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Abstract

A strength 2 covering array (packing array) is an array with k& columns and entries
from a g-ary alphabet such that given any two columns ¢ and j and any ordered pairs
of elements (g1, g2) from the g-ary alphabet, there exists at least (at most) one row r
such that a,; = ¢g; and a,; = g2. The problem of interest is to determine the minimum
(maximum) number b of rows for which a b x k covering (packing) array with entries
from the g-ary alphabet exists, where k and g are given.

Upper bounds on the size of covering arrays are constantly being improved through
new constructions. Randomized searches can also be used to find new arrays through
the use of metaheuristics, which are widely applicable to a number of combinatorial
problems. It is possible that some randomized search algorithms are more suited to
finding better bounds on the sizes of covering and packing designs than others.

We search for covering and packing arrays using simulated annealing, tabu and
genetic algorithms. We compare both the differences between these three search
techniques, as well as their effectiveness in constructing covering and packing arrays.
We determine that the algorithms best used to find quality covering and packing
arrays are the simulated annealing algorithm and the tabu search algorithm. We give
tables of the best known bounds on the sizes of covering and packing arrays, including
those bounds improved through our own metaheuristic searches.

The primary application of covering arrays is that of software and network testing.
In order to construct arrays which are fully applicable to software and network tests
of any flavour, it is necessary to consider arrays where each column possesses its own
alphabet size. We present some initial results for this problem, including a complete

solution for the case k& = 4.
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Chapter 1
Introduction

There has been much research over the past decade regarding the existence of covering
arrays and, in particular, bounds on the size of said arrays. Many constructions, both
recursive and otherwise, have been devised to produce these design-like objects. While
many of these constructions have been used to produce arrays with small parameter
values, fairly little is known with regards to the strength of the bounds on the size
of arrays with slightly larger parameter values. A recent trend in searching for these
covering arrays has been to implement searching algorithms which would build the
arrays by a stochastic process. In this thesis, we implement three randomized search
algorithms in the hope of finding better bounds on arrays with larger parameter sizes.

Another similar problem is that of determining bounds on the size of packing
arrays. Packing arrays are a sort of complementary structure to covering arrays. While
a lower bound exists on the number of times pairs of elements can occur in a covering
array, a packing array places an upper bound on this quantity. As the applications of
packing arrays are subtler than those of covering arrays, these structures have been
studied less actively. Consequently, fewer good bounds on the size of these arrays are

known, and less constructions of packing arrays have been discovered.
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1.1 Definitions and Notation

In order to define the objects of study, we must first present some other definitions
and notation. Henceforth, when reference is made to a g-set or an alphabet of size g, it
shall be assumed that this set is Z,, the set of integers {0, 1,... ,g—1}. Furthermore,
unless specified otherwise, all variables mentioned shall only take integer values.
The majority of tools used to construct optimal covering and packing arrays,
as well as establish results about them stem from the study of designs. We first
define some basic design theoretic structures and then generalize these structures into

covering and packing arrays. The definitions presented can be found in [5, 24].

Definition 1.1. A Latin square of side g is a g x g array in which each cell contains
a single element from a g-set such that each element of the set occurs ezactly once in
each row and ezactly once in each column. The entry in row a and column b of Latin
square L is denoted L(a,b). A Latin square of side g is said to be idempotent if for
all0 <i<g-—1, cell (i,7) of the Latin square contains the symbol 1.

Definition 1.2. A pair of Latin squares of side g, Ly and L, are said to be orthog-
onal if Ly(a,b) = Lo{c,d) and Li(a,b) = Li(c,d) implies a = ¢ and b = d. In other
words, Lo = (a;;) and L, = (b; ;) are orthogonal if every element in Z; X Z, occurs
ezactly once among the g° pairs (a;;), (b;;) for all 0 < ¢,7 < g — 1. A set of Latin
squares Ly, La, ... , L, is a set of mutually orthogonal Latin squares, or a set of
MOLS if for every 1 < i < j < m, L; and L; are orthogonal. We let N(g) denote

the mazimum number of Latin squares in e set of MOLS of side g.

Definition 1.3. An orthogonal array OA(k,g) is a g% x k array with entries from
a g-set having the property that in any two columns, each ordered pair of symbols from

the g-set occurs ezactly once.

Orthogonal arrays and sets of mutually orthogonal Latin squares are closely re-
lated. It is well known that a set of £k —2 MOLS of side g is equivalent to an OA(k, g).
Consider the set of k—2 MOLS {L,, L,, ... , Ly—2} of side g. The g* x k array formed
by the g® rows (3, , L1(3, §), La(3, 7), . .. , Lx—2(4,5)) for 0 < i,57 < g — 1 is an orthog-
onal array. Figure 1.1 shows a pair of orthogonal Latin squares of side 3 and the
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Figure 1.1: A pair of orthogonal Latin squares of side 3 and the corresponding
OA(4,3).

corresponding orthogonal array formed by the above construction.

If the set of MOLS used to build an OA(k, g) in this way are all idempotent,
the orthogonal array will have g disjoint rows. In Chapter 4, it shall be shown how
orthogonal arrays are used to produce good bounds for covering arrays. Orthogonal
arrays will also be used in Chapter 5 to construct portions of covering arrays having

special alphabet restrictions.

Definition 1.4. A transversal design of order g and blocksize k, denoted
TD(k,g), is a triple (V,G, B), where

e V is a set of kg elements;

® G is a partition of V into k groups, each of size g;

e B is a collection of k-subsets of V' called blocks;

e each block intersects each group G; in ezactly one point; and

e each pair of points not in the same group occurs in exactly one block.

A T D(k, g) is also equivalent to a set of k—2 MOLS of side g and can be constructed
from an OA(k, g) as follows. Let A be an OA(k, g) on the symbol set Z,. Taking V' to
be the set Z, x Z let B be the set of blocks {(a;;,j) :0<j < k— 1} for all i € Zg,
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where a;; is the element in row ¢ and column j of A. Then, if G is the partition of
V whose classes are {Z, X {j} : 0 < j < k — 1}, the triple (V, G, B) is a transversal
design. The blocks and groups of a transversal design derived in this way from the
OA(4,3) in Figure 1.1 are presented in Figure 1.2.

Blocks: {00,01,02,03} {00,11,12,13} {00,21,22,23}
{10,01,12,23} {10,11,22,03} {10,21,02,13}
{20,01,22,13} {20,11,02,23} {20,21,12,03}

Groups:  {00,10,20} {01,11,21} {02, 12,22}

Figure 1.2: A TD(4,3) derived from an OA(4,3).

Definition 1.5. Anincomplete transversal design, denoted ITD(k,g;b1,b2, ... ,bs)
with b; > 0,> ;_, b; < g is a quadruple (V,G, H, B) where

® V', G and B are as defined in Definition 1.4;

® H is a set of disjoint subsets Hy, Ho, ... ,Hs of V called holes with the property
that for each 1 <1 < s and each group G' € G, |G' N Hy| = b;;

e every unordered pair of elements from V is contained in either a hole or a group

and contained in no blocks, or contained in ezactly one block, but not in any

group or hole.

A construction mentioned in Chapter 5 uses IT Ds to build a very specific class of

covering arrays.

1.2 Covering and Packing Arrays

We shall now define covering arrays and packing arrays by first presenting some equiv-

alent objects.

Definition 1.6. A strength-t transversal cover, denoted t-TC(k, g : n) is a triple
(V,G, B) where
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Groups: {0,1} Covering
{2,3} Array
{4,5}

Blocks: {0,2,4} 0 0 O
{0,3,5} 01 1
{1,2,4} 10 0
{1,2,5} 10 1
{1,3,4} 11 0

Figure 1.3: A 2 —TC(3,2) with V = Zs and the corresponding CA(3,2 : 2).

® V, G and B are as defined in Definition 1.4;
@® each block intersects each group G; in ezxactly one point;

e cach t-set of points with no two in the same G; occurs in at least one block;

and
e there is a set of n pairwise disjoint blocks in B.

A transversal cover is essentially a transversal design with a relaxed pair require-
ment. A transversal cover with £ = 3 and g = 2 is presented in Figure 1.3. These
design-like structures can be formulated in a much more aesthetic way by letting the
blocks be the rows of a b x k array, where |B| = b. Then, by replacing the contents of
each group by the same g-ary alphabet we have an array with entries from a uniform
alphabet. This new structure is called a covering array. In defining covering and

packing arrays, we first define the concept of disjoint rows.

Definition 1.7. In any covering or packing array, any set of rows which pairwise

differ in each column is a set of disjoint rows.

Definition 1.8. A strength-t covering array, denoted t-CA(k,g : n) is a b x k
array with entries from a g-ary alphabet such that given any t columns, ¢, ca,. .. , ¢,
and for all ordered t-sets of elements (g1,ga,--. ,9:) from the alphabet, there ezists a

row T such that a,., = ¢; for all 1 < i < t. Furthermore, there is a set of at least
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n disjoint rows. The smallest number of rows possible is denoted t-ca(k,g : n). For

n = 1, this quantity may simply be denoted by t-ca(k, g).

The covering property of a covering array is implied by that of a transversal cover.
The abovementioned covering array construction can also be reversed to transform a

covering array into a transversal cover.

Definition 1.9. A strength-t transversal packing, denoted t-TP(k,g : n) is a
triple (V,G, B) where all entities are as defined in Definition 1.6, except that each
each t-set of points, no two of which are in the same G;, occurs in no more than one

block.

Definition 1.10. A strength-t packing array, denoted t-PA(k,g:n) isabx k
array with entries from a g-ary alphabet (typically Z,) such that given any t columns,
€1,C2, ... ,C, and for all ordered t-sets of elements (g1,9z2,- .., g:) from the alphabet,
there exists at most one row r such that a,., = g; for all1 < i < t. Furthermore, there
is a set of at least n disjoint rows. The largest number of rows possible is denoted

t-pa(k,g : n). For n =1, this quantity may be denoted t-pa(k,g).

Throughout this thesis, we will only be concerned with structures covering pairs
of elements, or t-sets of elements with ¢ = 2. As a result, when reference is made to a
packing or covering array throughout this thesis, it shall be assumed that ¢ = 2 and
the ¢ shall be dropped from all notation unless specified otherwise.

Finally, we present a third structure equivalent to a covering arrray.

Definition 1.11. Let a g-partition of a b-set B denote a partition of B into g classes.
A family of k g-partitions, P1, Ps, ... Px, of a b-set B are qualitatively t-independent
if whenever one selects t distinct partitions from the family and one part from each,

then the intersection of these parts is nonempty.

Consider a covering array. Let the set of rows be our b-set, labelled {0,1,... ,b—1}.
Then each column partitions this set into g classes, where all rows with entry ¢ are
in class 7z, for 0 < 7 < g — 1. If we select any ¢ columns from the array and one

class from each, as defined above, then the t-set-covering condition guarantees that
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the intersection of these parts is non-empty. Therefore, a strength-t covering array is

equivalent to a set of t-independent g-partitions of a b-set.

1.3 Applications

The primary application of covering arrays is that of the design of experiments. If the
rows of a covering array correspond to experiment trials and its columns to the test
subjects, then a covering array is equivalent to a test suite in which the interaction
between each pair of test subjects may be observed. Recently, this method of testing
has been applied in testing software and networks [3, 4, 6, 23, 24, 29]. It is reported
in [6] that anywhere from a third to a half of the total cost of software development
is due to the software testing. Not only is there a financial cost in performing an
extensive amount of testing, but completing the testing may also require a great deal
of time. When testing anything, it is desirable to approximate a balance between the
quality of the test and the possible costs incurred.

For software testing, the model most often used is that of a computer program
having k variables, which are all discrete and can each take one of g values at any time.
To ensure that the code is fully functional in an exhaustive fashion, one would want
to test every possible ordered set of values as input for the variables. Unfortunately,
as ¢ and k grow even moderately large, this process quickly becomes infeasible as the
exhaustive set of g* tests could take a lot of time and money to complete.

In 3], Cohen et al. claim from empirical data that the majority of code errors are
due to either the interaction between a pair of values, or faults found in a single pa-
rameter. This finding suggests that to test software or a network sufficiently well, one
needs only ensure that between any two variables in the code or nodes in the network,
all ordered pairs of possible states are tested. In order to get a more comprehensive
test of the system, test suites that cover every t-set of variables for ¢ > 3 may be used.

Consider the case of employees in a call centre who are to call alumni for support
in an upcoming funding drive. A computer program can be used to manage the
distribution of phone numbers prior to presenting them to the caller and may even

adapt the script the caller must read, according to some criteria. For example, the
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caller might want to know if the respondent has contributed money in the past, if the
respondent has been contacted before or even if they have only recently graduated. If
these are the only three variables of concern, then a test for the program requires that
between any two pairs of columns, every possible ordered pair of values is present. In
Figure 1.4, we present a sample set of runs which may serve as a sufficiently good test

for this program.

Previously | Contacted Graduated
contributed? | this year? | within last year?
No No No
No Yes Yes
Yes No No
Yes No Yes
Yes Yes No

Figure 1.4: A sample set of test cases for the call centre problem.

Notice that this set of test cases is isomorphic to the covering array and transversal
cover of Figure 1.3. Presumably, applying this set of test cases should determine any
existing errors in the code. However, the primary question with regards to covering
arrays is to determine the minimum number of rows required to form a covering array
given the integers k£ and g. Such covering arrays would generate the minimum number
of test cases required to test an instance of software or a network sufficiently well for
failure. It is known that for £k = 3 and g = 2, a covering array with four rows exists.
Our test set in Figure 1.4 can be made optimal by removing the third row, which is
entirely redundant with regards to pair coverage.

For small k£ and g, current bounds on the size of a covering array are quite good
and are fairly difficult to meet, let alone beat, by simply constructing an array by
hand. One concern is that many computer programs and networks require that &
and g be quite large. Many of the constructions designed to construct covering arrays
could generate a corresponding CA(k, g) with a reasonably small, but not minimal,
number of rows. It is for this reason that we had hoped that randomized search

methods could be used to obtain even better bounds for these values of k and g.
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Another concern that shall be addressed in Chapter 5 is that it is rarely the case
that each variable in a program has the same number of possible states. The concept
of a covering array can be generalized to handle these cases and even less is known
about bounds on these special objects.

Ancther application of the covering array is in the compression of inconsistent or
contradictory data. In [14], Kérner and Lucertini claim that Shannon’s contributions
to the field of information theory cannot deal with many real world situations. In
particular, they propose that the results in Shannon theory regarding multiterminal
information sources cannot interpret data inconsistency mathematically. They con-
sider the case of simultaneous observations of some occurrence or system such that
the observations from any one location are fragmentary and may contradict either
other observations or what is already known about the system. The goal is to obtain
a count of the minimal number of full and consistent descriptions of the system such
that each fragmentary observation contributes to at least one of them. This quantity
is referred to as the maximum achievable compression of the data.

The model of Korner and Lucertini considers a finite set X as the set of attributes
of the system which can be observed. Then, they assign to each observer a function
whose domain is X. They further define a function f as being extendable if there
is some function g such that the domain of f is a subset of the domain of ¢ and both
functions coincide on the domain of f. Therefore, two observers reporting consistent
data have corresponding functions which have a common extension. If F' represents
the family of functions corresponding to the observations made, then the problem
is to determine the minimum cardinality of a family of functions G such that for
every function in F, there is some function in G which extends it. Stevens [24]
presents a simplified version of the problem in which the observation fragments are
all possible t-sets of observation values. Let the set of observation points correspond
to the columns of the array. Then an optimal strength ¢ covering array would yield
the desired minimal set of observations in which every set of fragmentary observations
corresponding to the functions of F' occurs, regardless of their consistency.

Covering arrays are used in many other capacities. Katona [12] applies covering

arrays in the guise of qualitatively independent sets to multivariate truth functions
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and search theory, while Sloane [23] links strength 3 covering arrays to intersecting
codes. Chateauneuf and Kreher [2] and Stevens [24] list references to other uses, such
as computer architecture design, drug screening, block ciphers, and zero-error noisy
channel communication.

The applications of packing arrays are not as obvious as those of covering arrays.
Stevens [24] writes that the rows of an optimal packing array “form the maximal set of
words from a partial maximum distance separable code (MDS code) with minimum
spanning distance k£ — 1”. These codes have been studied and Stevens notes that
Abdel-Ghaffar and Abbadi use packing arrays to store large files across multiple hard
disk systems so that the files can be retrieved in the shortest time possible. Stevens
also presents references to some of the known upper bounds, such as the Plotkin, Elias

and Hamming bounds. A weak version of the Plotkin bound is
pa(k,g:1) < 9(:7—;-)-, where £k > g

We use this bound during the randomized searches as an upper bound on the binary
search process, as discussed in the second section of Chapter 2.

The dual of packing arrays are highly structured resolvable block designs. In
particular, the dual of a PA(k, g : 1) with no pair of disjoint rows is a class-uniformly
resolvable design, which are used to construct round-robin tournaments and design
experiments efficiently [7, 16]. Packing arrays, seen as MDS codes, can also be used

to detect and correct transmission errors.

1.4 OQOutline of Thesis

In the first part of this thesis, we present a survey of metaheuristic search techniques
and select three such algorithms to attempt to improve on some of the best known
bounds on the size of covering and packing arrays. In Chapter 2, a brief survey of
heuristics is provided, together with a complete description of the code implemented,
including considerations from the literature and a qualitative comparison of the algo-

rithms.
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In Chapter 3, we conduct preliminary tests and use the results to select appropri-
ate input parameters for the algorithms. We also compare the effectiveness of each
algorithm, based on the results of these tests.

Once we ascertain the capability of each algorithm to find good covering and
packing arrays, we use the more effective of the three algorithms to improve some of
the bounds on these objects. Tables of results are also presented.

A brief history of the problem is presented at the beginning of Chapter 4. The-
oretical and computational methods are presented and compared to the techniques
employed in this thesis. All covering and packing array bounds improved by the
implemented metaheuristics are presented in sections 4.2 and 4.3, respectively.

Finally, in Chapter 5, we consider the problem of determining the minimum num-
ber of rows possible for a covering array in which the alphabet size can differ between
columns. We present a solution for the case k£ = 4 and an initial set of results for the

case k = 5.



Chapter 2
Metaheuristics and Designs

The vast majority of upper bounds established on the value of ca(k, g : 1) for any k£ and
g have been determined by recursive constructions based on smaller covering arrays.
Typically, these small covering arrays are either produced by hand or derived from
tables of existing transversal designs. For smaller values of b, £ and g, the amount
of time required to manually construct these b x &k arrays with entries from Z; while
continuously ensuring that all required ordered pairs are present may be reasonable.
However, for larger values, it becomes infeasible to perform these constructions by
hand. Designed to perform repeated operations quickly, computers are the natural

means by which this expense of time can be avoided.

2.1 Algorithms and Heuristics

Given a certain set of parameters and constraints, the set of all objects, or states,
which can be formed based on this information constitutes a search space in which
a feasible object is sought. With covering and packing arrays, every state in a search
space for fixed b, k and ¢ is a b x k array with entries from Z,. A state is feasible
if it satisfies the appropriate covering or packing criteria. The algorithms one can
use to propagate through a search space are divided into two categories: exhaustive
search algorithms and randomized search algorithms. Algorithms which cover a search

space exhaustively, such as backtracking and branch-and-bound algorithms, are the

12
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only algorithms which are sure to return either a feasible state or a proof of its
nonexistence. However, the time needed to examine every object in larger search
spaces may increase to a point which renders an exhaustive search infeasible. For
these larger search spaces, randomized search techniques become useful [15].

Randomized search algorithms proceed through a given search space in a random
fashion, examining only as many objects as specified by the user. This enables the
user to explore the space as thoroughly as desired, but offers no proof regarding the
nonexistence of a solution. Clearly, a purely random examination of the states in any
space will only return a feasible state with probability corresponding to the percentage
of states in the search space possessing the desired criteria. This probability can be
increased by supplying the algorithm with decision rules, or heuristics, to help it
search through the space more efficiently. Typically, given a state in the search space,
a randomized search algorithm first makes a small modification, or a move, to the
object being examined to proceed to an adjacent state in the space. The heuristic is
used to help the algorithm choose exactly which adjacent state is chosen as the new
state of study. If z is any object in the search space, then the set of states which can
be obtained by applying a particular move from a given set of moves to the state z
is called the neighbourhood of z, denoted by N(z). By repeating this process for a
succession of objects, a randomized search algorithm is capable of examining a vast
number of states in the space.

In the case of covering and packing arrays, if positive integers b, k£ and g are
provided, then the set of all & x &k arrays with entries from Z;, makes up the search
space of interest in which one attempts to find a feasible array with & rows. The
natural move one can use is to select one row and one column at random from the
array being examined, say row ¢ and column j, and then to randomly change entry
(,7) to a different element of Z,. Thus, the neighborhood of any array A is the set
of all arrays that can be obtained from A by randomly changing some entry a to an
element of Z, \ {a}. Equipped with this move, the only ingredient missing in order
to assemble a randomized search algorithm is a decision rule for moving from object
to object in the search space.

Search algorithms, both randomized and exhaustive, typically run until either an



CHAPTER 2. METAHEURISTICS AND DESIGNS 14

optimal state has been located, or a predetermined bound M on the number of state
changes has been exceeded. As it is more desirable to implement faster algorithms,
it is important to be able to locate any existing optimal states as quickly as possible.
There exists a class of algorithms which employ an evaluation function to assign value
or fitness to the objects they encounter, in order to converge to an optimal state in
the search space more rapidly. For a potential covering array, fitness is measured by
a count of the number of ordered pairs absent from the set of all possible pairs of
columns in the array. Therefore, a covering array will have no ordered pairs mising
from any selected pair of columns, or a fitness value of zero. The corresponding fitness
of a potential packing array is measured by the count of the number of pairs occurring
more than once in any possible pair of columns. Therefore, a covering array will have
no pair of columns in which any ordered pair occurs more than once.

The heuristic typically adopted for these fitness-oriented algorithms at any given
state is one which searches through the neighborhood of the current state by applying
a move to the object [15]. The object obtained is then selected as the new state
if it is more fit than the current object. If one visualizes the search space to be a
landscape, where the elevation at any state corresponds to the state’s fitness, then
moving from state to state using this heuristic gives the impression of always climbing
in elevation. As a result, this class of greedy algorithms is referred to as hill-climbing
algorithms. It should be noted that in the case of packing and covering arrays, this
is slightly counter-intuitive as the more desirable arrays have lower scores. This can of
course be remedied by simply making the fitness equal to the number of pairs covered.

At any step of a hill-climbing algorithm, the neighbourhood of a state can be
searched randomly or exhaustively, each of which leads to a different walk through
the search space. Hill-climbing algorithms which search exhaustively through a state’s
neighbourhood at every step are referred to as steepest ascent algorithms, as they
converge to the most fit state accessible by greedy progression from the starting state.
As aresult, the success of steepest ascent algorithms is determined solely by the state
chosen as the starting point for the search. Ideally, one might want to use a heuristic
which is less restrictive with regards to fitness acceptability in order to escape from

local optima which are not global optima. Such hill-climbing algorithms are very
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useful in that they search a wider segment of the space before eventually converging
at an optimal state. Gibbons presents a thorough survey of randomized hill-climbing
algorithms in [5].

The simulated annealing, tabu search and genetic algorithms are capable of solv-
ing a wide range of combinatorial problems quickly and effectively, using generalized
heuristics which can be tailored to suit the problem at hand. For this reason, these
three algorithms are often referred to as metaheuristics [8]. These three algorithms
were employed to locate the smallest covering arrays possible, for various values of &
and g. The implementation details of the main program as well as the three chosen
metaheuristics are outlined below. Considerations made to implementation sugges-
tions found in literature are discussed and a qualitative comparison of the algorithms
is made. All three of the algorithms written were based on skeletal pseudocode pre-
sented in [15].

2.2 Implementation Detalils

The search code was written to take in a series of input parameters and then to use a
binary search method to attempt to locate covering or packing arrays of the proposed
dimensions. The user must supply the name of the metaheuristic to be employed,
either ANNEAL, TABU or GENETIC, followed by a suggested upper bound on the
number of rows in the array, by, the number of columns in the array, k, and the size
of the alphabet, g, used to fill the array. The parameter by acts as a lower bound
on the number of rows in the array when searching for a packing array. Next, the
user may input a lower bound on the number, n, of disjoint rows to be fixed in the
sought array. One construction mentioned in Chapter 4.1 requires that the number
of disjoint rows in an array is known. It should be noted that for n > 1, the size of
any array’s neighbourhood is effectively decreased as the fixed disjoint rows are left
unaffected by moves. Then, an upper bound, M, on the number of times an algorithm
can run through its main loop is provided, in order to let the algorithm exit if it is
unable to locate a design. Finally, the user must supply all input parameters required

by the metaheuristic being called upon to perform the search.
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When searching for covering arrays, the specified metaheuristic starts by looking
for a CA(k,g : n) with b rows, where b is the integer closest to the halfway point
between proposed upper bound by, and the guaranteed lower bound, g2. Should a
covering array be found, the current value of b becomes the new upper bound and
the algorithm begins to search for a CA(k, g : n) with a number of rows equal to the
midpoint of b and g2. Otherwise, b becomes the new lower bound and the algorithm
begins to search for a C A(k, g : n) with a number of rows equal to the midpoint of &
and bg. The binary search continues until the new value chosen for & is equal to the
value for which a search just concluded. When searching for packing arrays, the same
process is performed with the roles of the upper and lower bounds being reversed.
Also, the original upper bound on the number of rows in a packing array is taken to
be the appropriate value of the Plotkin Bound (see Chapter 1.3) for g strictly less
than k, and is taken to be g otherwise.

Given integers k and g, it was uncertain to what degree the existing bounds on
the number of rows in the corresponding covering or packing array could be improved
upon. The binary search method allows an efficient exploration of search spaces for
many values of b, thereby reducing the amount of time spent searching for arrays that
are more difficult to find or do not exist at all.

In writing the program, it was necessary to construct a data structure which would
take up little memory and allow fast access and computation. For reasons of expe-
rience and familiarity, the program was written in the C++ programming language.
The class structures prevalent in C++ programming provided a simple way to describe
the potential covering and packing arrays as objects. A class entitled BKG_Array
was created such that each BKG_Array object would represent a potential array
of either type. Also, each object carries with it a set of member functions for the
purposes of quick evaluation and modification. Each BKG_Array object contains
the global parameters k& and g, as well as the current row count, 6. The b x k ar-
ray of entries from Z; is stored as a one-dimensional array of entries from Zg, called
the blocks array. Each object contains a set of one-dimensional score arrays which
are used to evaluate the fitness of the object. The most important score array is

missing_pair_array, which has a cell counting the number of missing ordered pairs
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for each possible pair of columns. Another score array, pair_in_.columns_array, has a
cell for each possible ordered pair (a,b) in Z; x Z; and each possible pair of columns,
(p,q)- Each cell counts the number of occurrences of ordered pair (a,b) in pair of
columns (p, g). These score arrays for ordered pairs have single element counterparts,
missing_element_array and element_in_column_array, which were intended to be
used in conjunction with the algorithms’ heuristics.

The most important member functions are ewvaluate, swap.single_entry,
anneal _swap_entry, tabu_swap_entry, and update_arrays_single_swap. The evaluate
function takes the sum of the values over all cells in missing_pair_array, returning
the number of ordered pairs required to complete the covering array. This num-
ber represents the fitness of the object. The swap-single_entry function selects an
entry at random and then switches it for another element of the alphabet. The
anneal_swap_entry function swaps an entry at random and applies the annealing de-
cision rule, while the tabu_swap_entry function works exhaustively through the object,
switching each entry for each possible member of the alphabet not forbidden during
a tabu search. The simulated annealing decision rule and forbidden moves will be
discussed later in the chapter. The fourth function updates all score arrays in a local
manner following each modification.

Another class entitled Move_List was created to keep a record of the modifications
performed on any given object. This structure proves to be quite useful, as it could
keep an online list of those moves which are forbidden during a tabu search.

At the completion of any step in the binary search, the program ouputs either the
array found or, if none was located, the array located with the most covered pairs and
its score. The program also returns the number of moves required to find the array
(M, if none was found) and the amount of time required to complete this number of

moves.

2.3 The Simulated Annealing Algorithm

The first metaheuristic chosen is the simulated annealing, or SA, algorithm. The SA

algorithm itself is modelled after the effect of a slow cooling process on the molecules of
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a metallic substance [8, 20]. Just as cooling brings these molecules to an optimal rest
energy, this algorithm slowly converges the state being examined toward an optimal
state. Prior to running, an initial positive temperature t; and a decimal decrement
factor ¢; lying strictly between 0 and 1 must be provided as input. The algorithm'’s
simulated cooling schedule is determined entirely by these two parameters, as it is
multiplied successively by &; after each pass through the main loop.

At each step, the algorithm randomly selects one array from the neighbourhood of
the current state and evaluates its fitness. For our objects of study, the neighbourhood
of any potential array is the set of arrays that can be obtained by switching a single
element in the current array with a different legal member of the alphabet. If the
neighbouring array is more fit than the current array, then the neighbouring array
becomes the new state. However, should the selected neighbouring array be less fit
than the current array, the SA heuristic is employed. This heuristic is the main feature
of the SA algorithm and guarantees that at each step, there is a non-zero probability
of moving to a state which is less fit than the current state.

Let the fitness of the current array and the neighbouring array be denoted by
Fy and F, respectively. Taking t to be the current temperature, a random decimal
number r between 0 and 1 is generated and compared to the quantity e(fo=#)/*. The
neighbouring array is accepted as the new state if r is less than or equal to this
quantity and rejected otherwise. After accepting or rejecting the neighbouring array,
the temperature is multiplied by a factor of §,. Therefore, in the early stages of the
algorithm, when ¢ is still fairly close to %y, there is a greater probability of accepting
a less fit neighbouring array as the new state and hence a good chance to explore
many regions of the search space before settling in one which may contain a global
optimum. In the later stages of the algorithm, it is less probable that a state with a
poor fitness is selected forcing the algorithm to converge toward the local optimum
of the region in which its current state lies. The point at which it becomes difficult
to move to a less fit state is referred to as the focal point, as it is at this point
where it is most likely that the algorithm will simply proceed to a local optimum,
rather than continuing its search through a large cross-section of the search space.

Some versions of this algorithm accept the new state only if the random number r is
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strictly less than the quantity e(fo—F)/t but it was determined that after executing a
large number of moves, the value of ¢ was rounded down to 0. Considering that r is
nonnegative, this rounding down prevents the algorithm from accepting any less fit
arrays. Therefore, to maintain a minimal amount of effectiveness, we chose to accept
new states for 7 < elFo—F)/t,

There are many schools of thought regarding the use of the chosen input param-
eters. Kreher and Stinson [15] simply state that the initial temperature should be
some value greater than zero, and that the decrement factor ¢, is required to be some
positive number less than one. Presumably, one could slow down the cooling process
by only multiplying ¢ by &, every n'* pass through the main loop of the algorithm,
for some integer n greater than one. Also, one could use an oscillating temperature
function in order to occasionally release the algorithm from a regional search where
no global optima exist. However, this may also lead the algorithm to free itself prema-
turely from searching in a region where an optimal solution does exist. After reviewing
some of the literature regarding annealing algorithms in [15, 20}, it was determined
that the monotonic decreasing function described in detail above was the function of

choice. As a result, alternative cooling schedules were not implemented.

2.4 The Tabu Search Algorithm

The second metaheuristic selected to assist in locating covering arrays is the tabu
search, or TS, algorithm. As with the SA algorithm, the heuristic involved in the TS
algorithm allows the selection of a new state which is less fit than the current state.
However, each neighbourhood search is exhaustive, rather than random, ensuring that
the state chosen at each step is the best neighbouring option possible. Unlike the SA
algorithm, the TS algorithm has only one input parameter, called the tabu lifetime
and denoted by L.

At each step of the search, the TS algorithm evaluates the fitness of every array
in the neighbourhood of the current state. The array in the neighbourhood which is
the most fit is selected as the new state, regardless of whether it is more or less fit

than the current state.
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One concern in such an algorithm is that it is entirely possible for it to be caught
in an infinite loop and to stop propagating through the search space altogether [10].
Consider the following situation. Let the algorithm decide to move from state A to
state B in step z, where state B is less fit than state A. It is entirely possible that
in step 7 + 1, the algorithm finds that the fittest object in N(B) is the object A. For
the remainder of the algorithm’s run time, the current state will alternate between
A and B with no chance of escape. To avoid this situation, the TS algorithm uses a
list of forbidden moves, called the tabu list. At any step, this list contains a history
of the L most recent moves, L being the specified tabu lifetime. Prior to deciding
which neighbouring array shall become the new state, the algorithm verifies that the
move resulting in the most fit array is not contained in the tabu list. If the move is
not forbidden, the fittest array is selected as the new state. Otherwise, the algorithm
considers the move resulting in the next fittest array, and then the next until the
move in question is not contained in the tabu list. If every locally available move is
forbidden, then the algorithm stops and moves on to the next possible value of b.

In the program written, a move in the Move_list object acting as a tabu list
has four parameters: a row r, a column ¢, an old entry 7 and a new entry 7, which
corresponds to entry (7, ¢) having been changed from 7 to j. In order to make it very
hard for the algorithm to revisit certain objects multiple times, it was decided that
a move having parameters (7',c’, 0, n') was forbidden if for some move in the last L
moves of the tabu list having parameters (r,¢, 1, 7), it was true that r = 7/, ¢ = ¢/,
and either i = o’ and j = n’ or i = n’ and 7 = o’. Therefore, a move is forbidden if
it is either the same as or the reverse of one of the most recent L accepted moves, as
documented in the tabu list. This makes it impossible for the TA algorithm to either
retrace or repeat any recent moves.

The main difficulty in fine-tuning a TS algorithm is in attempting to balance com-
putation time and the possibility of endless looping. By reducing the tabu lifetime,
less time is spent comparing moves to those in the tabu list while the chance that
the algorithm will be caught in a loop increases. On the other hand, the possibility

of looping can be reduced by increasing the tabu lifetime, which in turn causes the
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algorithm to spend more time passing through the tabu list at each step. In attempt-
ing to locate a middle ground, many different tabu lifetime values were tested and
the empirical data presented in Chapter 3 heavily influenced the tabu lifetime value
chosen. The advice of Falkenauer [8] was also taken into account: he claims that the
size of a tabu list should be small, rarely exceeding a dozen moves. Aside from using
the tabu list, there is another way to reduce the chance of looping. If there is a set of
many neighbouring arrays all having the same locally optimal fitness at any particular
step, then the next state is randomly selected from those locally optimal arrays which
are not forbidden.

We also considered changing the definition of a forbidden move. For example,
rather than keeping track of moves as ordered quadruples as described above, we
could simply keep track of the coordinates of the cell that has been changed, or
even just the row or column in which it appears. We decided, however, that these
alternate definitions would be too restrictive on the size of the neighbourhood and
that for even relatively small values of L, too many good neighbouring arrays may be
deemed forbidden.

2.5 The Genetic Algorithm

The third and final metaheuristic used is the genetic, or GA, algorithm. Like the TS
algorithm, the GA algorithm requires only one input value, called the population size,
S. Other than this, the GA algorithm is structurally quite different from the other
two metaheuristics previously mentioned. The genetic algorithm does not adopt the
standard approach of the hill-climbing algorithm. In fact, the model for the genetic
algorithm is based on the general theory behind evolution and speciation (8, 11]. The
theory is that given an initial population of organisms, the fittest of the group will be
most likely to survive from generation to generation. Through reproduction, certain
traits of fitness can be passed from parents to their children. This, and the possibility
of random mutation, can result in the evolution of the population into a fitter form.

Unlike the other two metaheuristics which consider a single array at a time, the

GA algorithm starts with a population of potential arrays or genes equal in number to
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the value supplied by the user. Then, in a process referred to as the recombination
stage, these genes are grouped into pairs of parent genes and combined with one
another, with each pair of parent genes producing two other genes. These genes are
often referred to as offspring genes and each one will possess some characteristics
of each of its parents. After their creation, the same move used in the other two
algorithms is applied to each of the offspring genes to simulate mutation. Through
a chosen culling step, the population is reduced to its original size and the process
begins anew.

The primary goal is to create and maintain a population of reasonably fit genes,
the theory being that the more fit members of the population should help to produce
fit offspring genes. There are many ways to accomplish this goal. One may use a
strategy in which genes are allowed to mate many times in any one generation and
mates are chosen at random from the population. To be sure that more fit genes mate
more frequently, the selection can be performed in a weighted fashion, where genes
that are more fit have a higher probability of being selected as a mate. Yet another
way to maintain a fit population would be to reject the S weakest members of the
2S-element population at the end of every generation. Unfortunately, both of these
methods could lead to one particularly fit gene having batches of similarly fit offspring
over the course of many mating phases. In subsequent generations, these offspring
genes may inbreed to create a homogeneous population which would be limited to
evolution through mutation alone.

Ashlock [1] suggests that a remedy to this situation is to use a tournament se-
lection heuristic to choose the mates. If the population size, S, is a multiple of four
then the process can occur as follows. The population of genes is first randomly parti-
tioned into groups of four. Within each group, the two most fit genes are chosen as the
parents and their offspring replace the other two genes in the group at the end of the
generation. This heuristic ensures that the fittest genes remain in the population, but
restricts the amount of times they can reproduce to once per generation. Also, at the
end of each generation, half of the population is turned over, ensuring a wide coverage
of the search space through successive mating. The repeated introduction of less fit

offspring increases the chance of a less fit gene being involved in the recombination
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phase, thus maintaining diversity in the population.

An alternative to this tournament selection is a method suggested in [15] that we
refer to as the quick convergence method. In this method, the original population
is partitioned randomly into two groups (male and female) of size S/2. The members
of each group are ordered randomly and then the i** arrays from each group are mated
with each other, for 1 < 7 < §/2. The S offspring are mutated and then the most
fit S members of the male, female and offspring populations combined are selected
as the new population. This is essentially the steepest ascent version of the genetic
algorithm: the population heavily favours fit arrays and moves rapidly to a very fit
state. Unfortunately, these fit arrays dominate the population very quickly and if the
local optimum toward which the population moves is not a global optimum, it may
take many mutations to locate an optimal covering or packing array.

During the recombination phase, selected parents can be mated in many ways.
The primary method of merging two parents is the crossover method of mating. In
this method, a subset of coordinates in a b X k array is selected (call this set E).
Each child is formed by filling in the coordinates corresponding to those in E with
the entries of one parent and those coordinates not covered by E with the entries
of the other parent. Three natural crossover methods are to take E to be the set
of rows 0,1,... ,7 in their entirety, the set of columns 0,1,...,7 in their entirety, or
even all the coordinates of the b x k array, reading left to right and top to bottom, up
to some coordinate (7,j). In each such method, we require that 7 and j be integers
such that 7 lies between O and b and j lies between 0 and k. These methods shall be
referred to as row crossover, column crossover and point crossover, respectively.
The region of coordinates represented by the set £ does not necessarily have to be
contiguous, but for ease of computation, the implemented algorithm does not consider
any non-contiguous cases. It was not decided, though, whether a choice of necessarily
contiguous sets of points could contribute to rapid homogenization of the population.
Finally, in order to avoid producing clones, the implemented algorithm has been
configured to ensure that neither F nor its complement is an empty set.

The effectiveness of a GA algorithm may also be altered at the mutation stage.
Mutation can be forced to occur with a fixed fractional probability, instead of having
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all offspring mutate at every step. Also, in order to decrease the chances of population
homogeneity, mutation can be made to occur more than once per step. In implement-
ing the GA algorithm, it was decided that mutation should always occur in order
to avoid homogeneity in the population. However, none of the literature suggested
multiple mutations per mating phase and therefore, the concept was abandoned.
The implemented GA algorithm using the method of tournament selection starts
by randomly generating S5 arrays, which are then partitioned and mated according
to the method described above. The offspring are formed by a crossover method and
then are all mutated by a random entry swap. Finally, the parent arrays and offspring
arrays are merged into one S-element population before the next iteration begins.
The quick convergence version of the GA algorithm was implemented in a different
fashion. At first, S arrays are randomly generated and then randomly ordered and
mated as described above. As with the other version of the GA algorithm, the S
offspring are all mutated by a random entry swap. After mutation, the median value
of fitness across the population is determined and the T" arrays which have a fitness
value strictly less than this are chosen to be members of the next population. Finally,
the remaining S — T spaces in the next population are filled by randomly selected

arrays with fitness equal to the old population’s median fitness value.

2.6 A Comparison of Algorithmic Complexity

In light of the differences between these metaheuristics, it is possible that any short-
coming one algorithm might have in attempting to locate a particular CA(k,g : n)
might be overcome by one of the others. Therefore, it was originally thought that all
three algorithms should be used in series when searching for a particular CA(k, g : n).
Through testing, though, it became apparent that the most effective searches were
achieved using only two of the algorithms. The results of these tests are discussed
later in Chapter 3.

The main distinguishing feature of each algorithm is the complexity of its inner
loop structure. In order to be able to discuss algorithmic complexity, we assumed

that any basic mathematical operation such as addition or multiplication occurred
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with constant complexity O(1). The complexity of some of the BKG_Array class
member functions must be evaluated prior to assessing the total complexity of each
of the three algorithms.

The most basic member function in the BKG_Array class is the fill_all_arrays
function, which is used to initialize the score arrays within any particular array object.
This function is broken down into two subfunctions, fill_pair_arrays, which initializes
the two arrays which track the presence of the ordered pairs across columns, and
fill_element_aerrays, which initializes the other arrays used to count the occurrences
of each element of the alphabet in each column. As the pair arrays are indexed by
pairs of columns and ordered pairs of alphabet entries, this process requires O(k?b)
operations to examine the contents of the BKG_Array object’s cells and another
O(k%g?) operations to enter this information into the tabulation array’s cells. Unlike
the pair arrays, the single element tabulation arrays are only indexed by column and
by alphabet element. Therefore, the same process costs only O(kb) operations to
examine the object’s cells and another O(kg) operations to tabulate this information.
Hence, the fill_all_arrays function performs O(k?(b + g*)) operations every time it
is called.

The initialization of a BKG_Array object starts with the allocation of memory
for the blocks array, which contains the row and column entries of the object, and the
four score arrays. This was all assumed to require O(1) operations. Filling the blocks
array clearly requires O(kb) operations while filling the score arrays, as mentioned
above, requires O(k?(b+ g?)) operations. The latter of these costs becomes the cost of
initializing an object. The cost of initializing an object with random entries is exactly
the same. Copying an object is in fact cheaper. We still require O(k2g?) operations
to copy over the contents of the pair_in_columns array, but the cost of copying over
the other three score arrays is dominated by this quantity. The only additional cost
is the O(kb) operations required to copy the blocks array, so the total cost of making
a copy is O(kb + k2g°) operations.

Whenever an entry of one of the objects is changed, a local update is performed
to correct the score arrays in a quick manner. The algorithm examines only the score

array cells pertaining to the precise pairs of columns and ordered pairs arising from
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the entry change and increases or decreases the quantities in the corresponding cells
as is necessary. As only one row is involved, one sweep through the columns is all
that is required to update the score arrays and therefore the cost of a local update is
only O(k) operations.

The final basic BKG_Array class member functions are the evaluate function,
which returns the fitness of the object and the is_taboo function, which determines if a
particular move is taboo. The evaluate function runs through the missing_pair_array
score array and sums up the entries of ali of its k? cells to obtain the object’s fitness.
Clearly, the cost of evaluating the fitness of any BKG_Array object is O(k?) opera-
tions. The is_taboo function runs exhaustively through the L cells of the current list
of taboo moves, comparing the contents of each cell with the current move. These
comparisons are assumed to have a negligible cost and so the total cost of a taboo
check is simply O(L) operations.

As outlined in Section 2.2, there are three types of moves or swap functions
implemented in our code. First is the simple swap, which chooses a row and column at
random, changes the entry in that cell to a different legal member of the alphabet and
then updates the object’s score arrays in a local fashion. Selecting random numbers
and changing the cell entry have a negligible cost and hence the cost of a simple swap is
dominated by the cost of the local update function, which is O(k). The second swap
function is the anneal swap function. This function initially evaluates the current
object’s fitness and then performs a simple swap, for a total of O(k?) operations. The
function then applies the SA heuristic and checks if the fitness has increased or not.
If so, nothing more is done. Otherwise, a random number is generated and compared
to the quantity . If the random number test fails then the simple swap is reversed.
In any case, the application of this heuristic costs another O(k®) operations, which
allows the anneal swap to be called for a cost of only O(k?) operations. The third
and final swap function is the tabu swap function. The function is given a row and a
column in the object in which an entry swap is to be performed. The function notes
the entry in this cell and for every other alphabet member that would not create a
taboo swap, the function swaps the entry for this new entry, evaluates the fitness of

the new array and then reverses the swap. This process uses a taboo check, an object



CHAPTER 2. METAHEURISTICS AND DESIGNS 27

evaluation and two local updates for each other member of the alphabet, yielding a
total cost of O(g(L + k2)) operations. If the fitness of the new object is at least as
good as the best fitness found so far in the current round of tabu swaps, then the row,
column, old entry and new entry values are noted.

With these functions in hand, we can describe the complexity of the three al-
gorithms. The SA algorithm is by far the least complex of the three. In each pass
through its main loop, the algorithm calls the anneal swap function and evaluate once
apiece. If the new object is more fit than any found previously, it is copied. Finally,
the temperature is decreased and the loop counter is augmented. Therefore, , if M
is the maximum number of temperature decrements allowed before declaring a failed
search and C' is the number of times a more fit array is copied and stored as described
above, then the complexity of the SA algorithm is of O(Mk? + C(k2g? + kb)).

The TS algorithm executes O(kbg — L) simple swaps per run through the loop,
where the L subtrand reflects the number of swaps which may be taboo at any step.
As we rarely used a value of L greater than O(k), we assume that in each pass through
its main loop, the TS algorithm calls the tabu swap function O(kb) times, once for each
row and column in the BKG_Array object. After constructing a list of the optimal
fitnesses which can be obtained by a single entry swap, the TS algorithm selects one
move from list list, executes it and updates the object’s score arrays locally. As with
the SA algorithm, the object is evaluated and if it is more fit than any other found
previously by the algorithm, it is copied as a record-keeping measure. Therefore, if
M and C are as above, then this algorithm performs O(Mkbg(k® + L) + C(k%*g® +
kb)) operations per step in the binary search. If we assume that L is significantly
smaller than k2, this reduces to a complexity of O(Mk3bg). Noting that & > g2
and that for large k, the value of b typically exceeds that of g by a great deal, the
TS algorithm seems to be far more complex than the SA algorithm. However, aside
from an apparent increase in run time for the TS algorithm, it would seem that an
exhaustive search through a state’s neighbourhood would be more likely to locate
good neighbouring candidates than by randomly selecting only one array at a time

from the neighbourhood.
The genetic metaheuristic is sufficiently different from both of the other algorithms
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used, and so it is unclear what net advantages might be held over the SA and TS
algorithms. In terms of complexity, there is no difference between the GA algorithm
which uses tournament selection and that which adopts the method of quick conver-
gence. Below, we outline the complexity computation for the GA algorithm which
employs the method of tournament selection, as it is the algorithm which was used
most to construct new designs.

For the method of tournament selection, we take S to be the population size input
by the user and assume that S is divisible by four. The main loop of the GA algorithm
starts by initializing an index array and then randomizing the indices inside it. This
costs O(S) operations in total. The randomized sequence inside the index array is
used to shuffle the initial population of S randomly generated BKG_Array objects.
The shuffled population array is then divided into subarrays, each containing only four
BKG_Array objects and a simple bubble sort algorithm sorts each set of four objects
so that the fittest two in each foursome can be removed for mating. Due to the copying
involved during the sort, this part of the loop performs O(S (kb + k*g®)) operations.
Regardless of the crossover method selected, the algorithm mates by reading each
entry in the parents’ designs, deciding which entry goes to which offspring and then
placing that entry in the appropriate blocks array. After the offspring blocks arrays are
completed, fill_all_arrays is used to fill in their respective score arrays. Due to this
non-local score array completion, this portion of the loop processes O(Sk?(b + ¢2))
operations. All of the S objects in the population are mutated by a simple swap,
which costs O(Sk) operations. Finally, the S objects which are at this time held in
two separate population arrays, parent and offspring, are merged back into a single
population, requiring S more copies. Therefore, again taking M to be the threshold
on the number of times the algorithm will run through its main loop, the algorithmic
complexity of the GA algorithm is O(SMk2(b + ¢°)).

Regardless of the high amount of loop complexity, the GA algorithm has S feasible
arrays at its disposal at every step, at least half of which are relatively fit. Together
with a tournament selection method in place, these arrays can spread out and cover
a wide crossection of the search space in relatively few runs through the loop. Unfor-

tunately, as with the SA algorithm, if there is an optimal state in the neighbourhood
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of one of the arrays in the current population, it is unlikely that it will be located
quickly. Ashlock [1] claims from experimental experience that it is more effective to
conduct many runs in parallel with a smaller population size, rather than a single run
with a larger initial family of feasible arrays.

As a final comment, it would seem that as the values of b, k, g and M vary, no
one set of input parameters can be supplied to maintain optimal efficiency in locating
covering arrays. For example, a TS algorithm with large L searching for smaller
objects might be more likely to arrive at a state from which all moves are forbidden.
The same algorithm with the same value L, but searching for much larger objects
might even be caught in a loop, as cycles for larger objects can contain many moves.
Another possibility is that, for elevated values of M, the temperature value in the
later stages of an SA algorithm could get so small that the probability of accepting a
less fit neighbouring array as the new state may become negligible. The next chapter

features a much more detailed quantitative analysis of the different algorithms.

2.7 Algorithmic Enhancements

It was realized after the thesis was submitted [17] that some enhancements could be
made to speed up the algorithms. For example, the evaluate member function can
be improved, simply by including a variable in the BKG_Array objects themselves
indicating their current level of fitness. Rather than calling a function to evaluate an
object, the score variable could be simply increased or decreased automatically while
performing the local update. This would give the function a complexity of O(1),
reducing the complexities of the SA and TS algorithms by roughly a factor of k.

Also, in the TS algorithm, the searches through a tabu list could have been more
efficient. Rather than making L comparisons, a binary search method could have
been implemented, together with appropriate insertions to and deletions from the
tabu list at any time to perform the searches in O(logL) operations. Considering the
usually small value of L, this would not have a large effect on the complexity of the
TS algorithm.
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Algorithm | Current Algorithmic Complexity | With Future Enhancements
SA MEK* + C(k*g* + kb) MEk + C(kb)
TS Mkbg(k* + L) + C(k*g* + kb) Mkbg(k + logL) + C(kb)
GA MSE*(b + g°) no change

Table 2.1: The result of enhancements on the complexity of our metaheuristic
searches.

Finally, a major concern in all three algorithms, but particularly the genetic al-
gorithm, is the amount of copies that need to be made as the object in question
becomes more fit throughout the search. Considering that these copies are made only
when the current object is more fit than the best on record, the number C of such
copies made in one step of the binary search could be reduced by creating a a more
fit initial object prior to the search, by deterministic or heuristic means. During the
search, the three algorithms could be instructed to only make copies of objects which
are more fit than this initial object. If the fitness of this initial object is IV, then N
becomes an upper bound on C, thereby reducing each algorithm’s runtime. A further
enhancement would be to only retain the object’s blocks array without all of the other
variables and arrays in the class.

We present in Table 2.1 a summary of the complexity improvements due to the

implementation of the above algorithmic enhancements.



Chapter 3
Quantitative Analysis

In using the three metaheuristics described in the last chapter, it is desirable to know
not only which algorithm is the most effective in general, but also to discover which
set of input parameters optimizes the effectiveness of each algorithm.

There are many different ways of measuring effectiveness. For example, given pos-
itive integers k and g, as well as the type of array desired, we are naturally interested
in the algorithm that can determine either the best corresponding value of b or the
best average value of b over a set of trials. However, this effectiveness can be refined
by examining how many moves or the amount of time needed by each algorithm to
generate the array in question. With data detailing these run parameters for each
algorithm, one can hope to assess which algorithm would be most useful, based on

personal weights associated with each search criterion.

3.1 The Parameters of the SA Algorithm

Structurally, the simulated annealing algorithm is the simplest of the three meta-
heuristics employed. As determined in Chapter 2, each step in the binary search
using simulated annealing requires O(M (kb + k2g?)) lines of code to run completely.
The three input parameters for the annealing algorithm are the maximum number of
moves allowed, M, the initial temperature, tp, and the temperature decrement factor,

8;. In order to determine the optimal choices for ¢g and §,, £, was initially fixed while

31
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d; was varied, and then the reverse experiment was performed. For each pair of values
(o, 9:), the algorithm was run five times and best arrays found were noted. This was
repeated for two different covering arrays, CA(6,4 : 1), and CA(7,5 : 1), as well as the
packing array PA(7,5 : 1). These structures were known to have optimal sizes of 19
rows, 29 rows, and 15 rows, respectively [24]. The results of these trials are presented
in Tables A.1 - A.4 in Appendix A. When looking for the two covering arrays, the
upper bounds on the number of rows were set to 25 rows for CA(6,4 : 1) and 45 rows
for CA(7,5 : 1). The lower bound on the number of rows for the PA(7,5 : 1) was
taken to be 7.

An interesting piece of information gleaned from any one of the four tables is that
a cooling function which reduces the temperature too quickly renders the algorithm
useless. For values of §, < 0.5, the annealing algorithm was often unable to locate
a covering array for any of the five runs, resulting in an entry of “-” in the table.
However, it would also seem that in some cases, as the value of §; approaches 1, the
algorithm also has difficulty finding good arrays. In the cases to = 1 and to = 1, 000,
the greater values of §, yield comparatively poor results. As a result, it was concluded
that a good choice for 4, would be a value in between 0.9 and 0.9925. Also, an
augmentation in the number of moves, thereby allowing the algorithm to search longer,
seemed to increase the effectiveness of the annealing algorithm. Of the 103 trials
for which results were obtained for two values of M, an increase in the number of
moves improved the average number of rows of the constructed covering arrays in 59
cases and improved on the size of the best covering array constructed in 37 cases.
Furthermore, an increase in the value of M did not affect the average number of
rows in 17 additional cases and had no effect on the size of the best covering array
constructed in another 46 cases.

While an increase in the given quantity M increases the chance of finding a better
covering or packing array, it also underlines a major weakness of the SA algorithm. It
is known that ca(7,5 : 1) = 29 and after the 560 trials performed in order to compile
the four tables were examined, it was noted that only one trial produced a CA(7,5 : 1)
with less than 32 rows. This includes all of the cases where M was already as large as
M

10 moves. After this many moves, the quantity ¢ = ¢y - (6;)™ is so small, regardless
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of the values of ¢ and §;, that a move to a less fit array is almost never accepted. As
a result, if the algorithm has not found an optimal array by this point, it will take a
great number of iterations to generate a random number small enough to move the
search to a different part of the search space. The only way to attempt to counter this
situation is to choose a value of §, which is extremely close to one, thus ensuring that
t does not become too small for a large number of moves. Unfortunately, this renders
the initial portion of the run ineffective, as it will take a much longer time to reach the
focal point point in the search. It is important that this point is eventually reached,
as the algorithm will have a lot of difficulty finding any local optima while it is easy
to accept a move to a less fit array. This suggests that the SA algorithm may not be
very well suited for finding optimal arrays which are sparsely located throughout a
particular search space.

Some information about the choice of ¢3 can also be obtained by comparing the
information between tables. As tp increases, the range of values of 4, with which
the algorithm performed the best seems to slide closer to 0.75. This makes sense
intuitively, as it is desirable to eventually make it difficult to accept a less fit array,
and for higher ¢y and fixed M, this is accomplished by reducing the value of §,. Also,
while the algorithm seemed to perform better for smaller values of t; (by a sheer
count of when the algorithm generated the best array found across all trials), this is
likely due to the fact that M was fixed across all trials. A value of {5 = 1 is likely as
effective as a value of ¢, = 1000, so long as M is modified appropriately in order to
ensure that the algorithm eventually reaches the focal point.

With these findings in mind, it was decided that when searching for optimal cov-
ering and packing arrays, we would give input parameters d; = 0.925 and appropriate

values of {3 and M that would guarantee that the focal point is reached.

3.2 The Parameters of the TS Algorithm

As opposed to the SA algorithm, which has a pair of input parameters, the tabu
search algorithm has a single input parameter, the tabu lifetime L. As with the
testing performed with the annealing algorithm, the three structures CA(6,4 : 1),
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CA(7,5 : 1), and PA(7,5 : 1) were chosen as the objects for which to search. A
maximum number of search moves, M, was fixed and a range of values of L were
tested. The bounds on the number of rows, b, were the same as those set for the SA
algorithm tests. The results of these tests are presented in Table A.5.

Intuitively, augmenting the number of moves an algorithm can make prior to
stopping should increase the effectiveness of the algorithm in finding optimal arrays.
As with the simulated annealing algorithm, this is indeed the case with the tabu search
algorithm. This is not entirely obvious from examining the columns corresponding to
the searches for a CA(6,4 : 1), as the optimal 19-row array was fairly simple to find
for all values of L, even for the lesser value of M. The columns of Table A.5 which
correspond to the searches for a CA(7,5 : 1), however, show evidence of this claim,
as no trial for M = 1000 yielded an optimal, 29-row array, while more than half of
the trials for M = 5000 found optimal arrays.

With regards to choosing an optimal value of L, it seems that the selection of ex-
treme values renders the algorithm less effective in searching for arrays. For example,
L needs to be suitably large to reduce the chance of cycling. Referring to the results
of the trials pertaining to the CA(7,5 : 1) searches, the smaller values of L were fairly
ineffective at locating small arrays. Also, if the value of L gets too large, it is possible
that too many moves could be designated as forbidden, relegating the bulk of the
search to areas of the search space not containing global optima. This was evident in
the search for a PA(7,5 : 1), which should result in the optimal discovery of a 15-row,
T-column array with entries from Zs: as L gets large, the search is unable to find an
array with more than 12 rows.

The choice of L = 5 yielded the best array found in every case, while very few
trials for L > 150 yielded optimal arrays. While this leaves a fairly wide range of
values from which L can be selected, many of the values chosen in between these
bounds yielded very good results. It should be noted, though, that an upper bound
of 150 is purely circumstantial. As the sought arrays get larger, they contain more
possible entries. Consequently, the number of moves that must be deemed forbidden
in order to make the tabu list restrictive must also increase.

For most searches, the value of L varied between 10 and 100, depending on the
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size of the desired array.

3.3 The Parameters of the Genetic Algorithm

Unlike the SA and TS algorithms, which require only a small set of input parameters to
commence the search, the genetic algorithm requires input parameters which changed
the very structure of the algorithm itself. Not only is there an input parameter for the
size of the population in the algorithm, but there is also a second parameter dictating
the mating method. Furthermore, two different genetic algorithms were compared to
one another, one of which employed a tournament selection method when choosing
mates, and the other which employed a population cull which forced the population
to converge to a local optimum more quickly.

Recall from Chapter 2.5 that the algorithm employing the tournament selection
heuristic first randomly partitions the population into groups of four and then deletes
from each group of four the two weakest genes. The two remaining genes mate and
their offspring take the place of the deleted genes. The algorithm equipped with
the quick convergence heuristic randomly partitions the population into two ordered
groups. The ** arrays from each group are mated with each other, for 1 <7 < .5/2
and the S most fit arrays from the original population and their offspring are selected

to be the new population.

3.3.1 Tournament Selection and Quick Convergence

The first decision that needed to be made was with regards to which algorithm
should be used, the quick convergence algorithm or the tournament selection algo-
rithm. These algorithms were used to search for six structures - a CA(7,4 : 1), a
CA(8,5:1), a CA(5,6 : 1), a PA(5,4:1), a PA(6,5: 1), and a PA(5,6 : 1) - in
order to determine which one performed the best, on the average. The results are
presented in Tables A.10 through A.12.

Before making reference to the results of the tests, it should be noted that a small

error in the code prevented the program from ever looking for a packing array with
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g® rows. After each step in the binary search, the code naturally rounds down when
determining the next value of b to explore. As a result, when it is searching for packing
arrays, the program will only check for arrays with sizes up to and including g — 1.

The most peculiar finding is that within each table, the tournament selection
algorithm found better covering arrays, while the quick convergence method found
better packing arrays. The only trials in which this was not the case is when the two
algorithms tied, or in the cases of CA(8,5: 1) and CA(5,6 : 1) in Table A.11 and in
the case of PA(5,4 : 1) in Table A.12. In some cases, one algorithm beat the other
soundly, as in the case of PA(6,5 : 1) throughout all three tables, and in the case of
PA(5,4:1) in Table A.10.

One other notable feature of the three tables is that in almost every case, the
tournament selection method is the faster of the two methods. This was expected, as
a particularly time consuming segment of code was a part of the quick convergence
algorithm at the time of testing. Since the testing occurred, the code has been im-
proved upon and although the new quick convergence algorithm runs faster than the
old one, no testing was done to see how the run times compared to the tournament
selection algorithm.

Without regard to runtime, the method of tournament selection appears to find
better covering arrays, while the quick convergence algorithm seems to be more ef-
fective in searching for packing arrays. These findings might be related to the size
of the structures sought. Perhaps the packing array for which we searched were not
as sparsely located in their search space as were the covering arrays. If this were so,
then it would be easier for a steepest-ascent-type algorithm to produce an object of

optimal fitness.

3.3.2 Point, Row and Column Crossover

The next step was to choose which crossover method should be employed to mate
the population members. Recall that the point crossover method randomly selects
a single pivot entry (¢,7) for each pair of arrays to be mated. If the pair of mates

contain entries A.,, and B,,, and the pair of offspring contain entries Cy,, and D,,,,
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then Crin = Amn (Dmn = Bmn) for m < iorm =i and n < 7 and Cpin = Bmn
(Dmn = Amn) for m > i or m =i and n > j. The row and column crossover methods
work in much the same way, except that the pivot entry selected for recombination
must have ¢ = 0 for the row method and j = 0 for the column method. At first
glance, it might seem that no one of these methods would hold a clear advantage over
either of the others: all three methods are simply different ways of mixing arrays, all
running with the same algorithmic complexity. However, after performing some tests,
some trends became apparent.

Referring once again to Tables A.10 through A.12, the tournament selection algo-
rithm equipped with the column crossover method found smaller covering arrays than
nearly any other tournament selection algorithm. The only two exceptions were the
algorithm employing the point crossover method, which found a smaller CA(5,6 : 1),
and the algorithm using a row crossover method, which found smaller CA(7,4 : 1)
arrays on the average. Unfortunately, the column crossover method took longer than
the others to run in every case except for when it was searching for a CA(8,5 : 1).
Therefore, ignoring runtime, when using the tournament selection genetic algorithm
to find covering arrays, the column crossover method should be used to find better
arrays. In particular, as the alphabet size g increases, the difference between the
runtime of the algorithm mating by column crossover and the runtime of the other
two becomes quite small (less than five minutes).

One more set of tests was performed to attempt to discern which crossover method
should be employed when looking for a covering array with the tournament selection
method. The algorithm was instructed to search for a CA(13, 11 : 1) with 198 rows
within a fixed period of time. This array does exist, but we intentionally supplied
various amounts of time within which it would be unlikely that the TS or the GA
algorithm would find the optimal array. For each specified amount of time, the algo-
rithm was given ten chances to cover as many ordered pairs as it could. The results
are summarized in Table A.13. The results show that the algorithm which employed
a row crossover method took less time on the average to complete a move, while the
algorithm using the point crossover produced the lowest average score in most cases.

While it is important to complete each move as quickly as possible, it is essential that
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each move be able to cover as many uncovered ordered pairs as pessible. Therefore,
when searching for covering arrays of larger dimension, the point crossover method of
mating should be used in order to cover a greater portion of the ordered pairs in less
time.

The results obtained for the quick convergence algorithm are not as easy to inter-
pret. While searching for a PA(7,5 : 1), the algorithms using the row and column
crossover methods excelled at finding large packing arrays, bettering the third algo-
rithm by an average of nearly one row per trial. However, for the other two sets of
trials, it was the algorithm which mated via the point crossover method which per-
formed better on the average. Furthermore, the only algorithm which took noticeably
longer to locate its packing arrays was the one mating by column crossover. This
suggests that the best algorithm is either the one using the point crossover method

or the one using the row crossover method.

3.3.3 Population Size and Number of Generations

The final step in optimizing the genetic algorithm was to select an appropriate initial
population size, together with a suitable number of generations over which the pop-
ulation could evolve. As with the testing for the SA and TS algorithms, the genetic
algorithm was tested while looking for the same three covering and packing arrays. In
order to get some additional data, two trials were added: one for the CA(7,5 : 1) and
one for the PA(7,5 : 1), both with the number of generations, M, set to 500. The
results of the search for covering arrays are presented in Table A.6, while the packing
array search results are located in Table A.7. In both cases, the genetic algorithm
employed tournament selection to select mates and then combined them using the
point crossover method. One set of heuristics was chosen in order to reduce the num-
ber of separate runs to be performed. Of all the combinations of genetic algorithm
heuristics, previous tests suggested that the algorithms employing the point crossover
method were the most effective in general.

Within the set of searches for either of the covering arrays, an increase in the num-

ber of generations clearly increased the ability of the algorithm to locate arrays with
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less rows. In the search for packing arrays, the effect of such an increase was a little
more subtle: while the average number of rows in the best structure found increased
in nearly every case, the maximum number of rows present in the best packing arrays
located remained almost identical after raising the number of generations allowed. In
most cases, as suggested by the complexity of the algorithm, an increase in the num-
ber of generations proportionally inflated the amount of time necessary to complete
the set of trials for a fixed value of S. For example, taking S = 100 and the sought
array to be CA(7,5 : 1), the algorithm iterated through 500 generations in roughly
20 minutes, 1000 generations in 31 minutes and 5000 generations in 3 hours.

In general, as with the increase in the number of generations, augmenting the
size S of the initial population has a positive effect on the capability of the genetic
algorithm to find better covering and packing arrays. Aside from the M = 500 trials
in Table A.7, the bulk of the best optimal row counts occur in the lower half of
the tables, when S > 100. Unfortunately, the runtime is sharply increased when
considering greater values of S. Taking the sought array again to be CA(7,5: 1), but
by increasing the population size by a factor of five (S = 500), the algorithm iterated
through 500 generations in roughly 85 minutes, 1000 generations in 180 minutes and
5000 generations in 23 hours. While the complexity of the algorithm suggests that
the runtime should increase with a factor proportional to S, the factor is not this high
for smaller values of M, but much worse for larger M.

One other question of interest deals with a claim of Ashlock’s [1], that it is more
effective, with regards to run time and usage of memory, to perform r runs with a
population size S in parallel, rather than a single run with a population size r - S.
Clearly, the use of memory is greatly reduced as it is primarily used to store a set
of S covering or packing arrays. As for effectiveness, it was shown in the previous
paragraph that a larger S tends to produce better average and optimal results. In
Table A.8, a list of times required for the genetic algorithm to complete a binary search
while searching for a CA(7,5 : 1) for three different generation sizes is presented.
For M = 500, there is no case where the total time required to run five trials with
population size S is less than the average time required to run one trial with population
size 55. For M = 1000, this only occurs for S > 60. Finally, Ashlock’s conjecture
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holds true for all values of S when M = 5000. We conjecture that this may be due
to the fact that it takes many generations for a smaller population to explore the
amount of search space covered initially by a larger population. The key to searching
through the space effectively is not through mating, which essentially homogenizes
the population, but through the mutation which constantly introduces new arrays
to the population. In a few initial steps, the randomly generated arrays in a large
population may differ in many entries, ensuring a wide initial coverage of the search
space. As both large and small populations homogenize over time, the rates of addition
of new members to these populations likely approach one another, allowing the smaller
population to catch up in terms of area coverage.

After he had observed an immense standard deviation in the amount of moves
required by a genetic algorithm to find an particular object, Ashlock concluded that
it would be more effective to run the program many times with a smaller population
size. As shown in Table A.15, our findings were similar. In fact, in two consecutive
runs contributing to the values resulting from the search for a CA(5,6 : 1), the genetic
algorithm found the object in 1740 moves in the first trial, and then in the next trial,
was unable to locate the object until it had completed 4, 514, 907 moves.

This idea of Ashlock’s also leads us to examine the effectiveness of the algorithm
for many values of M and S, where the quantity M - S is constant. In each such set of
trials, the total number of genes created through evolution is constant. In effect, this
test provides a measure of whether it is more productive to use a large population
size and evolve it over a short period of time, or to use a small population size and
evolve the population over a larger number of generations. The results for the trials
where the sought array is CA(7,5 : 1) are presented in Table A.9. Clearly, using a
smaller population size and a larger number of generations yields better arrays in less
time. Therefore, this shall be taken into account when using the genetic algorithm to

search for covering and packing arrays.
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3.4 Comparing the Three Algorithms

After having identified good ranges for the input parameters for each algorithm, three
tests were run in which all three competed to find the best arrays possible in the
shortest amount of time. As explained in Section 3.3.2, the first test forced each of
the metaheuristics to search for a CA(13,11 : 1) with 198 rows within a fixed period
of time. The amounts of time supplied were such that it was presumed that some of
the algorithms might not be able to find the optimal array within the time alotted.
Each algorithm attempted to find the desired structure ten times for each amount of
time specified. The results are summarized in Table A.13. It should be noted that
the input parameters were set to to = 10, §; = 0.999, L = 40, and § = 40. Also, the
tournament selection form of the genetic algorithm was employed. In each trial, the
number of possible moves was unlimited.

The results clearly show that the genetic algorithm, in all its forms, is by far
the weakest metaheuristic. Even in the later trials, where the algorithms were al-
lowed to run for three hours, the genetic algorithm could not cover the unordered
pairs as effectively as the other two algorithms. In fact, the SA algorithm located a
CA(13,11 : 1) with 198 rows many times, the earliest occurrence being for a time
limit of half an hour. Due to the complexity of the tabu search algorithm’s inner
loop, this metaheuristic is at a great disadvantage when running for shorter amounts
of time. However, the tabu search algorithm has a very powerful neighbourhood move
which allows it to cover many ordered pairs effectively in relatively few moves. By
the time the TS algorithm was searching for two hours, it was leaving less than ten
pairs uncovered across all possible pairs of columns.

A further comparison between the SA and TS algorithms can be made by com-
paring the number of basic operations each requires to locate a covering array. If the
SA algorithm found a CA(13,11 : 1) with 198 rows in 2.1 x 107 moves (less than 30
minutes) and the SA algorithm performs O(M (k2g% + kb)) operations per search, then
the SA algorithm required approximately 4.8 x 10'! operations to locate the array.
For the TS algorithm to match this operational efficiency, it would have to locate an
array in w%%‘%’"—’ moves. This quantity works out to be approximately 1.0 x 10°



CHAPTER 3. QUANTITATIVE ANALYSIS 42

moves. By the data in this table, it appears that the tabu search algorithm might
only need another hour or two to locate the array. In Table A.13, the relationship
between a given amount of time and the number of moves an algorithm made in
this time seems to suggest that the TS algorithm wouild require almost 35 hours to
perform this many moves. This suggests that the TS algorithm performs operations
much more efficiently than the SA algorithm.

A similar test was conducted for a CA(9,7 : 1) with 62 rows to determine if
the results would be similar when looking for a smaller structure. These results are
presented in Table A.14. Prior to commencing these tests, it was unknown whether a
CA(9,7 : 1) with 62 rows existed as the current upper bound on the number of rows
is 63. While the genetic algorithm again performed much more poorly than the other
two algorithms, it was interesting to note that by the time one hour had elapsed,
the genetic algorithm performed almost as well as the annealing algorithm. In fact,
giving the SA algorithm more time to search didn’t seem to help its performance at
all. After five minutes had elapsed, the TS algorithm was already outperforming the
SA algorithm and it continued to improve for each time increment. We believe that
if a CA(9,7 : 1) with 62 rows were to exist, there wouldn’t be many different ways to
construct it and that, throughout the entire search space, very few such arrays exist.
In fact, it would appear that very few arrays in the search space have a fitness of 20
or less. The results of Table A.14 strengthen our belief that while the SA algorithm
can quickly locate objects that are dense in the search space, it is not effective at all
in locating objects that are more difficult to find.

One other telling test was performed to compare the three metaheuristics. Just as
it is of interest to determine which algorithms are effective within a fixed time period,
it is equally interesting to determine which algorithms find a particular array in the
shortest amount of time. Two arrays were considered: a PA(7,6 : 1) with 19 rows
and a CA(5,6 : 1) with 42 rows. Through experience, it was observed that these
arrays were not particularly easy to find and may provide a challenge for the three
metaheuristics. The input parameters were set to tg = 1, §; = 0.925, L = 10, and
S = 60 for the packing array search, while S was augmented to 80 for the covering

array search. Again, the tournament selection form of the genetic algorithm was
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employed. Each algorithm was given ten opportunities to locate the specified array.
In each trial, the amount of time available to the algorithm was unlimited.

Referring to Table A.15 for the resuits of this test, it became apparent once again
that the genetic algorithm performs far worse than the other two algorithms. When
searching for the packing array, the genetic algorithm required roughly two hours to
find the array on 19 rows while on the average, the SA and TS algorithms accomplished
this feat in less than twelve seconds. While the SA and TS algorithms took roughly
the same amount of time to locate the packing array, the annealing algorithm required
300 times as many moves to succeed. These performance ratios were almost identical
when searching for a CA(5,6 : 1) with 42 rows.

It will be shown in the next chapter that the simulated annealing algorithm found
the best covering array results, while the tabu search bettered the most packing array
bounds. This was largely due to the fact that the only remaining improvable covering
array bounds were for values of £ and g large enough to slow the tabu search down
by a great amount. While the annealing algorithm could proceed through an entire
binary search in a matter of hours, the tabu search would take this long to look for a
single array.

Many more tests and trials were conducted for the genetic algorithm than for the
SA and TS algorithms, even though the former seemed immediately to be the weakest
of the three. While it may have been more productive to attempt to modify one of
the stronger algorithms, it was out of a sense of disbelief that the genetic algorithm
could perform so poorly relative to the other algorithms that so many attempts were
made to modify the structure of the genetic algorithm. Unfortunately, none of the
modifications performed on the GA algorithm produced changes in effectiveness dras-
tic enough to suggest that it was as well suited for finding good packing and covering

arrays as either of the other two algorithms.



Chapter 4

Bounds Improved by Randomized

Search

4.1 A Brief History of the Covering Array Prob-

lem

The most basic of results regarding the existence of optimal covering arrays sterns
from the realization that orthogonal arrays are in fact covering arrays where every
ordered pair occurs precisely once in every possible pair of columns. Clearly, if there
exists an OA(k, g), then we also have a CA(k,g : 1) with g rows. As explained in
Chapter 1, the existence of a set of | mutually orthogonal idempotent Latin squares
on g symbols implies the existence of an OA(l + 2, g) with g disjoint rows and hence
the existence of a CA(l + 2, g : g) with g° rows.

Many approaches have been taken when attempting to produce better bounds on
the size of a packing or covering array. Rényi first posed the problem of trying to find
maximal qualitatively ¢-independent g-partitions of a b-set. Independently, Katona
[12] and Kleitman and Spencer [13] completely solved the problem for ¢t = g = 2.
Gargano, Kérner and Vaccaro [9] then determined the first asymptotic bounds for the

problem. Their work shows that

ca(k,g:1)
log, k&

lim, 00 = 2.

44
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This result says nothing, however, about the relationship between %, g and ca(k, g :
1) for smaller values of k.

A variety of methods have been used to improve on this bound for smaller param-
eter values. Poljak and R6dl [21] developed the first set of upper bound improvements
that were useful for smaller k£ and almost a decade later, Poljak and Tuza [22] pub-
lished the first bound improvements which took the number of disjoint rows in the
covering array into account. Sloane [23] later published a series of results for g = 3
and small values of &, due to Applegate, Cook, Ostergard, and Sloane.

Stevens, Moura and Mendelsohn {27] have developed lower bounds on the sizes of
covering arrays, while Stevens and Mendelschn [26] have developed upper bounds on
the size of packing arrays. In [24], an extremely useful construction is presented. This
Blocksize recursive construction produces good upper and lower bounds on the size
of covering arrays, based on the bounds for arrays with smaller £. The following is a

direct result of the construction.
Theorem 4.1. [2{] Let n, m < g. Then,
ca(k, g : n) < miny;crxy(cali, g : n) + ca(¥,g : m) —m).

Clearly, this theorem becomes more powerful for higher m, which denotes the
number of disjoint rows in the base array. It is therefore desirable to consider using
covering arrays with as many disjoint rows as possible when attempting this construc-
tion to build arrays with larger k.

Stevens also uses a generalization of Wilson’s Theorem, a construction involving
group divisible designs and a method of completing IT'Ds to generate other upper
bounds on the size of covering arrays [24]. The least effective of the three is the
method involving the filling of holes in an IT'D, but this method is solely responsible
for providing the best known bounds for ca(4, 6 : n). This method will also be adapted
in Chapter 5 to produce some optimal covering arrays with alphabet sizes independent
of the columns in the array. Stevens, Moura and Mendelsohn [27] also provide lower
bounds for covering arrays by examining the intersection properties of set systems

and by presenting some set-packing arguments.
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Sloane’s initial work dealt with strength 3 covering arrays. These structures
have also been recently researched, culminating in the most recent publication of
Chateauneuf and Kreher’s [2]. Chateauneuf and Kreher construct objects called
starter arrays from one-factorizations of K5, and use these to obtain strength 3 cov-
ering arrays.

Stevens and Mendelsohn {26] have used recursive methods to provide bounds on
the size of packing arrays. They have considered packing arrays as error correcting
codes and generalized the Plotkin bound defined in Chapter 1 to tighten bounds on
the size of packing arrays. They also use the maximum sizes of packing designs to
improve the upper bounds on packing arrays containing a large set of disjoint rows.

Aside from these theoretical methods, metaheuristics have also been used previ-
ously in an attempt to achieve better bounds on the size of covering arrays. In [24],
Stevens designs a simulated annealing algorithm similar to our own, which was used
to find covering arrays with small parameter values. Stevens’s algorithm differed from
the one implemented here in its main loop. Instead of decreasing the temperature
after every attempted move, Stevens’s algorithm performed a number of moves, N,
at a fixed temperature and kept the best array within the chain of N moves. The
number N was input by the user. The temperature was decreased in the same fashion
as ours and the kept array was used as the starting point of the next chain of N
moves. The algorithm was successful for small values of £ and g, finding many new
upper bounds at the time his thesis was published. Seven of these bounds are still
the best known and are labelled as such in Table B.2.

In [19], Nurmela devised a tabu search algorithm to find similarly small covering
arrays. The results of Nurmela’s tabu searches were very successful, lowering many
bounds in the range 3 < g < 10 and & < 15. Nurmela’s tabu search uses a more
sophisticated heuristic than our algorithm. At each step, two columns in the array
and an ordered pair not covered in those columns are selected at random. A list of
rows in the array is generated, such that every row in the list requires a single element
change to cover the pair in the selected columns. The list of these changes required to
cover the pair forms the set of moves at any step. The cost of each move is calculated

and the move that is most beneficial to the fitness of the array is selected. If there is
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a tie, one is selected at random. Also, Nurmela rules that a move is forbidden if the
element to be switched is an element that has been switched in any way over the last L
moves, where L is the supplied tabu lifetime. Nurmela claims that the computations
required to complete each move are quick, but offers no data with regards to the
degree of computation speed. Nurmela’s more sophisticated tabu search heuristic
does reduce the size of each array’s neighbourhood, suggesting that his tabu search is
likely able to complete each move in less time.

Researchers at Bellcore labs have also devised an algorithm referred to as the
Automatic Efficient Test Generator, or AETG [3, 4, 6]. As opposed to our
metaheuristics, which manipulate the entries in an array of fixed size, the AETG
algorithm starts with just one row of the array and then builds the array one row at
a time as follows. The algorithm refers to a list of possible rows that could be added
to the array at each step and greedily selects the row which covers the most as yet
uncovered pairs. Nurmela [19] claims that while the AETG algorithm is fast, it does
not always generate optimal arrays. Furthermore, as presented in [2], the methods of
Chateauneuf and Kreher performed better than those of the AETG system in every
trial when searching for strength 3 covering arrays. As the AETG algorithm has
not yet been fully described in publications and very little specific data is known
about its speed in finding covering arrays, it is impossible to conjecture whether its
runtime compares to that of our algorithms. The only bound attributed to the AETG
algorithm is that of ca(10,20 : 1) < 180, to which reference is made in each of the

papers cited above.

4.2 Covering Arrays

As mentioned before, there is a lot of active research into lowering the best known up-
per bounds on the size of covering arrays. Consequently, very few better bounds were
found by us. Those bounds that we improved upon were for arrays with parameters
k and g not considered by Stevens and Nurmela.

The bounds improved by our metaheuristic searches are presented in Table 4.1.
Of these sixteen improvements, the first was found by both the SA algorithm and
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Value Improved | New Bound | Previous Bound
ca(16,6 : 1) 65 rows 69 rows
ca(16,7:1) 88 rows 91 rows
ca(16,8 : 1) 113 rows 120 rows
ca(17,8 : 1) 116 rows 120 rows
ca(18,8 : 1) 118 rows 120 rows
ca(16,9 : 1) 145 rows 153 rows
ca(17,9:1) 148 rows 153 rows
ca(18,9:1) 151 rows 153 rows
ca(16,10: 1) 177 rows 180 rows
ca(13,11:1) 198 rows 231 rows
ca(14,12: 1) 205 rows 231 rows
ca(15,12: 1) 210 rows 231 rows
ca(16,12: 1) 216 rows 231 rows
ca(17,12: 1) 221 rows 231 rows
ca(18,12:1) 225 rows 231 rows
ca(15,13: 1) 253 rows 255 rows

Table 4.1: New covering array bounds discovered by our metaheuristic searches.

the TS algorithm in 422568 moves, 638 seconds and 2129 moves, 83286 seconds,
respectively. The other fifteen results were only found by the simulated annealing
algorithm. Clearly, this does not mean that the TS algorithm can not find these
arrays, but that, given the parameter sets we supplied, it was unable to locate them
in a reasonable amount of time.

Other methods were used to improve the most recent table of bounds we could
locate, found in [2]. We applied Stevens’s Blocksize recursive algorithm to obtain
better bounds for 26 < kK < 30, ¢ = 5, and for 17 < k < 30, g = 6. Also, the hole
of an ITD(5,18,4) was filled to get ca(k,g : 1) = 324 for ¢ = 18, k = 4,5. These
methods are described explicitly in [24].

For a complete table of the best known upper and lower bounds on covering arrays
for g < 20 and k < 30, please refer to Table B.2 and Table B.3.
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4.3 Packing Arrays

Recently, packing arrays have been much less studied than covering arrays. Consid-
ering that the possible sizes of packing arrays are bounded both above and below, as
opposed to covering arrays which can be as large as required, we saw a good oppor-
tunity to use the metaheuristic search techniques to tighten whatever bounds were
loose.

The most recent table detailing the best known bounds on the size of packing
arrays is found in [24]. This table contains 60 loose lower bounds. After performing
our metaheuristic search, 53 of these lower bounds were improved. Moreover, 13 of
these improvements led to tight bounds. _

Of the 53 new best bounds, 31 were found by the SA algorithm, 37 were found
by the TS algorithm and 26 were found by the GA algorithm. Furthermore, fourteen
of these new bounds were located solely by tabu search, seven new bounds were
located solely by simulated annealing and another seven were located solely by the
genetic algorithm. In five cases, the genetic algorithm was the only algorithm of
the three unable to find the new bound within the allotted number of trials. This
situation also occurred with the annealing and tabu algorithms, once apiece. One
interesting point to note is that in the cases where both the genetic algorithm and the
simulated annealing algorithm found a new bound, the genetic algorithm required 40
percent as many generations as the SA algorithm required moves to locate the solution.
Considering the difference in time between a single run through the annealing loop and
the processing time for an entire generation in the genetic algorithm, this demonstrates
how much more time it took the GA algorithm to find the same solution.

For a table of the best known upper and lower bounds on packing arrays for g < 7
and k < 29, please refer to Table B.4.



Chapter 5
Heterogeneous Alphabet Sizes

One of the primary motivations for the study of covering arrays is to attempt to
develop efficient schemes for testing software and network stability. As stated in
Chapter 1, one can represent each of the k£ nodes in a network or k variables in a
computer program by a column in a covering array, where the nodes or variables can
each be in one of g states. Then, each row of the array represents a trial in a testing
scheme where the entry with coordinates (7, j) corresponds to placing node or variable
7 in state j. The ordered pair covering property of the array then guarantees that
after all of the tests have been performed, each pair of nodes will have taken on every
possible ordered pair of states. Unfortunately, the vast majority of these real-world
systems do not contain objects which all take on the same fixed number of states.
This fact suggests that most of what is already known about covering arrays may be
too simplified to be widely applicable.

In order to construct covering arrays which are more useful for creating real-world
tests, one must consider cases where column ¢ has alphabet size g;, where it is possible
that g; # g; for two columns ¢ and j in the array. We extend our definition of a strength

2 covering array to include these cases.

Definition 5.1. A strength 2 covering array of type Hle gi, denoted symbolically as
CA(H:?:1 gi :n), is abx k array A. The entries in column i are filled from a g;-ary
alphabet, which is taken to be Zgy,, by convention. Given any two columns ¢ and j and

any ordered pair (u,v) from Z, x Z,., there exists at least one row r such that entry

50
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a.; = u and entry a,; = v. Moreover, there is a set of n < min{g;} disjoint rows. The

smallest number of rows possible in a C'A(Hf=1 g: : ) is denoted by ca(l_[:.’=1 gi 1 n).

By this definition, a covering array CA(k,g : n), as defined in Chapter 1, is now
denoted by CA(g* : n). Furthermore, the Blocksize Recursive construction of Stevens

can be modified as follows.

Theorem 5.1. For given ¢1 < g2 < ... < gk and any p, we have
ca(gtgs - - -gx : ) < (ca(gigz -~ -gk : 1) + ca(gy : m) —m),
where m is the number of disjoint rows in the appended array.

The question of interest remains to try to find the smallest possible value for
ca(Hf=1 g: :n). For k < 3, the problem was solved entirely in [18] through the use of

the following theorems.

Theorem 5.2. [18]
ca(gigz : ) = 192

Theorem 5.3. [18]

ca(g19293 : n) = 9293,
where it is assumed that g1 < g2 < gs- The only ezception is forgy, = g =gz =n =2,
for which ca(23 : 2) = 5.

In order to completely solve the problem for & = 4, two Lemmata are required.
Lemma 5.1 considers the effect of increasing the size of some g; on the value of

ca(l_[f:1 gi : n), while Lemma 5.2 describes the result of decreasing the value of some
gi-
Lemma 5.1. [18]

Assuming that g1 < g2 < ... < gk, we have

ca(gigs..-(git+e)...gr :min{n+e,q})<calg192...6i..-9x 1) + € gr,
where k' =k — 1 if i = k and k' = k otherwise.

Proof. Given a CA(g192---9k : 1), add to it e - g new rows to be filled in by the

appropriate alphabet members. The only pairs that remain to be covered in order to
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transform the old array into a CA(g1g2-..(g: +€)...gx : n) are those pairs with a
coordinate in column ¢ belonging to the alphabet Z ..\ Z,,. Fill the empty entries
in column i with each element of this alphabet appearing g;- times apiece. As gi is
the largest possible alphabet size, regardless of the value of 7, the set of e - gp rows is
clearly sufficient to cover the remaining ordered pairs. As the symbols in the empty
columns added can be placed independently, the set of disjoint blocks can be increased

by no more than e rows.
ad

Lemma 5.2. [18/
Assuming that g1 < g2 < ... < gr, we have ca(g1ga...(g: —€) ... gz : min{n, g; —

e}) < ca(g1gz--- i g : 71)-

Proof. Given a CA(g192 - .. gk : 1), relabel all of the entries in column 7 so that any
entry from Zg, \ Zg,_. is arbitrarily mapped to some element of Z,,_.. As the original
structure was a covering array, so is the new structure as there are no new ordered
pairs to cover. Also, given that the original covering array contained n disjoint rows,
this quantity is only necessarily reduced in the case where the alphabet size g; — e

becomes less than n.
a

With these two results in hand, we show the following.

Theorem 5.4. ca(g1929394 : ) = g3ga, where it is assumed thatn < g; < gy < g3 <

gs. The only ezceptions are as follows:

e ca(24:1)=5;

ca(2*:2) =6;

ca(233! : 2) =7;

ca(3% : 2) = 10;

ca(3*:3) =11;
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e ca(3%4!:3) =13;
e ca(6%:n) =37 forn < 5; and
e 37 < ca(6*:6) < 38. This is the only open case.

Proof. For g3 # 2,3 or 6, then by results in [5, 28] there exists a set of two mutually
orthogonal idempotent Latin squares of side g3. Therefore, for all such g3, there exists
a CA(g; : g3) with g3 rows. By Lemma 5.1 and Lemma 5.2, we have ca(g1929394 :
n) = gsgs.

For g3 = 2, if at least one of ¢g; and g, are equal to 1, then the case in question
is covered by either Theorem 5.3 or Theorem 5.2. THerefore, we may assume that
the only cases left are the CA(23g} : 1) and CA(23g} : 2), where g4 > 2. It has been
shown that ca(2* : 1) = 5 [12] and ca(2* : 2) = 6 [24]. As for the smallest possible

0 06 00
1 1 10
0 1 11
1 0 01
0 0 1 2
1 1 0 2

Figure 5.1: A CA(223! : 1) with six rows.

CA(233! : 1), it must contain at least 6 rows to cover all ordered pairs from Z, x Z.
A CA(233! : 1) with exactly 6 rows is presented in Figure 5.1.
Now consider the partially filled CA(233! : 2) in Figure 5.2. To cover all ordered

0 0 0 O 0 0 0 O
x x x 0 1 1 1 0
1 1 1 1 1 11 1
vy v y 1 1 01 1
2 011 2

2 1 0 0 2

01 0 1

Figure 5.2: An incomplete CA(233! : 2) with six rows; a CA(233! : 2) with seven
TOwsS.
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~ O - O 0O K =0

O = O MO
= O OMFEOMPRPEOO
WWwWwMNONN = =OOO

0
Figure 5.3: A CA(2%4! : 2) with eight rows.

pairs between column z and column 4, for i < 4, in only six rows, all entries labelled
z must be 1 and all those labelled y must be 0. It is easy to see that this does not
leave enough clearance in the final two rows to cover pairs (0,1) and (1,0) within the
first three columns. A CA(233! : 2) with exactly 7 rows is presented in Figure 5.2.
Finally, a CA(234! : 2), must contain at least 8 rows to cover all ordered pairs from
Zy x Zg. A CA(2%4 : 2) with precisely 8 rows is presented in Figure 5.3. Lemma 5.1
now shows that ca(23g} : n) = 2g, for all g4 > 4.

0 0 0 O 0 0 0O
01 2 0O 1 2 1 0
1 2 1 0 21 2 0
1 1 11 1 111
0 2 01 0 2 21
1 0 2 1 2 0 0 1
1 1 0 2 1 1 0 2
0 0 1 2 2 0 1 2
0 2 2 2 0 2 2 2

2 2 0 3

60 11 3

1 0 2 3

Figure 5.4: A CA(2'3% : 2) with nine rows; a CA(3%4! : 2) with twelve rows.

Consider the case g3 = 3. An OA(4, 3) with nine rows exists, therefore by Lemma
5.1 and Lemma 5.2, we have ca(g;g2394 : 1) = 3¢y, for g1 < go < 3 < g4. A
CA(2'3% : 2) must contain at least 9 rows to cover all ordered pairs from Z3 x Zj.

Figure 5.4 displays an optimal CA(2!33 : 2) with precisely nine rows.
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Combining the first array in Figure 5.4 with Lemma 5.1 and Lemma 5.2, we have
ca(2g23g4 : 2) = 3g4 for all g > 3 and 2 < g < 3. It is known that ca(3%: 2) = 10
[24]. CA(3%4! : 2) must contain at least 12 rows to cover all ordered pairs from
Z3 x Z4. The rightmost array in Figure 5.4 displays an optimal CA(334! : 2) with
exactly twelve rows. Applying Lemma 5.1 to the second array of Figure 5.4 yields
ca(33g) : 2) = 3g4 for all g4 > 4. In all cases where n = g3 = 3, we must have
g1 = g2 = 3 as well. It is known that ca(3* : 3) = 11. Applying Lemma 5.1 to the
optimal CA(3% : 2) with ten rows, we get ca(334! : 3) < 13. We need only show that
a CA(3%4! : 3) with twelve rows can not exist to complete this case.

0 0 0 O 0 0 0 O
x x x 0 1 1 2 O
x x x O 2 2 1 0
1 1 11 1 1 1 1
y v y 1 0 2 2 1
y v vy 1 2 0 0 1
2 2 2 2 2 2 2 2
z 2z z 2 1 0 1 2
z z 2z 2 01 0 2

0 3 u u 0 3

1 3 v 1 3

2 3 v 2 3

Figure 5.5: Attempting to construct a CA(334! : 3) with twelve rows.

Start with the leftmost incomplete CA(3%4! : 3) shown in Figure 5.5. In order to
cover all ordered pairs between column 7 and column 4, for 7 < 4, in exactly twelve
rows, all entries labelled z must be 1 or 2, all those labelled ¥ must be 0 or 2 and all
those labelled z must be 0 or 1. Also, without loss of generality, it has been assumed
that the final three entries of column 3 are 0,1 and 2, in that order. To cover the
most ordered pairs possible within the first three columns, none of the rows of values
z, y, or z should contain a string of three consecutive 0s, 1s or 2s, as those pairs are
already covered. Without loss of generality, let the two rows of values z be 1,1,2 and
2,2, 1, respectively, let the two rows of values y be 0,2,2 and 2, 0, 0, respectively and
let the two rows of values z be 1,0,1 and 0, 1, 0, respectively. Without making this
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assumption, some pair of columns 1, 2 and 3 would be left with at least four pairs
to be covered in the last three rows of the array. The array created is the rightmost
array depicted in Figure 5.5.

Each of these three newly filled pairs of rows covers four new ordered pairs and
it is easy to see that no other arrangement of symbols can do better. Our choices
for entries labelled z, ¥ and z have left only six pairs uncovered within the first three
columns. Clearly the final three entries in each of the first two columns must be 0, 1
and 2, in some order. Setting the two entries labelled u to be 1, 2, respectively, covers
three of these pairs, leaving only (2,1) in columns 1 and 2, (0,2) in columns 2 and
3, and (0,1) in columns 1 and 3 uncovered. Clearly, these can not be covered in the
remaining two rows. In fact, the best that can be done is achieved by setting the two
values v to be 0 and then completing the rest arbitrarily. This leaves one ordered pair
uncovered. Therefore, one needs at least thirteen rows to construct such an array,
giving us ca(3%4! : 3) = 13. Lemma 5.1, combined with the fifteen row CA(3%5! : 3)
in Figure 5.6 finally gives us that ca(33g4 : 3) = 3¢, for all g4 > 5.

0 0 0O
1 1 2 0
2 210
1 1 11
0 2 2 1
2 0 01
2 2 2 2
01 0 2
1 01 2
0 ¢ 2 3
1 2 0 3
211 3
0 0 1 4
1 1 1 4
2 2 2 4

Figure 5.6: A CA(335! : 3) with fifteen rows.

Finally, we examine the case g3 = 6. An ITD(6,4 : 2) with 32 rows exists as

shown on the left side of Figure 5.7. Recall that this structure covers all ordered pairs
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4 4 5 4 4 4 4 4

0 0 4 0
0 1 5 1
0 2 2 4
0 3 3 5

0 4 0 2

5 5 5 4

4 5 4 5

4 5 4 4
5 & 5 4
5 4 4 4

5 4 5 5

0 0 0 6

1
2 2 2 6
3 3 3 6
5 4 4 6

4 5 5 6

0 5 1 3

L}

1 0 4

1

0

1 3 41

MANMNMANANNDFO AT FHFDMANAOO AN ANONO M
ANNMOOFO AN ANNMDANIFIND AN HANHMO
FWO—ANMNMFLOANMNMFINOANMNO~ANM

N NN AN AN ANANNMNMMMMMO At W

: 5) with 36 rows and a

Figure 5.7: Subarrays required to construct a CA(5'6®

CA(637' : 6) with 42 rows.
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from Zg x Zg in every pair of columns, except that no ordered pair from {4,5} x {4,5}
occurs in any pair of columns. Collapse the set of symbols in the last column into
the set of symbols of Z5, making sure that the symbol 5 in row 15 is replaced by a
1 and that the symbol 5 in row 20 is replaced by a 3. Then, by affixing the second
array in Figure 5.7 to the bottom of the collapsed IT D, we get a CA(5!6° : 5) with
36 rows, where the disjoint rows are rows 1, 12, 15 and 20 of the IT' D and row 1 of the
affixed array. Furthermore, if we instead affix the rightmost array in Figure 5.7 to the
bottom of the IT D without collapsing the symbol sets, we get a CA(637" : 6) with 42
rows, where the disjoint rows are rows 1, 8,18 and 27 of the IT'D and rows 4 and 8 of
the affixed array. It is currently unknown whether ca(6* : 6) is 37 or 38. Both bounds
are derived in [24]. Combining the CA(5'6° : 5) of Figure 5.7 with Lemma 5.2 yields
ca(g1g26® : n) =36 foralln < g; < 6, go < 6 and ¢g; < g;. Applying Lemma 5.1
and Lemma 5.2 to the CA(637! : 6) of Figure 5.7 gives ca{g;9:6g4 : n) = 6g4 for all
n<g<g2<6and g4 >7.

O

Most covering arrays with higher values of k can also be constructed in a similar
fashion. Once an orthogonal array is constructed, the alphabet expansion and reduc-
tion lemmata can be used to obtain a lot of the remaining cases. Unfortunately, as
k grows, there exists less OA(k, g) as it becomes much more difficult to find smaller
values of g for which there exist ¥ — 2 mutually orthogonal Latin Squares of side g.
Furthermore, for cases with higher n, we would like to start with either an optimal
covering array or a set of £ — 2 mutually orthogonal idempotent Latin Squares of side
g to construct a covering array with the appropriate number of disjoint rows. As with
the ordinary Latin squares, these large sets become scarce for larger k£ and we must

rely more on results known about ordinary covering arrays.

Theorem 5.5. For g4 # 4,6,10, ca(g19293949s : n) = gags, where it is assumed that
n< g1 <92 <93 < gy < gs. For gy = 4, ca{g19293495 = 1) = gags, where the g;

remained ordered in the same way as above. The only exceptions are as follows:

e ca(2%:1) =ca(2%:2) =6,
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e ca(2%31:2)=7;
e ca(2'3*:1) = 10;
e ca(3%:1) =11;
e ca(3%:2) =ca(3%:3) =12;
e ca(3*4! : 2) = ca(3%4! : 3) = 13;
e 10 < ca(2!3*:2) <11;
This last one is the only open cases for g4 < 3.

Proof. For g4 # 2,3, 6, 10, there exists a set of 3 mutually orthogonal Latin squares [5],
from which an OA(5, g4) with g7 rows can be constructed. Lemma 5.1 and Lemma
5.2 can be used to obtain the result for n = 1 and g4 # 2,3,6,10. Moreover, for
gs 7 2,3,4,6,10, there exists a set of three mutually orthogonal idempotent Latin
squares [5], from which an OA(5,94) with g2 rows, g4 of which are disjoint, can
be constructed. The same lemmata are used to get the result for all n < g, and
gs ¥ 2,3,4,6,10.

0 0 0 0 O 0 0 0 0O
1 1111 11110
1 1100 0 01 11
1 0 011 1 10 01
01 01 0 0 11 0 2
0 01 01 1 0 01 2

Figure 5.8: A CA(2°:2) and a CA(243! : 1) with six Trows apiece.

For g; = 2, Katona shows in [12] that ca(2® : 1) = 6. In order to not reduce this
situation to a case equivalent to one with lesser k£, we may assume that g; = g2 = g3 =
2. Lemma 5.1 can be applied to the CA(2%3! : 1) with six rows in Figure 5.8 to get
ca{g192932gs : 1) = 2gs for g; < g2 < g3 <2 and g5 > 3. A CA(2%3! : 2) must have at

least six rows, in order to cover all pairs from Z, x Z;. However, it was shown in the
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previous proof that one requires at least seven rows to construct a CA(233! : 2), which
is a subarray of the object we are looking to construct. Therefore, ca(243' : 2) > 7.
A CA(2%3' : 2) and a CA(2%4! : 2) with seven and eight rows, respectively, are
presented in Figure 5.9. Finally, Lemma 5.1 can be applied to the CA(24! : 2) to
show ca(g1929329s : 2) = 2gs for all remaining cases of g1, g2, ga, and gs.

0 0 0 0O 0 0 0 0 O
11110 1 111090
11111 0 00 01
01 0 11 11 1 11
0 01 1 2 0 61 1 2
11 0 0 2 1 1 0 0 2
1 01 01 01 0 1 3

1 01 0 3

Figure 5.9: A CA(2%3' : 2) with seven rows and a CA(2%4' : 2) with eight rows.

For gs = 3, [23] reports that ca(3% : 1) = 11. A CA(2?3% : 2) with nine rows is
presented in Figure 5.10. Together with Lemma 5.2, we have ca(2%g33% : n) = 9 for
n<2and g5 =2,3and 9 < ca(2!3*: 1) < 11. It is also known that ca(3° : 2) = 12
and ca(3°: 3) = 12.

0 000D x 0 0 0 0 0000 0
01210 x 0 1 1 1 1 01 1 1
1 01 20 x 0 2 2 2 1 02 2 2
1020 1 y 1 0 2 1 0102 1
1 111 1 vy 1 1 0 2 1 110 2
010 2 1 y 1 2 10 01 210
0110 2 z 2 0 1 2 0 201 2
1 001 2 z 21 2 0 02120
1 1 2 2 2 z 2 2 0 1 1 2 2 0 1

1 20 2 0

Figure 5.10: A CA(223% : 2) with nine rows; an incomplete CA(2!3% : 1); a CA(2!3*:
1) with ten rows.
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Applying Lemma 5.2 to the value ca(3® : 2), we get 9 < ca(2!3* : 2) < 12.
Consider the incomplete CA(2!3% : 1) in Figure 5.10. The only way to construct the
CA(3* : 1) subarray is to use the MOLS construction mentioned in Chapter 1[5].
Symbols 0 and 1 must each occur in each set of cells z, ¥ and z. Choose a symbol,
say 0, to be placed first, once in each set of three rows. Initially, 24 pairs are yet to
be covered between the first column and each other column. Due to the structure of
the MOLS which were used to build the ternary subarray, each symbol must occur
exactly once in each column in each set of rows prefixed by z, ¥ or z. Also, in each
row prefixed by y or z, the symbols in columns 3,4 and 5 must all be different by
orthogonality. This guarantees that placing a 0 once in each set of three commonly
prefixed rows results in one of two cases: either one pair is covered three times in a
single pair of columns or all but three pairs get covered, with each uncovered pair
straddling a different pair of columns (1,%), for 7 = 3,4,5. The first case covers 10
pairs, but requires a 0 to be placed in two extra cells in the first column, thereby
forcing the usage of five rows in the array. The second case covers 9 pairs. Consider
placing a 0 in the first and fourth cells of the first column. In order to avoid the first
case, the third 0 must be placed in the second or third cell labeled z. Both cases leave
some pair (0, ) uncovered, for 7 = 1 or 2. Clearly, as each symbol only occurs once
per row in each of columns 3,4 and 5, it must be impossible to cover the remaining
pairs from {0} x Z; in a single row. As a result, five rows are needed to cover all
pairs of {0} x Z3. No assumption was made with regards to the symbol tc be placed
first and therefore, it must be impossible to cover all pairs from Z; x Z3 in less than
ten rows. A CA(2'3% : 1) with ten rows is presented in Figure 5.10. This result also
shows that 10 < ca(2'3* : 2) < 11 and that 10 < ca(2!3% : 3) < 12. We do not believe
that a CA(2'3* : 2) with less than 11 rows can be constructed. In fact, the best that
we have achieved is a CA(2!3% : 2) with 10 rows having 3 pairs uncovered, all within
the same pair of columns.

A CA(3%4! : 3) must have at least twelve rows, in order to cover all pairs from
Z3 X Z4. It was shown in the last proof that thirteen rows are needed to construct a
CA(334! : 3). This is a subarray of the object we are looking to construct, so we have
ca(3%! : 3) > 13. A CA(3%4! : 3) with thirteen rows is presented in Figure 5.11. The
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cells labelled z may be filled arbitrarily from Z3.

0 0 0 00O 0 0 0 0O 0 0 0 0O
1 21 2 0 112 2 0 11 2 2 0
21 2 10 2 2110 2 2110
0 0 2 2 1 c 2 0 2 1 0 2 0 2 1
1 2 011 1 1 1 1 1 1 1111
21 1 01 2 0 2 0 1 2 0 2 01
0 2 2 0 2 6 1 1 0 2 01 10 2
11 06 2 2 1 0 01 2 1 0 01 2
2 01 1 2 2 2 2 2 2 2 2 2 2 2
0 111 3 1 2 x 0 3 0 0 2 1 3
1 0 2 0 3 21 0 x 3 1 21 0 3
2 2 0 2 3 0 x 2 1 3 21 0 2 3
x 01 2 3 0 01 2 4

1 1 2 0 4

2 2 01 4

Figure 5.11: A CA(3%! : 1) with twelve rows; a CA(34! : 3) with thirteen rows; a
CA(3%5! : 3) with fifteen rows.

Also shown in Figure 5.11 are a CA(3%4! : 1) with twelve rows, as well as a
CA(3%5! : 3) with fifteen rows. These two arrays, together with Lemma 5.1 show the

result for all arrays with g4 = 3, completing the proof.
]



Chapter 6

Conclusion

6.1 Summary of Results

We implemented three metaheuristic algorithms to search for better bounds on cover-
ing and packing arrays. The simulated annealing, tabu search, and genetic algorithms
were implemented, taking into account comments from literature and experimental
data in choosing the algorithms’ input parameters. All three were able to find new
bounds on the size of packing arrays with the TS algorithm finding the majority of the
new bounds. The tabu search algorithm also improved on the bound for CA(16,6),
while the simulated annealing algorithm found new bounds on that and four other
covering arrays.

After comparing the three algorithms, we found out that the genetic algorithm
was ineffective at finding quality arrays, relative to the performance of the SA and TS
algorithms. Not only did the genetic algorithm take more time to execute moves, but
it seemed to require more moves to find a good covering array. The SA algorithm,
capable of executing many moves in a very short time, was very useful for finding
covering arrays of various sizes. However, when the size of an array’s neighbourhood
was smaller, the TS algorithm was often able to find much better arrays, as shown in
Tables A.5 and A.14. In particular, the results of Table A.14 suggest that while the
SA algorithm operates very quickly, it does not converge to optimal regions in the

search space as well as the TS algorithm. In this case, by a smaller neighbourhood
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we mean arrays with £ < 9 and g < 7. These findings were purely experimental.

One way to search for covering arrays while combining the strengths of these
two algorithms would be to consider some values of M, k and g and to run the SA
algorithm from a very large upper bound for b, say b > il"—zgz—k. While processing
through the binary search, either the algorithm would find covering arrays at each
step or it would output the best score it was able to find before performing M moves.
Values of b for which the SA algorithm left only a small number of pairs uncovered
could be attempted again, using the more powerful TS algorithm. This process would
be particularly useful as the SA algorithm could provide a quick glimpse at those
values of b for which a CA(k, g : n) with b rows might exist, at which point the much
slower TS algorithm could used to perform a more thorough search. ‘

We believe that while our algorithms may not have produced as many new bounds
as expected, metaheuristic search algorithms are useful for finding better bounds on
covering and packing arrays where the best known constructions do not produce
very tight bounds. Metaheuristic searches have been performed before by Stevens
and Nurmela and their algorithms were very successful for smaller parameter sets.
Unfortunately, the amount of memory required to store information needed for more
complex heuristics may become too great for larger parameter sets, possibly causing
their algorithms to run very slowly in these cases. Our algorithms used very simple
heuristics and were able to improve on bounds for structures as large as an 11 x 198
array with entries from a 13-ary alphabet.

After many trials with large values of M, the tabu search algorithm was unable to
improve the known bounds on certain small covering and packing arrays, suggesting
that the current bounds might be tight. The covering array bounds that could not be
improved upon after this sort of extensive testing were the following: ca(8,3 : 1) < 13,
ca(5,4 : 3) < 17, ca(5,4 : 4) < 18 and ca(9,7 : 1) < 63. In particular, if this
last bound were tight, it would refute a conjecture of Stevens’s, that for a fixed g
and n, ca(k + 1,9 : n) —ca(k,g : n) < g — 1. For packing arrays, some of the
seemingly unbeatable bounds were pa(5,4 : 2) > 12, pa(5,4:3) > 9, pa(8,5:3) > 9,
pa(9,6 : 4) > 12, and pa(10,6 : 4) > 9.

As well as using search algorithms to construct covering and packing arrays, we
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considered the problem of determining the minimum number of rows for a covering
array with potentially different alphabet sizes for each column. Aside from one case,
the problem for k¥ < 4 was completely solved. This was accomplished by applying
Lemma 5.2 and Lemma 5.1 to known orthogonal and covering arrays and constructing
the rest of the examples by hand. We also presented some partial results for the case
k = 5, not handling the solutions to the cases where the second largest alphabet size
was 4, 6 or 10.

6.2 Future Endeavours

The amount of time required to proceed through a full binary search for a CA(k, g : n)
for larger values of £ and g limited the amount of parameter sets that could be tested
over the course of researching and writing this thesis. It is possible that our algorithms
are able to produce better bounds for many as yet untested parameter sets. We will
continue to search for new bounds until the date of publication.

The major barrier to finding more results using metaheuristics search algorithms
is that of time. Many of the structures created in the code could have been eliminated
to reduce runtime, but they were kept as it was never decided whether or not they
would be required. Within the BKG_Array structures, only one of the score arrays
was ever used to evaluate the objects. Nonetheless, we would like to explore ways
of using the other score arrays to modify the algorithm heuristics. For example,
rather that having the TS algorithm randomly select an array at each step from a set
of equally fit neighbouring arrays, the information contained in the structure which
counts the number times each member of the alphabet occurs in any column could be
used to preserve some sort of balance property. While including these score arrays in
the BKG_Array class does not affect the complexity of any of the algorithms, there
is a time cost associated with updating them, which increases with k, g and b.

The one member function which is the most expensive is fill_pair_arrays, which
fills the pertinent score arrays after the generation of a BKG_Array. This func-
tion executes O(k%(g® + b)) operations when called. In the annealing and tabu al-

gorithms, this is only performed once and outside of the main loop, thereby having
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no influence on the complexity of these algorithms. Unfortunately, in the genetic al-
gorithm, depending on the mating method used, O(S) offspring arrays are produced
and this in turn raises the complexity of the algorithm to O(SMk?(g? +b)). We could
not devise an alternative to tabulating the pairs occurring by using the count array
ord_pair_chk_array. If there were a local way to count the occurrence of pairs, then
the complexity of the genetic algorithm would be reduced to O(SMbk?).

After the three randomized search algorithms were selected, we wanted to test
the effectiveness of variations on these algorithms. We were able to implement a
few variations on the genetic algorithm, for different population culling methods and
for different crossover strategies. Unfortunately, none of these implementations were
significantly more effective than any other, to the point where it could compete with
the SA and TS algorithms. Some alternative implementations of the annealing and
tabu search algorithms were mentioned in Chapter 2, but none were attempted. It
would be interesting to see if any of these alternate versions of the more successful
algorithms are any more effective than their counterparts implemented over the course

of this thesis.

6.3 Two Generalizations of Covering Arrays

The primary application of covering arrays discussed in Chapter 1.3 was that of soft-
ware or network testing. Unfortunately, as mentioned in Chapter 5, most real life
systems of this sort do not conform to the basic definition of a covering array. In
order to make covering arrays fully applicable, one must consider the case of general-
ized covering arrays with non-uniform alphabet sets for each column. There is much
work left to be done on this problem. As k& becomes larger, we have fewer values of
g for which there exists a set of K — 2 MOLS and therefore, more special cases that
must be constructed by some alternative means. While most of the examples dis-
played in the Figures of Chapter 5 were constructed by hand, this becomes a difficult
task for even £ = 5 and a second largest alphabet size g; of six. Furthermore, the
constructions developed for basic covering arrays may not work as well when gener-

alized for heterogeneous alphabet covering arrays. We propose that for these special
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cases, an alternative to developing constructions would be to use metaheuristic search
techniques. In particular, the code we have written to search for covering arrays with
uniform alphabet size may be modified to construct these objects as well. While the
algorithms themselves would sustain only minor changes, the method of evaluating
and storing the new arrays would be very different and it would take no small amount
of thought and time to design these structures in a clever way.

A second variation of a covering array not discussed in this thesis is that of the
structured network array. Consider the case of a network which requires testing, but it
is known in advance that certain pairs of nodes do not interact. An optimal test suite
for such a network would be a sort of covering array where the pair covering property
needs only occur between pairs of columns corresponding to nodes which are known to
interact with one another. Meagher [25] has already made appropriate modifications
to our code to handle this problem. Representing the network as a graph with edges
connecting vertices corresponding to interacting nodes, it can be shown that the size
of the covering array is related to ca(k, g : 1), where k is the colorability of the graph.
The problem has already been solved for many classes of graphs, but much is left to

be done in terms of solving this problem completely.



Appendix A

Tables of Parameter Test Results

In order to determine optimal ranges for the input parameters of each of the main
metaheuristics employed throughout this thesis, it was necessary to conduct several
tests. These tests provide much insight on the effect of the variation of these param-
eters with respect to the algorithms’ runtimes and effectiveness. Further tests were
also required in order to compare the algorithms to one another.

The tables in this appendix contain the data noted as a result of these extensive

tests.

68



APPENDIX A. TABLES OF PARAMETER TEST RESULTS

69

CA(6,4:1) CA(7,5:1) PA(7,5:1)
M =10* M = 10° M =10° M =10° M = 10*

Ot Avg. Best | Avg. Best || Avg. Best | Avg. Best | Avg. Best
0.01 — - - - 424 42 | 43.3 43 8.0 10
0.1 240 24 | 240 24 || 42.0 41 | 428 42 8.0 9
0.25 -~ - - - 424 42 | 424 41 7.6 8
0.5 233 23 | 240 24 || 41.8 40 | 414 40 8.6 9
0.75 208 20 (196 19 | 338 33 | 342 33 11.2 12
0.9 208 20 | 198 19 | 336 33 | 336 33 11.2 12
0.925 | 20.8 20 | 208 20 || 334 33 | 340 33 11.0 11
095 || 208 20 |200 19 || 340 33 | 332 32 114 12
0.975 || 20.8 20 | 202 20 | 33.8 33 | 330 33 114 12
099 || 202 19 [202 20 | 344 34 |33.0 32 11.6 13
0.9925 { 200 19 | 204 20 || 340 33 | 334 32 114 12
0.995 || 204 19 | 20.0 19 | 340 34 | 338 33 11.0 11
0.9975 || 208 20 | 20.0 19 } 334 32 | 340 32 11.2 12
0.999 || 210 21 | 204 20 [ 342 33 |334 33 11.2 12

Table A.1: Arrays found by the SA algorithm for ¢z = 1.

CA(6,4:1) CA(7,5:1) PA(7,5:1)
M = 10% M =10° M =10° M = 10° M =10*

Ot Avg. Best | Avg. Best | Avg. Best | Avg. Best || Avg. Best
0.01 23.8 23 - - 41.8 40 | 43.3 42 7.8 9
0.1 - - 23.5 23 42.6 41 41.6 40 7.0 9
0.25 24.0 24 24.0 24 42,7 42 | 422 40 8.6 9
0.5 23.7 23 | 23.7 23 | 41.8 41 | 422 42 8.4 9
0.75 206 19 | 208 20 | 334 33 | 338 33 11.2 12
0.9 204 19 | 204 20 | 332 33 |336 33 11.6 12
0.925 || 206 20 | 206 20 || 336 33 | 334 33 11.0 12
0.95 206 19 | 204 20 |} 336 33 | 332 32 11.8 13
0.975 || 206 20 | 204 20 || 340 33 | 334 33 108 11
0.99 | 204 19 | 206 20 | 336 32 | 340 32 11.0 11
0.9925 | 206 20 | 202 19 | 338 33 | 338 32 114 13
0.995 || 20.6 19 20.0 19 336 33 33.0 33 11.2 12
0.9975{ 206 20 | 200 20 | 338 33 | 326 32 114 12
0999 | 206 20 | 202 19 | 336 32 |332 33 10.8 11

Table A.2: Arrays found by the SA algorithm for ¢; = 10.
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CA(6,4:1) CA(7,5:1) PA(7,5:1)
M = 10° M =10° M =10° M =10° M =10°

o)) Avg. Best [ Avg. Best | Avg. Best | Avg. Best | Avg. Best
0.01 - - 240 24 42.0 42 42.3 40 8.0 9
0.1 240 24 - - 420 41 | 424 42 8.6 10
0.25 240 24 | 235 23 | 42.0 40 | 43.0 42 8.4 9
0.5 - - 235 23 | 420 41 | 426 42 8.2 9
0.75 204 19 | 204 20 | 334 33 | 330 32 11.2 12
0.9 206 20 | 208 20 | 338 33 | 334 32 116 12
0925 [l 206 20 | 204 19 || 332 33 | 336 33 11.0 12
0.95 206 20 | 204 19 | 340 33 | 342 33 114 12
0975 || 204 19 | 204 19 | 342 33 | 332 33 114 12
0.99 202 19 [ 198 19 || 346 34 | 334 33 11.0 11
09925 | 206 20 | 200 19 334 33 | 334 33 114 12
0.995 || 206 20 | 21.0 20 340 33 | 332 32 11.0 11
0.9975 || 206 20 | 204 20 348 34 | 33.0 32 11.2 12
0999 || 214 21 | 206 20 336 32 | 336 33 10.8 11

Table A.3: Arrays found by the SA algorithm for ¢y = 100.

CA(6,4:1) CA(7,5:1) PA(7,5:1)
M =10° M =10° M =10° M =10° M = 10*

d; Avg. Best | Avg. Best || Avg. Best | Avg. Best | Avg. Best
0.01 240 24 | 240 24 || 416 40 | 420 40 8.8 11
0.1 24.0 24 23.7 23 42.2 41 42.8 42 8.0 10
0.25 - - 24.0 24 | 433 42 | 422 42 8.6 9
0.5 - - - - 43.0 42 | 424 42 9.0 10
0.75 20.8 20 | 20.8 20 340 33 | 33.0 33 11.6 12
0.9 208 20 | 198 19 336 33 | 332 33 11.8 13
0.925 || 20.8 19 | 20.2 20 336 33 | 334 33 11.0 11
0.95 204 20 [ 200 19 || 340 33 | 332 33 11.6 12
0975 || 208 20 | 200 20 | 338 33 | 334 33 11.6 12
099 || 206 20 | 206 20 | 344 33 | 33.2 33 11.0 11
09925 208 20 | 19.8 19 | 336 33 | 338 32 11.2 12
0.995 || 21.2 21 | 204 20 340 33 | 338 33 11.2 12
0.9975 | 21.0 21 | 203 20 || 330 30 |j332 33 11.4 12
0.999 || 22.8 22 | 204 20 334 33 | 338 33 106 11

Table A.4: Arrays found by the SA algorithm for ¢, = 1000.
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CA(6,4:1) CA(7,5:1) PA(7,5:1)

M = 500 M =1000 M =1000 M =25000 M =1000

Avg. Best | Avg. Best || Avg. Best | Avg. Best || Avg. Best
200 19 | 204 20 || 332 33 | 328 32 132 14
202 19 | 206 20 |[33.0 32 {314 30 134 14
202 19 (202 19 || 326 30 | 302 29 13.0 14
200 20 | 198 19 | 332 32 | 306 30 136 14
202 19 | 202 20 | 326 32 |296 29 132 14
30 || 202 19 | 204 19 | 318 30 | 300 29 124 13
50 || 206 20 | 202 19 } 33.0 32 | 296 29 126 13
70 || 204 20 | 198 19 | 324 32 |30.0 29 | 126 14
90 19.8 19 19.6 19 316 30 30.2 29 12.2 13
110 200 19 | 202 19 || 320 30 | 306 29 12.0 12
130 || 206 19 | 198 19 | 328 32 | 302 29 12.0 12
150 || 19.8 19 | 200 19 | 33.2 33 | 32.2 32 122 13
2001 202 19 | 206 20 | 336 33 | 324 32 12.0 12
500 208 20 | 210 21 || 342 33 |338 33 114 12

S\lcnco»-ab.

Table A.5: Arrays found by the tabu search algorithm with lifetime L.

CA(6,4:1) CA(7.5:1)
M = 1000 M = 5000 M = 500 M =1000 M = 5000
S || Avg. Best | Avg. Best || Avg. Best | Avg. Best | Avg. Best
12 || 226 22 | 210 20 | 400 39 |380 37 |362 35
20 || 22.2 21 | 204 19 390 37 | 374 37 | 356 35
40 || 21.8 21 | 206 20 382 38 36.2 36 | 35.2 35
60 || 21.6 21 | 206 20 376 37 [ 370 37 | 356 35
80 || 20.6 19 | 206 20 374 37 36.6 36 | 348 34
100} 214 21 | 20.2 20 376 37 | 364 36 | 346 33
140 | 21.0 21 | 20.2 19 372 37 | 366 36 | 35.0 34
2001 21.0 21 | 202 20 370 36 | 354 35 | 346 34
300 || 21.2 21 | 20.2 19 37.0 37 [ 354 35 | 342 34
400 || 19.8 19 [ 206 20 370 36 | 350 35 | 350 35
500 || 20.8 19 | 196 19 366 36 | 358 35 | 346 34

Table A.6: Covering arrays found by the genetic algorithm, using tournament selec-
tion, the point crossover method and population size S.
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PA(7,5:1)

M =500 M = 1000
S || Avg. Best | Avg. Best
12 10.2 11 10.8 11
20 || 104 11 11.0 11
40 || 10.8 11 | 11.0 12
60 114 12 11.0 11
8 || 10.8 11 11.0 11
100 || 11.2 12 114 12
140 || 11.0 11 11.0 11
200 || 11.2 12 11.8 13
300 {| 11.0 11 114 12
400 || 11.2 12 | 114 12
500 || 114 12 11.6 12
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Table A.7: Packing arrays found by the genetic algorithm, using the point crossover
method and population size S.

M =500 M = 1000 M = 5000
S Avg. Total || Avg. Total | Avg. Total
12 34.4 172 62.0 310 212.0 1060
20 57.2 286 81.2 406 368.2 1841
40 120.8 604 159.6 798 712.0 3560
60 1344 672 201.6 1008 11534 5767
80 175.2 876 285.4 1427 1860.2 9301
100 || 233.0 1165 || 377.2 1886 | 2085.4 10427
140 || 308.0 1540 || 469.0 2345 } 3050.4 15252
200 || 424.8 2124 || 787.6 3938 | 3644.4 18222
300 | 594.0 2970 || 1303.0 6515 || 8051.4 40257
400 | 840.0 4200 || 1679.8 8399 || 10821.8 54109
500 || 1022.0 5110 || 2129.4 10647 || 16494.8 82474

Table A.8: Time (in seconds) required for the GA algorithm to locate a CA(7,5 : 1)

of optimal size, for various values of population size S.
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S - M = 100,000

S M  Avg. Rows

Least Found Time

20 5000 35.6 35 1841
100 1000 36.4 36 1886
200 500 37.0 36 2124
S - M = 200,000

S M  Avg. Rows Least Found Time
40 5000 35.2 35 3560
200 1000 35.4 35 3938
400 500 37.0 36 4200

Table A.9: Measuring the effectiveness of the GA algorithm in constructing a CA(7,5 :
1) for different values of S and M, where the quantity S - M is constant. :

Quick Conv. Method Tournament Method

Array Avg. Rows Least Found Time | Avg. Rows Least Found Time
CA(7,4:1) 22.2 22 19653 22.2 22 14661
CA(8,5:1) 37.3 36 46854 36.6 36 39288
CA(5,6:1) 43.0 42 26783 43.0 41 21531
PA(5,4:1) 14.3 15 440 12.5 15 442
PA(6,5:1) 14.6 16 2391 14.0 15 2383
PA(5,6:1) 26.3 28 2250 25.3 27 2015

Table A.10: Arrays found by two genetic algorithms, using the point crossover method.

Quick Conv. Method Tournament Method

Array Avg. Rows Least Found Time | Avg. Rows Least Found Time
CA(7,4:1) 22.4 22 20113 22.1 22 17762
CA(8,5:1) 36.9 36 48312 37.0 36 37397
CA(5,6:1) 42.8 42 29688 43.2 42 21774
PA(5,4:1) 13.9 15 416 13.4 15 581
PA(6,5:1) 15.2 19 2572 14.7 16 2149
PA(5,6:1) 26.1 27 2167 25.4 27 1899

Table A.11: Arrays found by two genetic algorithms, using the row crossover method.
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Quick Conv. Method Tournament Method
Array Avg. Rows Least Found Time | Avg. Rows Least Found Time
CA(7,4:1) 224 22 16988 22.2 22 20999
CA(8,5:1) 36.9 36 43933 36.6 35 36540
CA(5,6:1) 4238 42 24763 | 428 43 22097
PA(5,4:1) 135 15 593 138 15 431
PA(6,5: 1) 15.2 19 2508 13.8 15 2127
PA(5,6:1) 25.7 27 2536 25.1 27 2050
Table A.12: Arrays found by two genetic algorithms, using the column crossover
method.
Time || Algorithm Score Moves Algorithm Score  Moves
ANNEAL 214 85x10°| GENETIC{(PT) 1459.0 774
60 TABU 1476.4 51.0 GENETIC(ROW) 1468.2 77.6
GENETIC(COL) 14484 776
ANNEAL 1.0 44x10°| GENETIC(PT) 406.2  908.0
300 TABU 244.6 244.6 | GENETIC(ROW) 4074  913.2
GENETIC(COL) 407.8 916.6
ANNEAL 26 2.7x10"| GENETIC(PT) 3124 24894
1800 TABU 37.4 1453.0 | GENETIC(ROW) 316.4 2494.8
GENETIC(COL) 317.6 2494.8
ANNEAL 1.6 55x10"| GENETIC(PT) 202.8 4995.0
3600 TABU 17.4 2902.8 | GENETIC(ROW) 2126 5003.6
GENETIC(COL) 207.6 4996.8
ANNEAL 04 1.1x10°| GENETIC(PT) 146.8 10000.8
7200 TABU 7.2 5764.0 | GENETIC(ROW) 144.2 10010.2
GENETIC(COL) 1456 9994.2
ANNEAL 26 1.6x10°| GENETIC(PT) 121.2 15012.0
10800 TABU 5.6 8641.6 | GENETIC(ROW) 122.4 15032.8
GENETIC(COL) 124.0 15009.4

Table A.13: Best score found for a CA(13,11:1) with 198 rows in a fixed amount of

time, given in seconds.
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Time || Algorithm Score  Moves Algorithm Score Moves
ANNEAL 56.3 1.1x10°| GENETIC(PT) 157.8 460.2

60 TABU 62.7 553.7 | GENETIC(ROW) 154.5 464.5
GENETIC(COL) 156.2 456.7

ANNEAL 54.0 5.5x10°| GENETIC(PT) 102.8 2346.0

300 TABU 44.0 2768.7 | GENETIC(ROW) 100.5 2352.7
GENETIC(COL) 98.8 2353.5

ANNEAL 57.8 3.4x10"| GENETIC(PT) 73.3 14159.7

1800 TABU 31.5 16659.8 | GENETIC(ROW) 79.3 14160.7

GENETIC(COL) 75.5 14139.7

ANNEAL 57.7 6.9x10°| GENETIC(PT) 74.3 28575.0

3600 TABU 28.3 33391.0 | GENETIC(ROW) 72.5 28590.0

GENETIC(COL) 69.7 28543.8
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Table A.14: Best score found for a CA(9,7:1) with 62 rows in a fixed amount of time,
given in seconds.

PA(7,6:1), 19 rows
Algorithm Time Moves o
ANNEAL 8.0 133903.4 169766.8
TABU 114 352.7 258.2
GENETIC(PT) 7112.9 547454  89514.8
GENETIC(ROW) 8519.6 103194.4 103676.2
GENETIC(COL) 5826.6 69807.1  85042.0
CA(5,6:1), 42 rows
ANNEAL 5.1 108952.7 94729.3
TABU 17.2 538.7 355.9
GENETIC(PT) 11092.4 218285.8 288874.4
GENETIC(ROW) 19511.4 385690.5 642029.5
GENETIC(COL) 33228.6 657088.6 1354448.7

Table A.15: Number of moves and amount of time needed, averaged over five trial
runs, for the metaheuristics to locate a PA(7,6 : 1) with 19 rows and a CA(5,6 : 1)
with 42 rows.



Appendix B

Tables of Bounds

In this Appendix, we present tables containing the best known upper and lower bounds
on the size of covering and packing arrays. Table B.1 displays the key for the results
presented in Tables B.2 and B.3. In Table B.4, all bounds without superscript indices
were obtained from tables in [24]. Those given a superscript of z were improved by
constructions in [26]. Those given a superscript of y were improved by metaheuristic

search.
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Index Reference

orthogonal array exists

no pair of MOLS(2) exists
Stevens [24]

Applegate [23]
Chateauneuf and Kreher [2]
AETG: Dalal et. al [3, 4, 6]
Our metaheuristic searches
Katona [12]

Nurmela [19]

symbol collapsing

QoA lote

.

Table B.1: Key for Table B.2 and Table B.3.
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& 4 5 6 7
pa(k,3:1) 9 6 4 3
pa(k,3:2) [} 4 3 3
pa(k,3:3) 3 3 3 3
k 4 5 6 7 8 9 10 11
palk, 47 1) 16 10 3 [} 5 14 5 )
pa(k,4:2) 16 12v,14 8 6 5 5 4 4
pa(k,4:3) 16 9v.13 kaikd 5 4 4 4 4
pa(k,4:4) 16 4 4 4 4 4 4 4
k 4 5 6 7 8 9 10 1112 13 141518
Falk, 57 1) 75 b1 75 15 10 10 7 6 6 6 6 6 %
pa(k,5:2) 26 25 20V,23 13v 10 8 7 6 6 6 6 5 5
pa(k,5: 3) 25 25 16,22 12v 9v,10 7 i 6 6 5 65 b5 &
pa(k,5: 4) 25 25 14¥,19% 1 8 6 5 5 5 5 6 5 5
pa(k,5:5) 25 25 5 5 5 5 5 5 6§ 5 5 &5 b
k 4 5 6 7 8 9 10 1112 1314 15 16 17 18 19 20 1 22
palk, 6:1) 3% 3Tv.34 31v,38  20v,34 17V,i5 14V i 12 9 8 8 1T 71 T 7T 7 7 7T @
pa(k,8: 2) 34 31v.34 31Y.34 20Y34 17V,19 14V 12 w0 & 8 7 7 7 1 7T 1 17 6 8
pa(k,6: 3) 34 31¥,34  28Y,34  20Y,33 16Y,19 13V 12 9 8 71 7T 1 T 1T 7T 6 6 6 8
pa(k,6: 4) 34 3131 28v34 19¥32 16Y,18 12¥13 812 8 7 7 7 1 & 6 6 6 6 6 0O
pa(k,6: 5 34 31v,34  26Y,34  17V,26%  13%V 8 7 T 6 6 6 6 6° 6 6 6 6 6 6
pa(k,6:6) | 33%.34  31V,34 23Y,34 6 [ 6 6 6 [} 6 6 6 6 [} 4 6 6 [} 6
K 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 20
pa(k, 71 1) a9 3 b1 21 134 14 i 10 1 5 © 9 &8 & 8 & 8 & 8 8§ 8 8§ 7
pa(k, 7 : 2) 49 28,47 21,26 17V ,19 15V 14 12 10 9 9 9 8 8 8 8 8 8 8 8 8 8 7 7
pa(k, 7 : 3) 49 28,46 21,25 16¥,18 15 1BY14 11 w0 9 9 8 8 8 8 8 & 8 & 8 T T T 71
pa(k, 7 : 4) 49 28,46 19¥,24  16Y,17  14¥,15 13¥ 10 9 9 & 8 8 8 & 8 8 7T 1T T 1 1 1 7
pa(k, 7 : 5) 49 21V 44 17V,23  15Y,16  12Y,14 9 9 8 8 8 8 8 7 1 1 T T T T * v 1 71
pa(k,7: 6) 49 19¥ 34 15,187 1= 8 8 8 7T 7 ™ 7 *®v v 1 v ®1v © °©v v 1 1 1 7
pa(k,7:7) 49 7 7 7 7 7 7 T 7T 1 1 1 1 1 1 1 71 7T 1 1 7T 1 1
Table B.4: Best known upper and lower bounds for packing arrays with 3 < g < 7and 4 < k <29.
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