted t -PA(k,  g : n) i s  a b x k 

array with entries from a g-ary alphabet (typically 2,) such that gzven any t colurnns, 

c l ,  c;>, . . . , ct, and for al1 ordered t-sets of elements (gl, g ~ ,  . . . , gt)  from the alphabet, 

there exists at most one row r such that a , ,  = gi for al1 1 5 i 5 t.  Furthemore, there 

is  a set of at least 72 disjoint rows. The largest number of r o m  possible is  denoted 

t -pa(k ,  g : n). For n = 1 ,  this quantity may be denoted t -pa(k ,  g ) .  

Throughout this thesis, we will only be concerned with structures covering pairs 

of elements, or t-sets of elernents with t = 2. As a result , when reference is made to a 

packing or covering array throughout this thesis, it shall be assurned that t = 2 and 

the t shall be dropped from all notation unless specified otherwise. 

Finally, we present a third structure equivalent to a covering arrray. 

Definition 1.11. Let a g-partition of a b-set B denote a partition of B into g classes. 

A family of k g-partitions, Pt, Pî, . . . Pk, of a b-set B are qualitatively t-independent 

i f  whenever one selects t distinct partitions from the family and one part from each, 

then the intersection of these parts is nonempty. 

Consider a covering array. Let the set of rows be our bset, labelled {O, 1,. . . , b- 1). 

Then each colurnn partitions this set into g classes, where al1 rows with entry i are 

in class i, for O 5 i 5 g - 1. If we select any t colurnns from the array and one 

class from each, as defined above, then the t-set-covering condition guarantees that 



the intersection of these parts is non-empty. Therefore, a strength-t covering array is 

equivalent to a set of t-independent g-partitions of a &et. 

1.3 Applications 

The prirnary application of covering arrays is that of the design of experiments. If the 

rows of a covering array correspond to experiment trials and its columns to the test 

subjects, then a covering array is equivalent to a test suite in which the interaction 

between each pair of test subjects may be observed. Recently, this method of testing 

has been applied in testing software and networks [3, 4, 6, 23, 24, 291. It is reported 

in [6] that anywhere from a third to a half of the total cost of software development 

is due to the software testing. Not only is there a financial cost in performing an 

extensive amount of testing, but completing the testing may also require a great deal 

of time. When testing anything, it is desirable to approxirnate a balance between the 

quality of the test and the possible costs incurred. 

For software testing, the mode1 most often used is that of a computer program 

having k variables, which are d l  discrete and can each take one of g values at any time. 

To ensure that the code is fully functional in an exhaustive fashion, one would vrant 

to test every possible ordered set of values as input for the variables. Unfortunately, 

as g and k grom- even m~derately large, this process quickly becomes infeasible as the 

exhaustive set of gk tests could take a lot of time and money to complete. 

In [3], Cohen et al. claim fiom empirical data that the majority of code errors are 

due to either the interaction between a pair of values, or faults found in a single pa- 

rameter. This finding suggests that to test software or a network sufficiently well, one 

needs only ensure that between any two variables in the code or nodes in the network, 

all ordered pairs of possible states are tested. In order to get a more comprehensive 

test of the system, test suites that cover every t-set of variables for t 2 3 may be used. 

Consider the case of employees in a call centre who are to call alumni for support 

in an upcoming funding drive. A computer program can be used to manage the 

distribution of phone numbers prior to presenting them to  the caller and may even 

adapt the script the caller must read, according to some criteria. For example, the 
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caller might want to know if the respondent has contributed money in the past, if the 

respondent has been contacted before or even if they have only recently graduated. If 

these are the only three variables of concern, then a test for the program requires that 

between any two pairs of columns, every possible ordered pair of values is present. In 

Figure 1.4, we present a sample set of runs which may serve as a sufficiently good test 

for this program. 

-- -- - 

Figure 1.4: A sample set of test cases for the cal1 centre problem. 

Notice that this set of test cases is isomorphic to the covering array and transversal 

cover of Figure 1.3. Presumably, applying this set of test cases should determine any 

existing errors in the code. However, the primary question with regards to covering 

arrays is to determine the minimum number of rows required to form a covering array 

given the integers k and g. Such covering arrays would generate the minimum number 

of test cases required to test an instance of software or a network sufficiently well for 

failure. It is known that for k = 3 and g = 2, a covering array with four rows exists. 

Our test set in Figure 1.4 c m  be made optimal by removing the third row, which is 

ent irely redundant wit h regards t O pair coverage. 

For small k and g, current bounds on the size of a covering array are quite good 

and are fairly difficult to meet, let alone beat, by simply constructing an array by 

hand. One concern is that many computer programs and networks require that k 

and g be quite large. Many of the constructions designed to construct covering arrays 

could generate a corresponding CA(k,  g) with a reasonably small, but not minimal, 

number of rom. It is for this reason that we had hoped that randomized search 

methods could be used to obtain even better bounds for these values of k and g. 

Graduated 
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No 
Yes 
No 
Yes 
NO 

Previously 
contributed? 

No 
No 
Yes 
Yes 
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No 
Yes 
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Another concern that shall be addressed in Chapter 5 is that it is rarely the case 

that each variable in a program has the same number of possible states. The concept 

of a covering array can be generalized to handle these cases and even less is known 

about bounds on these special objects. 

Another application of the covering array is in the compression of inconsistent or 

contradictory data. In [14], Korner and Lucertini claim that Shannon's contributions 

to the field of information theory cannot deal with many real world situations. In 

particular, they propose that the results in Shannon theory regarding multiterminal 

information sources cannot interpret data inconsistency mathematically. They con- 

sider the case of simultaneous observations of some occurrence or system such that 

the observations from any one location are fragmentary and may contradict either 

other observations or what is already known about the system. The goal is to obtain 

a count of the minimal number of full and consistent descriptions of the system such 

that each fragmentary observation centributes to at least one of them. This quantity 

is referred to as the maximum achievable compression of the data. 

The mode1 of Korner and Lucertini considers a finite set X as the set of attributes 

of the system which can be observed. Then, they assign to each observer a firnction 

whose domain is X. They further define a function f as being extendable if there 

is some function g such that the domain of f is a subset of the domain of g and both 

functions coincide on the domain of f .  Therefore, two observers reporting consistent 

data have corresponding functions which have a common extension. If F represents 

the family of functions corresponding to the observations made, then the problem 

is to determine the minimum cardinality of a family of functions G such that for 

every function in F, there is some function in G which extends it. Stevens [24] 

presents a simplified version of the problem in which the observation fragments are 

al1 possible t-sets of observation values. Let the set of observation points correspond 

to the columns of the array. Then an optimal strength t covering array would yield 

the desired minimal set of observations in which et-ery set of fragmentary observations 

corresponding to the functions of F occurs, regardless of their consistency. 

Covering arrays are used in many other capacities. Katona [12] applies covering 

arrays in the guise of qualitatively independent sets to multivariate truth functions 
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and search theory, while Sloane [23] links strength 3 covering arrays to intersecting 

codes. Chateauneuf and Kreher [2] and Stevens [24] Est references to other uses, such 

as computer architecture design, drug screening, bIock ciphers, and zero-error noisy 

channel communication. 

The applications of packing arrays are not as obvious as those of covering arrays. 

Stevens [24] writes that the rows of an optimal packing array "form the maximal set of 

words from a partial maximum distance separable code (MDS code) with minimum 

spanning distance k - 1". These codes have been studied and Stevens notes that 

Abdel-Ghaffar and Abbadi use packing arrays to store large files across multiple hard 

disk systems so that the files can be retrieved in the shortest time possible. Stevens 

also presents references to some of the known upper bounds, such as the Plotkin, Elias 

and Hamming bounds. A weak version of the Plotkin bound is 

We use this bound during the randomized semches as an upper bound on the binary 

search process, as discussed in the second section of Chapter 2. 

The dual of packing arrays are highly structured resolvable block designs. In 

particular, the dual of a PA(k,  g : 1) with no pair of disjoint rows is a class-uniformly 

resolvable design, mhich are used to construct round-robin tournarnents and design 

experiments efficiently [7, 161. Packing arrays, seen as MDS codes, can also be used 

to detect and correct transmission errors. 

1.4 Outline of Thesis 

In the first part of this thesis, we present a survey of metaheuristic search techniques 

and select three such algorithms to attempt to improve on some of the best hown  

bounds on the size of covering and packing arrays. In Chapter 2, a brief survey of 

heuristics is provided, together wit h a complete description of the code implemented, 

including considerations from the literature and a qualitative comparison of the algo- 

rit hms. 
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In Chapter 3, we conduct preliminary tests and use the results to select appropri- 

ate input parameters for the algorithms. We also compare the effectiveness of each 

algorithm, based on the results of these tests. 

Once we ascertain the capability of each algorithm to find good covering and 

packing arrays, we use the more effective of the three algorithms to improve some of 

the bounds on these objects. Tables of results are also presented. 

A brief history of the problem is presented at the beginning of Chapter 4. The- 

oretical and computational methods are presented and compared to the techniques 

employed in this thesis. Al1 covering and packing array bounds improved by the 

implemented metaheuristics are presented in sections 4.2 and 4.3, respectively. 

Finally, in Chapter 5, we consider the problem of determining the minimum num- 

ber of rows possible for a covering array in which the alphabet size can differ between 

columns. We present a solution for the case k = 4 and an initial set of results for the 

case k = 5. 



Chapter 2 

Met aheuristics and Designs 

The vast majority of upper bounds estabiished on the value of ca(k ,  g : 1 )  for any k and 

g have been determined by recursive constructions based on smaller covering arrays. 

Typically, these small covering arrays are either produced by hand or derived from 

tables of existing transversal designs. For smaller values of b, k and g, the amount 

of time required to manually construct these b x k arrays with entries from 2, while 

continuously ensuring that al1 required ordered pairs are present may be reasonable. 

However, for larger values, it becomes infeasible to perform these constructions by 

hand. Designed to perform repeated operations quickly, computers are the natural 

means by which this expense of time can be avoided. 

2.1 Algorit hms and Heurist ics 

Given a certain set of parameters and constraints, the set of al1 objects, or states, 

which can be formed based on this information constitutes a search space in which 

a feasible object is sought. With covering and packing arrays, every state in a search 

space for fixed b, k and g is a b x k  array with entries from 2,. A state is feasible 

if it satisfies the appropriate covering or packing criteria. The algorithms one can 

use to propagate through a search space are divided into two categories: exhaustive 

search algorithms and randomized search algorithms. Algorithms which cover a search 

space exhaustively, such as backtracking and branch-and-bound algorithms, are the 
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only algorithms which are sure to return either a feasible state or a proof of its 

nonexistence. However, the time needed to examine every object in larger search 

spaces may increase to a point which renders an exhaustive searcfi infeasible. For 

these larger search spaces, randomized search techniques become useful [15]. 

Randomized search algorithms proceed through a given search space in a random 

fashion, examining only as many objects as specified by the user. This enables the 

user to explore the space as thoroughly as desired, but offers no proof regarding the 

nonexistence of a solution. Clearly, a purely random examination of the states in any 

space will only return a feasible state with probability corresponding to the percentage 

of states in the search space possessing the desired criteria. This probability can be 

increased by supplying the algorithm with decision rules, or heuristics, to help it 

search through the space more efficiently. Typically, given a state in the search space, 

a randomized search algorithm first makes a small modification, or a move, to the 

object being examined to proceed to an adjacent state in the space. The heuristic is 

used to help the algorithm choose exactly which adjacent state is chosen as the new 

state of study. If x is any object in the search space, then the set of states which can 

be obtained by applying a particular move from a given set of moves to  the state x 

is called the neighbourhood of x, denoted by N ( x ) .  By repeating this process for a 

succession of objects, a randomized search algorithm is capable of examining a vast 

nurnber of states in the space. 

In the case of covering and packing arrays, if positive integers b, k and g are 

provided, then the set of all b x k arrays with entries from 2, makes up the search 

space of interest in which one attempts to find a feasible array with b rows. The 

natural move one can use is to select m e  row and one column at random from the 

array being examined, say row i and column j, and then to randomly change entry 

(2, j) to a different element of 2,. Thus, the neighborhood of any array A is the set 

of all arrays that can be obtained from A by randomly changing some entry a to an 

element of 2, \ {a ) .  Equipped with this move, the only ingredient missing in order 

to assemble a randomized search algorithm is a decision rule for moving from object 

to object in the search space. 

Search algorit hms, bot h randomized and exhaustive, typically run until eit her an 
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optimal state has been located, or a predetennined bound M on the number of state 

changes has been exceeded. As it is more desirable to implement faster algorithms, 

it is important to be able to locate any e'osting optimal states as quickly as possible. 

There exists a class of algorithms which employ an evaluation function to assign value 

or fitness to the objects they encounter, in order to converge to an optimal state in 

the search space more rapidly. For a potential covering array, fitness is measured by 

a count of the number of ordered pairs absent from the set of all possible pairs of 

columns in the array. Therefore, a covering array will have no ordered pairs mising 

from any selected pair of columns, or a fitness value of zero. The corresponding fitness 

of a potential packing array is measured by the count of the number of pairs occurring 

more than once in any possible pair of columns. Therefore, a covering array will have 

no pair of columns in which any ordered pair occurs more than once. 

The heuristic typicdly adopted for these fitness-oriented algorithms at  any given 

state is one which searches through the neighborhood of the current state by applying 

a move to the object [15]. The object obtained is then selected as the new state 

if it is more fit than the current object. If one visualizes the search space to be a 

landscape, where the elevation at any state corresponds to the state's fitness, then 

moving from state to state using this heuristic gives the impression of almays climbing 

in elevation. As a result , this class of greedy algorithms is referred to as hill-climbing 

algorithms. It should be noted that in the case of packing and covering arrays, this 

is slightly counter-intuitive as the more desirable arrays have lower scores. This can of 

course be remedied by simply making the fitness equal to the number of pairs covered. 

At any step of a hill-climbing algorithm, the neighbourhood of a state can be 

searched randomly or exhaustively, each of which leads to a different walk through 

the search space. Hill-climbing algorithms which search exhaustively through a state7s 

neighbourhood at  every step are referred to as steepest  ascent algorithms, as they 

converge to the most fit state accessible by greedy progression from the starting state. 

-4s a result, the success of steepest ascent algorithms is determined solely by the state 

chosen as the starting point for the search. Ideally, one might want to use a heuristic 

which is less restrictive with regards to fitness acceptability in order to escape from 

local optima which are not global optima. Such hill-climbing algorithms are very 
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useful in that they search a wider segment of the space before eventually converging 

at an optimal state. Gibbons presents a thorough survey of randomized hill-climbing 

algorithms in [SI. 

The simulated annealing, tabu search and genetic algorithms are capable of solv- 

ing a wide range of combinatorial problems quickly and effectively, using generalized 

heuristics which can be tailored to suit the problem at hand. For this reason, these 

three algorithms are often referred to as metaheuristics [BI. These three algorithms 

were employed to locate the smallest covering arrays possible, for various values of k 

and g. The implementation details of the main program as well as the three chosen 

met aheuristics are outlined below. Considerations made to implementation sugges- 

tions found in literature are discussed and a qualitative cornparison of the algorithms 

is made. All three of the algorithms written were based on skeletal pseudocode pre- 

sent ed in [15]. 

2.2 Implementation Det ails 

The search code was written to take in a series of input parameters and then to use a 

binary search method to attempt to locate covering or packing arrays of the proposed 

dimensions. The user m u t  supply the name of the metaheuristic to be employed, 

either ANNEAL, TABU or GENETIC, followed by a suggested upper bound on the 

number of rows in the array, bo, the number of columns in the array, k,  and the size 

of the alphabet, g, used to fil1 the array. The parameter bo acts as a lower bound 

on the nurnber of rows in the array when searching for a packing array. Next, the 

user may input a lower bound on the number, n, of disjoint rows to  be h e d  in the 

sought array. One construction mentioned in Chapter 4.1 requires that the number 

of disjoint rows in an array is known. It should be noted that for n > 1, the size of 

âny array's neighbourhood is effectively decreased as the fked disjoint rows are left 

unafFected by moves. Shen, an upper bound, 144, on the nurnber of times an algorithm 

can run though its main loop is provided, in order to let the algorithm exit if it is 

unable to locate a design. Finally, the user must supply al1 input parameters required 

by the metaheuristic being called upon to perform the search. 
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When searching for covering arrays, the specified metaheuristic starts by looking 

for a CA(k:  g : n)  with b rows, where b is the integer closest to the halfway point 

between proposed upper bound bo and the guaranteed lmver bound, g2. Should a 

covering array be found, the current value of b becomes the new upper bound and 

the algorithm begins to search for a CA@, g : n) with a number of rows equal to the 

midpoint of b and g2. Otherwise, b becomes the new lower bound and the algorithm 

begins to search for a CA(k ,  g : n) with a nurnber of rows equal to the midpoint of b 

and bo. The binary search continues until the new d u e  chosen for b is equd to the 

value for which a search just concluded. When searching for packing arrays, the same 

process is performed with the roles of the upper and lower bounds being reversed. 

Also, the original upper bound on the number of rows in a packing array is taken t o  

be the appropriate value of the Plotkin Bound (see Chapter 1.3) for g strictly less 

than k, and is taken to be g2 otherwise. 

Given integers k and g ,  it was uncertain to what degree the existing bounds on 

the number of rows in the corresponding covering or packing array could be improved 

upon. The binary search method allows an efficient exploration of search spaces for 

many values of b, thereby reducing the amount of time spent searching for arrays that 

are more difficult to find or do not exist at au. 
In writing the program, it was necessary to construct a data structure which would 

take up little memory and allow fast access and computation. For reasons of expe- 

rience and familiarity, the program was written in the C++ programming language. 

The class structures prevalent in Cf+ programming provided a simple way to describe 

the potential covering and packing arrays as objects. A class entitled BKGArray 

was created such that each BKGArray object would represent a potential array 

of either type. Also, each object carries with it a set of member functjons for the 

purposes of quick evaluation and modification. Each BKGArray  object contains 

the global parameters k and g, as well as the current row count, b. The b x k ar- 

ray of entries from 2, is stored as a one-dimensional array of entries from Z,, called 

the blocks array. Each object contains a set of one-dimensional score arrays which 

are used to evaluate the fitness of the object. The most important score array is 

missing-pair-array, which has a ce11 counting the number of missing ordered pairs 
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for each possible pair of colrimnc;. Another score array, pair-in-columns-array, has a 

cell for each possible ordered pair (a, b)  in 2, x 2, and each possible pair of columns, 

(p ,  q). Each cell counts the number of occurrences of ordered pair (a, b) in pair of 

columns (p, q). These score arrays for ordered pairs have single element counterparts, 

missing-element-array and element-in-column-array : which were intended to be 

used in conjunction with the algorithms' heuristics. 

The most important member functions are evaluate, swap-single-entr y, 

anneal-szuap-entry, tabu-swap-entry, and update-arrays-single-swap. The evaluate 

function takes the sum of the values over d l  cells in missing-pair-array, returning 

the number of ordered pairs required to complete the covering array. This num- 

ber represents the fitness of the object. The swapsingle-entry function selects an 

entry a t  random and then switches it for another element of the alphabet. The 

annealswap-entry function swaps an entry at random and applies the annealing de- 

cision rule, while the tabu-swap-entry function works exhaustively through the object, 

switching each entry for each possible member of the alphabet not forbidden during 

a tabu search. The simulated annealing decision rule and forbidden moves will be 

discussed later in the chapter. The fourth function updates al1 score arrays in a local 

manner following each modification. 

Another class entitled MoueList was created to keep a record of the modifications 

performed on any given object. This stmcture proves to be quite useful, as it could 

keep an online list of those moves which are forbidden during a tabu search. 

At the completion of any step in the binary search, the program ouputs either the 

array found or, if none m-as located, the array located with the most covered pairs and 

its score. The program also returns the number of moves required to find the array 

(Ml if none was found) and the amount of time required to complete this number of 

moves . 

2.3 The Simulated Annealing Algorit hm 

The first metaheuristic chosen is the simulated annealing, or SA, algorithm. The SA 

algorithm itself is modelled after the effect of a slow cooling process on the molecules of 
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a metallic substance [8, 201. Just as cooling brings these molecules to an optimal rest 

energy, this algorithm slowly converges the state being examined toward an optimal 

state. Prior to rlrnning, an initial positive temperature to and a decimal decrement 

factor & lying strictly between O and 1 must be provided as input. The algorith's 

simulated cooling schedule is determined entirely by these two parameters, as to is 

rnultiplied successively by & after each pass through the main Ioop. 

At each step, the algorithm randomly selects one array from the neighbourhood of 

the current state and evaluates its fitness. For our objects of study, the neighbourhood 

of any potential array is the set of arrays that can be obtained by switching a single 

element in the current array with a different legal member of the alphabet. If the 

neighbouring array is more fit than the current array, then the neighbouring array 

becomes the new state. However, should the selected neighbouring array be less fit 

than the current array, the SA heuristic is employed. This heuristic is the main feature 

of the SA algorithm and guarantees that at each step, there is a non-zero probability 

of moving to a state which is less fit than the current state. 

Let the fitness of the current array and the neighbouring array be denoted by 

Fo and F, respectively. Taking t to be the current temperature, a random decimal 

number r between O and 1 is generated and compared to the quantity e(FO-F)'t. The 

neighbouring array is accepted as the new state if r is less than or equal to this 

quantity and rejected otherwise. After accepting or rejecting the neighbouring array, 

the temperature is multiplied by a factor of &. Therefore, in the early stages of the 

algorithm, when t is still fairly close to to, there is a greater probability of accepting 

a less fit neighbouring array as the new state and hence a good chance to explore 

many regions of the search space before settling in one which may contain a global 

optimum. In the later stages of the algorithm, it is less probable that a state with a 

poor fitness is selected forcing the algorithm to converge toward the local optimum 

of the region in wliich its current state lies. The point at which it becomes difficult 

to move to a less fit state is referred to as the focal point, as it is at this point 

where it is most likely that the algorithm will simply proceed to a local optimum, 

rather than continuing its search through a large cross-section of the search space. 

Some versions of this algorithm accept the new state only if the random number r is 
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strictly less than the quantity e ( f i -F ) / t ,  but it was determined that after executing a 

large number of moves, the value of t was rounded down to O. Considering that T is 

nonnegat ive, t his rounding down prevents the algorit hm from accept ing any less fit 

arrays. Therefore, to maintain a minimal amount of effectiveness, we chose to accept 

new states for r 5 e(F~-F)'t. 

There are many schooIs of thought regarding the use of the chosen input param- 

eters. Kreher and Stinson [15] simply state that the initial temperature should be 

some value greater than zero, and that the decrement factor 6t is required to be some 

positive nuinber less than one. Presumably, one could slow down the cooling process 

by only multiplying t by 4 every nth pass through the main loop of the algorithm, 

for some integer n greater than one. Also, one could use an oscillating temperature 

function in order to occasionally release the algorithm from a regional search where 

no global optima exist . However, this may also lead the algorithm to free itself prema- 

turely from searching in a region where an optimal solution does exist. After reviewing 

some of the literature regarding annealing algorithms in [15, 201, it was determined 

that the monotonie decreasing function described in detail above was the function of 

choice. As a result, alternative cooling schedules were not implemented. 

2.4 The Tabu Search Algorithm 

The second metaheuristic selected to assist in locating covering arrays is the tabu 

search, or TS, algorithm. As with the SA algorithm, the heuristic involved in the TS 

algorithm allows the selection of a new state which is less fit than the current state. 

However, each neighbourhood search is exhaustive, rather than random, ensuring that 

the state chosen at each step is the best neighbouring option possible. Unlike the SA 

algorithm, the TS algorithm has only one input parameter, called the tabu lifetime 
and denoted by L. 

At each step of the search, the TS algorithrn evaluates the fitness of every array 

in the neighbourhood of the current state. The array in the neighbourhood which is 

the most fit is selected as the new state, regardless of whether it is more or less fit 

than the current state. 
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One concern in such an algorithm is that it is entirely possible for it to be caught 

in an infinite loop and to stop propagating through the search space dtogether [IO]. 

Consider the following situation. Let the algorithm decide to move from state A to 

state B in step i, where state B is less fit than state A. It is entireIy possible that 

in step i + 1, the algorithm finds that the fittest object in N ( B )  is the object A. For 

the remainder of the algorithm's run time, the current state will dternate between 

A and B with no chance of escape. To avoid this situation, the TS algorithm uses a 

List of forbidden moves, called the tabu Est. At any step, this Est contains a history 

of the L most recent moves, L being the specified tabu Iifetime. Prior to deciding 

which neighbouring array shall become the new state, the algorithm verifies that the 

move resulting in the most fit array is not contained in the tabu list. If the moveis 

not forbidden, the fittest array is selected as the new state. Otherwise, the algorithm 

considers the move resulting in the next fittest array, and then the next until the 

rnove in question is not contained in the tabu list. If every locally available move is 

forbidden, then the algorithm stops and moves on to the next possible value of b. 

In the program written, a move in the Moue-list object acting as a tabu list 

has four parameters: a row r, a column c, an old entry i and a new entry j ,  which 

corresponds to entry (r, c) having been changed from i to j. In order to make it very 

hard for the algorithm to revisit certain objects multiple times, it was decided that 

a move having parameters (r', cf,  o', nt) was forbidden if for some move in the last L 

moves of the tabu list having parameters (r, c, i, j) , it was true that r = r', c = cl, 

and either i = O' and j = n' or i = n' and j = 0'. Therefore, a move is forbidden if 

it is either the sarne as or the reverse of one of the most recent L accepted moves, as 

documented in the tabu list. This makes it impossible for the TA algorithm to either 

retrace or repeat any recent rnoves. 

The main difficulty in fine-tuning a TS algorithm is in attempting to balance com- 

putation time and the possibility of endless looping. By reducing the tabu lifetime, 

less time is spent comparing moves to those in the tabu list while the chance that 

the algorithm will be caught in a loop increases. On the other hand, the possibility 

of looping can be reduced by increasing the tabu lifetime, which in turn causes the 
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algorithm to spend more time passing through the tabu list at each step. In attempt- 

ing to locate a middle ground, many different tabu lifetime values were tested and 

the empirical data presented in Chapter 3 heavily iduenced the tabu Iifetime value 

chosen. The advice of Fakenauer [B] was also taken into account: he daims that the 

size of a tabu list shodd be small, rarely exceeding a dozen moves. Aside from using 

the tabu list, there is another way to reduce the chance of looping. If there is a set of 

many neighbouring arrays all having the same locally optimal fitness at any particular 

step, then the next state is randomly selected from those locally optimal arrays which 

are not forbidden. 

We also considered changing the definition of a forbidden rnove. For example, 

rather than keeping track of moves as ordered quadruples as described above, we 

could simply keep track of the coordinates of the ce11 that has been changed, or 

even just the row or column in which it appears. We decided, however, that these 

alternate definitions would be too restrictive on the size of the neighbourhood and 

that for even relatively small values of L, too many good neiphbouring arrays may be 

deemed forbidden. 

2.5 The Genetic Algorithm 

The third and final metaheuristic used is the genetic, or GA, algorithm. Like the TS 

algorithm, the GA algorithm requires only one input value, called the popuIation size, 

S. Other than this, the GA algorithm is structurally quite different from the other 

two met aheuristics previo-usly mentioned. The genetic algorithm does not adopt the 

standard approach of the hill-clirnbing algorithm. In fact, the mode1 for the genetic 

algorithrn is based on the general theory behind evolution and speciation [8, 111. The 

theory is that given an initial population of organisms, the fittest of the group will be 

most likely to survive from generation to generation. Through reproduction, certain 

traits of fitness can be passed from parents to their children. This, and the possibility 

of random mutation, can result in the evolution of the population into a fitter form. 

Unlike the other two metaheuristics which consider a single array at a time, the 

GA algorithm starts with a population of potential arrays or genes equal in number to 
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the value supplied by the user. Then, in a process referred to as the recombination 

stage, these genes are grouped into pairs of parent genes and cornbined with one 

another, with each pair of parent genes producing two other genes. These genes are 

often referred to as offspring genes and each one will possess some characteristics 

of each of its parents. After their creation, the same move used in the other two 

algorithms is applied to each of the offspnng genes to simulate mutation. Through 

a chosen culling step, the population is reduced to its original size and the process 

begins anew. 

The primary goal is to create and maintain a population of reasonably fit genes, 

the theory being that the more fit members of the population should help to produce 

fit offspring genes. There are many ways to accornplish this goal. One may use a 

strategy in which genes are dowed to mate many times in any one generation and 

mates are chosen at random from the population. To be sure that more fit genes mate 

more frequently, the selection can be performed in a weighted fashion, mhere genes 

that are more fit have a higher probability of being selected as a mate. Yet another 

way to maintain a fit population would be to reject the S weakest members of the 

2s-element population at the end of every generation. Unfortunately, both of these 

methods could lead to one particularly fit gene having batches of similarly fit offspring 

over the course of many mating phases. In subsequent generations, these offspring 

genes may inbreed to create a homogeneous population which would be limited to 

evolut ion t hrough mutation alone. 

Ashlock [l] suggests that a remedy to this situation is to use a tournament se- 

lection heuristic to choose the mates. If the population size, S, is a multiple of four 

then the process can occur as follows. The population of genes is first randomly parti- 

tioned into groups of four. Within each group, the two most fit genes are chosen as the 

parents and their offspring replace the other two genes in the group at the end of the 

generation. This heuristic ensures that the fittest genes remain in the population, but 

restricts the amount of times they can reproduce to once per generation. Also, at the 

end of each generation, half of the population is turned over, ensuring a wide coverage 

of the search space through successive mating. The repeated introduction of less fit 

offspring increases the chance of a less fit gene being involved in the recombination 
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phase, thus maintainhg diversity in the population. 

An alternative to this tournament selection is a method suggested in [15] that we 

refer to as the quick convergence method. In this method, the original population 

is partitioned randomly into two groups (male and femde) of size 572. The mernbers 

of each group are ordered randomly and then the ith arrays from each group are mated 

with each other, for 1 5 i 5 S/2. The S offspring are mutated and then the most 

fit S members of the male, female and offspring populations combined are selected 

as the new population. This is essentially the steepest ascent version of the genetic 

algorithm: the population heavily favours fit arrays and moves rapidly to a very fit 

state. Unfortunately, these fit arrays dominate the population very quickly and if the 

local optimum toward which the population moves is not a global optimum, it may 

take many mutations to locate an optimal covering or packing array. 

During the recornbination phase, selected parents can be mated in many ways. 

The primary method of merging two parents is the crossover method of mating. In 

this method, a subset of coordinates in a b x k array is selected (cal1 this set E). 

Each child is formed by filling in the coordinates corresponding to those in E with 

the entries of one parent and those coordinates not covered by E with the entries 

of the other parent. Three natural crossover methods are to take E to be the set 

of rows O, 1,. . . , i in their entirety, the set of columns O, 1, . . . , j in their entirety, or 

even all the coordinates of the b x k array, reading left to right and top to bottom, up 

to  some coordinate (i, j). In each such method, we require that i and j be integers 

such that i lies between O and b and j lies between O and k. These methods shall be 

referred to as row crossover, column crossover and point  crossover, respectively. 

The region of coordinates represented by the set E does not necessarily have to be 

contiguous, but for ease of computation, the implernented algorithm does not consider 

any non-contiguous cases. It was not decided, though, whether a choice of necessarily 

contiguous sets of points could contribute to rapid homogenization of the population. 

Finally, in order to avoid producing clones, the implemented algorithm has been 

configured to ensure that neither E nor its complement is an empty set. 

The effectiveness of a GA algorithm may also be altered at  the mutation stage. 

Mutation can be forced to occur with a hxed fractional probability, instead of having 
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all offspring mutate at every step. Also, in order to decrease the chances of population 

homogeneity, mutation can be made to occur more than once per step. In implement- 

ing the GA algorithm, it was decided that mutation should always occur in order 

to avoid homogeneity in the population. However, none of the literature suggested 

multiple mutations per mating phase and therefore, the concept was abaadoned. 

The implemented GA algorithm using the met hod of tournament select ion st arts 

by randomly generating S arrays, which are then partitioned and mated according 

to the method described above. The offspring are formed by a crossover method and 

then are all mutated by a random entry swap. Finally, the parent arrays and offspring 

arrays are merged into one S-element population before the next iteration begins. 

The quick convergence version of the GA algorithrn was implemented in a different 

fashion. At first, S arrays are randomly generated and then randomly ordered and 

mated as described above. As with the other version of the GA algorithm, the S 

offspring are al1 mutated by a random entry swap. After mutation, the median value 

of fitness across the population is determined and the T arrays mhich have a fitness 

value strictly less than this are chosen to be members of the next population. Finally, 

the remaining S - T spaces in the next population are filled by randomly selected 

arrays with fitness equal to the old population's median fitness value. 

2.6 A Cornparison of Algorit hmic Complexity 

In Iight of the differences between these metaheuristics, it is possible that any short- 

coming one algorithm might have in attempting to locate a particular C A ( k ,  g : n) 

might be overcome by one of the others. Therefore, it was originally thought that al1 

three algorithms should be used in series when searching for a particular C A ( k ,  g : n). 

Through testing, though, it became apparent that the most effective searches were 

achieved using only two of the algorithms. The results of these tests are discussed 

later in Chapter 3. 

The main distinguishing feature of each algorithm is the complexity of its inner 

loop structure. In order to be able to discuss algorithmic complexity, we assumed 

that any basic mathematical operation such as addition or multiplication occurred 
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with constant complexity O(1) .  The complexity of some of the BKGArray  class 

member functions must be evaluated prior to assessing the total complexity of each 

of the three algorithms. 

The most basic member function in the B K G A r r a y  class is the f 211-all-arrays 

function, which is used to initialize the score arrays withiii any particular array object . 
This function is broken d o m  into two subfunctions, f ill-pair-arrays, which initializes 

the two arrays which track the presence of the ordered pairs across columns, and 

f ill_element-csrrays , which initializes the ot her arrays used to count the occurrences 

of each element of the alphabet in each column. As the pair arrays are indexed by 

pairs of columns and ordered pairs of alphabet entries, this process requires 0(k2b )  

operations to examine the contents of the B K G A r r a y  object 's cells and another 

O (k2g2) operations to enter this information into the tabulation array 's cells. Unlike 

the pair arrays, the single elernent tabulation arrays are only indexed by column and 

by alphabet elernent. Therefore, the sarne process costs only O(kb) operations to 

examine the ob ject 's cells and another O(kg) operations to tabulate this information. 

Hence, the f ill-al l a r r a y s  function performs O (k2 (b + g 2 ) )  operations every time it 

is called. 

The initialization of a BKGArray object starts with the allocation of memory 

for the blocks array, which contains the row and column entries of the object, and the 

four score arrays. This was al1 assumed to require O(1)  operations. Filling the blocks 

array clearly requires O(kb) operations while filling the score arrays, as mentioned 

above, requires 0 ( k 2  ( b  + g 2 ) )  operations. The latter of these costs becomes the cost of 

initializing an object. The cost of initializing an object with randorn entries is exactly 

the same. Copying an object is in fact cheaper. We stili require 0 ( k 2 g 2 )  operations 

to copy over the contents of the pair-in-columns array, but the cost of copying over 

the other three score arrays is dominated by this quantity. The only additional cost 

is the O(kb) operations required to copy the blocks array, so the total cost of making 

a copy is O(kb + k2g2) operations. 

Whenever an entry of one of the objects is changed, a local update is performed 

to correct the score arrays in a quick manner. The algorithm examines only the score 

array cells pertaining to the precise pairs of columns and ordered pairs arising from 
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the entry change and increases or decreases the quantities in the corresponding cells 

as is necessary. As only one row is involved, one sweep through the columns is al1 

that is required to update the score arrays and therefore the cost of a local update is 

only O (k) operations. 

The final basic BKGArray class member functions are the evaluate function, 

which returns the fitness of the object and the is-taboo function, which determines if a 

particular move is taboo. The evaluate function runs through the missing-pair-array 

score array and sums up the entries of d i  of its k2 cells to obtain the object's fitness. 

Clearly, the cost of evaluating the fitness of any BKGArray object is 0 ( k 2 )  opera- 

tions. The is-taboo function runs exhaustively through the L cells of the current list 

of taboo moves, comparing the contents of each cell with the current move. These 

cornparisons are assumed to have a negligible cost and so the total cost of a taboo 

check is simply O(L)  operations. 

As outlined in Section 2.2, there are three types of moves or swap functions 

implemented in our code. First is the simple swap, which chooses a row and column at 

random, changes the entry in that ce11 to a different legal member of the alphabet and 

then updates the object's score arrays in a local fashion. Selecting random nrimbers 

and changing the cell entry have a negligible cost and hence the cost of a simple swap is 

dominated by the cost of the local update function, which is O(k) .  The second swap 

function is the anneal swap function. This function initially evaluates the current 

object 's fitness and then performs a simple swap, for a total of 0 ( k 2 )  operations. The 

function then applies the SA heuristic and checks if the fitness has increased or not. 

If so, nothing more is done. Otherwise, a random number is generated and compared 

to the quantity . If the random number test fails then the simple swap is reversed. 

In any case, the application of this heuristic costs another 0 ( k 2 )  operations, which 

allows the anneal swap to be called for a cost of only 0 ( k 2 )  operations. The third 

and final swap function is the tabu swap function. The function is given a row and a 

column in the object in which an entry swap is to be performed. The function notes 

the entry in this ce11 and for every other alphabet member that would not create a 

taboo swap, the function swaps the entry for this new entry, evaluates the fitness of 

the new array and then reverses the swap. This process uses a taboo check, an object 
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evaluation and two local updates for each other member of the alphabet, yielding a 

total cost of O(g(L + k 2 ) )  operations. If the fitness of the new object is at least as 

good as the best fitness found so far in the curent round of tabu swaps, then the row, 

column, old entry and new entry values are noted. 

With these functions in hand, we can describe the complexity of the three al- 

gorithms. The SA algorithm is by far the least complex of the three. In each pass 

through its main loop, the algorithm calls the anneal swap function and evduate once 

apiece. If the new object is more fit than any found previously, it is copied. Finally, 

the temperature is decreased and the loop counter is augmented. Therefore, , if M 
is the maximum nrunber of temperature decrements allowed before declaring a failed 

search and C is the number of times a more fit array is copied and stored as described 

above, then the complefity of the SA algorithm is of 0 ( M k 2  + C(k2g2 + kb)) .  

The TS algorithm executes O(kbg - L) simple swaps per run through the loop, 

where the L subtrand reflects the number of swaps which may be taboo at any step. 

-4s we rarely used a value of L greater than O @ ) ,  we assume that in each pass through 

its main loop, the TS algorithm calls the tabu swap function O (kb) times, once for each 

row and column in the BKGArray object. After constructing a list of the optimal 

fitnesses which can be obtained by a single entry swap, the TS algorithm selects one 

move from list list, executes it and updates the object's score arrays locally. -4s with 

the SA algorithm, the object is evaluated and if it is more fit than any other found 

previously by the algorithm, it is copied as a record-keeping measure. Therefore, if 

M and C are as above, then this a lgor i th  performs 0(Mkbg(k2 + L) + C(k2g2 + 
kb)) operations per step in the binary search. If we assume that L is significantly 

snialler than k2,  this reduces to a complexity of 0(Mk36g) .  Noting that b 2 g2 

and that for large R ,  the value of b typically exceeds that of g2 by a great deal, the 

TS algorithm seems to be far more complex than the SA algorithm. However, aside 

from an apparent increase in run time for the TS algorithm, it would seem that an 

exhaustive search through a state's neighbourhood would be more likely to locate 

good neighbouring candidates than by randomly selecting only one array at a time 

from the neighbourhood. 

The genetic metaheuristic is sufficiently different from both of the other algorithms 
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used, and so it is unclear what net advantages might be held over the SA and TS 

algorithms. In terms of complexity, there is no difference between the GA algorithm 

which uses tournament selection and that which adopts the method of q ~ c k  conver- 

gence. Below, we outline the complexity computation for the GA algorithm which 

employs the method of tournament selection, as it is the algorithm which was used 

most to construct new designs. 

For the method of tournament selection, we take S to be the population size input 

by the user and assume that S is divisible by four. The main loop of the GA algorithm 

starts by initializing an index array and then randomizing the indices inside it. This 

costs O(S) operations in total. The randornized sequence inside the index array is 

used to shuffle the initial population of S randomly generated BKGArray objects. 

The s h d e d  population array is then divided into subarrays, each containing only four 

BKGArray objects and a simple bubble sort algorithm sorts each set of four objects 

so that the fittest two in each foursome can be removed for mating. Due to  the copying 

involved during the sort, this part of the loop performs O ( S ( k b  + k2g2))  operations. 

Regardless of the crossover met hod selected, the algorit hm mates by reading each 

entry in the parents' designs, deciding which entry goes to which offspring and then 

placing that entry in the appropriate blocks array. After the offspring blocks arrays are 

completed, f ill-ail-arrays is used to fi11 in their respective score arrays. Due to this 

non-local score array completion, this portion of the loop processes 0 ( S k 2  ( b  + g 2 ) )  

operations. Al1 of the S objects in the population are rnutated by a simple swap, 

which costs O ( S k )  operations. Finally, the S objects which are at this time held in 

two separate population arrays, parent and offspring, are merged back into a single 

population, requiring S more copies. Therefore, again taking M to be the threshold 

on the number of times the algorithm will run through its main loop, the algorithmic 

complexity of the GA algorithm is 0 ( S M k 2 ( b  + g 2 ) ) .  

Regardless of the high amount of loop complexity, the GA algorithm has S feasible 

arrays at its disposa1 at every step, at least half of which are relatively fit. Together 

with a tournament selection method in place, these arrays can spread out and cover 

a wide crossection of the search space in relatively few runs through the Ioop. Unfor- 

tunately, as with the SA algorithm, if there is an optimal state in the neighbourhood 
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of one of the arrays in the current population, it is unlikely that it will be located 

quickly. Ashlock [l] claims from experimental experience that it is more effective to 

conduct many runs in parallel with a smaller popdation size? rather than a single run 

with a larger initial family of feasibie arrays. 

As a final comment, it would seem that as the values of b, k, g and M Vary, no 

one set of input parameters can be supplied to maintain optimal efficiency in locating 

covering arrays. For example, a TS algorithm with large L searching for smaller 

objects might be more likely to arrive at a state from which al1 moves are forbidden. 

The same algorithm with the same vdue L, but searching for much larger objects 

might even be caught in a loop, as cycles for Iarger objects c m  contain many moves. 

Another possibility is that, for elevated values of M, the temperature value in the 

later stages of an SA algorithm could get so small that the probability of accepting a 

less fit neighbouring array as the new state may becorne negligible. The next chapter 

feat ures a much more det ailed quantitative analysis of the different algorit hrns. 

2.7 Algorithmic Enhancements 

It was realized after the thesis was submitted il71 that some enhancements could be 

made to speed up the algorithms. For exampIe, the evaluate member function can 

be improved, simply by including a variable in the BKGArray objects themselves 

indicating their current level of fitness. Rather than calling a function to evaluate an 

object, the score variable could be simply increased or decreased automatically while 

performing the local update. This would give the function a complexity of 0(1), 

reducing the complexities of the SA and TS algorithms by roughly a factor of k. 

Also, in the TS algori th ,  the searches through a tabu list could have been more 

efficient. Rather than making L comparisons, a binary search method could have 

been implemented, together with appropriate insertions to and delet ions from the 

tabu list at any time to perform the searches in O(1ogL) operations. Considering the 

usually small value of L, this would not have a large effect on the complexity of the 

TS algorithm. 
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Table 2.1: The resdt of enhancements on the complexity of our metaheuristic 
searches. 

"Algorithm 
SA 
TS 
GA - 

Finally, a major concern in al1 three dgorithms, but particularly the genetic al- 

gorithrn, is the amount of copies that need to be made as the object in question 

becomes more fit throughout the search. Considering that these copies are made only 

when the current object is more fit than the best on record, the number C of such 

copies made in one step of the binary search could be reduced by creating a a more 

fit initial object prior to the search, by deterministic or heuristic means. During the 

search, the three algorithms could be instructed to only make copies of objects which 

are more fit than this initial object. If the fitness of this initial object is N ,  then N 

becomes an upper bound on C, thereby reducing each algorithm's runtime. A further 

enhancement would be to only retain the object 's blocks array without all of the other 

variables and arrays in the class. 

We present in Table 2.1 a summary of the complexity improvements due to the 

implement ation of the above algorit hmic enhancements. 

' Current Algorithmic Complexity 
h.lk2 + C ( k Z g 2  + kb) 

Mkbg(k2 + L) + C ( k 2 g 2  + kb) 
M S k 2 ( b  + g2)  

With Future Enhancements 
Mk + C ( k b )  

Mkbg(k  + logL) + C ( k b )  
no change 

L 



Chapter 3 

Quantitative Analysis 

In using the three metahewistics described in the last chapter, it is desirable to know 

not only which algorithm is the most effective in general, but also to discover which 

set of input parameters optimizes the effectiveness of each algorithm. 

There are many different ways of measuring effectiveness. For example, given pos- 

itive integers k and g, as well as the type of array desired, we are naturally interested 

in the algorithm that can determine either the best corresponding value of b or the 

best average value of b over a set of trials. However, this effectiveness c m  be refined 

by examining how many moves or the amount of time needed by each algorithm to 

generate the array in question. With data detailing these run parameters for each 

algorithm, one can hope to assess which algorithm would be most useful, based on 

personal weights associated with each search criterion. 

3.1 The Parameters of the SA Algorithm 

Structurally, the simulated annealing algorithm is the simplest of the three meta- 

heuristics employed. As determined in Chapter 2, each step in the binary search 

using simulated annealing requires O ( M ( k b  + k2g2)) lines of code to run completely. 

The three input parameters for the annealing algorithm are the maximum number of 

moves allowed, M, the initial temperature, to , and the temperature decrement factor, 

6,. In order to determine the optimal choices for to and 6,, to was initially fked while 
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6t was varied, and then the reverse experiment was performed. For each pair of values 

(to, bt ), the algorithm was run five times and best arrays found were noted. This was 

repeated for two different covering arrays, CA(6,4 : l ) ,  and CA(7,5 : l), as well as the 

packing array PA(7,5 : 1). These structures were known to have optimal sizes of 19 

rows, 29 rows, m d  15 rows, respectively [24]. The results of these trials are presented 

in Tables A. 1 - A.4 in Appendix A. when looking for the two covering arrays, the 

upper bounds on the number of rows were set t o  25 rows for CA(6,4 : 1) and 45 rows 

for CA(7,5 : 1). The lower bound on the number of rows for the PA(7,5 : 1) was 

taken to be 7. 

An interesting piece of information gleaned from ;tnv one of the four tables is that 

a cooling function which reduces the temperature too quickly renders the algorithm 

useless. For values of & 5 0.5, the annealing algorithm was often unable to locate 

a covering array for any of the five r u s ,  resulting in an entry of "-" in the table. 

However, it would also seem that in some cases, as the value of 6t approaches 1, the 

algorithm also has difficulty finding good arrays. In the cases to = 1 and to = 1,000, 

the greater values of yield comparatively poor results. As a result, it was concluded 

that a good choice for bt would be a value in between 0.9 and 0.9925. Also, an 

augmentation in the number of moves, thereby allowing the algorithm to search longer, 

seemed to increase the effectiveness of the annealing aigorithm. Of the 103 trials 

for which results were obtained for hvo values of M ,  an increase in the number of 

moves improved the average number of rows of the constructed covering arrays in 59 

cases and improved on the size of the best covering array constructed in 37 cases. 

Furthermore, an increase in the value of M did not affect the average number of 

rows in 17 additional cases and had no effect on the size of the best covering array 

constructed in another 46 cases. 

While an increase in the given quantity M increases the chance of finding a better 

covering or packing array, it also underlines a major wezkness of the SA algorithm. It 

is known that ca(7,5 : 1) = 29 and after the 560 trials performed in order to compile 

the four tables were examined, it was noted that only one trial produced a CA(7,5 : 1) 

with less than 32 rows. This includes al1 of the cases where M was already as large as 

106 moves. After this many moves, the quantity t = to - ( & )  is so small, regardless 
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of the values of to and &, that a move to a less fit array is almost never accepted. As 

a result, if the algorithm has not found an optimal array by this point, it will take a 

great number of iterations to generate a random number small enough to move the 

search to a different part of the search space. The only way to attempt to counter this 

situation is to choose a value of 6t which is extremely close to one, thus ensuring that 

t does not become too small for a large number of moves. Unfortunately, this renders 

the initial portion of the run ineffective, as it will take a much longer time to reach the 

focal point point in the search. It is important that this point is eventually reached, 

as the algorithm will have a lot of difficulty finding any local optima while it is easy 

to accept a move to a less fit array. This suggests that the SA algorithm may not be 

very well suited for finding optimal arrays which are sparsely located throughout a 

particular search space. 

Some information about the choice of to c m  also be obtained by comparing the 

information between tables. As to increases, the range of values of bt with which 

the algorithm performed the best seems to slide doser to 0.75. This makes sense 

intuitively, as it is desirable to eventually make it difficult to accept a less fit array, 

and for higher to and fixed M, this is accomplished by reducing the value of &. Also, 

while the algorithm seemed to perform better for smaller values of to (by a sheer 

count of when the aigorithm generated the best array found across al1 trials), this is 

likely due to the fact that M was fixed across al1 trials. A value of to = 1 is likely as 

effective as a value of to = 1000, so long as M is modified appropriately in order to 

ensure that the algorithm eventually reaches the focal point. 

With these findings in mind, it was decided that when searching for optimal cov- 

ering and packing arrays, we would give input parameters at = 0.925 and appropriate 

values of to and M that would guarantee that the focal point is reached. 

3.2 The Parameters of the TS Algorithm 

As opposed to the SA algorithm, which has a pair of input parameters, the tabu 

search algorithm has a single input parameter, the tabu lifetime L. As with the 

testing performed with the annealing algorithm, the three structures CA(6,4 : l), 
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CA(?,  5 : 1), and PA(7,5 : 1) were chosen as the objects for n-hich to  search. A 

maximum number of search moves, M ,  was 6xed and a range of values of L were 

tested. The bounds on the nurriber of rows, b, were the same as those set for the S-4 

algorithm tests. The results of these tests are presented in Table A.5. 

Intuitively, augmenting the nurnber of moves an algorithm can make prior to 

stopping should increase the effectiveness of the algorithm in finding optimal arrays. 

As with the simulated annealing algoritfun, this is indeed the case with the tabu search 

algorithm. This is not entirely obvious from examining the columns corresponding to 

the searches for a CA(6,4 : 1) , as the optimal 19-row array was fairly simple to find 

for aIl values of L, even for the lesser value of M. The columns of Table A.5 which 

correspond to the searches for a CA(7,5 : l), however, show evidence of this claim' 

as no trial for M = 1000 yielded an optimal, 29-row array, while more than half of 

the trials for IL1 = 5000 found optimal arrays. 

With regards to choosing an optimal value of L, it seems that the selection of ex- 

treme values renders the aIgorithm less effective in searching for arrays. For example, 

L needs to be suitably large to reduce the chance of cycling. Referring to the results 

of the trials pertaining to the CA(?,  5 : 1) searches, the smaller values of L were fairly 

ineffective at locating small arrays. Also, if the value of L gets too large, it is possibIe 

that too many moves could be designated as forbidden, relegating the bulk of the 

search to areas of the search space not containing global optima. This was evident in 

the search for a PA(?, 5 : l), which should result in the optimal discovery of a 15-row, 

7-column array with entries fiom Z5: as L gets large, the search is unable to find an 

array with more than 12 rows. 

The choice of L = 5 yielded the best array found in every case, while very few 

trials for L 2 150 yielded optimal arrays. While this leaves a fairly wide range of 

values from which L c m  be selected, many of the values chosen in between these 

bounds yielded very good results. It should be noted, though, that an upper bound 

of 150 is purely circumstantial. As the sought arrays get larger, they contain more 

possible entries. Consequently, the number of moves that must be deemed forbidden 

in order to make the tabu list restrictive must also increase. 

For most searches, the value of L varied between 10 and 100, depending on the 
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size of the desired array. 

3.3 The Parameters of the Genetic Algorithm 

Unüke the SA and TS algorithms, which require only a smaU set of input parameters to 

commence the search, the genetic algorithm requires input parameters which changed 

the very structure of the algorithm itself. Not only is there an input parameter for the 

size of the population in the algorithm, but there is also a second parameter dictating 

the mating method. Furthermore, two different genetic algorithms m e  compared to 

one another, one of which employed a tournament selection method when choosing 

mates, and the other which employed a population cul1 which forced the population 

to converge to a local optimum more quickly. 

Recall from Chapter 2 -5 t hat the algorithm employing the tournament selection 

heuristic first randomly partitions the population into groups of four and then deletes 

from each group of four the two weakest genes. The two remaining genes mate and 

their offspring take the place of the deleted genes. The algorithm equipped with 

the quick convergence heuristic randomly partitions the population into two ordered 

groups. The ith arrays from each group are mated with each other, for 1 5 i 5 S/2 

and the S rnost fit arrays from the original population and their offspring are selected 

to be the new population. 

3.3.1 Tournament Selection and Quick Convergence 

The first decision that needed to be mzde was with regards to which algorithm 

should be used, the quick convergence algorithm or the tournament selection algo- 

rithm. These algorithms were used to search for six structures - a CA(7,4 : l), a 

CA(8,5  : l), a CA(5,6 : l), a PA(5,4 : l), a PA(6,5 : l), and a PA(5,6  : 1) - in 

order to determine which one perforrned the best, on the average. The results are 

presented in Tables A.10 through A.12. 

Before making reference to the results of the tests, it should be noted that a small 

error in the code prevented the program from ever looking for a packing array with 
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g2 rows. After each step in the binary search, the code naturally rounds down when 

determining the next value of b to explore. As a result, when it is searching for packing 

arrays, the program mil1 only check for arrays with sizes up to and including g2 - 1. 

The most peculiar finding is that within each table, the tournament selection 

algorit hm found better covering arrays, while the quick convergence method found 

better packing arrays. The only trials in which this was not the case is when the two 

algorithms tied, or in the cases of CA(8,5  : 1) and CA(5,6 : 1) in Table A.11 and in 

the case of PA(5,4 : 1) in Table A.12. In some cases, one algorithm beat the other 

soundly, as in the case of PA(6,5 : 1) throughout all three tables, and in the case of 

PA(5,4 : 1) in Table A.10. 

One other notable feature of the three tables is that in almost every case, the 

tournament selection rnethod is the faster of the two methods. This was expected, as 

a particularly time consuming segment of code was a part of the quick convergence 

algorithm at the time of testing. Since the testing occurred, the code hm been im- 

proved upon and although the new quick convergence algorithm runs faster than the 

old one? no testing m-as done to see how the run times compared to the tournament 

selection algorithm. 

Without regard to  runtime, the method of tournament selection appears to find 

better covering arrays, while the quick convergence algorithm seems to be more ef- 

fective in searching for packing arrays. These findings might be related to the size 

of the structures sought. Perhaps the packing array for which we searched were not 

as sparsely located in their search space as were the covering arrays. If this were so, 

then it would be easier for a steepest-ascent-type algorithm to produce an object of 

optimal fitness. 

3.3.2 Point, Row and Column Crossover 

The next step was to  choose which crossover method should be employed to mate 

the population members. Recall that the point crossover method randomly selects 

a single pivot entry (2,  j) for each pair of arrays to be mated. If the pair of mates 

contain entries A,, and B,, and the pair of offspring contain entries Cm, and Dm,, 
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then Cm, = A, (Dm, = B,,) for m < i or rn = i and n < j and Cm, = B,, 

(Dm, = Am,) for m > i or m = i and n > j. The row and column crossover methods 

work in much the same way, except that the pivot entry selected for recombination 

must have i = O for the row method and j = O for the column method. At first 

glance, it might seem that no one of these methods would hold a clear advantage over 

either of the others: d l  three methods are simply different ways of mixing arrays, al1 

running with the same algorithmic complexity. However, after performing some tests, 

some trends became apparent. 

Referring once again to Tables A. 10 through A. 12, the tournament selection algo- 

rithm equipped with the column crossover method found smaller covering arrays than 

nearly any other tournament selection algorithm. The only two exceptions were the 

algorithm employing the point crossover method, which found a smaller CA(5,6  : l), 

and the algorithm uçing a row crossover method, which found srnaller CA(7,4 : 1) 

arrays on the average. Unfortunately, the column crossover method took longer than 

the others to run in every case except for when it was searching for a CA(8 ,5  : 1). 

Therefore, ignoring runt ime, when using the t ournament select ion genetic algorit hm 

to find covering arrays, the co lum crossover method should be used to find better 

arrays. In particular, as the alphabet size g increases, the difference between the 

runtime of the algorithm mating by column crossover and the runtime of the other 

two becomes quite small (less than five minutes). 

One more set of tests was performed to attempt to discern which crossover method 

should be employed when looking for a covering array with the tournament selection 

method. The algorithm was instructed to search for a CA(13,l l  : 1) with 198 rows 

within a fxed period of time. This array does exist, but we intentionally supplied 

various amounts of time within which it would be unlikely that the TS or the GA 

algorithm would find the optimal array. For each specified amount of time, the algo- 

rithm was given ten chances to cover as many ordered pairs as it could. The results 

are summarized in Table A.13. The results show that the algorithm which employed 

a row crossover method took less time on the average to complete a move, while the 

algorithm using the point crossover produced the lowest average score in most cases. 

While it is important to complete each move as quickly as possible, it is essential that 
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each move be able to cover as many uncovered ordered pairs as pcssible. Tiierefore, 

when searching for covering arrays of larger dimension, the point crossover method of 

mating should be used in order to cover a greater portion of the ordered pairs in less 

t ime. 

The results obtained for the quick convergence algorithm are not as easy to inter- 

pret. M'hile searching for a PA(7,5 : l), the algorithms using the row and column 

crossover methods excelled at finding large packing arrays, bettering the third algo- 

rithm by an average of nearly one row per trial. However, for the other two sets of 

trials, it was the algorithm which mated via the point crossover method which per- 

formed better on the average. Furthermore, the only algorithm which took noticeably 

longer to locate its packing arrays was the one mating by column crossover. This 

suggests that the best algorithm is either the one using the point crossover method 

or the one using the row crossover method. 

3.3.3 Population Size and Number of Generations 

The final step in optimizing the genetic algorithm was to select an appropriate initial 

population size, together with a suitable number of generations over which the p o p  

ulation could evolve. As with the testing for the SA and TS algorithms, the genetic 

algorithm was tested while looking for the same three covering and packing arrays. In 

order to get some additional data, two trials were added: one for the CA(7,5 : 1) and 

one for the PA(?, 5 : l), both with the number of generations, M, set to 500. The 

results of the search for covering arrays are presented in Table A.6, while the packing 

array search results are located in Table A.?. In both cases, the genetic algorithm 

employed tournament selection to select mates and then combined them using the 

point crossover method. One set of heuristics was chosen in order to reduce the num- 

ber of separate runs to  be performed. Of al1 the combinations of genetic algorithm 

heuristics, previous tests suggested that the algorithms employing the point crossover 

method were the most effective in general. 

Within the set of searches for either of the covering arrays, an increase in the num- 

ber of generations clearly increased the ability of the algorithm to locate arrays with 
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less rows. In the search for packing arrays, the effect of such an increase was a little 

more subtle: while the average number of rows in the best structure found increased 

in nearly e v q  case, the maximum number of rows present in the best packing arrays 

located remained almost identical after raising the number of generations allowed. In 

most cases, as  suggested by the cornplexity of the algorithm, an increase in the num- 

ber of generations proportionally d a t e d  the amount of time necessary to complete 

the set of trials for a h e d  value of S. For esample, taking S = 100 and the sought 

array to be CA(7,5 : l), the algorithm iterated through 500 generations in roughly 

20 minutes, 1000 generations in 31 minutes and 5000 generations in 3 hours. 

In general, as with the increase in the number of generations, augmenting the 

size S of the initial population has a positive effect on the capability of the genetic 

algorithm to  find better covering and packing arrays. Aside from the M = 500 trials 

in Table A.7, the bulk of the best optimal row counts occur in the lower half of 

the tables, when S 3 100. Unfortunately, the runtime is sharply increased when 

considering greater values of S. Taking the sought array again to be CA(7,5 : 1)' but 

by increasing the population size by a factor of five (S = 500), the algorithm iterated 

through 500 generations in roughly 85 minutes, 1000 generations in 180 minutes and 

5000 generations in 23 hours. While the complexity of the algorithm suggests that 

the runtime should increase with a factor proportional to S, the factor is not this high 

for smaller values of M, but much worse for larger M. 

One other question of interest deals with a daim of Ashlock's [l], that it is more 

effective, mith regards to run time and usage of memory, to perform r runs with a 

population size S in parallel, rather than a single run with a population size T S. 

Clearly, the use of memory is greatly reduced as it is primarily used to store a set 

of S covering or packing arrays. As for effectiveness, it was shown in the previous 

paragaph that a larger S tends to produce better average and optimal results. In 

Table A.8, a list of times required for the genetic algorithm to complete a binary search 

while searching for a CA(7,5 : 1) for three different generation sizes is presented. 

For M = 500, there is no case where the total time required to run five trials with 

population size S is less than the average time required to r u .  one trial with population 

size 55. For M = 1000, this only occurs for S > 60. Finally, Ashlock's conjecture 
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holds tme for all values of S when M = 5000. We conjecture that this may be due 

to the fact that it takes many generations for a smaller popdation to explore the 

amount of search space covered initially by a larger population- The key to searching 

through the space effectively is not through mating, which essentially homogenizes 

the population, but through the mutation which constantly introduces new arrays 

to the population- In a few initial steps, the randomly generated arrays in a large 

population may differ in many entries, ensuring a wide initial coverage of the search 

space. As both large and small populations homogenize over tirne, the rates of addition 

of new members to these populations likely approach one another, allowing the smaller 

population to catch up in terms of area coverage. 

After he had observed an immense standard deviation in the amount of mues 

required by a genetic algorithm to find an particular object, Ashlock concluded that 

it would be more effective to run the program many times with a smaller population 

size. As shown in Table A.15, our findings were similar. In fact , in two consecutive 

runs contributing to the values resulting from the search for a CA(5 ,6  : l), the genetic 

algorithm found the object in 1740 moves in the first trial, and then in the next trial, 

was unable to locate the object until it had completed 4,514,907 moves. 

This idea of Ashlock's also leads us to examine the effectiveness of the algorithm 

for many values of M and S, where the quantity M .  S is constant. In each such set of 

triais, the total number of genes created through evolution is constant. In effect, this 

test provides a measure of whether it is more productive to use a large population 

size and evolve it over a short period of tirne, or to use a small population size and 

evolve the population over a larger number of generations. The results for the trials 

where the sought array is CA(7,5 : 1) are presented in Table A.9. Clearly, using a 

smaller population size and a larger number of generations yields better arrays in less 

time. Therefore, this shall be taken into account when using the genetic algorithm to 

search for covering and packing arrays. 
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3.4 Comparing the Three Algorithms 

After having identified good ranges for the input parameters for each algorithm, three 

tests were run in which al1 three competed to find the best arrays possible in the 

shortest amount of time. As explained in Section 3.3.2, the first test forced each of 

the metaheuristics to search for a CA(13,ll  : 1) with 198 rows within a fixed period 

of time. The amounts of time supplied were such that it was presumed that some of 

the algorithms might not be able to find the optimal array within the tirne alotted. 

Each algorithm attempted to find the desired structure ten times for each amount of 

time specified. The results are summarized in Table A.13. It should be noted that 

the input parameters were set to to = 10, & = 0.999, L = 40, and S = 40. Also, the 

tournament selection form of the genetic algorithm was employed. In each trial, the 

number of possible moves was unlimited. 

The results clearly show that the genetic algorithm, in al1 its forms, is by far 

the weakest metaheuristic. Even in the later trials, where the algorithm were al- 

lowed to run for three hours, the genetic algorithm could not cover the unordered 

pairs as effectively as the other two algorithms. In fact, the SA algorithm located a 

CA(13,ll  : 1) with 198 rows many times, the earliest occurrence heing for a time 

limit of half an hour. Due to the complexity of the tabu search algorithm's inner 

loop, this metaheuristic is at a great disadvantage when running for shorter amounts 

of time. However, the tabu search algorithm has â very powerfd neighbourhood move 

which allows it to cover many ordered pairs ef'fectively in relatively few moves. By 
the time the TS algorithm was searching for two hours, it was leaving less than ten 

pairs uncovered across al1 possible pairs of coliimns. 

A further comparison between the S14 and TS algorithms can be made by com- 

paring the number of basic operations each requires to  locate a covering array. If the 

SA algorithm found a CA(13,lI  : 1) with 198 rows in 2.1 x lo7 moves (less than 30 

minutes) and the SA algorithm performs O(M (kZgZ + kb) ) operations per search, then 

the SA algorithm required approximately 4.8 x 10" operat.ions to locate the array. 

For the TS aigorithm to match this operational efficiency, it would have to locate an 
SA erations array in qk,g, moves. This quantity works out t o  be approximately 1.0 x lo5 



moves. By the data in this table, it appears that the tabu search algorithm might 

only need another hour or two to locate the array. In Table A.13, the relationship 

betrveen a given amount of time and the number of moves an algorithm made in 

this time seems to suggest that the TS algorithm wouid require almost 35 hours to 

perform this rnany moves. This suggests that the TS algorithm performs operations 

much more eficiently than the SA algorithm. 

A similar test was conducted for a CA(9,7 : 1) with 62 rows to determine if 

the results would be similar when looking for a smaller structure. These results are 

presented in Table A.14. Prior to commencing these tests, it was unknown whether a 

CA(9,7 : 1) with 62 rows existed as the curent  upper bound on the number of rows 

is 63. \\'hile the genetic algorithm again performed much more poorly than the other 

two algorithms, it was interesting to note that by the time one hour had elapsed, 

the genetic algorithm performed alrnost as welI as the annealing algorithm. In fact, 

giving the SA algorithm more time to search didn't seem to help its performance at  

d l .  After five minutes had elapsed, the TS algorithm was already outperforming the 

SA algorithm and it continued to improve for each time increment. We believe that 

if a GA(9, i  : 1) with 62 rows were to exist, there wouldn't be rnany different ways to 

construct it and that,  throughout the entire search space, very few such arrays elcist. 

In fact, it would appear that very few arrays in the search space have a fitness of 20 

or less. The results of Table A. 14 streng-then our belief that while the SA algorithm 

can quickly locate objects that are dense in the search space, it is not effective at all 

in locating objects that are more difficult to find. 

One other telling test was performed to compare the three metaheuristics. Just as 

it is of interest to determine which algorithms are effective within a fixed time period, 

it is equally interesting to determine which algorithms find a particulai array in the 

shortest amount of time. Two arrays were considered: a PA(7,6 : 1) with 19 rows 

and a CA(5,6 : 1) with 42 rows. Through experience, it was observed that these 

arrays were not particularly easy to find and may provide a challenge for the three 

metaheuristics. The input parameters were set to to = 1, & = 0.925, L = 10, and 

S = 60 for the packing array search, while S was augmented to 80 for the covering 

array search. Again, the tournament selection form of the genetic algorithm was 
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employed. Each algorithm was given ten opportunities to locate the specified array. 

In each trial, the amount of time available to the dgorithm was unlimited. 

Referring to  Table A.15 for the resdts of this test, it became apparent once again 

that the genetic algorithm performs far worse than the other two algorithms. When 

searching for the packing array, the genetic algorithm required roughly two hours to 

find the array on 19 rows while on the average, the SA and TS algorithms accomplished 

this feat in less than twelve seconds. While the SA and TS algorithms took roughly 

the same amount of time to locate the packing array, the amealing algorithm required 

300 times as many moves to succeed. These performance ratios were almost identical 

when searching for a CA(5,6  : 1) with 42 rows. 

It will be shown in the next chapter that the simulated annealing algorithm found 

the best covering array resdts, while the tabu search bettered the most packing array 

bounds. This m-as largely due to  the fact that the only remaining improvable covering 

array bounds were for values of k and g large enough to slow the tabu search down 

by a great amount. While the a ~ e a l i n g  algorithm could proceed through an entire 

binary search in a matter of hours, the tabu search wouid take this long to look for a 

single array. 

Many more tests and trials were conducted for the genetic algorithm than for the 

SA and TS algorithms, even though the former seemed immediately to be the weakest 

of the three. While it may have been more productive to attempt to modib one of 

the stronger algorithms, it was out of a sense of disbelief that the genetic algorithm 

could perform so poorly relative to the other algorithms that so many attempts were 

made to modify the structure of the genetic algorithm. Unfortunately, none of the 

modifications perforrned on the GA algorithm produced changes in effectiveness dras- 

tic enough to suggest that i t  was as well suited for finding good packing and covering 

arrays as either of the other two algorithms. 



Chapter 4 

Bounds Improved by Randomized 

Search 

4.1 A Brief History of the Covering Array Prob- 

lem 

The most basic of results regarding the existence of optimal covering arrays stems 

from the realization that orthogonal arrays are in fact covering arrays where every 

ordered pair occurs precisely once in every possible pair of columns. Clearly, if there 

exists an OA(k, g), then we also have a C A ( k ,  g : 1) with g2 rows. As explained in 

Chapter 1, the existence of a set of 1 mutually orthogonal idempotent Latin squares 

on g symbols implies the existence of an OA(1 + 2, g )  with g disjoint rows and hence 

the existence of a C A @ +  2, g : g) with g2 rows. 

Many approaches have been taken when atternpting to produce better bounds on 

the size of a paclcing or covering array. Rényi first posed the problem of trying to find 

maximal qualitatively t-independent g-partitions of a &set. Independently, Katona 

[12] and Kleitman and Spencer [13] completely solved the problem for t = g = 2. 

Gargano, Korner and Vaccaro [9] then determined the first asymptotic bounds for the 

problem. Their work shows that 
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This result says nothing, however, about the relationship between k, g and ca(k, g : 

1) for srnauer values of k. 

A variety of methods have been used to improve on this bound for smaller pararn- 

eter values. Poljak and Rodl 1211 developed the fkst set of upper bound improvements 

that were useful for smaller k and aimost a decade later, Poljak and Tuza [22] pub- 

lished the first bound improvements which took the number of disjoint rcjws in the 

covering array into account. Sloane [23] Iater pubüshed a series of results for g = 3 

and s m d  values of k, due to Applegate, Cook, Osterg&d, and Sloane. 

Stevens, Moura and Mendelsohn [27] have developed lower bounds on the sizes of 

covering arrays, while Stevens and Mendelsohn [26] have developed upper bounds on 

the size of packing arrays. In [24], an extremely useful construction is presented. This 

Blocksize recursive construction produces good upper and lower bounds on the size 

of covering arrays, based on the bounds for arrays with smaller k. The following is a 

direct result of the construction. 

Theorem 4.1. [24] Let n, m 5 g.  Then, 

ca(k, g : n) 5 - - (ca(i, g : n) + ca($ g : m) - m).  
2 

Clearly, this theorem becomes more powerN for higher m, which denotes the 

number of disjoint rows in the base array. It is therefore desirable to consider using 

covering arrays with as many disjoint rows as possible when attempting this construc- 

tion to build arrays with larger k. 

Stevens also uses a generalization of Wilson's Theorem, a construction involving 

group divisible designs and a method of completing iTDs to generate other upper 

bounds on the size of covering arrays [24]. The least effective of the three is the 

method involving the filling of holes in an ITD, but this method is solely responsible 

for providing the best known bounds for ca(4,6 : n). This method will also be adapted 

in Chapter 5 to produce some optimal covering arrays with alphabet sizes independent 

of the columns in the array. Stevens, Moura and Mendelsohn [27] also provide lower 

bounds for covering arrays by examining the intersection properties of set systerns 

and by presenting some set-packing arguments. 
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Sloane's initial work dealt with strength 3 covering arrays. These structures 

have also been recently researched, culminating in the most recent publication of 

Chateauneuf and Kreher's [2]. Chateauneuf and Kreher construct objects called 

starter arrays from one-factorizations of K2u and use these to obtain strength 3 cov- 

ering arrays. 

Stevens and Mendelsohn [26] have used recursive methods to  provide bounds on 

the size of packing arrays. They have coosidered packing arrays as error correcting 

codes and generalized the f lotkin bound defined in Chapter 1 to tighten bounds on 

the size of packing arrays. They &O use the maximum sizes of packing designs to 

improve the upper bounds on packing arrays containing a large set of disjoint rows. 

Aside from these theoretical methods, met aheuristics have also been used previ- 

ousiy in ui attempt to achieve better bounds on the size of covering arrays. In [24], 

Stevens designs a simulated annealing algorithm similar to Our own, which was used 

to find covering arrays with small parameter values. Stevens's algorithm differed from 

the one implemented here in its main loop. Instead of decreasing the temperature 

after every attempted move, Stevens's algorithm performed a nuinber of moves, IV, 
at a fixed temperature and kept the best array within the chain of N moves. The 

nurnber N was input by the user. The temperature was decreased in the saine fashion 

as ours and the kept array was used as the starting point of the next chain of N 

moves. The algorithm was successful for small values of k and g, finding many new 

upper bounds at the time his thesis was published. Seven of these bounds are stiU 

the best known and are labelled as such in TabIe B.2. 

In [19], Nurmela devised a tabu search aïgorithm to End similarly small covering 

arrays. The results of Nurmela's tabu searches were very successful, lowering many 

bounds in the range 3 5 g 5 10 and k 5 15. Nurmela's tabu search uses a more 

sophisticated heuristic than our algorithm. At each step, two columns in the array 

and an ordered pair not covered in those columns are selected at random. A list of 

rows in the array is generated, such that every row in the Est requires a single element 

change to cover the pair in the selected columns. The list of these changes required to 

cover the pair forms the set of moves at any step. The cost of each move is calculated 

and the move that is most beneficial to the fitness of the array is selected. If there is 
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a tie, one is selected at random. Also, Xurmela rules that 2 rnove is forbidden if the 

element to be m-itched is an element that has been switched in any way over the last L 
moves, where L is the supplied tabu lifetime. Nurmela claims that the computations 

required to complete each move are quick, but offers no data with regards to the 

degree of computation speed. Nurrnela's more sophisticated t abu search heuristic 

does reduce the size of each array's iieighbourhood, suggesting that his tabu search is 

likely able to complete each move in less tirne. 

Researchers at Bellcore labs have also devised an algorithm referred to as the 

Automatic Efficient Test Generator, or AETG [3, 4, 61. As opposed to our 

metaheuristics, which manipulate the entries in an array of fixed size, the AETG 

algorithm starts with just one row of the array and then builds the array one row at 

a time as foIlows. The algorithm refers to a list of possible rows that could be added 

to the array at  each step and greedily selects the row which covers the most as yet 

uncovered pairs. Nurmela [19] ciaims that while the AETG algorithm is fast, it does 

not always generate optimal arrays. Furthermore, as presented in [2], the methods of 

Chateauneuf and Kreher performed better than those of the AETG system in every 

trial when searching for strength 3 covering arrays. As the AETG algorithm has 

not yet been fully described in publications and very little specific data is known 

about its speed in finding covering arrays, it is impossible to conjecture whether its 

runtime compares to that of our algorithms. The only bound attributed to the AETG 

algorithm is that of ca(10,20 : 1) < 180, to which reference is made in each of the 

papers cited above. 

4.2 Covering Arrays 

As mentioned before, there is a lot of active research into lowering the best known u p  

per bounds on the size of covering arrays. Consequently, very few better bounds were 

found by us. Those bounds that we improved upon were for arrays with parameters 

k and g not considered by Stevens and Nurmela. 

The bounds improved by our metaheuristic searches are presented in Table 4.1. 

Of these sixteen improvements, the first was found by both the SA algorithm and 



1 Value b r o v e d  1 New Bound 1 Previous Bound fi 
( 1  ca(16,6 : 1) 1 65 rows 1 69 rows (1 

ca(16,7 : 1) 
ca(16.8 : 1) 

\ ,  

ca(I6,g : 1) 
1 1 

1 145rows 1 153 rows n 
ca(17,8 : 1) 
ca(18.8 : 1) 

88 rows 
113 rows 

91 rows 
120 rows 

116 rows 
118 rows 

ca(17,9 : 1) 
ca(18,9 : 1) 
ca(16,IO : 1) 

. 4  1 ca(15.12: i j  i 210 rows j 231 rows 1 

120 rows 
120 rows 

ca ( l3 , l l  : 1) 
ca114.12 : 1) 

n ca(l7; 12 : i j  j 221 rows j 231 rows n 

148 rows 
151 rows 

153 rows 
153 rows 

198 rows 
205 rows 

Table 4.1: New covering array bounds discovered by our metaheuristic searches. 

177 rows 1 180 rows 
231 rows 
231 rows 

ca(18,12 : 1) 
ca(15,13 : 1) 

th3 TS algorithm in 422568 moves, 638 seconds and 2129 moves, 83286 seconds, 

respectively. The other fifteen results were only found by the simulated annealing 

225 rows 
253 rom 

algorithm. CIearly, this does not mean that the TS algorithm can not find these 

231 rows 1 
255 rows I 

arrays, but that, given the parameter sets we supplied, it was unable to locate them 

in a reasonable amount of time. 

Other methods were used to improve the most recent table of bounds we could 

locate, found in [2]. We applied Stevens's Blocksize recursive algorithm to obtain 

better bounds for 26 5 k 5 30, g = 5 ,  and for 17 5 k < 30, g = 6 .  Also, the hole 

of an ITD(5,18,4) was filled to get ca(k, g : 1) = 324 for g = 18, k = 4,5. These 

methods are described explicitly in [24]. 

For a complete table of the best known upper and lower bounds on covering arrays 

for g 5 20 and k 5 30, please refer to Table B.2 and Table B.3. 
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4.3 Packing Arrays 

Recently, packing arrays have been much less studied than covering arrays. Consid- 

ering that the possible sizes of packing arrays are bounded both above and beiow, as 

opposed to covering arrays which can be as large as required, we saw a gooa oppor- 

tunity to use the metaheuristic search techniques to  tighten whatever bounds were 

loose. 

The most recent table detailing the best known bounds on the size of packing 

arrays is found in [24]. This table contains 60 loose lower bounds. After performing 

our metaheuristic search, 53 of these lower bounds were improved. Moreover, 13 of 

these irnprovements led to tight bounds. 

Of the 53 new best bounds, 31 were found by the SA algorithm, 37 were found 

by the TS algorithm and 26 were found by the GA algorithm. Furthermore, fourteen 

of these new bounds were located solely by tabu search, seven new bounds were 

located solely by simulated annealicg and another seven were located solely by the 

genetic algorithm. In five cases, the genetic algorithm wûs the only algorithm of 

the three unable to find the new bound within the allotted number of trials. This 

situation also occurred with the annealing and tabu algorithms, once apiece. One 

interesting point to note is that in the cases where both the genetic algorithm and the 

simulated annealing algorithm found a new bound, the genetic algorithm required 40 

percent as many generations as the SA algorithm required moves to  locate the solution. 

Considering the difference in time between a single run through the annealing Ioop and 

the processing time for an entire generation in the genetic algorithm, this demonstrates 

how much more time it took the GA algorithm to find the same solution. 

For a table of the best known upper and lower bounds on packing arrays for g 5 7 

and 1; 5 29, please refer to Table B.4. 



Chapter 5 

Heterogeneous Alphabet Sizes 

One of the primary motivations for the study of covering arrays is to attempt to 

develop efficient schemes for testing software and network stability. As stated in 

Chapter 1, one can represent each of the k nodes in a network or k variables in a 

computer program by a column in a covering array, where the nodes or variables can 

each be in one of g states. Then, each row of the array represents a trial in a testing 

scheme where the entry with coordinates (i, j )  corresponds to placing node or variable 

i in state j. The ordered pair covering property of the array then guarantees that 

after al1 of the tests have been performed, each pair of nodes will have taken on every 

possible ordered pair of states. Unfortunately, the vast majority of these real-world 

systems do not contain objects which al1 take on the same Gxed number of states. 

This fact suggests that most of what is already known about covering arrays may be 

too simplified to be widely applicable. 

In order to construct covering arrays which are more useful for creating real-world 

tests, one must consider cases where column i has alphabet size gi, where it is possible 

that gi # gj for two columns i and j in the array. We extend Our definition of a strength 

2 covering array to include these cases. 

Definition 5.1. A strength 2 covering array of type HF=, gi, denoted symbolically as 

 CA(^:=, gi : n), is  a b x k array A. The entries in colurnn i are filled from a gi-ary 

alphabet, which is taken to be Z,, by convention. Given a n y  two columns i and j and 

any ordered pair (u, v) fiom 2, x Z,,, there exists at least one row r such that entry 
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ar,i = u and entry a, = W. Moreover, there is a set o f n  < min{gi )  disjoint rows. The 

srnallest nurnber of r o m  possible in a  CA(^:, gi : n) is denoted by ca(n,"=, gi : n). 

By this definition, a covering array C A ( k ,  g : n) , as defined in Chapter 1, is now 

denoted by : n). Furthermore, the Blocksize Recursive construction of Stevens 

can be modified as follows. 

Theorem 5.1. For giuen gl < 92 5 . . . < ç k  and any p,  we have 

ca(gfgg - - g,' : n) 5 (ca(g1g2 - gc : n) + ca(& : m) - m), 

where m is the number of disjoint rows in the appended array. 

The question of interest remains to try to find the smallest possible value for 

ca(n f - ,  - gi : n) . For k 5 3, the problem was solved entirely in [18] t hrough the use of 

the following t heorems . 

Theorem 5.3. [18] 

ca(glg293 n) = 9293, 
where i t  is assumed that gl 5 g2 5 g3. The only exception is  for gl = g2 = g3 = n = 2, 

for which ca(Z3 : 2) = 5.  

In order to completely solve the problem for k = 4, two Lemmata are required. 

Lemma 5.1 considers the effect of increasing the size of some g; on the value of 

ca(nf=, gi : n),  while Lemma 5.2 describes the result of decreasing the value of sorne 

Si- 

Lemma 5.1. [18/ 

Assurning that gl 5 g2 5 . . . < gk, we have 

ca(glg2.. (gi + e )  . . . gk : mzn{n + e ,  gl)) 5 ca(glg2 . . . gi . . . gk : n) + e - gk,, 

where k' = k - 1 if i = k and k' = 12 otherwise. 

Proof. Given a CA(g lg2 . .  . gk : n),  add to it e gkt new rows to be filled in by the 

appropriate alphabet members. The only pairs that remain to be covered in order to 
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transform the old array into a C A ( g l g 2  . . . (gi + e)  . . . gk : n) are those pairs with a 

coordinate in colurnn i belonging to the alphabet Z,,, \ Zgi.  Fill the empty entries 

in column i with each element of this alphabet appearing g k ~  times apiece. As g p  is 

the largest possible alphabet size, regardless of the value of i, the set of e gkt rows is 

clearly sufficient to cover the rernaining ordered pairs. As the symbols in the empty 

columns added can be placed independently, the set of disjoint blocks can be increased 

by no more than e rows. 

O 

Lemma 5.2. [IB] 

Assuming that gl 5 9 2  < . . . 5 gk, w e  have ca(g lg2  . . . (gi  - e )  . . . gk : rnin{n, gi - 

e ) )  5 ca(glg2 . . . gi . . . gk : n)  . 

Proof. Given a C A ( g l g 2 . .  . g k  : n), relabel all of the entries in column i so that any 

entry from Zg, \ Z,,-, is arbitrarily mapped to some element of Z,.,. As the original 

structure was a covering array, so is the new structure as there are no new ordered 

pairs to cover. Also, given that the original covering array contained n disjoint rows, 

this quantity is only necessarily reduced in the case where the alphabet size gi - e 

becomes less than n. 

0 

With these two results in hand, me show the following. 

Theorem 5.4 .  ca(g1g2g3g4 : n )  = g39+ where zt 2s assumed that n 5 g1 5 g2 < - g3 - < 
gq. The only exceptions are as follows: 
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0 ~ a ( 6 ~  : n) = 37 for n 5 5; and 

0 37 5 ~ a ( 6 ~  : 6) 2 38. This is the only open case. 

Proof. For g3 # 2,3  or 6, then by results in [5, 28) there exists a set of two mutually 

orthogonal idempotent Latin squares of side g3. Therefore, for all such g3, there exists 

a CA(g: : g3) with 93 rows. By Lemma 5.1 and Lemma 5.2, we have ca(g1g2g3g4 : 

4 = 9394. 
For 93 = 2, if at Ieast one of gl and g2 are equal to 1, then the case in question 

is covered by either Theorem 5.3 or Theorem 5.2. THerefore, we may assume that 

the only cases left are the CA(23gi : 1) and CA(23gi : 2),  where g4 2 2. It has been 

shown that c ~ ( 2 ~  : 1) = 5 [12] and c ~ ( 2 ~  : 2) = 6 [24]. As for the smallest possible 

Figure 5.1: A CA(2331 : 1) with six rows. 

CA(2331 : l), it must contain at least 6 rows to cover all ordered pairs from Z2 x 5. 
A CA(2331 : 1) with exactly 6 rows is presented in Figure 5.1. 

Wow consider the partially filled CA(2331 : 2) in Figure 5.2. To cover al1 ordered 

O 0 0 0  0 0 0 0  
x x x o  1 1 1 0  
1 1 1 1  1 1 1 1  
Y Y Y l  1 0 1 1  

2 0 1 1 2  
2 1 0 0 2  

O 1 0 1  

Figure 5.2: An incomplete CA(z331 : 2) with six rows; a C ~ ( 2 ~ 3 l  : 2) with seven 
rows. 
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Figure 5.3: A : 2) with eight rows. 

pairs between column i and column 4, for i < 4, in only six rows, al1 entries labelled 

x must be 1 and al1 those labelled y mwt  be O. It is easy to see that this does not 

leave enough clearance in the final two rom to cover pairs (O, 1) and (1,O) within the 

first three columns. A CA(233' : 2) with exactly 7 rows is presented in Figure 5.2. 

Finally, a CA(2341 : 2), m u t  contain a t  least 8 rom to cover al1 ordered pairs from 

Z2 x Z4. A CA(2341 : 2) with precisely 8 rows is presented in Figure 5.3. Lemma 5.1 

now shows that ~ ~ ( 2 ~ 9 , '  : n) = 2g4 for ail g4 2 4. 

Figure 5.4: A CA(2'33 : 2) with nine rows; a CA(3341 : 2) with twelve rows. 

Consider the case g3 = 3. An OA(4,3) with nine rows exists, therefore by Lemma 

5.1 and Lemma 5.2, we have ca(glg23g4 : 1) = 3g4, for g, 5 g:! 5 3 5 g4. A 
CA(2133 : 2) must contain at le& 9 rows to cover all ordered pairs from Z3 x 23. 

Figure 5.4 displays an optimal CA(2133 : 2) with precisely nine rows. 
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Combining the first array in Figure 5.4 with Lemma 5.1 and Lemma 5.2, we have 

ca(2g23g4 : 2) = 3g4 for aUg, 2 3 and 2 < g2 5 3. It is known that ~ a ( 3 ~  : 2) = 10 

[24]. CA(3341 : 2) must contain at least 12 rows to cover al1 ordered pairs from 

Z3 x &. The rightmost array in Figure 5.4 displays an optimal CA(3341 : 2) with 

exactly twelve rows. Applying Lemma 5.1 to the second array of Figure 5.4 yields 

~a(3~g; : 2) = 3g4 for al1 g4 2 4. In all cases where n = g3 = 3, we must have 

gi = g2 = 3 as well. It is known that ~ a ( 3 ~  : 3) = 11. Applying Lemma 5.1 to the 

optimal CA(34 : 2) with ten rows, we get ~a(3~4' : 3) 5 13. We need only show that 

a CA(3341 : 3) with b-elve rows can not exist to complete this case. 

O 0 0 0  
x x x o  
x x x o  
1 1 1 1  

Y Y Y l  
Y Y Y l  
2 2 2 2  
2 2 2 2  

2 2 2 2  

O 3 
1 3  
2 3 

Figure 5.5: Attempting to construct a CA(3341 : 3) with twelve rows. 

Start with the leftmost incomplete CA(3341 : 3) shown in Figure 5.5. In order to 

cover al1 ordered pairs between colwnn i and column 4, for i < 4, in exactly twelve 

rows, al1 entries labelled x must be 1 or 2, all those labelled y mwt be O or 2 and dl 

those labelled z must be O or 1. Also, without loss of generality, it has been assumed 

that the final three entries of column 3 are 0 ,1  and 2, in that order. To cover the 

most ordered pairs possible within the first three columns, none of the rows of values 

x, y, or z should contain a string of three consecutive Os, 1s or 2s, as those pairs are 

already covered. Without loss of generality, let the two rows of values x be 1,1,2 and 

2,2,1, respectively, let the two rows of values y be 0,2,2 and 2,0, O, respectively and 

let the two rows of values z be 1,0,1 and 0,1,0, respectively. Without making this 
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assumption, some pair of columns 1, 2 and 3 would be left with a t  l e s t  four pairs 

to  be covered in the last three rows of the array. The array created is the rightmost 

array depicted in FiDrne 5.5. 

Each of these three newly filled pairs of rows covers four new ordered pairs and 

it is easy to see that no other arrangement of syrnbols can do better. Our choices 

for entries labelled x, y and z have left only six pairs uncovered within the first three 

columns. Clearly the h a 1  three entries in each of the first two columns must be O, 1  

and 2, in some order. Setting the two entries labelled u to be 1 ,2 ,  respectively, covers 

three of these pairs, leaving only ( 2 , l )  in columns 1 and 2, (0,2) in columns 2 and 

3, and ( 0 , l )  in columns 1 and 3 uncovered. Clearly, these can not be covered in the 

remaining two rows. In fact, the best that can be done is achieved by setting the two 

values v to be O and then completing the rest arbitrarily. This leaves one ordered pair 

uncovered. Therefore, one needs a t  least thirteen rows to construct such an array, 

giving us ~ a ( 3 ~ 4 '  : 3) = 13. Lemma 5.1, combined with the fifteen row CA(3351 : 3) 

in Figure 5.6 finally gives us that ~ a ( 3 ~ g ~  : 3) = 3g4 for al1 g4 2 5. 

Figure 5.6: A CA(3351 : 3) with fifteen rows. 

Finally, we examine the case g3 = 6. An ITD(6,4  : 2 )  with 32 rows exists as 

shown on the left side of Figure 5.7. Recall that this structure covers all ordered pairs 
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Figure 5.7: Subarrays required to construct a C ~ ( 5 l 6 ~  : 5 )  with 36 rows and a 
CA(6371 : 6) with 42 rows. 
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from Z6 x Z6 in every pair of columns, except that no ordered pair from {4,5) x {4,5) 

occurs in any pair of columns. Collapse the set of symbols in the last column into 

the set of symbols of Z5, making sure that the symbol 5 in row 15 is replaced by a 

1 and that the symbol 5 in row 20 is replaced by a 3. Then, by afnxing the second 

array in Figure 5.7 to the bottom of the collapsed ITD, we get a CA(5'63 : 5) with 

36 rows, where the disjoint rows are rows 1; 12,15 and 20 of the ITD and row 1 of the 

a f i e d  array. Furthermore, if we instead fi the rightmost array in Figure 5.7 to the 

bottom of the ITD without coIIapsing the symbol sets, we get a CA(6371 : 6) with 42 

rows, where the disjoint rows are rows 1,8,18 and 27 of the I T D  and rows 4 and 8 of 

the afbed array. It is currently unknown whether ca(6* : 6) is 37 or 38. Both bounds 

are derived in [24]. Combining the CA(5163 : 5) of Figure 5.7 with Lemma 5.2 yields 

~ a ( g l g 2 6 ~  : n) = 36 for al1 n $ gl < 6, g2 5 6 and gl 5 92. Applying Lemma 5.1 

and Lemma 5.2 to the CA(6371 : 6) of Figure 5.7 gives ca(g,g26g4 : n) = 6g4 for all 

n 5 gl <_ 92 5 6 and g4 2 7. 

El 

Most covering arrays with higher values of k can also be constructed in a similar 

fashion. Once an orthogonal array is constructed, the alphabet expansion and reduc- 

tion lemmata can be used to obtain a lot of the remaining cases. Unfortunately, as 

k grouTs, there exists less OA(k,  g )  as it becomes much more difficult to find smaller 

values of g for which there exist k - 2 mutually orthogonal Latin Squares of side g. 

Furthermore, for cases with higher n ,  we would like to start with either an optimal 

covering array or a set of k - 2 mutually orthogonal idempotent Latin Squares of side 

g to construct a covering array with the appropriate number of disjoint rows. As with 

the ordinary Latin squares, these large sets become scarce for larger k and we must 

rely more on results known about ordinary covering arrays. 

Theorem 5.5. For g4 # 4,6,10, ca(g1g2g3g4g5 : n) = g4g5, where it is assumed that 

n I g1 5 92 5 93 I 94 < - 95- For 94 = 4, ca(glg~g34g5 : 1) = 9495, where the gi 

remained ordered i n  the same way as aboue. The only exceptions are as follows: 
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This last one is the only open cases for g4 5 3. 

Proof. For g4 # 2,3,6,10, there exists a set of 3 mutually orthogonal Latin squares [5], 

from which an OA(5, g4) with g: rows can be constructed. Lemma 5.1 and Lemma 

5.2 can be used to obtain the result for n = 1 and g4 # 2,3,6,10. Moreover, for 

g4 # 2,3,4,6,10, there exists a set of three mutually orthogonal idempotent Latin 

squares [5], from which an OA(5, g4) with gi rows, g4 of which are disjoint, can 

be constructed. The same lemmata are used to get the result for al1 n 5 gl and 

94 # 2,3,4,6,10- 

Figure 5.8: A CA(2' : 2) and a CA(2431 : 1) with six -rows apiece. 

For g4 = 2, Katona shows in [12] that ca(P : 1) = 6. In order to  not reduce this 

situation to a case equivalent to one with lesser k,  we may assume that gl = g2 - - 93 = 

2. Lemma 5.1 can be applied to the CA(2431 : 1) with six rows in Figure 5.8 to get 

ca(g1g2g32g5 : 1) = 2g5 for gl 5 g2 5 g3 5 2 and g5 1 - 3. A CA(2*3' : 2) must have at 

least six rows, in order to  cover all pairs from Z2 x Z3. However, it was shown in the 
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previous proof that one requires at least seven rows to construct a CA(2331 : 2): which 

is a subarray of the object we are looking to  construct. Therefore, ~ a ( 2 ~ 3 '  : 2) 2 7. 

A CA(2431 : 2) and a CA(Z44I : 2) with seven and eight rows, respectively, are 

presented in Figure 5.9. Finally, Lemma 5.1 can be applied to the CA(2441 : 2) to 

show ca(g1g2g32g5 : 2) = 2g5 for al1 remaining cases of g, , gz7 93, and g5- 

Figure 5.9: A CA(2431 : 2) with seven rows and a CA(2441 : 2) with eight rows. 

For g4 = 3, [23] reports that c ~ ( 3 ~  : 1) = 11. A CA(2233 : 2) with nine rows is 

presented in Fi,we 5.10. Together with Lemma 5.2, we have ~ a ( 2 ~ ~ ~ 3 ~  : n) = 9 for 

n 4 2 and g3 = 2 , 3  and 9 5 ~ a ( 2 ~ 3 ~  : 1) 5 11. It is also known that ~ a ( 3 ~  : 2) = 12 

and ~ a ( 3 ~  : 3) = 12. 

x o o o o  
X O l l l  
x o 2 2 2  
y 1 0 2 1  
y 1 1 0 2  
y 1 2 1 0  
2 2 0 1 2  
2 2 1 2 0  
2 2 2 0 1  

Figure 5.10: A CA(2233 : 2) with nine rows; an incomplete CA(2134 : 1);  a CA(2134 : 
1) with ten rows. 
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Applying Lemma 5.2 to the value ~ a ( 3 ~  : 2) ,  we get 9 5 ca(2'3* : 2) 5 12. 

Consider the incomplete CA(2'34 : 1) in Figure 5.10. The only way to construct the 

CA(34 : 1) subarray is to use the MOLS construction mentioned in Chapter 1[5]. 

Symbols O and 1 must each occur in each set of ce& x, y and z. Choose a syrnbo2, 

Say 0, to be piaced first: once in each set of three rows. Initially, 24 pairs are yet to 

be covered between the first column and each other column. Due to the structure of 

the MOLS which were used to build the ternary subarray, each symbol must occur 

exactly once in each column in each set of rows prefixed by x, y or z. Also, in each 

row prefixed by y or r ,  the symbols in columns 3 , 4  and 5 must all be different by 

orthogonality. This guarantees that placing a O once in each set of three cornmonly 

prefixed rows results in one of two cases: either one pair is covered three times in a 

single pair of columns or al1 but three pairs get covered, with each uncovered pair 

straddling a different pair of columns (1, i), for i = 3,4,5. The first case covers 10 

pairs, but requires a O to be placed in two extra cells in the first column, thereby 

forcing the usage of five rows in the array. The second case covers 9 pairs. Consider 

placing a O in the first and fourth cells of the first column. In order to avoid the first 

case, the third O must be placed in the second or third ce11 labeled z. Both cases leave 

some pair (O, j) uncovered, for j = 1 or 2. Clearly, as each symbol only occurs once 

per row in each of columns 3 ,4  and 5, it must be impossible to cover the remaining 

pairs from {O) x Z3 in a single row. As a result, five rows are needed to cover al1 

pairs of {O) x Z3. No assumption was made with regards to the symbol to be placed 

first and therefore, it must be impossible to cover all pairs from Z2 x Z3 in less than 

ten rows. A CA(2134 : 1) with ten rows is presented in Figure 5.10. This result also 

shows that 10 5 ~ a ( 2 l 3 ~  : 2) 5 11 and that 10 5 ~ ~ ( 2 ~ 3 ~  : 3) 5 12. We do not believe 

that a CA(2134 : 2) with less than 11 rows can be cunstructed. In fact, the best that 

we have achieved is a CA(2134 : 2) with 10 rows having 3 pairs uncovered, al1 within 

the same pair of columns. 

A CA(3441 : 3) must have at least twelve rows, in order to cover al1 pairs from 

Z3 x Z4. It was shown in the last proof that thirteen rows are needed to construct a 

CA(3341 : 3). This is a subarray of the object we are looking to  construct, so we have 

~ a ( 3 ~ 4 l  : 3) 3 13. A CA(3441 : 3) with thirteen rows is presented in Figure 5-11. The 
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cells labelled x may be flled arbitrarily from Z3. 

Figure 5.11: A CA(344L : 1) with twelve rows; a CA(3441 : 3) with thirteen rows; a 
CA(3451 : 3) with fifteen rows. 

Also shown in Figure 5.11 are a CA(3441 : 1) with twelve rows, as well as a 

CA(3*5' : 3) with fifteen rows. These two arrays, together with Lemma 5.1 show the 

result for all arrays with gd = 3, completing the proof. 



Chapter 6 

Conclusion 

6.1 Summary of Results 

We implemented three metaheuristic algorithms to search for better bounds on cover- 

ing and packing arrays. The simulated annealing, tabu search, and genetic algorithms 

were implemented, taking into account comments from literature and experimentd 

data in choosing the algorithms' input parameters. AU three were able to find new 

bounds on the size of packing arrays with the TS algorithm finding the majority of the 

new bounds. The tabu search algorithm also improved on the bound for CA(16,6), 

while the simulated annealing algorithm found new bounds on that and four other 

covering arrays. 

After comparing the three algorithms, we found out that the genetic algorithm 

was ineffective at finding quality arrays, relative to the performance of the SA and TS 

algorithms. Not only did the genetic algorithm take more time to execute moves, but 

it seemed to require more moves to find a good covering array. The SA algorithm, 

capable of executing many moves in a very short time, was very useful for finding 

covering arrays of various sizes. However, when the size of an array's neighbourhood 

was smaller, the TS algorithm was often able to find much better arrays, as shown in 

Tables A.5 and A. 14. In particular, the results of Table A.14 suggest that while the 

SA algorithm operates very quickly, it does not converge to optimal regions in the 

search space as well as the TS algorithm. In this case, by a smaller neighbourhood 
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we mean arrays with k 5 9 and g < 7. These findings were purely experimental. 

One way to search for covering arrays while combining the strengths of these 

two algorithms would be to consider some values of M, k and g and to run the SA 

algorithm from a very large upper bound for b, say b > '. While processing 

through the binary search, either the algorithm would find covering arrays at each 

step or it would output the best score it was able to h d  before performing M moves. 

Values of b for which the SA algorithm left only a small number of pairs uncovered 

could be attempted again, using the more powerful TS algorithm. This process would 

be particularly usefid as the SA algorithm could provide a quick glimpse a t  those 

values of b for which a CA(k, g : n) with b rows might exist, at which point the much 

slower TS algorithm could used to perform a more thorough search. 

We believe that while our algorithms may not have produced as many new bounds 

as expected, metaheuristic search algorithms are useful for finding better bounds on 

covering and packing arrays where the best known constructions do not produce 

very tight bounds. Met aheuristic searches have been performed before by Stevens 

and Nurmela and their algorithms were very successful for srnaller parameter sets. 

Unfortunately, the amount of memory required to store information needed for more 

complex heuristics may become too great for larger parameter sets, possibly causing 

their algorithms to run very slowly in these cases. Our algorithms used very simple 

heuristics and were able to improve on bounds for structures as large as an 11 x 198 

array with entries from a 13-ary alphabet. 

After many trials with large values of M, the tabu search algorithm was unable to 

improve the known bounds on certain small covering and packing arrays, suggesting 

that the current bounds might be tight. The covering array bounds that could not be 

improved upon after this sort of extensive testing were the following: ca(8,3 : 1) 5 13, 

ca(5,4 : 3) 5 17, ca(5,4 : 4) 5 18 and ca(9,7 : 1) 5 63. In particular, if this 

last bound were tight, it would refute a conjecture of Stevens's, that for a k e d  g 

and n, ca(k + l , g  : n) - ca(k,g : n) 5 g - 1. For packing arrays, some of the 

seemingly unbeatable bounds were p a ( 5 , 4  : 2) 2 12; pa (5,4 : 3) 2 9, pa(8, 5 : 3) 2 9, 

pa(9,6 : 4) 2 12, and pa(lO,6 : 4) > 9. 

As well as using search algorithms to construct covering and packing arrays, we 
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considered the problem of determining the minimum number of rows for a covering 

array with potentially different alphabet sizes for each column. Aside from one case, 

the problem for k 5 4 was completely solved. This was accomplished by applying 

Lemma 5.2 and Lemma 5.1 to known orthogonal and covering arrays and constructicg 

the rest of the examples by hand. We also presented some partial results for the case 

k = 5, not handling the solutions to the cases where the second largest alphabet size 

was 4, 6 or 10. 

6.2 Future Endeavours 

The amount of time required to proceed through a fidl binary search for a CA@, g : n) 

for larger values of k and g limited the amount of parameter sets that could be tested 

over the course of researching and writing this thesis. It is possible that our algorithms 

are able to produce better bounds for many as yet untested parameter sets. We will 

continue to search for new bounds until the date of publication. 

The major barrier to finding more results using metaheuristics search algorithms 

is that of time. Many of the structures created in the code could have been eliminated 

to reduce runtime, but they were kept as it was never decided whether or not they 

would be required. Within the BKGArray structures, only one of the score arrays 

was ever used to evaluate the objects. Nonetheless, we would like to  explore ways 

of using the other score arrays to modify the algorithm heuristics. For example, 

rather that having the TS algorithm randomly select an array at each step from a set 

of equally fit neighbouring arrays, the information cont ained in the structure which 

counts the number times each member of the alphabet occurs in any column could be 

used to preserve some sort of balance property. While including these score ürrays in 

the BKGArray class does not affect the complexity of any of the algorithms, there 

is a time cost associated with updating them, which increases with k, g and b. 

The one member function which is the most expensive is f illpair-arrays, which 

fills the pertinent score arrays after the generation of a BhfGArray. This func- 

tion executes 0(k2(g2 + b)) operations when called. In the annealing and tabu al- 

gorithms, this is only performed once and outside of the main loop, thereby having 
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no infiuence on the complexity of these algorithms. Unfortunately, in the genetic al- 

gorithm, depending on the mating method used, O(S) offspring arrays are produced 

and this in tuni raises the complexity of the algorithm to 0 ( S M k 2  ( g 2  + b ) ) .  We could 

not devise an alternative to tabulating the pairs occurring by using the count array 

ord-pair-chk-array. If there were a local way to count the occurrence of pairs, then 

the complexity of the genetic algorithm would be reduced to 0 (SMbk2) .  

After the three randomized search dgorithms were selected, we wanted to test 

the effectiveness of variations on these algorithms. We were able to implement a 

few variations on the genetic algorithm, for different population culling methods and 

for different crossover strategies. Unfort unat ely, none of these implement at ions were 

significantly more effective than any other, to the point where it could compete with 

the SA and TS algorithms. Some alternative implementations of the annealing and 

tabu search algorithms were mentioned in Chapter 2, but none were attempted. It 

would be interesting to see if any of these alternate versions of the more successful 

algorithm are any more effective than their counterparts implemented over the course 

of t his t hesis. 

6.3 Two Generalizations of Covering Arrays 

The primary application of covering arrays discussed in Chapter 1.3 was that of soft- 

ware or network testing. Unfortunately, as mentioned in Chapter 5 ,  most real life 

systems of this sort do not conform to the basic definition of a covering array. In 

order to make covering arrays fully applicable, one must consider the case of generd- 

ized covering arrays with non-uniform alphabet sets for each column. There is much 

work left to be done on this problem. As k becomes larger, we have fewer values of 

g for which there exists a set of k  - 2 MOLS and therefore, more special cases that 

must be constructed by some alternative means. While most of the examples dis- 

played in the Figures of Chapter 5 were constructed by hand, this becomes a difficuk 

task for even k = 5 and a second largest alphabet size gi of six. Furthermore, the 

constructions developed for basic covering arrays may not work as well when gener- 

alized for hetcrogeneous alphabet covering arrays. We propose that for these special 



cases, an alternative to developing constructions would be to use metaheuristic search 

techniques. In particular, the code we have written to search for covering arrays with 

uniform alphabet size may be modified to construct these objects as well. While the 

algorithms themselves would sustain only minor changes, the method of evaluating 

and s t ~ r i n g  the new arrays would be very different and it would take no small amount 

of thought and time to design these structures in a clever way. 

A second variation of a covering array not discussed in this thesis is that of the 

structured network array. Consider the case of a network which requires testing, but it 

is known in advance that certain pairs of nodes do not interact . An optimal test suite 

for such a network would be a sort of covering array where the pair covering property 

needs only occur between pairs of columns corresponding to nodes which are known to 

interact with one another. Meagher [25] has already made appropriate modifications 

to our code to  handle this problem. Representing the network as a graph with edges 

connecting vertices corresponding to  interacting nodes, it  can be shown that the size 

of the covering array is related to  ca(k, g : l), where k is the colorability of the graph. 

The problem has already been solved for many classes of graphs, but much is left to 

be done in terms of solving this problem completely 



Appendix A 

Tables of Parameter Test Results 

In order to determine optimal ranges for the input parameters of each of the main 

metaheuristics employed throughout this thesis, it was necessary to conduct several 

tests. These tests provide rnuch insight on the effect of the variation of these param- 

eters with respect to the algorithrns' runtimes and effectiveness. Further tests were 

also required in order to compare the algorithrns to one another. 

The tables in this appendix contain the data noted as a result of these extensive 

tests. 
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Table A.l: Arrays found by the SA algorithm for to = 1. 

& 
0.01 
0.1 

0.25 
0.5 

0.75 
0.9 

0.925 

Table A.2: Arrays found by the SA algorithm for to = 10. 

r 

Avg. Best 
- - 

1 24.0 24 

-4vg. Best 
42.4 42 
42.0 41 
42.4 42 
41.8 40 
33.8 33 
33.6 33 
33.4 33 

Avg. Best 
- - 

24.0 24 

6t 
0.01 
o. 1 

0.925 
0.95 

0.975 
0.99 

0.9925 
0.995 

0.9975 

A\-g. Best 
43.3 43 
42.8 42 
42.4 41 
41.4 40 
34.2 33 
33.6 33 
34.0 33 

- 

23.3 23 
20.8 20 
20.8 20 
20.8 20 

C.4(6,4 : 1) CA(7,5 : 1) PA(7,5 : 1) 
AI = 104 M = 105 M = 105 M = 106 M = 104 

Avg. Best 
8.0 10 
8.0 9 
7.6 8 L  

- 

8.6 9 
11.2 12 
11.2 12 
11.0 I l  

- - 

24.0 24 
19.6 19 
19.8 19 
20.8 20 

20.6 20 
20.6 19 
20.6 20 
20.4 19 
20.6 20 
20.6 19 
20.6 20 

Avg. Best 
23.8 23 
- - 

0.999 1 

Avg. Best 
- - 

23.5 23 

20.6 20 
20.4 20 
20.4 20 
20.6 20 
20.2 19 
20.0 19 
20.0 20 

Avg. Best 
7.8 9 
7.0 9 

Avg. Best 
41.8 40 
42.6 41 

20.6 20 

Avg. Best 
43.3 42 
41.6 40 

33.6 33 
33.6 33 
34.0 33 
33.6 32 
33.8 33 
33.6 33 
33.8 33 

20.2 19 

33.4 33 
33.2 32 
33.4 33 
34.0 32 
33.8 32 
33.0 33 
32.6 32 

33.6 32 

11.0 12 
11.8 13 

33.2 33 

10.8 11 
11.0 II 
11.4 13 
11.2 12 
11.4 12 
10.8 11 

" 
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Table A.3: Arrays found by the SA algorithm for to = 100. 

b2 
0.01 
0.1 
0.25 

Table A.4: Arrays found by the SA algorithm for to = 1000. 

' 

Avg. Best 
8.0 9 
8.6 10 

I 8.4 9 

' Avg. Best Avg. Best 1 Avg. Best Avg. Best 
42.3 40 
42.4 42 
43.0 42 

- - 

24.0 24 
24.0 24 

24.0 24 
- - 

23.5 23 

42.0 42 
42.0 41 
42.0 40 
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Table A.5: Arrays found by the tabu search algorithm with lifetime L. 

L 
1 
3 

S Avg. Best ( Avg. Best Avg. Best Avg. Best Avg. Best 
12 22.6 22 121.0 20 40.0 39 38.0 37 36.2 35 

Table A.6: Covering arrays found by the genetic algorithm, using tournament selec- 
tion, the point crossover method and population size S. 

5 1 20.2 19 20.2 19 32.6 30 30.2 29 13.0 14 
7 1 20.0 20 1 19.8 19 1 33.2 32 30.6 30 13.6 14 

CA(6,4 : 1) CA(7,5 : 1) PA(7,5 : 1) 
M = 500 M = 1000 M = 1000 hl = 5000 M = 1000 

Avg. Best 
13.2 14 

1 13.4 14 

Avg. Best 1 Avg. Best Avg. Best 
33.2 33 
33.0 32 

120.0 19 
1 20.2 19 

Avg. Best 
32.8 32 
31.4 30 

20.4 20 
20.6 20 
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S Avg. Best Avg. Best 
12 10.2 11 10.8 11 

Table A.7: Packing arrays found by the genetic algorithm, using the point crossover 
method and population size S. 

M = 500 M = 1000 M = 5000 
S Avg. Total Avg. Total Avg. Total 
12 34.4 172 62.0 310 212.0 1060 

Table A.8: Time (in seconds) required for the G 4  algorithm to locate a CA(7,5 : 1) 
of optimal size, for various values of population size S. 
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h S M Avg. Rows Least Found Time 

u L 

S - M = 200,000 
1 S M Avr. Rows Least Found Time 1 

Table A.9: Measuring the effectiveness of the GA algorithm in constructing a CA(7,5 : 
1) for different values of S and M, where the quantity S - M is constant. 

II Quick Conv. Method Tournament Met hod II w - - -  - - II Arrog 11 Avg. Rows Least Found Time 1 Avg. Rows Least Found Tirne 1 

Table A.10: Arrays f o n d  by two genetic algorithms, using the point crossover method. 

Table A.11: Arrays found by two genetic algorithms, using the row crossover method. 

r 

1 
Array 

CA(7.4 : 1) 

Quick Conv. Method Tournament Met hod 
Avg. Rom Least Found Time 

22.4 22 20113 
Avg. Rows Least Found Time 

22.1 22 17762 
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Table A.12: Arrays found by two genetic algorithms, using the column crossover 
method. 

' 

Array 
CA(7,4 : 1) 

Time 

Quick Conv. Method Tournament Method 

7200 

Table A.13: Best score found for a CA(13,ll:l) with 198 rom in a fixed amount of 
time, given in seconds. 

Avg. Rows Least Found Time 
22.4 22 16988 

Algorithm Score Moves 
ANNEAL 21.4 8.5 x IO5 

1 l 

Avg. Rows Least Found Time 
22.2 22 20999 

Algorit hm Score Moves 
GENETIC(PT) 1459.0 77.4 

ANNEAL 0.4 1.1 x 
TABU 7.2 5764.0 

~O"ENETIC(PT)' 146.8 10000.8 
GENETIC(R0W) 144.2 10010.2 

TABU 5.6 8641.6 G E N E T I ~ R O W )  122.4 15032.8 
GENETICf COL) 124.0 15009.4 
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.. 
Time Algorithm Score Moves 

ANNEAL 56.3 1.1 x 10% 

1 II ANNEAL 54.0 5 . 5 ~ 1 0 ~  

Alnor i th  Score Moves 

Table A.14: Best score found for a CA(9,7:1) with 62 rows in a fixed amount of time, 
given in seconds. 

PA(?, 6 : l), 19 rows 
Algorit hm Time Moves a 
ANNEAL 8.0 133903.4 169766.8 

TABU 11.4 352.7 238.2 
. , 

GENETIC(R0W) 8519.6 103194.4 103676.2 ' 

GENETIC(C0L) 5826.6 69807.1 85042.0 
CA(5,6 : l ) ,  42 rows 

ANNEAL 5.1 108952.7 94729.3 
TABU 17.2 538.7 355.9 

Table A.15: Number of moves and amount of time needed, averaged over five trial 
runs, for the metaheuristics to locate a PA(7,6 : 1) with 19 rows and a CA(5,6 : 1) 
with 42 roaTs. 
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Tables of Bounds 

In this Appendix, we present tables containing the best known upper and lower bounds 

on the size of covering and packing arrays. Table B.1 displays the key for the results 

presented in Tables B.2 and B.3. In Table B.4, al1 bounds without superscript indices 

were obtained from tables in [24]. Those given a superscript of x were improved by 

constructions in [26]. Those given a superscript of y were improved by metaheuristic 

search. 
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1 Index Reference 1 
[ a orthogonal arrav exists 1 - " 

b no pair of MOLS(2) exists 
I 

c Stevens [241 

L J  

e Chateauneuf and Ifieher [2] 
f AETG: Dalal et. al 13, 4. 61 
g Our met aheuristic searches 
h Katona [12] 
i NurmelaT197 
j symbol collapsing l 

Table B. 1: Key for Table B.2 and Table B.3. 
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Table B.4: Best kiiown upper and lower bounds for packing arrays with 3 5 g < 7 and 4 < k 5 29. 
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