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ABSTRACT

A user friendly, interactive computer program was created to provide a better
understanding of street light structures used by Manitoba Hydro. The need for such
a program arose after several failures of such structures. In order to understand these
failures, an understanding of two wind conditions which possibly caused the failures
was required. The two wind conditions of interest are low speed laminar winds,
causing vortex shedding, and gust winds causing vibrations parallel to the direction
of the wind. Forcing functions were developed, based on common fluid dynamic
theories, which are used to model the forces exerted on the pole due to these wind
conditions. A mathematical model was built in order to determine the response of a
pole subjected to these types of wind conditions. The model is analyzed using the
finite element method and common mathematical routines. The computer program
allows the user to vary parameters relating to both the pole structure and the wind
conditions. By varying the parameters and observations of the graphical display of the
expected pole vibrations, an in depth understanding of the pole’s structural behavior
can be achieved. This study can be applied to the future design of pole structures as

well as to continued maintenance and monitoring programs.
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Chapter 1

Introduction

1.1 Purpose

The purpose of this study is to create a user friendly, interactive computer program
for Manitoba Hydro. This program will provide a better understanding of the effects
wind has on street light structures currently in use by Manitoba Hydro. The specific
wind conditions under investigation are low speed laminar winds, that cause vortex
shedding, and gust winds. Investigation of these wind conditions and the resulting
response of the structure, provides insight into the potential failure mechanisms. A
better understanding of the behavior of these street light structures due to these
wind conditions may aid in better future design practices and an awareness of areas

of potential concern for monitoring the structures.

The program allows the user to vary any number of variables pertaining to the
structure and wind conditions including the structure’s geometry, material properties

as well as the wind direction, laminar wind speed and gust wind data.
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1.2 Scope

The inspiration for this study arose when several pole structures failed due to fatigue
believed to be caused by vibrations induced by wind loading. See Figures 1.1 and
1.2. In order to better understand any phenomenon involving the interaction of two
systems, in this case the pole structures and wind forces, it is beneficial to have a
graphical representation of the problem. An interactive computer program in which
the user could observe the predicted wind induced vibrations of the structure while

altering the variables was deemed to be the best solution.

Figure 1.1: Photograph of failed street light pole.

The scope of this report includes a description of the theory used to develop the
loading due to the two wind conditions. This is followed by an explanation of the
method used to determine the response due to these loads and a numerical example

used to demonstrate these theories.
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Figure 1.2: Photograph of failed luminaire assembiy.

1.3 Overview of the Present Study

The first part of this report describes the theory of wind engineering, including a
description of commonly used constants used in fluid mechanics for bluff bodies.
This section is included to develop the forcing functions which are used to model the

forces exerted on the light pole due to the two wind conditions.

Much research focusing on wind induced vibrations of poles and towers has been
done over the past two decades, [1]-[6]. Most notably is the work done by Mehta
[1], in which full scale field tests and tow tank tests were done to gain a better
understanding of the interaction between wind and pole structures. Many books
have also been written on the topic of wind engineering and fluid dynamics, [7]-[10],

which explain the theories used by this study.

Following the review of the fundamentals of wind engineering is a description
of the process, theory and rationale used to build the mathematical model of the
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structure. The finite element method, which was used to build the mathematical
model, is explained, including a description of the elements used. Many books have
been written on the topic of the finite element method, [11]-[13], which explain the
theories used by this study.

The next section describes the method by which the response of the mathematical
model due to the forcing functions is determined. This is done by determining the free
response of the structure resulting in natural frequencies and associated mode shapes.
Forcing functions are then applied to the model and the response is determined by
employing commonly used mathematical routines. Many books have been written on
the topic of structural dynamics, [14]-[17], which explain the theories used by this
study.

Finally, a description of a numerical example of a typical street light pole, [18], is
presented. This section presents the mathematical model, the typical wind loading
and the response due to that loading. Also, this section provides a demonstration of

the capabilities of the program which was written.

Included at the end of the report are a number of appendices. These appendices
include a mannal for the computer program, examples used to verify the program, a

listing of the FORTRAN code and a list of the nomenclature used in the report.



Chapter 2

Wind Loading on Structures

In the past four decades there have been many interesting advances in the application
of aerodynamics in the field of civil engineering. These applications are limited mainly
to relatively low-speed, incompressible flow phenomena, such as aeolian vibration and
galloping. Winds acting on a cylindrically shaped structure, for example, may induce
forces in several different directions. Wind forces naturally cause a deflection in the
direction parallel to the wind direction. Vibrations perpendicular to the wind direc-
tion can also be induced in certain instances. Perpendicular vibration is induced by
the phenomenon known as aeolian vibration, more commonly called vortex shedding.
Vortex shedding occurs in laminar winds at relatively low wind speeds, when the air
stream separates on each side of a structure and vortices or eddies are formed alter-
nately at each separation edge. The formation and detachment of each eddy induces
a suction force at the separation points. The suction force alternates back and forth

between the points of formation of the eddies.

Another common phenomenon discussed in wind engineering is known as gallop-
ing. Galloping causes vibrations of very large amplitudes at low frequencies. Gal-

loping is an instability of slender structures with certain asymmetrical cross sections
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such as rectangular or D sections. The frequencies of the perpendicular oscillations
caused by galloping are much lower than those caused by vortex shedding.

This report focuses on gust winds causing oscillations parallel to a wind and lami-
nar winds causing oscillations perpendicular to the wind. The galloping phenomenon
is not discussed further. This chapter examines the fundamental theory associated
with gust winds and laminar winds causing vortex shedding and the forces which they

exert on a structure.

2.1 Reynolds Number

Air flow around a structure is dependent on many variables such as flow velocity,
cross sectional area, surface roughness and wind direction. The Reynolds number
is a non-dimensional index that helps to predict expected flow characteristics. The
Reynolds number, Re, is defined as,

Re = —, (2.1)

where V is the free stream wind speed, d is the projected width of the structure
perpendicular to the wind flow commonly referred to as the bluff diameter and v is

the kinematic viscosity of air.

2.2 Wake and Vortex Formations

Air flow around a structure is dependent on many variables; one of which is the cross
section of the structure. Pole structures are assumed here to have a circular cylinder
shape. Therefore, a brief discussion of the air flow characteristics around a circular

cylinder is needed.
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Re<S§

S<Re<40

40<Re < 150
Laminar Vortex Street

300 <Re<3x 10’
Subcritical Range

3x10°<3.5x 10°
Translational Range

Re>3.5x 10°
Supercritical Range

¢

Figure 2.1: Flow past a circular cylinder, [7].
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The major Reynolds number ranges for a smooth circular cylinder are given in
Figure 2.1. At very low Reynolds numbers, Re < 5, the fluid flow follows the cylinder
contours. In the range 5 < Re < 40, the flow separates from the back of the cylinder
and a symmetrical pair of vortices is formed in the wake. The length of the vortices
increases linearly with Reynolds number, reaching a length of three cylinder diameters
at a Reynolds number of 40. As the Reynolds number is increased further, the wake
becomes unstable and one of the vortices breaks away. A laminar periodic wake of
staggered vortices is formed downstream of the cylinder which is called the vortex
street. Between the range Re = 150 and 300, the vortices breaking away from the

cylinder become turbulent.

The Reynolds number range 300 < Re < 3 x 10° is called subcritical. In this
range, the vortex shedding is strong and periodic. In the transitional range, 3 x 10° <
Re < 3.5 x 108, the wake is narrow and disorganized. In the supercritical Reynolds
number range, Re > 3.5 x 106, regular vortex shedding is re-established. However,
the wake is now turbulent.

This study deals with vortex shedding in the subcritical range. For pole diameters
between 100 and 500 mm, this relates to wind speeds below 10 m/s.

2.3 Strouhal Number

The Strouhal number is a nondimensional number which defines the regularity of the
vortex wake effects described previously. The Strouhal number, S, is defined as,

S= fT’/‘f, (2.2)

where f, is the vortex shedding frequency in cycles/s (Hz).

The Strouhal number of a stationary circular cylinder is a function of Reynolds
number and surface roughness, as shown in Figure 2.2. The Strouhal number follows
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the Reynolds number flow ranges of Figure 2.1. In the Reynolds number range of
3 x 10° < Re < 3.5 x 10°%, very smooth surface cylinders have a chaotic, disorganized,
high frequency wake and Strouhal numbers are as high as 0.5. Rough cylinders have
organized periodic wakes with Strouhal numbers of approximately 0.25. For Reynolds
numbers below this range, vortex induced vibration of cylinders generally occurs at
Strouhal numbers of approximately 0.2.

As stated previously, this study focuses on the subcritical Reynolds number range
which corresponds to a Strouhal number of about 0.2.

PR
/7 ]
04 V4 ]
SMOOTH SURFACE » I
[~ 4 \ 4 i
[13] /
8 o3 / {
’ \
-% ’ '-’.
V4 -
Z 02k -1 -
3
& ROUGH SURFACE
w
01
0 lll L IALILJ;J_llI l__lLLl I Llll 1 2 1 1
40 IC 10° 10 10° 10’ 10°
REYNOLDS NUMBER

Figure 2.2: Strouhal number and Reynolds number relationship for circular cylinders,

[7]-

2.4 Wind Forces

As stated previously, this report focuses on along wind forces, due to gust winds and
across wind forces, due to vortex shedding. These forces can be defined by the use of
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the same general forcing function,

F= %p.,,-,vu, 2.3)
where F is the wind force, p,;, is the mass density of air and A is the area upon which
the wind force acts.

To model the oscillating, perpendicular forces created by vortex shedding, Equa-
tion 2.3 can be modified by multiplying by a sine term to obtain,
F, = %pa,-,.VzAsin(w,t) , (2.4)
where w, = 27 f, is the circular vortex shedding frequency (rads/s) and t is time (s).
The along wind forces due to gust loads is calculated as follows,
Fo = 5par(V(0)*A. (25)

It should be noted that the wind speed term in Equation 2.4 is not a function
of time and therefore, Equation 2.4 will only produce forces if the wind speed is
held constant. This is in agreement with past studies [8] which have shown that
vortex oscillations are usually excited only when the wind speed is unidirectional and
constant.

This study focuses on the aerodynamic forces due to wind flowing around the pole
structure only. Additional aerodynamic forces resulting from wind flowing around
elements other than the pole, such as luminaires, are neglected.

Figure 2.3 shows a bluff body and the resulting along wind force, Fp, and across

wind force, Fp.

2.5 Inclined Structures

Up to this point of the discussion it has been assumed that the flow direction is at

right angles to the structure. Inclined cylinders affect both Equations 2.4 and 2.5.
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F.

viLi

L

Figure 2.3: Lift and drag forces, F; and Fp respectively, acting on a bluff body.

When determining, A, the area upon which the wind force acts, the projected
area of the cylinder perpendicular to the wind flow must be used. This is illustrated
in Figure 2.4. If L is the length of the element and 8 is the angle of inclination to the

wind flow, the resulting projected area is,

A =dLsin#. (2.6)

A structure’s inclination to the wind flow also has an effect on the shedding fre-
quency, fs in Equation 2.2. The shedding frequency is determined by using the
perpendicular wind speed component, V sin8, as shown in Figure 2.4. The resulting
shedding frequency is,

SV'siné
fs = d - (2.7)

2.6 Tapered Structures

In Equations 2.2 and 2.7 the d term refers to the bluff diameter of the cross section.

Most pole structures are tapered, having a larger diameter at the base than at the
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guis

Figure 2.4: Structure inclined to wind.

tip. This varying diameter results in the shedding frequency, fs, varying over the
length of the pole. This is undesirable in the analysis procedure, because the lift
force, Equation 2.4, will also vary along the length of the pole. There has been some
question as to what value of d should be used . It has been recommended [2] that
the diameter at the tip of tapered poles should be used. This, in effect, lowers the

shedding frequency.



Chapter 3

Structural Model

The formation of a mathematical model of the structure is an important stage of
any engineering analysis. The model allows the displacement of the structure to be
described in terms of the stiffness and mass of the structure and the forces applied to
the structure. For the present study, the pole structure is modeled mathematically
by using the finite element method (FEM). The finite element method, is a computer
aided mathematical technique used to obtain an approximate numerical solution to

equations that predict the response of a physical system under external influences.

The first step in creating a finite element model is to discretize the structure by
subdividing the body into an equivalent system of small bodies called finite elements.
This procedure is illustrated in Figure 3.1. The points at which the primary un-
knowns are required to be evaluated, are called nodes or nodal points. The number
of unknowns at a node is the nodal degrees-of-freedom (DOF).

The selection of the element type and number of elements to be used has a sig-
nificant impact on the accuracy of the solution as well as the computational effort.
In this study, the three dimensional pole structure is modeled by two separate two

dimensional models. This is made possible by assuming that the pole exists in a single

13
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plane, defined by two domains, X and Y, see Figure 3.1. The in-plane displacement
is modeled by a prismatic plane frame element, which has three DOF at each node.
The nodal DOF for the plane frame element are, translation in the X and Y direction
and rotation about the Z direction (normal to the X — Y plane). The out-of-plane
displacement is modeled by a prismatic grid element, which also has three DOF at
each node. The nodal DOF for the grid element are translation in the Z direction

and rotation about the X and Y direction.

This chapter further explains the two elements used to build the finite element

- -

<«— Node

model.

«— Elecment

Y

L.

X

Typical Pole Structure Finite Element Model

Figure 3.1: Discretized finite element model of a typical lighting pole.

3.1 The Plane Frame Element

A plane frame element is a series of slender elements connected rigidly to each other;

that is, the original angles between elements at their joints remain unchanged after
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deformation. Furthermore, moments are transmitted from one element to another

at the joints. Hence, moment continuity exists at the rigid joints. In addition, the

element centroids, as well as the applied loads, lie in a common plane.

Figure 3.2 shows an arbitrarily oriented plane frame element. The z and y axes

are the local coordinate system, having the origin located at node 1 and the z axes
located along the length of the element (node 1 — 2). The global axes X and Y
are chosen with respect to the whole structure. The local nodal DOF, u, v and ¢.,

correspond, respectively to the axial, shear and flexural deformations.

Figure 3.2: Arbitrarily oriented plane frame element.

The elemental stiffness matrix in local co-ordinates, [k}, for a plane frame element

is, [12],

where C;

[ke]

AE
L’

e 0 0 -C 0 0
0 12C; 6C,L 0 -12C; 6C.L
_ 0 6CoL  4C,L2 0 —-6CL 2C,L° (3.1)
—C1 0 0 (o] 0 0 ' )
0 -12C; —-6C,L 0 12C; —6C3L
0 6C2L 202[/2 0 —6C,L 4CQL2 ]

A is the cross sectional area of the element, F is the modulus of
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elasticity of the material, L is the length of the element, C, = %{— and 7 is the moment

of inertia of the element.

The local displacements are related the global displacements, dx,dy and ¢z, by

a transformation matrix, [T, given by,

.- -

C S0 0 00
-SCO0 0 00
0 01 0 00O
7] = 0 00 C SO0 (3.2)
0 00 -S C O
| 0 00 0 0 1

where C = cosf and S =siné.

The elemental stiffness matrix in global co-ordinates, [K.], can be determined by
substituting Equations 3.1 and 3.2 into the following Equation,

(K] = [T]" [ke] [T]. (3.3)

The elemental mass matrix in local coordinates, [m,], for a plane frame element

is, [12],

[140 0 0 70 0 0

0 156 220 0 54 -13L
_pAL| 0 2L 4> o0 13L -3L?

mel=F5 | 70 o 0 10 0o o0 | (3-4)

0 54 13L 0 156 -22L

| 0 -13L -3 0 -22L 4L? |

where p is the mass density of the material.

Similarly, the elemental mass matrix in global coordinates, [M,], is determined by
substituting Equation 3.4 and 3.2 into the following Equation,

[M.] = [T]" [m] [T]. (3.5)
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3.2 The Grid Element

A grid is a structure on which loads are applied perpendicular to the plane of the
structure, as opposed to a plane frame where the loads are applied in Athe plane of
the structure. The elements of a grid are assumed to be connected rigidly so that the
original angles between elements connected together at a node remain unchanged.

Both torsional and bending moment continuity then exist at the node point of a grid.

Figure 3.3 shows an arbitrarily oriented grid element. The local and global co-
ordinate systems, (z —y and X —Y'), are the same as for the plane frame element.
However, an additional domain must be defined for the out-of-plane direction, which
is noted as z in the local co-ordinate system and Z in the global system. The local
nodal DOF, w, ¢, and ¢, correspond, respectively, to shear, torsional and flexural

deformations.

Figure 3.3: Arbitrarily oriented grid element.
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The elemental stiffness matrix in local co-ordinates, [k.], for a grid element is, [12],

( 12E1
L3
0
st
M= | a
L
0

6EIL
L L2

6EI
0 %]
GJ
T 0
0
—6EI
0 %]
GJ
-z 0
O 2ET

L

12871
L?

0

—6E[

L2

12E[
L3
0

—6EI
LZ

0
GJ
2

0

0
GJ

2

0

6EI 1

=3

2E1
—6EI

3

SEL

.

(3.6)

where G is the shear modulus and J is the polar moment of inertia of the element.

The elemental mass matrix in local co-ordinates, [m.], for a grid element is, [12],

-

156 0 220 54 O
0 140 0 70 0
imy] = PAL| 22L 0 4L 13L 0 -3L?
T 420 54 0 13L 15 0 —22L
0 70 0 140 O
| —13L 0 -3L? -22L 0 4L?

~13L ]

-

3.7)

The global stiffness and mass matrices are determined by substituting Equa-

tions 3.6 and 3.7 into Equations 3.3 and 3.5, respectively. However, the transfor-

mation matrix, [T, for a grid element is,

=
I

.~

= = N N
|
w Q9
cooQwno

o O O

3.3 Additional Masses

0 0
0 0
0 0
1 0
0 C
0 -S

QOhhoooo

(3.8)

The previously mentioned mass matrices account for the mass of the structural (load

bearing) components only. However, it may also be desired to model the mass of non-

structural components as well, such as luminaries or traffic signs. This is accomplished
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by adding a lumped (point) mass at the appropriate node. If a point mass is added
to the plane frame element shown in Figure 3.2, the resulting elemental mass matrix

[ 140
0
pAL | 0
70
0
0

L

0
156
22L
0
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—13L

0
22L
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70
0
0
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0
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0
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0
—13L
—3L?

0
—22L

4L2

o= B == B = I = I = Y =}

oo oo0oo

oo o

0
(3.9)

where M| is the total mass of the non-structural component. Notice that an ad-

ditional mass is added only to the translational DOF for node 2, the effect on the
rotational DOF is assumed to be negligible. Similarly, for the grid element additional

masses are added to the translational DOF only.



Chapter 4
Dynamic Analysis

This chapter discusses the procedure by which the dynamic response of the finite

element model is determined.

4.1 Free Vibration Analysis

When a system is displaced from its static equilibrium position and then released,
it vibrates freely about its equilibrium position with a behavior that depends upon
the mass and stiffness of the system. The purpose of a free vibration analysis is to
determine this behavior in terms of the frequencies, known as the natural frequencies,

wn, and the associated deformed shapes, known as mode shapes, ¢.

4.1.1 Procedure

As discussed previously, a structure can be divided into discrete elements and the

equations of motion can be written for each DOF. These equations can be written in

20
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matrix form as, [16],
[M]{X} +[C]{X} + K] {X} = {F(t)} (4.1)

where [M], [C], [K] are the global mass, damping and stiffness matrices, respectively,
{X’ },{X },{X } are the acceleration, velocity and displacement vectors, respectively,
and {F(t)} is the forcing vector.

For undamped free vibrations, the forcing vector is set to the null vector and the

damping matrix is neglected. Equation 4.1 reduces to,

[M}{X} + [K] {X} = {0} (4.2)

If a simple harmonic motion is assumed for each DOF and substituted into Equa-

tion 4.2, the resulting equation can be manipulated to the following form,
(M7 K] {X} =? {X}. (4.3)

Equation 4.3 is now in the form of a real, general eigenvalue problem. The solution
yields the eigenvalues which are equal to the natural frequencies squared, w?, and the
eigenvectors which are equal to the mode shapes, ¢.

4.2 Forced Vibration Analysis

Forced vibration occurs when a system is subjected to an external excitation that
adds energy to the system, such as a wind exerting excitation forces on a cylinder.
(See Chapter 2). In general, the amplitude of such a vibration depends upon the
natural frequencies of the system and the damping inherent in the system, as well
as upon the frequency components present in the exciting force. The amplitude of a
forced vibration can become very large when a frequency component of the excitation

approaches one of the natural frequencies of the system. Such a condition is referred
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to as resonance, and the resulting stresses and strains have the potential of causing

failures.

4.2.1 Modal Analysis

Modal analysis involves the decoupling of the differential equations of motion as a
means of reducing a multiple DOF system to a number of independent, single DOF
systems. The single DOF systems that result from the decoupling process are ex-
pressed in terms of principal coordinates. The principal coordinates are independent
of the original system. The response of each single DOF system can be determined
and then superimposed to find the response of the original system.

The general form of the matrix equation for an n DOF system can be found from
Equation 4.1. The first step in decoupling this matrix equation is to transform the
displacement, velocity and acceleration vectors to the principal coordinates. This is

done by using the following equations;

{X}=[®] {6}, (4.4)

(X} =121{8} (4.5)
and

(X} =(®){8}, (4.6)

where [®] is the modal matrix, in which each column represents a mode shape, ¢, and
{6}, {5 } and {5 } are the displacement, velocity and acceleration vectors, respectively,
in terms of the principal coordinates. Substituting Equations 4.4, 4.5 and 4.6 into

Equation 4.1 results in,

[M][@] {8} + [C] [®] {6} + [K][®] {6} = {F(t)}. (4.7)
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Multiplying this equation by the transpose of the modal matrix, [®]7 produces,
M] {8} + [C] {8} + K] {6} = (F(1)}, (48)

where [M] = [®]7 [M][®], [K] = [®]" [K][®], are the diagonal modal mass and
stiffness matrices, respectively, [C] = [®] [C] [#] is the general modal damping matrix
and {F(t)} = [®]" {F(t)} is the modal force vector. This equation can be simplified
further by writing the modal damping matrix in terms of the modal mass matrix and
assuming Rayleigh Damping {16]. For the r** mode the damping constant can be

written as,
C, = 2Gw,.M,, (4.9)

where C, and M, are the diagonal component of the modal damping and mass matrix,
respectively, ¢ is the modal damping factor and w, is the natural frequency for the
rt* mode. Also, the modal stiffness matrix can be written in terms of the modal mass

matrix by,
K, = w’M,. (4.10)

The resulting equation of motion for the r** mode can be written as,

F.(t)
M,

b + 2Gw b, + w36, = =E, (t), (4.11)

where F;. (t) is the modal forcing function and E. (t) is the excitation function of the

rt* mode.

4.2.2 Response of a System Subjected to a General External

Force

Determining the response of a system subjected to a general, time dependent force

involves finding the solution to Equation 4.11. The numerical method used in this
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study for integrating the differential equations is the widely used fourth-order Runge-
Kutta method.

The first step for numerically integrating Equation 4.11, is to rewrite the equation
in terms of its highest-order derivative as 5= f (t, 6, 5) , which results in,

§=—-2wb—w?+E(t). (4.12)

Notice that the subscript r has been dropped in the notation, in order to simplify the
notation. The Runge-Kutta recurrence formulae for solving Equation 4.12 in terms

of the step size At are,
. At
Bivr = 6: + Ath; + — (b + ky + Ks) +0 (at?) (4.13)

and
. . 1 :
bivr = b+ 5 (ku + 2y + 2k3 + k) +0 (a8?) (4.14)

where .
k= At f (8,66

ky = At f (t: + 4,6 + §46.,6:+ %)
ks = At f(t:+ 48,6 + 486 + 8ty 6 + )
ko = At f (t: + At 8 + Ath; + §tks, 6; + ks) .

(4.15)

The numerical solution begins with the substitution of the initial values of 6 and
6 into Equation 4.12 to obtain a value of the function f (t, 8, 5) for use in determining
k,. The values for ks, k3 and k4 are then determined successively for use in the
recurrence formulae of Equations 4.13 and 4.14 to obtain values of 6;,; and 6;,;. The
latter are then used in Equations 4.12 and 4.15 to obtain new k;, ks, k3 and k, values

for substitution into Equations 4.13 and 4.14 to obtain §;,» and 8:+2, and so on.

The solution from the numerical integration determines the time response of the
displacement, velocity and acceleration in terms of the principal coordinates. Substi-
tuting these solutions into Equations 4.4, 4.5 and 4.6 yields the displacement, velocity
and acceleration of the original system, respectively.
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4.2.3 Response of a System Subjected to a Harmonic Exter-

nal Force

When a system is disturbed by a temporally periodic external force, the resulting
response of the system can be considered to be the sum of two distinct components, the
forced response and the free response. The forced response resembles the exciting force
in its mathematical form. The free response does not depend on the characteristics

of the exciting function but only upon the physical parameters of the system itself.

In any system disturbed by a sinusoidal excitation, or any temporally periodic
excitation, the free response that is initiated when the excitation is first applied dies
out with time because of the inherent damping in the system. Eventually only the
forced response remains. Because the free response of the system dies out with time,
it is often referred to as a transient response. The forced response is known as the
steady-state response. This is shown clearly in Figure 4.1 which presents part of a

plot of the response of a system due to a sinusoidal excitation.

A steady-state only
—>

/|
2|
2 ->
é .

transient
and
sicady-statc

Figure 4.1: Response of a system due to sinusoidal excitation.

Consider a system which is excited by a sinusoidal excitation such as,

F(t) = Bsin(t), (4.16)
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where B is the amplitude of the excitation and  is the frequency of the excitation.

Using modal analysis, the resulting equation of motion for the r** mode is,
F,sin(Qt)

b + 2Grwrby + w26, = Vi (4.17)
The solution of Equation 4.17 results in the following displacement,
£
b (t) = ~—————tiem—sin (U — a) + et (A; coswyt +sinwgt) (4.18)

(1- 7'12—)2 + (2Cr’"r)2

where r, = £ s called the frequency ratio, & = phase lag (the angle that the dis-
placement of the system lags the applied force), wy = wr\/l—-_(’,.—, is the damped
natural frequency and A; and A; are constants that depend on the initial conditions.
The first term on the right side of the last equation corresponds to the steady-state
displacement and the second term corresponds to the transient displacement. Sub-
stituting the solutions for all the principal DOF into Equation 4.4 leads to the total
response over time, including the transient and steady-state displacements, of the
original system.

This procedure yields the displacements for only one forcing frequency. It is more
convenient and useful to determine the steady-state amplitude of the displacements
for a large range of forcing frequencies. This is done by finding the modulus of the

frequency response function,
1
H (Q)] = - (4.19)
(1 - 7'3) + (2<r7'r)
which gives the magnitude of the steady-state motion as a function of the frequency

ratio r.



Chapter 5

Numerical Results

This chapter demonstrates the capabilities of the computer program DROPS (Dynamic
Response of Pole Structures), through a numerical example. Unfortunately, there is
no field data available to verify the free vibration or the forced vibration analyses.
Due to the size of the problem and complexity of the analysis, hand calculations have
not been performed to verify results. However, the three programs written to per-
form the analysis, see Apendix A, were verified individually with smaller numerical

examples, refer to Appendix B for a summary of these examples.

5.1 Description of the Structure

The structure chosen to demonstrate DROPS is a single davit lighting pole. The
mounting height of the pole is 19.8 m (65°’) and the davit radius is 1.8 m (6’), see
Figure 5.1 for additional dimensions. The pole consists of two separate sections, a top
section made of 7 ga. (3.04 mm) steel and a bottom section made of 11 ga (4.55 mm)
steel. A cross section of the pole, which is shown in Figure 5.1, is a dodecagonal

(12 sided polygon). The dimension b indicates the nominal length of one side of the

27
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dodecagonal. The luminaire, which is not shown in Figure 5.1, is attached to the
tip of the pole. The luminaire has a mass of 39 kg and it is added to node 4 in the

manner described in Chapter 3.

5.2 Finite Element Model

This section summarizes the procedure and data required by the DROPS program to
build the model of the structure. Refer to Appendix A for a description of how to
build a model using the DROPS program.

The structure is defined by the four Defining Nodes and three Defining Elements
shown on the left of Figure 5.1. The required material properties for the steel pole
are reasonably assumed to be: modulus of elasticity £ = 200 GPa, shear modulus
G = 80 GPa and mass density p = 7850 kg/m>. The remaining data required to build

the model is summarized in Tables 5.1 and 5.2.

| Node | X (mm) | Y (mm) |
1 0.0 0.0
2 0.0 10972.8
3 0.0 17983.2
4 1828.8 | 19812.0

Table 5.1: Summary of node locations for example structure.

After the auto generate procedure was performed by DROPS the finite element
model, shown on the right of Figure 5.1, was defined by 29 nodes, one of which was a
support (fixed) node, and 28 elements. This results in a finite element system which
has 84 DOF which are not restrained.
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Element I» 1 2 3
Curvature (mm) Straight | Straight | 1828.8
Start Node 1 2 3

Start Node t (mm) | 4.55 304 | 3.04
Start Node b (mm) 721 43.7 25.5
End Node 2 3 4
End Node t (mm) 4.55 3.04 3.04
End Node b (mm) 43.7 25.5 18.1

Table 5.2: Summary of element dimensions for example structure.

5.3 Free Vibration Analysis

From the free vibration analysis, performed by the DROPS program, 84 natural
frequencies, one for each unrestrained DOF, and 84 associated mode shapes were

determined. Figure 5.2 shows the six lowest natural frequencies and associated mode

shapes.

5.4 Forced Vibration Analysis

As mentioned previously, this study focuses on two types of wind loads, gust winds
and laminar winds. This section discusses the simulated winds and the resulting

response of the example structure.

5.4.1 Gust Wind

The gust wind data which was used in this example is shown in Figure 5.3. The wind
data is based on the half cycle of a sine curve, with an amplitude of 5 m/s and a

frequency of 0.5 Hz or 3.14 rad/s. This wind speed data was chosen to simulate a



CHAPTER 5. NUMERICAL RESULTS

N

®, = 3.69 rad/s ®,=13.11 rad/s @, =27.34 rad/s
®, = 54.07 rad/s @, =9575 rad/s o, = 154.78 rad/s

Figure 5.2: Mode shapes for the six lowest natural frequencies.
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short pulse of wind. The positive wind direction is in the positive X direction. The
wind data is constant over the height of the pole. The first three modes were used in
the modal analysis with a modal damping factor of 0.001.

5.-
4.-.
Wind .|
Speed
m's) ,|
1..
0 4 — + 4 ¥
00 02 04 06 03 10

Time (s)
Figure 5.3: Plot of wind speed versus time.

Figure 5.4 shows a temporal plot of the horizontal displacement of the tip of
the structure (node 4). The response is as expected. As the wind gust is applied
the tip of the structure is displaced in the direction of the wind to a maximum of
approximately 15 mm. As the gust diminishes to zero so does the tip displacement.
The displacement then continues in the negative direction to a maximum less than
15 mm. This alternating displacement continues well after the gust has diminished.
However, the amplitude of the displacement continues to diminish to due to the
damping of the structure. If the plot were to continue this amplitude would diminish

asymptotically to zero.
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Figure 5.4: Plot of horizontal tip displacement versus time.
5.4.2 Laminar Wind

It has been discussed previously that laminar wind speeds up to 10 m/s are said
to cause vortex shedding. Therefore, the laminar wind speed range over which the
structure was tested was between 0.1 and 10 m/s. The laminar wind speed is constant
over the height of the pole. The first six modes were used in the modal analysis with
a modal damping factor of 0.001.

Figure 5.5 shows a plot of the maximum steady-state horizontal tip displacement
of the structure versus the laminar wind speed. As can be seen from the plot, the
maximum displacement is small over the selected range of wind speeds. However, for
certain wind speed the maximum displacement is much larger, indicated by a spike
in the plot. This wind speed is called a critical wind speed. At this wind speed the
associated vortex shedding frequency is at or near one of the natural frequencies of the
structure resulting in a situation known as resonance. There are a total of six eritical

wind speeds in this range of wind speeds, corresponding to the six lowest natural
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frequencies discussed previously. The critical wind speeds and associated maximum

displacements are sumarized in Table 5.3.

Critical Wind Maximum
Speed (m/s) | Displacement (mm)

0.25 9.0

0.75 2.5

1.5 2.0

3.0 2.5

9.9 17.5

8.5 2.0

Table 5.3: Summary of critical wind speeds and associated maximum displacements.
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Figure 5.5: Plot of horizontal tip displacement versus laminar wind speed.
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Chapter 6

Conclusion

6.1 Concluding Remarks

The purpose of this report was to create a user friendly, interactive computer program,
which provides a better understanding of the behavior of street light structures due to
wind induced vibrations. The wind conditions and resulting responses investigated
corresponds to, low speed laminar winds causing vortex shedding, and gust winds
causing vibrations in the direction of the wind. The results determined by the program
correspond well with published and hand calculated results.

Critical laminar wind speeds along with the steady-state response due to gust
winds are shown graphically in the interactive computer program. The results of
individual and specific cases can be studied as the model allows for variation of many
parameters including structure geometry, material properties and variation of wind
flow characteristics such as velocity, direction and gust wind data. Through the use of
the interactive computer program, an in depth understanding of the street light poles
currently in use by Manitoba Hydro can be obtained. This may aid in the future

design, maintenance and monitoring of these structures, ultimately making their use
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more efficient and extending their life expectancy.

6.2 Future Work

1. The finite elements chosen to model the pole structure were two noded straight
prismatic elements. Using this type of element to model a tapered pole results
in a stepped structure for which each successive element has cross sectional
properties which are incrementally larger or smaller than the previous element.
Another short coming of this type of element is seen in modeling a curved por-
tion of a pole, where the curved portion is modeled by small straight elements.
The mathematical model could be improved by creating an element which ad-
dresses both of these concerns. An element such as a three noded non-prismatic
curved element could be implemented into the mathematical model. This ele-
ment could be incorporated into the Fortran program, Static, see Appendix A,

in the form of an additional element subroutine.

2. An investigation into other forms of wind induced vibrations may also be done
and integrated into DROPS. It has been mentioned that galloping may cause

perpendicular vibration of pole structures.

3. Full scale field tests which could gain field data for an actual pole structure
could be done to further verify and calibrate the computer program.

4. Tow tank and wind tunnel testing could be performed to gain a better under-
standing of the forces exerted on the structure.
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Appendix A

Computer Program (DROPS)

A.1 Program Description

The computer program called DROPS (Dynamic Response of Pole Structures), is an
interactive Microsoft Windows 95 based program which determines the response of
a pole structure due to gust wind and vortex shedding excitations. The program
consists of a main interactive program and three separate analysis programs.

The main program was created using Microsoft Visual Basic 4.0, which is a com-
mercial software package used to create Windows based programs. The main program
controls the graphical display and user interaction as well as controlling the three anal-
ysis programs, Static, Free and Forced. The analysis programs were created by using
Microsoft Fortran Power Station, which is a commercial software package used to cre-
ate Fortran 90 programs. The Static program assembles the finite element model of
the structure, the Free program determines the natural frequencies and mode shapes
of the model and the Forced program determines the response of the model due to
the excitation force.

A.2 Installing DROPS

A.2.1 Installation Requirements

In order to run DROPS, your computer system needs to have the following minimum
configurations:
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e An IBM or compatible computer capable of running Windows 95 or NT.
e Windows 95 or NT operating system installed on your computer.

e At least 1.2 MB available hard disk space.

e Any Windows-supported monitor and graphics card.

e A mouse is highly recommended.

A.2.2 Installation

1. Start Windows.
. Insert the DROPS Disk 1 into the disk drive you are using to install the program.

2
3. Select Run from the Start button.
4

. If you are using Drive a, enter a:setup and click OK. If you are using a different
drive, use that drive letter instead. The installation program will prompt you
on screen for the remainder of the installation. The program and required files
should be contained in directory c:\ ProgramFiles\ Drops.

A.3 Starting DROPS

1. Start Windows.
2. Make sure that DROPS has been installed.

3. Select Programs from the Start button. A list of programs should appear on
the screen. From this list select the DROPS program. If you wish to make a
shortcut to the program or relocate the program on the program list consult

Windows 95 Help.

A.4 Building a Model

The procedure for building a finite element model is time consuming and requires an
understanding of the finite element method. Refer to Chapter 3 for more informa-
tion. The DROPS program attempts to simplify this procedure in order to make the
program easier to use.

The usual procedure for building a finite element model requires the user to dis-
cretize the model into a series of nodes and elements. The nodal coordinates and
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element connectivity must then be determined for each node and element, respec-
tively. The element properties and material properties for each element must then be
determined. For a simple tapered pole this requires numerous hand calculations and
a good understanding of the finite element method. The DROPS program reduces
this procedure by performing most of these calculations internally by incorporating
an auto generate procedure.

The auto generate procedure requires the user to define nodes only at points
of interaction or interest. For example, if a tapered circular pole has a tapered
oval luminaire arm attached to it, the user would need only to define the nodes
at the ends of each section and the point at which the two are connected. If the
connecting point is at the tip of the circular pole and the base of the oval luminaire
arm, only three nodes and two elements would need to be defined. These nodes
and elements are referred to as Defining Nodes and Defining Elements, respectively.
Once the nodal coordinates, element properties and material properties are defined
for the three nodes and two elements, the finite element model can then be auto
generated. This procedure subdivides each element into a number of elements of equal
length and extrapolates the required information for each node and element that is
generated. The number of equal length elements can either be specified by the user or
automatically determined by the program. The computer program uses a maximum
element length of 500 mm for straight sections and 125 mm for curved sections, to
determine the number of equal length elements used for the auto generation procedure.

Ehe steps required to build a model using the DROPS program will now be de-
scribed.

1. Start DROPS program, as described previously. The initial form which is shown
should resemble that shown in Figure A.1.

o

From the File menu, select New Model. You should see the form shown in
Figure A.2. Enter the required data and then select the Ok button. If you
have not entered all the data or the data you have entered is invalid, an error
message will appear informing you of the nature of the error. If no error message
appears, the form should disappear and a check mark should appear next to
Control Information... under the Preprocessor menu, indicating that this form
is complete.

3. Repeat the previous step for Node Properties..., Connectivity..., Element Prop-
erties..., Cross-Sectional Properties... and Material Properties... under the
Preprocessor menu until all have a check mark next to them.

4. Once all the Preprocessor items are complete, you can now generate the finite
element model, by selecting Auto Generate under the Preprocessor menu. This
process may take a few seconds to complete depending on your computer.

5. Once the finite element model has been generated from the input data, the
finite element model is stored in memory and further analysis of this model
may commence.
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Figure A.1: Main DROPS form.

Figure A.2: DROPS Control Information form.
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At any point during this process the user can view a graphical image of the model
by selecting Model... under the View memu. The form shown in Figure A.3 should
be displayed. By clicking the desired settings on the left of the form the model will
be displayed in the area on the right side of the form.

Figure A.3: DROPS Draw Model form.

A.5 Free Vibration Analysis

1. Start DROPS program and build the model as described previously.

2. From the Analysis menu select Free Vibration. This process may take a few
seconds depending on your computer.

3. Once this process has been completed, you can view the natural frequencies
and associated mode shapes for the In-Plane (Frame) and Out-Of-Plane (Grid)
elements. Refer to Chapter 4 for more information. From the Postprocessor
menu select Free Vibration, a list should appear showing In-Plane (Frame)...
and Out-Of-Plane (Grid).... By selecting In-Plane (Frame)... the form shown
in Figure A.4 should appear. A list of the natural frequencies can be found in
the drop down menu on the left.
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Figure A.4: DROPS In-Plane (Frame) form.
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4.

3.

By selecting a natural frequency from the list, the associated mode shape will
be drawn in the area on the right of the form.

To get a better idea of the type of motion associated with the mode shape select
the Start button on the left side of the form, to begin the animation of the mode
shal}e. To stop the animation simply select the Stop button on the left side of
the form.

Once the Free Vibration Analysis is complete the analysis of the Forced Vibra-
tion Analysis can be performed.

A.6 Forced Vibration Analysis

The forced vibration analysis is split into Gust Wind and Laminar Wind cases, which
correspond to the along wind response and the response due to vortex shedding. See
Chapter 2. We will look separately at how to perform the analysis for each of these
wind loading situations.

A.6.1 Gust Wind

L.

Start DROPS program, build the model and perform the free vibration analysis
as described previously.

From the Analysis menu select Forced Vibration. A list should appear showing
Gust Wind... and Laminar Wind.... Select Gust Wind... from the list and
the form, shown in Figure A.5, should appear. Notice that the menu bar has
changed from the Main form shown in Figure A.1.

The fist step in this analysis is to create the wind speed data which will be used
in the analysis. From the File menu select New Wind Speed Data..., the form
shown in Figure A.6 should appear.

Enter the time and corresponding wind speed data, for the wind speed record
you wish to use, into the form.

When all data has been entered select the Ok button. If all data is valid the
form will disappear and a check mark should appear next to Wind Speed Data...
under the Procedure menu, indicating that this form is complete.

The next step is to specify the wind direction. From the Procedure menu select
Wind Direction... and the form shown in Figure A.7 should appear.

To specify the positive wind direction, simply select one of the four gray arrows.
Notice when you select the gray arrow it should turn to a blue arrow indicating
the direction you have selected. To change the wind direction simply select one
of the other three gray arrows.
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Figure A.5: DROPS - [Gust Wind] form.

Figure A.6: DROPS - [Gust Wind], Wind Speed Data form.
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8.

10.

o 0 o o o e v e

Figure A.7: DROPS Wind Direction form.

Once you have specified the desired wind direction, select the Ok button. If
there are no errors the form should disappear and a check mark should appear
next to Wind Direction... under the Procedure menu, indicating that this form

is complete.

You may perform the analysis by selecting Analyze from the menu. This process
may take some time to complete, depending on your computer and the size of

the problem.

Once this process has been completed, you can view the response of the model
by selecting Forced Vibration under the Postprocessor menu. The form shown in
Figure A.8 should appear. To view the response at a specific node and specific
DOF, simply select the desired node from the drop down list and the desired
DOF from the list of available DOF. The temporal response of the DOF should
appear graphically on the right side of the form.

A.6.2 Laminar Wind

1.

Start DROPS program, build the model and perform the free vibration analysis
as described previously.

From the Analysis menu select Forced Vibration. A list should appear showing
Gust Wind... and Laminar Wind.... Select Laminar Wind... from the list and
the form, shown in Figure A.9, should appear.

The fist step in this analysis is to define the laminar wind speed range. From
the Procedure menu select Wind Speed Range..., the form shown in Figure A.10
should appear. Enter the desired low and high range of wind speeds on the form
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Figure A.8: DROPS Post Processor form.

and select the Ok button. If there are no errors the form should disappear and
a check mark should appear next to Wind Speed Range... under the Procedure
menu, indicating that this form is complete.

4. Define the wind direction, as described previously, if it has not yet been defined.

5. You may perform the analysis by selecting Analyze from the menu. This process
may take some time to complete, depending on your computer and the size of
the problem.

6. Once this process has been completed, you can view the response of the model
by selecting Forced Vibration under the Postprocessor menu. The form shown in
Figure A.8 should appear. To view the response at a specific node and specific
DOF, simply select the desired node from the drop down list and the desired
DOF from the list of available DOF. The response of the DOF versus wind
speed should appear on the right side of the form.

A.6.3 Analysis Options

Additional control over the analysis procedure may be attained by the user through
the analysis options form. The following steps will describe the procedure to change
the analysis options which are originally set to default values.
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Figure A.9: DROPS - [Laminar Wind] form.

Figure A.10: DROPS Wind Speed Range form.
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1. Follow the steps described previously for the Gust Wind or Laminar Wind up
to the step prior to selecting the Analyze menu.

2. From the Procedure menu select Analysis Options..., the form shown in Fig-
ure A.11 should appear. The options available are different depending on which
type of wind load is being considered. Shown in Figure A.11 are the options
available for the Gust Wind analysis. The first two options control the modal
analysis procedure and are common to both wind loads. However, the third is
available only for the gust wind and controls the total time for which the time
integration is to be performed.

Figure A.11: DROPS Analysis Options form.

3. To change the options first select the check box labeled Use Default Values.
This should allow you to change the available options. By again selecting the
check box the options will be reset to the default values.

4. Once you have entered the desired options select the Ok button. If there are
no errors, the form will disappear and you may continue with the analysis as
described previously.

A.7 Material Properties Database

The following steps will show you how to add more material types to the list found
in the Material Properties form.

1. Locate the file Mat.db which should be located in the same directory as the
DROPS program c:\ ProgramFiles\ Drops. Open this file in any text editor such
as Microsoft Notepad. The first line of the file indicates the total number of
material types in the database. Each material type in the database consists of
a material name, maximum of twenty characters long, the modulus of elasticity
in GPa, the shear modulus in GPa and the mass density in kg/m3. Each of the
material properties are entered on a new line of the database.
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2. To create a new material type in the database, simply add the four required
properties to the end of the file making sure that each property is on a new line.

3. Once you have added one or more new material types to the database make
sure to change the number at the top of the list to indicate the total number of
material types in the modified database.

4. Save the file and exit the text editor.



Appendix B

Verification of the Program

This appendix summarizes the numerical examples which were used to verify the
analysis programs Static, Free and Forced described in Appendix A.

B.1 Example 1

The purpose of the Static program is to assemble the mass and stiffness matrices of
the finite element model. A 2 m tapered steel pole, shown in Figure B.1, was used to
verify this aspect. The pole was modeled by using two prismatic frame elements which
resulted in a problem which was small enough to verify by hand calculations but large
enough to fully test the program. The cross section of the pole was assumed to be
circular with an outside diameter at the base of 200 mm and 100 mm at the tip. The
thickness of the steel was assumed invariably to be 3 mm. The modulus of elasticity
and mass density were assumed to be 200 GPa and 7850 kg/m3, respectively.

The resulting stiffness and mass matrices are shown in Equations B.1 and B.2.
The matrices, which were determined by hand calculations, resulted in a maximum

discrepancy of 0.04%.

[ 19531200 0 4627200 5138400 0 —2569200 |
0 5.54 x 108 0 0 —-2.30 x 108 0
| 4627200 0 6510400 2569200 0 856400
(K] = —5138400 0 2569200 5138400 0 2569200
0 -2.30 x 108 0 0 2.30 x 108 0
| —2569200 0 856400 2569200 0 1712800 |
(B.1)
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Figure B.1: Simple tapered pole of Example 1.

[ 8079 0 0.1937 1.161 0 02794 ]
0 7251 0 0 1.505 0

0.1937 0 02072 —-02794 0 —0.0645
[M] = 1.1I61 0 —-02794 3.353 0 0.4729 (B-2)

0 1.505 0 0 3.001 0

| 02794 0 —0.0645 04729 0 0.0860 |
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B.2 Example 2

The purpose of the Free program is to find the natural frequencies and mode shapes
of the model assembled by the Static program. The example chosen to verify this
program was an example taken from a vibrations text book [16].

The frame shown in Figure B.2 is fixed at nodes 1 and 4 and is restrained in the
vertical direction at nodes 2, 3, 5 and 6. The required element and material properties
are; modulus of elasticity £ = 30 x 10° psi, cross sectional area A = 17.634 in2,
moment of inertia I = 984 in* and mass density p = 7.372 x 10~ lb/in*.

1
5 6
5
4 6] 20ft
2
2 3
40 ft
1 3] 20 ft
1 4
7777 7777 T

Figure B.2: Frame of Example 2.

The first three natural frequencies are w; = 27.62 rad/s, ws = 97.44 rad/s and
w3 = 137.48 rad/s. Equation B.3 shows the associated mode shapes for the first
three natural frequencies. These results have a maximum discrepancy of 0.09% when
compared to those reported in the vibrations text book.
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1.0 )
—0.00441
1.0
—0.00441
2.142
—0.00273
2.142

>,¢2=J

—0.00273 |

1.0 )
0.00057
1.0
0.00057
-0.0712
0.00624
~0.0712
0.00624 |

=1 o103

—0.286
-1.0
0.286

0.626
0.193

| —0.626 |
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B.3 Example 3

This example verifies the analysis of a system due to a general time dependent ex-
citation, performed by the Forced program. The analysis is done as described in
Chapter 4. The example chosen to verify this program was an example from a vibra-
tion text book [16].

A five-story building was modeled by the system shown in Figure B.3. The system
consists of five elements having stiffness values of; k; = k; = 10 x 107 lb/in, k3 =
ks = 8 x 107 Ib/in and k4, = 6 x 107 Ib/in. The mass of the structure is modeled
by five lump masses added at each node, the values of the lump masses are; m; =
my = my = 65 x 10° 1bs?/in, mq = 60 x 10 Ibs?/in and ms = 45 x 10° lbs?/in.
The building was said to be exposed to tornado wind loading which was modeled by
applying a forcing function, F(t), at each floor. The data used for the forcing function
is summarized in Table B.1.

[ &

F() m,}—>
k,

F@) m,) —>

Xy
k;

Fo —(m) —
k,

e
X

Figure B.3: Model of five-story building used in Example 3.

The part of the solution from the time integration is summarized in Table B.2.
This solution matches the solution reported in the text book, with a maximum dis-

crepancy of 0.05%.
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time, s | F(t), Ib l
00 | 00 |
0.20 4.0 x 107
0.35 | 48x107
0.60 | 5.0 x 107
0.90 | 46 x 107
1.02 | 4.0x107
1.05 | 3.0x107
1.08 | 2.0x107
1.13 1.0 x 107
1.20 0.0
1.30 | -1.0x107
1.40 [ —1.7 x 107
1.45 | —2.0 x 107
1.65 | —26x 107
2.00 [ —3.0x 107
2.15 | —2.7 x 107 |
2.30 | —2.0 x 107 |
245 | —1.0x 107
2.50 0.0

Table B.1: Summary of tornado wind loading.
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Time,slxl,in]xz,inlx;,,in| X4, in | Xs, in I
0.0 0.000 | 0.000 { 0.000 | 0.000 | 0.000
0.01 | 0.000 | 0.001 | 0.001 | 0.001 | 0.001
0.02 | 0.003 | 0.005 | 0.004 | 0.004 | 0.006
003 |0011| 0.015; 0.014 ] 0.015 | 0.020
0.04 |0.025 | 0.036 | 0.033 | 0.035 | 0.047
0.05 0.047 | 0.068 | 0.064 | 0.069 | 0.090
0.06 [0078|0.114 }0.112 | 0.120 | 0.153
007 |[0.118 | 0.175 | 0.179 | 0.193 | 0.239
0.08 | 0.166 { 0.253 | 0.268 | 0.291 | 0.350
0.09 |0.222 | 0.346 | 0.382 | 0.417 | 0.490
0.10 | 0.286 | 0.456 | 0.522 | 0.574 | 0.660
038 | 3.645 | 6.759 | 9.687 | 11.661 | 12.974
0.39 | 3.656 | 6.784 | 9.731 | 11.713 | 13.025
040 | 3.648 | 6.776 | 9.729 | 11.710 | 13.010
041 | 3.622 | 6.735 | 9.681 | 11.650 | 12.932
0.42 | 3.580 | 6.664 | 9.585 | 11.533 | 12.794

Table B.2: Summary solution for Example 3.
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B.4 Example 4

This example verifies the analysis of a system due to harmonic excitation, performed
by the Forced program. The analysis is done as described in Chapter 4. The example
chosen to verify this program was an example from a vibration text book [17].

A four-story building was modeled by the system shown in Figure B.4. The
system consists of four elements having stiffness values of; k; = 800 kips/in, k; =
1600 kips/in, k3 = 2400 kips/in and k4 = 3200 kips/in. The mass of the structure is
modeled by four lump masses added at each node, the values of the lump masses are;
m; = 1 kipss?/in, my = 2 kipss?/in, m3 = 2 kipss?/in and m4 = 3 kipss?/in. The
building was excited by applying a harmonic load at the top floor equal to cos(2t.

cos Qt

—_—

Figure B.4: Model of four-story building used in Example 4.

The maximum displacement of the system at node 1 is summarized in Table B.3.
The response found by the Forced program have a maximum discrepancy of 0.04%
when compared to those reported by the text book.
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Forcing Frequency | Amplitude of x;(t)
Q, rad/s in
0 0.002602
6.647 0.003288
53.403 -0.000499

Table B.3: Summary solution for Example 4.



Appendix C

Nomenclature

Re = Reynolds number

V = free stream wind velocity

d = bluff diameter

v = kinematic viscosity of air

S = Strouhal number

fs = vortex shedding frequency

A = area upon which the wind force acts
Pair = mass density of air

Fp = drag force

Fp = lift force

ws = circular vortex shedding frequency
L = length of an element

@ = angle of inclination to the wind
FEM = Finite Element Method

DOF = Degree(s)-Of-Freedom
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X,Y, Z = global coordinate system

z,y, z = local coordinate system

u, v, w = translational DOF in the local coordinate system
dx,dy,dz = translational DOF in the global coordinate system
@z, Oy, . = rotational DOF in the local coordinate system
dx, ¢y, 9z = rotational DOF in the global coordinate system
[ke] = elemental local stiffness matrix

[m.] = elemental local mass matrix

E = modulus of elasticity

A = cross sectional area

I = moment of inertia

p = mass density

G = shear modulus

J = polar moment of inertia

[T'] = transformation matrix

[K] = global stiffness matrix

[M] = global mass matrix

M|, = total mass of additional non-structural component

w = natural frequencies

¢ = mode shape

{)? },{X },{X } = global acceleration, velocity and displacement vectors
[C] = global damping matrix

{F(t)} = forcing function vector

[®] = modal matrix
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{6}, {5}, {5} = displacement, velocity and acceleration vectors in terms of the
principal coordinates

[M], [C], [K] = modal mass, damping and stiffness matrices
{F(t)} = modal force vector

M, C,,K, = diagonal components of the modal mass, damping and stiffness
matrices for the r* mode

F.(t) = modal forcing function for the r** mode
¢ = modal damping factor for the r** mode
E.(t) = excitation function of the r** mode

At = time integration increment

ki1,ks,k3,k4 = time integration constants

2 = frequency of a harmonic excitation

r = frequency ratio

o = phase lag

wq = damped natural frequency

H () = frequency response function





