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Abstract

Inn rhis thesis. we examine some well known pursuit and evasion games. The focus will
be on the game of Cops and Robber. introduced by Nowakowski and Winkler [10]. and
independently. by Quilliot [12]. and the searching game. introduced by Parsons [11].

We proceed to introduce some variations of these games. We alter the amount of
informarion available to the cops or searchers regarding the position of the robber.
We alzo replace some of the dynamic cops or searchers by static objects. As well. we
consider the =earching game from the perspective of minimizing the time expected

for the =earch.
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Chapter 1

Introduction

In this thesis. some well known searching games are examined: in particular the game
of Cops and Robber is considered. These games have traditionally been dynamic. In
Cops and Robber. the opponents are able to move from vertex to vertex as the cops
attempt to apprehend the robber. A game known as searching is usually formulated in
terms of clearing an area of certain airborne contaminants. or alternately. searching
for an infinitelv fast intruder. We will think of this game as a variation of Cops
and Robber in which the cops take on the role of the searchers. Both sides move
continuously. The Watchman Problem requires that the vertices of the underlying
graph G be monitored rather than scarched: that is. for every vertex v of G. v or
one of its neighbors must be visited. In addition. a time period is introduced. The
vertices of G must be monitored once every & units of time. A > 0.

In this first chapter. we look at the historical development of these games. and
present some known results. In the process of giving results regarding the outcomes
of these games. we look at soine strategies that can be used by a particular side to
gnarantee a favorable outcome. In so doing. we notice that the dynamic nature of the
plavers is not always utilized in winning strategies. This realization led us to alter the
rules of the games. and investigate the use of static objects in place of the dvnamic
cops. This is especially evident in the third chapter where we propose replacing the

cops by a single cop with a finite number of “traps’ at his disposal. If the robber
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moves onto a vertex with a trap. he is detained and a win for the cops results.

A second theme that runs through this thesis is the amount of information avail-
able to the opponents about each other. In the game of Cops and Robber. both sides
have perfect information. Each side is always aware of the position of the other. The
searching game. however. is on the opposite end of the spectrum. The cops have
no information regarding the position of the robber: in fact. the cops are not even
certain that there is a robber. We propose some variations of these games that fall
somewhere in between. The second chapter considers the use of special surveillance
equipment. The only information the cops have about the robber is that which can
be obtained using this equipment. We present two variations. the first being the use
of photo radar. If the robber moves using an edge equipped with photo radar. the
cops will be aware of the movement regardless of their positions. The second is the
use of surveillance cameras on a grid. This surveillance makes the cops aware of the
position of the robber if he is located on a grid line covered by a camera. Otherwise.
the cops have no information regarding the robber.

In the final chapter. the problems are formulated in terms of searchers. and lost
dogs and sleeping babies. Dogs and babies are used to indicate the amount of maneu-
verability of the “searchee’. \We could have chosen to present these problemns in terms
of cops and robbers in keeping with the other chapters. However in these games.
unlike those considered up to this stage. the playver being searched for is unaware of
the actions of the searchers. Similarly. the searchers do not know the position of this
plaver and are unable to influence his movements. although the searchers are able
to deduce the probability that the lost dog or baby is located on a particular vertex
at any given time. This information is used to determine the vertex on which the
search should begin in order to minimize the expected time required for the search.
A variation of the lost dog problem is then introduced. The searchers are able to
use static traps. Once the dog moves onto a vertex with a trap. it is detained. the
searchers are aware of its position and the game is over. Probabilities are calculated

and expected times are minimized for this version of the game as well.



These probability problems can also be modeled in terms of a search and rescue at
sca. The searchers are in a boat rather than on foot. and are searching for a missing
person. Instead of traps. the searchers have a number of lifeboats at their disposal.
The searchers are able to monitor the lifeboats so that if the missing person is able

to board such a boat. the search is complete.

1.1 Cops and Robber

1.1.1 Rules of the Game

The game of Cops and Robber is a pursuit game plaved on a graph G. This game
was introduced by Nowakowski and Winkler [10] and independently. by Quilliot [12].
Thie game is plaved by two opposing sides: the cop side is composed of a set of & > 0
cops and the robber side is composed of a single robber. Both sides play with perfect
information: that is. each side knows the whereabouts of the other at all times. The
rules require that the cops begin the game by each choosing a vertex to occupwy.
These vertices do not have to be distinct. The robber must then also choose a vertex
to occupy. The opponents move alternately. It should be noted that a plaver can
choose 1o pass and remain where he is during a turn. Hence during the cops’ turn.
it is allowable for only a subset of the & cops to move. The cops win if at least one
of them occupies the same vertex as the robber after a finite number of moves. The
robber wins if this situation can be avoided forever. We note that in this game. unlike
searching. the plavers are alwavs assumed to be located on vertices.

The version of the game described here allows both sides to pass during a turn if
thiev so desire. This is known as the passive game. In the active game. the robber
and a nonempty subset of the cops must move during their respective turns. [t has
been shown by Neufeld [8] that if & cops have a winning strategy on a graph G in
the passive game. then the number of cops. &’ needed in the active game must satisfv
& < & < k" + 1. If the game is plaved on a reflexive graph. a graph with a loop at

every vertex. the passive and active versions are equivalent.



1.1.2 Characterization of Copwin Graphs

When the game was originally proposed. it was played with a single cop and a robber.
Anyv graph could be characterized as either copwin or robber-win depending on the

outcome of the game. Copwin graphs were completely characterized in [10] and [12].

Example: Each member of the set {T, : T; is a finite tree} is copwin. To see this.
consider the vertex occupied by the cop at any stage. The robber is unable to move
past the cop because there is just a single path joining any two vertices. Hence the
tree is partitioned into two parts by the cop. and the robber is restricted to moving
within one of those parts. As the cop moves toward the robber. that part of the graph
that is inaccessible to the robber strictly increases as the robber’s portion becomes

stnaller. Hence after a finite number of moves. the robber is apprehended.

Example: Let C be the family of cvcles of length greater than three. Each member
of this familyv is robber-win since the robber can always stay at least two vertices

away from the cop.

Definition 1.1 Let G and H be reflexive graphs. A mapping f : V(G) — V(H) s
said to be edge preserving if it preserves adjacencies: that is. if there is an edge
joining two vertices in G. there must be an edge (possibly a loop) joining the images

of these vertices in H.

Definition 1.2 Let G be a reflexive graph and let H be an induced subgraph of G. It
is said that H is a retract of G if there 1s an edge preserving map f from G to H
suach that the restriction of f to H s the identity map on H.

Theorem 1.1 (Nowakowski and Winkler [10]) Any retract H of a copwin graph

G s also a copwin graph.

Proof. Let G be a copwin graph and let H be a retract of G. Further let f be a
retraction map from G to H. Since G is copwin. the cop has a winning strategy on

(. This strategy can be modified and used on the subgraph H. The cop simply plays



the image under f of his winning strategy on G. Using this strategy. the cop captures
the image of the robber on H. Since the robber is actually playing on H and f is the
identity map on M. the robber’s image coincides with his actual position. Hence the

robber is apprehended on A and therefore. H is a copwin graph. g

Definition 1.3 Let G be a graph and let v € V(G). The neighborhood of v. denoted
N(v). is the set of vertices adjacent to v in G. The closed neighborhood of v. denoted
Nl 1s defined as N(v)u {v}.

Definition 1.4 A verter d of a graph G is said to dominate another vertex v if d

s adjacent to each of the vertices in the closed neighborhood of v.

Suppose a given graph G is copwin. To determine the properties that characterize
such a graph. it is useful to consider the last move made by the robber before he
is apprehended. Let the position of the robber before this last move be denoted v.
There are three options open to the robber. He can choose to pass and remain on
vertex ¢. he can move onto the vertex occupied by the cop. or he can move to a vertex
adjacent to the cop’s position. Since all of these options must lead to the capture of
the robber. it must be true that the vertex u occupied by the cop is adjacent to ¢ and
also to every vertex that is adjacent to v: that is. v dominates . The vertex ¢ will
be referred to as a corner since the robber has no means of escape once he is forced
to move onto this vertex.

Clearly a graph without a corner cannot be copwin. Suppose a graph G has a
corner. The robber will only move onto the corner if he is forced to do so. Hence the
question becomes whether or not the cop can force the robber onto the corner. This
can be determined by removing the corner and determining if the resulting graph
is copwin. Intuitively. the successive removal of corners from a copwin graph will
result in a single vertex. This is the idea used by Nowakowski and Winkler [10] to

characterize copwin graphs.

Theorem 1.2 (Nowakowski and Winkler [10]) Let G be a graph and let ¢ be a
corner of G. Let G' = G\ {¢}. Then G is copwin if and only if G’ is copwin.



Proof. Let G be a graph and let ¢ be a corner of G. Let G' = G\ {c}. Further let
d be a vertex that dominates the corner c. We wish to show that G is copwin if and
only if G’ is copwin.

Suppose G is copwin. Now G’ is a retract of G with a retraction map f defined
as follows: f(c¢) =d and Vv € V(G’). f(v) = v. Thus by Theorem 1.1, G’ is copwin.

Conversely suppose G’ is copwin. Let f be the retraction map from G to G’. Since
(" is copwin. the cop has a winning strategy on G’'. If the game is actually being
plaved on G. the winning strategy on G’ can be thought of as catching the image
of the robber. Now suppose this image is caught on vertex u. If u # d. then the
robber’s image on G’ corresponds to his actual position on G. This is because f is
the identity map on G’. Hence the robber is apprehended. Otherwise. the robber’s
lmage is apprehended on vertex d. Since it is known that f(c) = f(d) = d. the robber
is on vertex ¢ or vertex d in the graph G. If he is on d. his actual position corresponds
to his image and he is caught. If he is on ¢ then he will be caught on the next move.

This is because the cop is on vertex d and it is known that d dominates c. g
At this stage some needed definitions will be introduced.

Definition 1.5 Let G be a graph and let v € V(G). Suppose there exrists a verter
u € V(G) such that Nc| C Nfu]. Then v is said to be irreducible. The vertex v is

also known as a corner or pitfall.

Definition 1.6 A graph G is said to be dismantlable if there is an ordering {vy. ta.
.. tn} of the vertices of G such that for each i < n. v, is irreducible in the subgraph

induced by {v,. tieyo oo ctp}
We are now ready to give the the main theorem in this section.

Theorem 1.3 (Nowakowski and Winkler [10]) A finite graph is copwin if and
only if it is dismantlable.

The ordering of the vertices of the graph G referred to in the previous definition

is known as a copwin ordering.
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Example: This example refers to Figure 1.1. The circled vertices represent corners
at cach of the stages. Also. at each stage. it does not matter in which order the

corners are removed. The original graph is copwin by Theorem 1.3.

There are copwin graphs that are not finite. So Nowakowski and Winkler [10] ex-
tended Theorem 1.3 to obtain a complete characterization of copwin graphs. However.

we will not be considering infinite graphs and therefore omit this proof.

1.1.3 A Variety

Now that copwin graphs have been characterized. a property of such graphs will be

explored. We begin with some definitions.

Definition 1.7 The strong product of a set of graphs {G, : i = 1.2.... .k} is
the graph B*_, G, whose verter set is the Cartestian product of the sets {V(G,) : i =
1.2.....k}. and there is an edge between @ = (a,.a;.... . ax) and b= (by.by. ... . by)
if and only if a, is adjacent or equal to b; for allt =1.2.... k.

Definition 1.8 A wariety of graphs is a class of graphs which is closed under finite

products and retracts.
The next theorem has been proven by Nowakowski and Winkler [10].

Theorem 1.4 (Nowakowski and Winkler [10]) Let {G, : : = 1.2.... .k} be a

finute collection of copwin graphs. The strong product of these graphs is also copwin.

Proof. Let {G, : 7 = 1.2.... .k} be a finite collection of copwin graphs. Let
G = ®*_,G, be the strong product of these graphs. We wish to show that G is

copwinl.

There is an edge-preserving projection of G onto each of the graphs G;. Hence the
cop and robber can be projected onto each of the original graphs and a game can take
place there. Consider one such projection onto the graph G,. Now G, is copwin. and

s0 the cop has a winning strategy and is able to apprehend the robber. In terms of the
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Figure 1.1: An illustration of dismantling. The original graph is copwin.



larger graph G. the cop has apprehended the projection of the robber on G;. The cop
stays with this projection for the remainder of the game as he similarly captures the
other projections of the robber on the graphs G,.... .G;_1.G,;+.... .Gy. Since the
collection of graphs is finite. the robber will be apprehended on each of the projections
after a finite number of moves. At this time. the robber is apprehended on G. It
should be noted that the cop has plaved the composition of his winning strategies on

cach of the graphs G;. g

Example: The previous theorem tells us that the product of a finite collection of cop-
win graphs is copwin. This example illustrates why the theorem cannot be extended
to infinite collections of copwin graphs.

Define P, = {0.1.2.... .n — 1}. Now P, is copwin. Consider the product of an
infinite collection of such paths &7, P,. This graph is not copwin since the vertices

(0.0.0....) and (0.1.2....) are not connected by a finite path.

The next theorem can be found in papers by Aigner and Fromme [1]. and by
Nowakowski and Winkler {10]. It follows immediately from Theorem 1.1 and Theorem

L4

Theorem 1.5 (Aigner and Fromme [1] and Nowakowski and Winkler [10])

The class of copwin graphs is a rariety.

1.1.4 Bridged Graphs

Bridged graphs and their relationship to copwin graphs will now be considered.

Definition 1.9 Let G be a graph and let H be a subgraph of G. The graph H is said
to be isometric if the distance between any pair of vertices in H is the same as that

G,

Clearly an isometric subgraph of a graph G must be an induced subgraph.
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Loy ]
N

Figure 1.2: The graph H is an isometric subgraph of G but not of /.

H G

Definition 1.10 Let G be a graph and let r.y € V(G). Let C be a cycle of length
at least four in G that contains the vertices r and y. If de(r.y) > dg(c.y) then the
graph G 1s said to be bridged.

Example: Sce Figure 1.2 for examples of these graphs. The graph H is an isometric

subgraph of & but not of /. The graph [ is bridged.

[n effect. this definition savs that if C' is anyv cyvcle with length greater than three
in a bridged graph G. then there is a “shortcut’ between a pair of vertices on the
cvele.

Anstee and Farber [2] published a paper concerning bridged graphs and copwin
araphs. The paper begins by proving a result that tells us everv nontrivial bridged

sraph contains a corner. The paper goes on to prove the next theorem.

Theorem 1.6 (Anstee and Farber [2]) Let G be a bridged graph. There erists a
verter u € V{(G) such that G\ u ts bridged.

Proof. Let G be a bridged graph. Choose a pair of vertices u.tv € V'(G) such that
N{ul € N{e]. Such a pair is known to exist [2]. Now let P be a shortest path in G
that contains »# but in which u is not a leaf. Now u can be replaced by ¢ in this path.
Hence G\ u is an isometric subgraph of G. It is noted that a cyvcle C is isometric in

G\ u if and only if it is isometric in . Therefore. G \ u is also a bridged graph. g
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In the proof of the theorem. the vertex u was taken to be a corner. Hence the
theorem actually tells us that the removal of a corner from a bridged graph results in
another bridged graph.

Let’s collect the information given us through several theorems. First. it is known
that everv bridged graph contains a corner. and that its removal results in another
bridged graph. It is also known that a copwin graph is one in which the successive
removal of corners results in a single vertex. Hence we are able to conclude. as Anstee

and Farber did. that every bridged graph is copwin. This result is stated as a theorem.

Theorem 1.7 (Anstee and Farber [2]) Let G be a bridged graph. Then G is

copurn.

An algorithmic proof of this theorem has been given by Chepoi [4]. He has shown
that every ordering of the vertices of a bridged graph produced by a breadth-first

search is a copwin ordering as defined by Nowakowski and Winkler.

1.1.5 Strategy for a Copwin Graph

Suppose {ry.ro.. ... rn} is a copwin ordering of the vertices of a graph G. We know
that the cop must have a winning strategy on . But this strategy has not been
made explicit. The goal of this section is to describe a strategy. which appears to be
new. that can be used by the cop to win. and to prove that this strategy is effective

in capturing the robber. This strategy will be very useful in Chapter 3.

Copwin Strategy. Let {r,.r,.....r,} be a copwin ordering of the vertices of a
sraph G. Define the induced subgraphs G, = G,~; \ {£.-1} where G| = G. and let
fi : G, — G, be the retraction map from G, to G,.;. The robber is alwavs thought
to be plaving on the graph G. However. the cop initiallyv moves on rhe subgraph G,.
The cop begins on vertex r,. the vertex on which the cop’s position coincides with the
robber’s image under the mapping f,-1fa->... f3f2f1- Now suppose the cop is occu-

pving the robber’s image in the subgraph G; under the mapping f,_f._»... fafof1-



The cop is able to move onto the image of the robber in G;_;. After at most n moves.

the robber is apprehended.

Proof. The robber begins the game on some vertex of G. and the cop begins the
game in the subgraph G, on vertex r,. Now consider the image or shadow of the
robber under the mapping f,—; fa—2 ... fsfaf1. This mapping takes all vertices in G to
£,,. Hence the cop’s position coincides with the robber’s image under this mapping.

Suppose the cop is plaving in the subgraph G,. and is occupyving the robber’s
shadow under the mapping f;_1fi—2... f3fof1. We wish to show that the cop is able
to move onto the robber’s shadow in G,_; under f,_»>fi_3... fsfof1. Consider the
mapping f,_; : G,y — G,. We know that r,_, is a corner in G,_,. Let d be a vertex
that dominates r,_; where d € {z;,.2,41.... .z,}. The mapping f,_, is defined as
follows: f,_(r,_1) = d and Yv € V(G,). fi_(v) = ¢.

Since the cop has captured the shadow of the robber in G,. the cop must have
a winning strategy on this subgraph. Suppose the robber’s shadow is captured on
vertex u. u € {r,.Ly21.....I,}. If u # d. then the robber’s shadow on G, under
fiorfizo ... fafof) corresponds to his shadow on G, under f,_»>f,_s... f3f2f1 since
Yu # r,_y. fi—1(u) = u. Hence the robber’s shadow is captured on G,_;. Otherwise.
the robber’s shadow is apprehended on vertex d. Recall f,_(r,_;) = fi_1(d) = d. and
so the robber’s shadow is on vertex r,_; or vertex d in the graph G,_,. If it is on d.
his shadow on G,_; corresponds to his shadow on &,. and so his shadow on G,_, has
been apprehended. If his shadow is on r,_; in the graph G,_,. it will be captured on
the next move. This is because the cop is on vertex d and d dominates r,_;.

Since there are only a finite number of graphs G,. the robber’s shadow will coincide
with his actual position after a finite number of moves. Hence the strategy presented

here will result in a win for the cop. g

It has been shown that if the cop is playving in the subgraph G;. and is occupyving
rhe robber’s shadow under the mapping f,_,fi_»... f3f2f1. then the cop is able to
move onto the robber’s shadow in G;_ under f,_»>f;_3... fafofi. As a consequence. if

the cop is plaving in the subgraph &,. the robber can never move to a vertex in this
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stuibgraph without being apprehended by the cop. Equivalently. the robber cannot

move onto vertices used previously by the cop. This is stated as the next theorem.

Theorem 1.8 Suppose the cop is playing the Copuin Strategy in the subgraph G,. and
15 occupying the robber’s shadow under the mapping f,_\fi_>... fafofi- The robber
can necer move to a verter of Gy without the cop immediately landing on the same

rerter.

Proof. Suppose the cop is plaving in the subgraph G,. and is occupying the robber’s
shadow under the mapping f,_, fi—> ... f3fof1- The cop is able to move so as to stay
with the shadow of the robber on this subgraph. Now the mapping f,_ fi-2... fsfofu
i= the identity on G,. Hence if the robber moves to a vertex of G,. his shadow will

correspond to his actual position and he will be apprehended. g

1.1.6 Cops and Robber with & Cops

[t ix evident that there are many graphs which are not copwin. A natural question
to pose when considering such a graph G is how many cops are needed to apprehend

the robber. This question leads to the following definition.

Definition 1.11 Let G be a graph. The munimum number of cops needed to appre-

hend a robber on this graph s known as the copnumber of G and is denoted ¢(G).

Shortly after the introduction of the game by Nowakowski and Winkler. Aigner
and Fromme [1] published results important to further study. It was they who first
introduced the notion of copnumber. along with several interesting results.

Aigner and Fromme were able to prove that there exists an n-regular graph without
3- or 4-cvcles for every natural number n. Using this result. they showed that there

arc graphs which require an arbitrary number of cops as stated in the next theorem.

Theorem 1.9 (Aigner and Fromme [1]) Let G be a graph with minimum degree
0(G) > n which has no 3- or 4-cycles. Then c¢(G) > n.
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The most interesting result presented here involves planar graphs. We have al-
ready seen in Theorem 1.9 that there are graphs which require an arbitrary number
of cops to apprehend a robber. The next theorem addresses an opposing question.
[t isx desirable to identifv a class of graphs for which a bound can be placed on the
copnuinber. It is known that a 3-cvcle or a 4-cycle is contained in every planar graph
whose minimum degree is greater than or equal to five. This relation led Aigner
and Fromme [1] to conjecture the result stated in the next theorem which they have

provern.

Theorem 1.10 (Aigner and Fromme (1}) Let G be a planar graph. Then ¢(G) <
3.

Example: This example refers to Figure 1.3. The graph G shown has minimum
degree 9(G) = 3. The smallest cyele contained in G is of length 5. Hence this graph

<atisfies the conditions of Theorem 1.9 and ¢(G) > 3. Since G is a planar graph.

Gy < 3 by Theorem 1.10. Hence ¢(G) = 3.

Figure 1.3: An illustration of Theorems 1.9 and 1.10.

Copnumbers of graphs have also been considered by Beraducci and Intrigila 3]

using retracts. The first result is similar to Theorem 1.1.

Theorem 1.11 (Beraducci and Intrigila [3]) Let G be a graph and let H be a
retract of G. Then c(H) < ¢(G).



Proof. Let H be a retract of the graph G. and let f be a retraction map from G
onto H. Now ¢(G) cops have a winning strategy on G. Through the map f. the cops
are able to translate this winning strategy onto H. Hence the copnumber of H is at

most ¢(G). g

Beraducci and Intrigila pursued the idea used in the previous theorem. and proved

the next theorem along with a corollary.

Theorem 1.12 (Beraducci and Intrigila [3]) Let G be a graph and let H be a
retract of G. Suppose ¢(H) cops are playing on H. After a finite number of moves.
these cops can say with certainty that the robber will be apprehended if he moves onto

H.

Proof. Suppose ¢(H) cops are plaving on a retract H of the graph G. Through the
retraction map f. the cops can consider the robber’s movements on G as being made
on H. After a finite number of moves. the ¢(H) cops are able to capture the robber’s
image on H. Once this has been accomplished. one of the cops moves so as to stav
with the image of the robber. Since f is the identityv function on A. should the robber

decide to move onto A. he would be immediately apprehended.

Corollary 1.1 (Beraducci and Intrigila [3]) Let G be a graph and let H be a
retract of G. Then ¢(G) < mar{c(H). c(G\ H) + 1}.

Proof. Suppose the robber’s image has been apprehended on H as discussed in the
proof of Theorem 1.12. One cop is needed to stay with this image and therefore to
prevent the robber from moving onto H. The remaining ¢(H) — 1 cops can move
onto G\ A and aid in capturing the robber there. Now if ¢(H) — 1 > ¢(G \ H) then
c(H) cops are able to capture the robber on G. Otherwise. ¢(G \ H) are needed to
capture the robber on G\ H and one more cop is needed to stay with the robber’s
image on H for a total of ¢(G \ H) + 1. Since ¢(G\ H) > ¢(H) — 1 or equivalently
(G \ H)+1 > ¢(H). this number of cops is also able to apprehend the image of the
robber on . Hence the copnumber of G is at most max{c(H).c(G\ H) + 1}. g
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It has been shown in Theorem 1.4 that the strong product of a finite collection
of copwin graphs is also copwin. An analogous result for the copnumbers of graphs
due to Neufeld and Nowakowski {9] is included next. It bounds the copnumber of the

strong product of two graphs in terms of the individual copnumbers of these graphs.

Theorem 1.13 (Neufeld and Nowakowski [9]) Let G and H be graphs. Then
(GHRH) L c(G)+c(H)—1.

Proof. Let G and H be graphs and consider the strong product GX H. Let h be the
projection map from G® H onto {z}-H. the subgraph of GX H whose first coordinare
is r € G. and let g be the projection map from G & H onto G. Note that {r}- H can
be thought of as a copy of H in the product. Now ¢(H) cops are needed to capture
the image of the robber on {r} - H. One of these cops is then needed to remain with
the image of the robber. This is known as shadowing the robber. The remaining
c(H) — 1 cops. along with one additional cop. are available to capture the image of
the robber another time. This process is repeated until ¢(G) cops. {s;.52....: Se(Gy b
are shadowing the robber. In addition to these ¢(G) cops. there are ¢(H} — 1 other
cops who have been plaving. These ¢(H) — 1 cops have participated in capturing the
robber ¢(G) times. Now these ¢(G) + ¢(H) — 1 cops have a winning strategy on the
strong product. The cops s1.82.... .. scc) shadow the robber and play their winning

strategy on G. Hence c(GR H) < c(G) +c(H) 1. g

1.2 Searching

[t has been noted previously that in the game of Cops and Robber. both sides have
perfect information. Suppose the game is modified so that the cops have no informa-
tion about the position of the robber. This version of the game is known as searching
and was introduced by T. D. Parsons [11]. This game is usually formulated in terms
of apprehending an infinitely fast robber. or clearing an area (graph) of airborne con-

taminants. In keeping with the remainder of the thesis. we will think of this game
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in terms of the robber. To differentiate this infinitely fast robber from the robber
we have been considering up to now. this robber will be referred to as an f-robber.
We note that the f-robber can be located on edges of the graph. This is because the
original idea of the game was to search for people in caverns.

Given a graph G. the main objective arising out of the searching game is to be able
to determine the minimum number of searchers required to apprehend the f-robber.
This number will be referred to as the search number of G and is denoted s(G).
Suppose s(G) = k. The & searchers have an efficient strategy or wayv of searching the
graph for the f-robber. Define searcher i’s strategy as the path he follows on the graph
G. It will be useful to think of this strategy as a continuous function f; : [0. x) — G
where f,(f) is the position of the ith searcher at time ¢t. The set {f, : 1 < i < &}
i the collective strategy of the & cops. Similarly. define the f-robber’s position at
tine # as ¢(t). Clearly the search is over when f;(ty) = e(¢y) for some i € {1.2.... .k}
and some ty € [0.x). Here the search number can be thought of as the minimum
cardinality of all such collective strategies.

We begin with an intuitive and useful result that bounds the search number of a

sutbgraph in terms of the search number of the larger graph.

Theorem 1.14 (Parsons [11]) Let G be a graph and let H be a subgraph of G.
Further. let H be connected. Then s(H) < s(G).

Proof. Let G be a graph. The s(G) searchers have a strategy for searching . This
strategyv can be modified and used to search H by s(G) searchers. The searchers
follow the strategy for G except that thev disregard those parts of the strategy that
indicate they move outside of A. In terms of functions. let the strategy used to search
G be given by {f,: 1 < ¢ < s(G)}. Define continuous functions A, : [0. x) — H such
that ¥ f,(t) € H. h,(t) = fi(¢t). The function h,(t) is simply the restriction of f,(¢) to
values of t for which f;(¢) is in H. Such functions are desirable because the graph H
is being searched rather than the graph G. Now h,(t) is the strategy used on H by
the ith cop. and so {h; : 1 < i < 5(G)} defines the desired strategy on H used by

s(G') cops. Hence 3(G) cops have a strategy for searching H. and so s(H) < s(G). g
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We note that this relationship does not hold for copnumbers: that is. if G is a
graph and H is a subgraph of G. it is not true that ¢(H) < ¢(G). To see this. consider
the graphs G and H shown in Figure 1.4. The graph G has copnumber 1 since the
middle vertex is adjacent to all of the other vertices. The graph H has copnumber 2.

Hence o( H) £ ¢(G).

G H

Figure 1.4: 2 =c(H) £ ¢(G) = 1.

It is straightforward to obtain an upper bound for the required number of searchers
of anyv graph. Suppose the graph G, has n vertices. Then n searchers can position
themselves on the vertices of GG,,. one searcher to a vertex. One additional searcher
is needed to search the edges of G,. Hence s(G,) < n + 1.

Now let u be a vertex of a tree G. A branch of G is defined to be a maximal
siubtree such that v has degree one in the subtree. This definition is needed in the

next example.

Example: Consider the graph. G5 shown in Figure 1.5.

Clearly two cops are sufficient to search this graph. One cop remains stationary on
the root (indicated by a double circle) while the second searches each of the branches
of the tree. The stationary cop prevents the f-robber from moving into a previously
searched arca. The upper bound obtained previously gives s(Ga;) < 26. Clearly it
is often possible to do much bertter than that which is suggested by this particular

upper bound.

Although particular searching strategies are not considered in depth here. it should
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Figure 1.5: Gos

be noted that this example can help provide insight into the kinds of strategies that
are needed by the scarchers. The example indicates that the search number of a
eraph depends upon the searchers being able to prevent the f-robber from moving
into an area that has alreadv been searched. In terms of airborne contaminants.
recontamination must be prevented.

[t ix clear that it is desirable to improve upon the first upper bound on the search
nmber of a graph that has been presented here. The definitions presented next will

aid in improving this upper bound.

Definition 1.12 Let G be @ graph. A linear layout of G is the graph G drawn so

that all of its vertices lie in a straight line. This line is assumed to be horizontal.

Consider a linear layout of a graph G. and imagine a vertical line dividing the
lavour into two pieces. There will be a number (possibly zero) of vertices on the left
side of this line which are adjacent to vertices on the right. This idea is needed for

the next definition.

Definition 1.13 Let L = {r,.rs.....1r,} be a linear layout of a graph G. Let n,
he the number of vertices in {ry.ry.....r;} which are adjacent to some verter in
{riwr.rc0.... .k}, The verter separation number of L ts vs(G.L) = max{n; : i =
1.2.....n—1}. The vertex separation number of G is vs(G.L) = min{vs(G. L) :
L is a linear layout of G}.



The vertex separation number of a graph G is used to place a bound on the search
number of a graph as indicated in the next theorem. The proof of the theorem does
not make full use of the dynamic nature of the searchers. The technique used will
appear again in the proof of Theorem 3.5 with the cops replaced by static objects

known as traps.

Theorem 1.15 (Ellis, Sudborough, and Turner [5]) Let G be a graph with search
rnumber s(G)Y and rertex separation number vs(G). Then s(G) < vs(G) + 1.

Proof. Suppose the game is taking place on a graph G and the f-robber is plaving
against ¢s(G) + 1 cops. We will show that these cops have a winning strategy.

Let’s represent G as a linear lavout on which vs(G) is realized. Further. let’s
imagine a vertical line which will move across the lavout from the left.

Now ¢~(G) cops position themselves on vertices to the left of the vertical line in
such a wav that no unoccupied vertex to the left of this line is adjacent to a vertex
on the right. This is possible by the definition of vertex separation number.

The remaining cop positions himself on the vertex immediately to the right of the
vertical line. Now suppose that the line moves to the right. passing only one vertex.
The ¢5(G) + 1 cops are now all positioned to the left of the line.

Consider a vertex v to the right of the line. and suppose this vertex is adjacent
to one or more vertices on the left. These vertices adjacent to v must be occupied
by cops. This is because ¢ can only be adjacent to the vertex that was previously
immediately to the right of the line (and is now immediately to the left) which is
occupied by a cop. or a vertex to the left of both the present and previous vertical
lines. These vertices are all occupied by cops.

There are vs(G) + 1 cops positioned to the left of the line. but only ¢s(G) are
needed to prevent the f-robber from crossing this line. So one of the cops is extraneous.
and can move and position himself immediately to the right of the new vertical line.
This process repeats until the vertical line immediately preceeds the rightmost vertex.
This is the vertex on which the f-robber must be located. When the extraneous cop

crosses the line. the f-robber will be apprehended.



Hence ¢s(G) + 1 is an upper bound for the number of cops needed to apprehend

the f-robber. g

At this time. it should be noted that this result also places a bound on the cop-
number of a graph G. This is because the games of Cops and Robber and searching
differ in the amount of information available to the cops. Surely cops with informa-
tion concerning the robber’s position will be able to apprehend the robber at least as
efficiently as cops with no information. and therefore ¢(G) < s(G). Hence. vs(G) + 1
is also an upper bound for the copnumber of a graph. This resuit is stated as a

corollary.

Corollary 1.2 Let G be a graph with copnumber ¢(G) and verter separation number

vs(G). Then ¢(G) < vs(G) + 1.

The remaining two theorems that are presented in this section are due to T. D. Par-
sons [11]. The first places a lower bound on the search numbers of trees. The latter
cnables us to characterize trees with search number n for all n. which is in sharp

contrast to the copnumber for trees.

Theorem 1.16 (Parsons [11]) Let n be positive and let G be a tree. Then s(G) >
n+1 if and only if G has a verter u where there are at least three branches. By. B,. B;

satisfying s(B;} > n for j =1.2.3.

The characterization mentioned previously involves a recursion of sets T,.T,. ...
of trees. Let Ty be composed of two vertices joined by an edge. Suppose T, has been
defined. The construction presented below allows us to define T,,..;. One member from
each of the isomorphism classes of trees resulting from the construction is included.

To begin the construction. three trees must be chosen from 7, which has already
been defined. These trees will be denoted T,.7T5. T3. These trees should be disjoint
although not necessarily distinct in the sense of isomorphism.

Now a vertex should be chosen from each of the three trees. A chosen vertex must

be one of two types. If a vertex of degree one is not chosen. then the vertex should
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not be adjacent to a vertex of degree one. Let the vertex chosen from 7, be denoted
u,.

Next. a fourth vertex must be chosen. This vertex may not be a member of the
vertex set of either Ty.Ts. or Ty. This vertex is denoted v.

Finallv. a new tree is constructed. The vertex v will be the root of this tree. If
vertex u, has degree one in T, then this vertex becomes vertex v in the new tree.
Otherwise. u, is joined to v by an edge.

We proceed with an example.

Example:

T. {H}

e

Figure 1.6: T,.T5. and 7T3. the first three sets.

The characterization using this construction is made precise in the next theorem.

Theorem 1.17 (Parsons [11]) Let n > 2 and let G be a trec. Then $(G) = n
of and only if G has a subtree homeomorphic to a tree in T,. but has no subtree

homeomaorphic to a tree in T, ..

We introduce a variation of this game involving the use of photo radar in the next

chaprter.

1.3 Watchman Problem

In this final section of the chapter. a problem similar to those presented so far is
considered. This problem is known as the Watchman Problem. and was introduced
Ly Hartnell. Rall. and Whitehead [7].



Suppose a company is providing security for a business. Important locations on
the property can be thought of as vertices in a graph. and the security company must
mounitor these vertices. A vertex v is considered to be monitored if a watchman either
visits ¢ or a neighbor of v from which ¢ can be viewed.

The first definition presented here is an extension of the idea of a dominating

vertex as defined in Section 1.1.2.

Definition 1.14 Let G be a graph. A set D of vertices of G is said to be ¢ domi-
nating set if Yo € V(G)\ D. 3d € D such that v and d are adjacent.

A walk 17 is said to be a dominating walk if its vertices are a dominating set of
G. A walk with minimum length is said to be an optimal watchman’s walk. The
length of such a walk is denoted 117(G).

Suppose only a single watchman is available. This watchman will want to mini-
mize the numnber of steps required to monitor the vertices of G. the underlving graph.
Equivalently. the watchman would like to determine a closed walk of minimum length
whose vertex set dominates G: that is. he would like to determine an optimal watch-

man's walk.

Example: Consider the graph G shown below. The vertices of G are numbered to

indicate an optimal watchinan’'s walk.

Figure 1.7: An optimal watchman’s walk of length 6.

Suppose the business for which security is being provided requires that every

vertex is monitored at least once every A units of time. where &k has been previously



agreed upon. The security company will want to minimize the number of watchmen
it provides. It must also determine the walks followed by these watchmen as they

make their rounds.

Example: Consider the graph G shown in Figure 1.7. Two watchmen are able to
monitor the vertices of G every three seconds. One watchman begins at the vertex
labeled 1 and follows the vertices in the order indicated by the labels. Once vertex 6
is visited. the watchman returns to vertex 1 and continues to visit the vertices in the
order indicated by the labels. Similarly. the second watchman begins at the vertex
labeled 3 and follows the vertices in the order indicated by the labels. Vertex 1 follows

vertex G. In this way. each of the vertices is monitored once every three seconds.

Consider a graph GG. Hartnell. Rall. and Whitehead (private communication. 1999)
have proven that if 117(G) = k. then two cops are able to reduce the time needed to
monitor the vertices of G only by half (except in certain special cases when the time
can be reduced by one additional unit). As shown in the previous example. one of
the watchmen follows an optimal watchman's walk. Let the ith vertex visited by the
watchiman on this walk be denoted /. The second watchman follows the same walk
as the first. but begins on vertex [A/2]. In this way. the vertices of G are monitored
once every [k/2] units of time.

Hartnell. Rall. and Whitchead [7] have shown that if we are given a graph G and
a positive integer p. the problem of determining if 117(G) < p is NP-complete since

it can be reduced to the Hamiltonian cyvcle problent.

1.4 Open Question

[t is known from the Copwin Strategy that at most n moves are required to catch a
robber on an r vertex copwin graph. How many cops are required to catch the robber
in timne 77 (There would be a statute of litnitations or some fixed resource. such as
gas. for the chase.) In general. we would like to answer this question for an arbitrary

graph G.



Chapter 2

Special Photo Surveillance

In this chapter. several similarly themed variations of the game of Cops and Rob-
ber are introduced. In the original version of the game. the opponents have perfect
informarion. In the versions introduced here. it is proposed that the cops can only
get information about the robber’s position through the use of special photo surveil-
lance equipment. As in the original game. it is assumed that the robber has perfect

informarion.

2.1 Photo Radar

The frst variation of Cops and Robber that will be introduced is the use of photo
radar by the cops. Suppose the game is being plaved on a graph . Photo radar
nnits are placed on the edges of ;. These units alert the cops if the robber moves
along an edge equipped with a photo radar unit. The units also indicate the direction
in which the robber is moving. The minimum number of photo radar units required
by a single cop to guarantee the capture of the robber on a graph G will be referred

to as the photo radar number of G. and will be denoted pr(G).

Lemma 2.1 Given a single cop and a finite number n of photo radar units. there

erists a star on which the cop cannot guarantee the capture of the robber using only

25



these n > 1 units.

Proof. Consider the star A’y ;. To show that no bound can be placed on the number
of photo radar units needed. it will suffice to show that & — 3 photo radar units will
not ensure that the robber is caught.

Suppose A — 3 photo radar units are placed on the edges of the star described
above. one photo radar unit per edge. This leaves three edges with no surveillance.
and it ix possible for the robber to evade the cop. To see this. suppose the cop is
at the center of the star and the robber is located on a leaf incident with an edge
that has no photo radar. (Otherwise. the cop will move to the center during his next
turn.) The probability of the cop choosing the correct leaf at this time depends on
the leaf from which he has just come. If he has just moved from one of the leaves
incident with an edge with no photo radar. he knows the robber must be located
on one of the remaining two such leaves. Therefore. the probability of catching the
robber on the next move is 1/2. Otherwise. the robber is located at one of three
possible vertices and so the probability of catching him is 1/3. Now while the cop is
investigating a particular leaf (we assume this is not the leaf on which the robber is
hiding) the robber is able to move to the center. By the rime the cop is able to return
to the center. the robber has been able to move to a leaf. Since the cop knows the
robber must be located on one of the two leaves he did not check. his probability of
catching the robber during the next move is 1/2. There is a nonzero probability that
this process will continue indefinitely with the result that the robber is not caught
and wins the game.

Hence A — 3 photo radar units will not ensure that the robber is caught. Therefore
we can sav that no absolute bound can be placed on the number of photo radar units

needed to catch the robber for members of the family of stars. g

Theorem 2.1 Given a single cop and a finite number n of photo radar units. there
cxists a tree on which the cop cannot guarantee the capture of the robber using only

these n > 1 units.
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Proof. To prove this theorem. we will show that plaving this game on a tree can be
reduced to playing on a star. the situation examined in the previous lemma.

Suppose the game is being plaved on a tree. T. The robber’s initial position can
be thought of as a vertex of a subgraph S of T. where S is a star. Now if both the
cop and the robber move only within S. we are done. Otherwise. suppose the cop
moves outside of S. The robber passes on each of his moves until the cop enters S.
Note that if the cop previously made a move within S. then the cop must return to
S by the same vertex from which he left. This is because of the acvclic nature of
trees. Hence the cop’s moves outside of S have no impact on the game. and so we
can counsider the game as if it were only being plaved on the vertices of S.

Hence by the previous lemnma. if we consider members of the family of trees and
only one cop is available. then no bound can be placed on the number of photo radar

units required to catch the robber.

This situation is very similar to that of searching a tree.

Consider a tree T, with n vertices. It is useful to know how much information
regarding the robber is needed to ensure his capture on this tree. Now pr(7,) < n-—1
since the photo radar units can be placed one to an edge. If the robber doesn’t move.
the game is equivalent to the searching problem. If the robber moves. the game is
equivalent to Cop and Robber. In either case. the cop is able to apprehend the robber.
Hence n — 1 photo radar units guarantee the capture of the robber on 7, by a single
cop. The next theorem places a lower bound on the number of photo radar units

needed. We conjecture that the inequality in this theorem is actually an equality.

Theorem 2.2 Let T be a tree. and let k be the minimum number of edges of T whose

removal leaves no vertices of degree > 3. Then pr(T) > k.

Proof. Let & be the minimum number of edges of T whose removal leaves no vertices
of degree > 3. Suppose only A&’ photo radar units are available. &’ < &. Then there is
at least one vertex in 7 incident with at least three edges without photo radar. From
the proof of Lemma 2.1. we know that the robber is able to evade the cop. Therefore.

pr(T) = k. g



[t seems that photo radar units are not powerful in the sense that a large number
of units are needed by a cop to guarantee the robber’s capture. In the third chapter.
a more powerful aide is made available to the cop: that is. the cop is able to use traps

in his search for the robber.

2.2 Streets and Avenues

[n the version of the game Cops and Robber introduced in this section. it is proposed
that the cop only knows the position of the robber if the robber appears on a line
of the grid that is under surveillance. The surveillance allows the cop to monitor
all of the vertices along the grid line that is equipped with the surveillance. Note
that vertical grid lines will be referred to as avenues. while horizontal grid lines
will be referred to as streets. To begin. several of the strategies that will be used
throughout this section are described in detail. These strategies are a combination
of strategies used in Cops and Robber and searching. They are described under the
assumption that all streets and avenues are under surveillance: that is. the cops have
perfect information. To show that these strategies will result in the capture of the
robber. some measure is needed to indicate that. after a finite number of moves. a
cop will arrive at the vertex occupied by the robber. In the strategies that follow.
this measure will be the vertical and horizontal distances between the cop(s) and the
robber. Once both distances have been decreased to zero. the robber is apprehended.

The highlights of the strategies are presented in italics.

Strategy: Blocking (One Cop)

Consider a rectangular grid and assume that both the cop and the robber have
perfecr information. The strategy described here prevents the robber from moving
in one of the four possible directions. The case where the robber is prevented from
moving upwards to another street on the grid is described in detail. The other three
cases are similar.

Firstly. the cop moves along an avenue until he is positioned one street above the



robber: that is. he moves along an avenue until the vertical distance is one. This is
possible. as explained below. because there are only a finite number of streets. If
the robber chooses to move along a street or to pass. the cop is able to decrease the
vertical distance between himself and the robber. If the robber chooses to move along
an avenue. he will eventually reach the top (bottom) of the grid. At this point. he can
choose to move along this street or he can reverse direction and begin moving down
{up) an avenue. In both cases. the cop will be able to decrease the vertical distance
between them. After a finite number number of moves. the cop will be exactly one
street above the robber. (There is one problematic case. If the robber has reached
the topmost street and decides not to move downward but rather to move along this
street. the cop will not be able to move above him. However the cop will also reach
this street and will be able to apprehend the robber. This is because the robber has
chosen not to leave this street and the vertical distance has been decreased to zero.
The street has only a finite number of vertices and so. after at most n — 1 moves. the
cop is able to decrease the horizontal distance to zero as well.)

It should be noted here that once the cop has attained his position on the street
above the robber. he is unable to drop down to the same street as the robber as this
would give the robber the opportunity to move up one street. Also. the cop must
move down one street whenever the robber chooses to do so. This prevents the robber
from increasing the vertical distance.

Secondly. the cop must move so that he is either positioned directly over the robber.
or he 1s positioned diagonally opposite to the robber across one of the two blocks in

which the position of the robber is one of the bottom corners as shown in Figure 2.1.

Figure 2.1: The robber is indicated by an x. The shaded circles indicate the three
possible positions of the cop which prevent the robber from moving upward one street.
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Again this is possible. as explained in the remainder of the paragraph. because there
are only a finite number of avenues. If the robber moves along the street toward the
cop. the horizontal distance is decreased. If the robber only moves along the street
away from the cop. he will eventually reach the edge and then the cop will decrease
the horizontal distance. If the robber moves onto the same street. again the cop can
decrease the horizontal distance. When the robber finallvy moves off the street. so
that the vertical distance is again one. the cop moves so as to reduce the horizontal
distance by a further one. and then moves to maintain the vertical distance of one.
One of these situations must occur at least every n + m — 1 moves.

We can assume that eventually this positioning of the cop prevents the robber
from moving upward. Otherwise. turn the board around. If the robber did attempt
to move up a street. he would move onto a vertex either occupied by or adjacent to

a cop resulting in a win for the cop.

Strategy: Blocking (Two Cops)

Again. consider a rectangular grid and assume that both the cop and the robber
have perfect information. This strategy results in the robber being backed into a
‘corner’. and hence a win for the cops. (It should be noted that this is not the same
corner as was described in Section 1.1.2.)

The cops cach follow the blocking strateqy for a single cop. one either above or
below the robber. the other to the left or right of the robber. It should be noted that
the presence of two cops restricts the robber’s movements even before the cops come
within one street or avenue of the robber. This is because the robber will not want
to decrease the horizontal distance between himself and the cop to his left or right.
and he will not want to decrease the vertical distance between himself and the cop
above or below him. The robber will be forced into one of the four corners depending

on the locations of the two cops. Hence a win for the cops will result.

Strategy: Blockading (Two Cops)

The cops inttially ignore the movements of the robber until they are positioned on



Figure 2.2: The three possible ways the robber is forced into the upper left ‘corner’.
Both the vertical and horizontal distances between the cops and the robber have been
decreased to one. The cops win on the next move.

adjacent rertices of the m x n grid. In the description of the blockading strategy
that follows. the cops are applving the strategy from above the robber. Hence it is
assumed that the cops are located on adjacent vertices of the same street. and that
this street Is above the one on which the robber is located. However. this strategy
can be applied regardless of the initial positions of the cops and the robber.

The cops proceed to move toward the robber along the street on which they are
located. Because there are a finite number of avenues before the edge. the cops are
able to decrease the horizontal distance and position themselves on this street so that
one cop s directly aboce the robber. The second cop is adjacent to the first. Now it
is to rhe advantage of the cops if the robber chooses to move toward the cops and
decrease the vertical distance between them. Similarly. if the robber chooses to pass.
the cops are able to move closer to him by one street. If the robber moves douwnuward
along an avenuc. the cops also drop doun to the nexrt street to prevent the vertical
distance from increasing. When the robber moves horizontally along a street. the cops
must move so that one of the cops ts on the same avenue as the robber and the other
cop s adjacent to the first. It should be noted that both cops remain on the same
street. Maintaining these positions relative to the robber as the robber moves along
a street sometimes forces the cops to move horizontally along the street in the same
direction as the robber. Howerver. sometimes no horizontal movement is needed by
the cops and they are able to use their move to drop down a street and decrease the
vertical distance between themselves and the robber. To see this. suppose one cop is
on the same avenue as the robber and the other cop is to the right of the first. If the

robber moves ro the left. the cops must also move to the left. However. if the robber



moves to the right. the second cop is then on the same avenue as the robber and the
first is to the left of the second. Hence no horizontal movement is needed by the cops.
and thev take the opportunity to move down one street.

Since the grid is finite. the vertical distance between the cops and the robber will
eventually be decreased to one street. (This is because the robber will eventually reach
the bottom of the grid. He is forced to drop down one street at least once every n — 1
moves. Once the robber has reached the bottom of the grid. he cannot increase the
vertical distance between himself and the cops and can only maintain the current
distance by moving horizontally. However after every n — 1 moves. he will be forced
to change direction and the cops are able to decrease the vertical distance by one.)
At this time. the movements of the robber are further restricted. It is known that one
cop is directly above the robber. It will be assumed for the purpose of discussion that
the second cop is to the right of the first. The other case is similar. Now in addition
to being unable to move upward or pass. the robber ts unable to move to the right. If

he did. the second cop would capture him on the cops’ next move.

Figure 2.3: Blockading strategy. The robber is indicated by an x and the cops are
indicated by shaded circles. The robber cannot move upward or to the right and
avoid capture.

Hence the robber s forced to move downward or to the left. As the robber moves.
the cops move so as to maintain their positions directly above the robber. and diag-
onally opposite and to the right of the robber. This forces the robber to continue to

tnove downward and to the left. Since the grid is finite. the vertical and horizontal
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distances will decrease to one. and the robber will be trapped in the bottom left corner
of the grid after a finite number of moves. He will be apprehended by the cops on

the next move.

Strategy: Blockading (k Cops. k& > 2)

Blockading on a rectangular m x n grid with & cops is similar to blockading as
previously described with two cops. In this case. the robber will be forced onto one of
the streets or avenues that form the perimeter of the grid where he will be apprehended.
It should be noted that blockading from the right will be described here. The other
cases are similar.

The cops align themselves on k consecutive vertices along an avenue to the right
of the robber. They will not begin moving horizontally toward the robber until one of
the cops is located on the same street as the robber.

If the robber chooses to pass or move to the right. the cops are able to decrease
the horizontal distance between themselves and the robber. If he chooses to move
to the left. then the cops will also move to the left. They will not let the robber
increase his horizontal distance from them. [f the robber chooses to move upward
(downuward) along an avenue and the uppermost (lowermost) cop is on the same street
as the robber. the cops will have to move vertically in the same direction as the robber.
Otherwise. the cops move toward the robber. In this wav. the cops are able to decrease
the horizontal distance by A — 1 every m — 1 moves.

Since there are a finite number of avenues before the edge. the cops will be able
to decrease the distance between themselves and the robber to one avenue. Also. the
robher will be forced onto the leftmost avenue after a finite number of moves. If there
are cops both on the street above the robber and on the street below the robber. the
cops will win on the next move. Otherwise. the upper or lowermost cop is on the
same street as the robber. Suppose it is the uppermost cop. The other case is similar.
The robber is able to move upward. The cops also move upward. Since the number of
streets is finite. the robber will be forced into the upper left corner after at most m —k

moves. The cops will capture him on their next move.
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[t should be noted that capture occurs faster with blockading when there are &
cops rather than two. This is because the A cops are able to decrease the distance

between themselves and the robber more quickly.

Theorem 2.3 [f k consecutive streets are not under surveillance. then k cops are

necessary and sufficient to capture the robber.

k
streets

Figure 2.4: A grid with A consecutive streets not under surveillance.

Proof. Suppose A consecutive streets are not under surveillance. We wish to show
that A cops are necessarv and sufficient to capture the robber on such a grid.

Suppose the robber does not appear on the surveillance: that is. the robber is
hiding in the group of unwatched streets. Since there are as many cops as streets.
thev align themselves at one end. sav the right. of the group of unwatched streets.
one to a street. Each cop moves along one of the unmarked streets. The A cops are
alwavs located on the same avenue. Since there is a cop for every street. the robber
cannot slip by the cops as they are sweeping this section of streets.

If the robber is not apprehended during this sweeping. he is forced to move onto
a street that is under surveillance. This street will be either directly above or below
the unwatched streets. Since the cops are sweeping from the right. the robber must
appear to the left of the cops.

The cops each make a move along the avenue in the direction of the robber.

The avenue is the one on which they are located when the robber appears on the



surveillance. They then adopt the blockading strategy. Since the robber is at most
one street above or below the group of cops. he is unable to slip behind them into
the previously searched portion of the group of unwatched streets. Hence if the
robber moves back onto this group of unwatched streets. the cops resume the sweeping
strategy.  After a finite number of moves. the robber is apprehended. Hence if &
consecutive streets are not under surveillance. then A cops will suffice to apprehend
the robber.

Suppose there are only & — 1 cops available for the search. There exist & paths
between A and B as shown in Figure 2.4. The & — 1 searchers can onlyv occupy A —1
of them. This leaves one path on which the robber can move and evade the cops.
Hence if & consecutive streets are not under surveillance. then A cops are necessary

to apprehend the robber. g

Theorem 2.4 [f two nonconsecutive streets and one avenue are not under surveil-

lance. then two cops are necessary and sufficient to catch the robber.

Proof. Suppose the robber does not appear on the surveillance. The strategy used
by the cops is to search the tree formed by the streets and the avenue that are not
under surveillance. Cop 2 remains at the intersection of the avenue and the upper
street while cop 1 moves upward along the avenue in the area labeled 1 in Figure 2.5.
Cop 1 then returns along the same path until reaching cop 2 and the intersection.
Similarlv. cop 2 remains at the intersection while cop 1 searches area 2 and then arca
3. Both cops then proceed down the avenue until they reach the intersection of the
avenue with the second street. As before. cop 2 remains at the intersection while cop
| searches areas 3. 6. and 7 in increasing order.

Now suppose that the robber appears ahead of the cops: that is. he appears below
them on the grid. The cops do not change their strategy until one of them arrives
at the same street as the robber. Theyv then switch to the blockading strategy. The
cops move in from the avenue with no surveillance foreing the robber to move away
from this avenue. If the robber moves onto a street with no surveillance. the cops

can deduce that he is either passing or moving away from them along that street.
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Figure 2.5: Two streets and one avenue not under surveillance.

[n either case. thev continue to move horizontally away from the avenue with no
surveillance. No vertical movements are needed by the cops since the robber cannot
move vertically without reappearing on the surveillance. Hence the cops are able
to continue the blockading strategy even though the robber is not appearing on the
surveillance. This blockading strategy decreases the distances between the cops and
the robber. and will result in the robber being forced into a corner of the grid where
he will be apprehended.

Suppose instead that the robber appears on the grid above the cops. It should be
noted that this can only occur while a portion of one of the streets without surveillance
is being searched. and that the robber can only appear one street above the cops. This
is because if the robber is to appear suddenly on the surveillance. he must move onto
the surveillance from one of the unwatched streets or from the unwatched avenue.
Once portions of the streets or avenue have been searched. the robber cannot appear
on streets or avenues adjacent to these searched portions. The cops then adopt the
blocking strategy. Since the cop located at the intersection is exactly one street awayv
from the robber. this cop can prevent the robber from moving onto the avenue with
no surveillance. This effectively cuts the grid along the avenue. and reduces the area

available for play in “half".



Without the avenue with no surveillance to consider. the streets with no surveil-
lance are the only remaining troublesome places for the cops. If the robber moves
onto a street with no surveillance. the second cop also moves onto this street on the
next move. [f the robber continues along this street. the cop can stay at most one
move behind him. Since there are a finite number of vertices along the street. the
robber must eventually move off of the street to avoid capture by the second cop.
The first cop is able to monitor the robber’s position while he is on the street with no
surveillance. This is because the robber can only move in one direction (away from
the second cop) and cannot pass and avoid capture. Hence. the blocking strategy
continues when the robber reappears. After a finite number of moves. the cop will
be forced into one of the upper corners. (The corner depends on which -half” of the
grid is being used for play.) The robber is then apprehended. Hence two cops are
sufficient to apprehend the robber.

Clearly two cops are necessary to apprehend the robber. This is because one cop

with perfect information would be unable to capture a robber on a grid. g

This result is generalized in the following theorem.

Theorem 2.5 [f b streets. no two of which are consecutive. and one avenue are not

under surverllance. then two cops are necessary and sufficient to catch the robber.

Proof. The proof of this theorem is nearly identical to that of the previous theorem.
If the robber has not appeared on the surveillance. the cops search the tree formed
by the streets and avenue with no surveillance. The search proceeds as indicated in
Figure 2.6. If the robber appears below the cops on the grid. the cops adopt the
blockading strategy once one of the cops reaches the same street as the rohber. If
the robber appears above the cops on the surveillance. the cops adopt the blocking
strategy. In any case. the robber will be apprehended. Hence two cops are sufficient
to capture the robber.

Clearly two cops are necessary to capture the robber. This is because one cop

with perfect information would be unable to capture a robber on a grid. g
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Figure 2.6: A grid with & streets. no two of which are consecutive. and one avenue
not under surveillance (indicated by dashed lines).

Theorem 2.6 [f k consecutive streets and one avenue are not under surveillance.

then &k + 1 cops are necessary and sufficient to catch the robber.

Proof. Suppose & consecutive streets and one avenue are not under surveillance by
the cops. It will be shown that A+ 1 cops have a winning strategy. To begin. & of the
cops align themselves along the rightmost avenue. one cop on each of the streets with
no surveillance. The (A + 1)st cop waits at the intersection of the uppermost street
with no surveillance and the avenue with no surveillance. The k cops move along the
streets on which thev began. The £ cops are alwayvs located on the same avenue. It
should be noted that & cops are required for this sweeping to prevent the robber from
slipping by the cops into an area that has previously been searched.

Once the cops reach the avenue with no surveillance. they stop and wait while the
(A <+ 1)st cop searches that part of the avenue above the unwatched streets and then

the part below the unwatched streets. The (& + 1)st cop then positions himself at
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the intersection of this avenue with the lowermost street with no surveillance. The
other A cops resume sweeping the unwatched streets. This sweeping of the unwatched
streets will force the robber to move onto a street or avenue with surveillance after a

finite number of moves.

k consecutive
streets

Figure 2.7: A game with & consecutive streets and one avenue not under surveillance.
The shaded vertices indicate the initial positions of the cops.

Now suppose the robber appears below the cops on the grid. The cops begin
moving down the avenue on which thev were located when the robber appeared.
Once the lowermost cop reaches the street on which the robber is located. the cops
adopt the blockading strategy. If the robber disappears. the cops are able to move
upward and reach the unmarked streets before the robber can slip into an area that
was previonsly searched. This is because the uppermost cop never moves below the
robber during the blockading strategy. The cops resume the searching strategy until
rhe robber reappears. Since the robber can never slip behind the cops. this strategy
leads to the capture of the robber. The case when the robber appears above the cops
is similar except that the cops must move upward before beginning tie blockading
strategy. Hence & + 1 cops are sufficient to capture the robber.

Suppose there are only A cops available for the scarch. There exist & consecutive
streets without surveillance. If the & searchers occupy all & of them. there will be
no cop available to search the unwatched avenue. Otherwise. there is a street that is
not occupied by a searcher on which the robber can move and evade the cops. Hence

k + 1 cops are necessary to capture the robber. g

Theorem 2.7 If two nonconsecutive streets and two nonconsecutive avenues are not
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under surveillance. then three cops are necessary and sufficient to catch the robber.

Proof. The cops begin by searching the tree formed by the unwatched streets and

avenues. The search proceeds in the order indicated in Figure 2.8.
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Figure 2.8: Two nonconsecutive streets and two nonconsecutive avenues not under
surveillance.

Oue cop remains at the vertex representing the intersection of the upper street and
the left avenue while a second cop searches areas 1 and 2. The cop on the intersection
must remain there for the rest of the search to prevent the robber from moving onto
a previously searched area. The second cop proceeds to search area 3 and then move
to the intersection of the upper street with the right avenue. A third cop searches
arcas 4 and 5. These latter two cops then move down to the intersection of the lower
street and the right avenue. One stays on the intersection while the other searches
arcas 7 and 8. They then both move to the last intersection. Again. one of the cops
auards the intersection while the other searches areas 10. 11. and 12. This method
of searching prevents the robber from slipping past the cops into an area that has
alrcady been searched. Hence if the robber appears on the surveillance and then
disappears before the cops are able to apprehend him. the cops can simply resumme
the searching strategy.

Suppose the robber appears on a street below the cops. The cops will not change

their strategy until one of the cops is on the same street as the robber. The other
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cop will be waiting on an intersection. The cops then adopt the blockading strategy
which will result in the capture of the robber.

Suppose the robber appears on a street above the cops. The cop on the intersection
is exactly one street below the robber and can block him from crossing this avenue with
no surveillance. This cuts the grid along the avenue and restricts the area available
for playv. If the robber is on the side of the grid with no unwatched avenue. then two
cops will suffice to catch the robber. The cop on the intersection is already using the
blocking strategy to prevent the robber from crossing the unwatched avenue. The
second cop also adopts the blocking strategy. and the capture of the robber results.
\We note that if the robber moves onto a street with no surveillance. the cops can
assume that he is moving awayv from them along this street. and hence the blocking
strategy can continue. If the robber is on the other side of the grid. then there are
two nonconsecutive streets and one avenue with no surveillance. and there are two
cops available for play. From Theorem 2.4. it is known that the cops have a winning
strategy in this situation. Hence three cops are sufficient to capture the robber.

Two cops are not able to ensure that the robber is caught in this case. To see
this. consider the cvcle composed entirely of portions of streets and avenues not under
surveillance. It is a 4-cvcle. and it is known that two cops are necessary to capture
a robber on a 4-cvele. Now while the cops are moving on this 4-cycle. the robber is
able ro hide in the other unwatched portions of the streets and avenues. If the cops
choose to search these other areas and move off of the 4-cycle. the robber is able to

evade the cops on the 4-cvele. Hence three cops are necessary to capture the robber.
This result is generalized in the following theorem.

Theorem 2.8 [f Ak streets. no two of which are consecutive. and two nonconsecutive

avenues are not under surveillance. then k + 1 cops suffice to catch the robber.

Proof. The proof of this theorem proceeds similarly to that of the previous theorem.

If the robber is not visible on the surveillance. the initial search occurs in the order
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Figure 2.9: Two nonconsecutive avenues and A streets. no two of which are consecu-
tive. not under surveillance.

indicared by Figure 2.9. The shaded circles represent vertices where a cop must remain
once the search has reached that point. This prevents the robber from moving past
the cops into an area that has been searched previously.

One cop is needed for each of the first & — 1 streers with no surveillance. Two
acdditional cops are required to complete the search for a total of A + 1.

It should also be noted that Theorem 2.5 is used in the proof of this theorem

where Theorem 2.4 was used previously. g

This result may not be the best possible. To see this. consider a cop ¢, located on
anyv position indicated by a shaded circle in Figure 2.9. Once a cop ¢,.; is positioned
on an intersection below this one on the same avenue. cop ¢, is no longer required
to maintain his position in order to ensure that the robber does not move into a
previously searched area. However. the proof does not make use of this observation

and so a better result may be possible.



Chapter 3

Cops and Robber with Traps

[n this chapter. a variation of the game of Cops and Robber is considered. The cops
have a number of traps at their disposal to aid in the apprehension of the robber on a
graph GG. The traps are placed on vertices of G. Once the robber moves onto a vertex
with a trap. he is detained and the game is over with a win for the cops. Suppose a
game is plaved with n cops and m traps. If the cops have a winning strategy. then
G is rveferred to as (n. m)-win. Using this notation. a copwin graph is (1.0)-win. Our
attention will be largely focused on (l.m)-win graphs. As in the original version. the

game is plaved with perfect information.

Theorem 3.1 For all n. there exists a graph G, such that ¢(G,) = 2 but one cop

with n traps does not suffice.

Proof. The graph A,.2,:2 Is not copwin as there are many cvcles present on which
the robber can move and evade the cop. To show that the graph has a copnumber of
2. it must be shown that two cops have a winning strategy. Suppose the cops position
themselves on one vertex in each set of the bipartition. This is a dominating set so
the robber is either caught already or will be caught on the cops’ first move.

The n traps can be placed on anyv of the 2n + 4 vertices. However. there is always
a subgraph R’ remaining which does not receive traps. and on which the robber can

move and evade the cop.

43
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Hence it has been shown that two cops cannot alwayvs be replaced by a single cop

with a finite number of traps. g

Corollary 3.1 Let G be a graph. Now (G} = 2 is not equivalent to G being (1.1)-

Hir.
Theorem 3.2 If R ts a retract of a (1.1)-win graph G then R is also (1.1)-win.

Proof. Suppouse R is a retract of a (1.1)-win graph G. and let f be an edge-preserving
map from G to R such that the restriction of f to R is the identity map on R. Since
G ix a (1.1)-win graph. the cop has a winning strategyv on . Through the map f.
thiz strategy can be translated to R. The cop will play this winning strategy on R.
Now the robber is plaving on R. However. the cop will consider the robber’s moves
as being plaved on G even though they never take place outside the subgraph R. It
should be noted that any edge used by the cop in G will be present in R since f is
edge-preserving.  Similarly. since f is the ideurtity map on R. any edge used by the

robber is also present. o
Corollary 3.2 If R is a retract of an (n.m)-win graph GG then R is also (n.m)-win.

The proot of the corollary is omitted since it is identical to that of the main
theorem. Now that it has been shown that the class of (1.1)-win graphs is closed
under retracts. it is natural to ask if this class is a variety. Unfortunately. this is not

the case. This is the subject of the next resulr.
Theorem 3.3 The class of (1.1)-win graphs is not a variety.

Proof. We show the class of (1.1)-win graphs is not a varietv by showing that this
class of graphs is not closed under products. Consider the product of a (l.1)-win
eraph and a copwin graph shown in Figure 3.1.

The resulting graph is not (1.1)-win. This will be shown by presenting a strategy
that can be used by the robber to evade the cop. The vertices of the graph will be

considered to be partitioned into three d-cycles {(i.0).(i.1).(:.2).(2.3)}. i = 1.2.3.
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Figure 3.1: The strong product of a (1.1)-win graph (C';) and a copwin graph (Aj3).
Three consecutive segments between adjacent subgraphs indicate that every vertex
in one subgraph is adjacent to every vertex in the other.
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This is simply to aid in the description of the strategy. As well. the vertex on each
of these cycles that is farthest from the cop’s position will be said to be diagonally

opposite to the cop as shown in Figure 3.2.
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7

Figure 3.2: The vertices indicated by double circles are said to be diagonally opposite
to the large shaded vertex. Again. three consecutive segments between adjacent
subgraphs indicate that every vertex in one subgraph is adjacent to every vertex in
the other.

The cop eventually lays the trap on a vertex in one of the three {-cvcles since
the trap is not of use to the cop if it is carried during the entire game. The robber
does not want to move onto the cyvcle that contains the trap. So the robber chooses
a vertex in one of the remaining two 4-cvcles. The robber will occupy the vertex
on this cvele that is diagonally opposite to the position of the cop. As long as the
cop stavs on the same cyvcle. the robber also stays on the same cycle. moving so as
to maintain his position diagonally opposite the cop. Similarly. if the cop moves to
another cvele. the robber continues to move so as to remain diagonally opposite the
cop. passing when necessarv. In this way. the robber is able to evade the cop. and so

this graph product is not (1.1)-win. g

A single cop plaving on the graph product described in the previous theorem
requires three traps to ensure the capture of the robber. one for each of the three
d-cveles described above. In general. a cop playing on the graph K, 8 C; requires
n traps to win. Hence. it is not even possible to place a bound on the number of

traps needed. Thus. we can conclude that (1.n)-win graphs do not form a variety for



a fixed n.

The next result is an extension of Corollary 1.1.

Theorem 3.4 Let G be an (n;. my)-win graph. let H be a retract of G with c(H) <

ng. and let G\ H be (ny. my)-win. Then my < my and ny < mar{ng.n, + 1}.

Proof. Suppose ng cops are playing on a retract H of G. Through the retraction
map f: G — H. the cops can consider the robber’s movements on G as being made
on H. After a finite number of moves. the ng cops are ab_le to capture the robber’s
image on A. Once this is accomplished. one of the cops moves so as to stay with the
itnage of the robber. Since f is the identity function on H. the robber is immediately
apprehended if he ever moves onto H. Hence the robber is restricted to G\ H. It is
kiown that n, cops and my traps are required to win on G \ H. Hence m; < m..
There are ny — 1 cops available to move onto G\ A and aid in capturing the robber
there. Now if ny—1 > n, then ng cops are able to capture the robber on G. Otherwise.
ny are needed to capture the robber on G\ H and one more cop is needed to stayv
with the robber’s image on H for a total of ny + 1. Since na > ng — 1 or equivalently
ns — 1 > n,. this number of cops is also able to apprehend the image of the robber

on H. Hence the mumber of cops required on G\ H is at most max{ng.n, + 1}. g

Theorem 3.5 Let ¢s(G) be the verter separation number of a graph G. The number

of traps needed by a single cop to search this graph is at most vs(G) + 1.

Proof. Suppose that ¢s(G) + | traps are available for use by the cop. The lincar
lavout which realizes ¢s{G) is formed. Suppose there is a vertical line separating this
linear lavout into two pieces. Further suppose that this vertical line moves from left
to right along the lavour.

Suppose that all but one of the available traps are placed to the left of the vertical
line. By the definition of vertex separation number. it is possible to place these traps
on vertices such rhat no other vertex lyving to the left of the line is adjacent to a vertex

to the right.
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At this stage. there is one additional trap that has not been utilized by the cop.
This trap is placed on the first vertex to the right of the line. Now imagine moving
the line to the right past a single vertex so that all vs(G) + 1 traps lie to the left of
the line.

Now any vertex to the right of the vertical line can only be adjacent to vertices
to the left that are occupied by traps. This is because any vertex to the right of the
line is adjacent either to the vertex immediately to the left of the line (the vertex
previously to the right of the old vertical line) which has a trap or to a vertex to the
left of both the old and new vertical lines which has a trap.

Ounly ¢s(G) traps are needed to prevent the robber from moving over the vertical
line from the right. Since there are vs(G) + 1 traps to the left of the line. one of the
traps is unnecessary and can be moved by the cop to the vertex immediately to the
right of the new line. This process is repeated.

Therefore at most vs(G) + 1 traps are needed by a single cop to search the graph

G. g

Definition 3.1 Let G be a graph. Suppose G has isometric cycles of length three and
four only: that ts. every cycle of length greater than or equal to five has a shortcut.

Then G is said to be an H-graph.

Definition 3.2 1 handle H of a graph G is composed of the vertices X U {b} and

ts characterized by the following properties:
1. the verter b is adjacent to at least one verterr € X
2. there erists a verter ¢ which dominates N'[b] except possibly for some of X.

3. there erists a verter a such that a is the bottleneck for X : that is. a is adjacent
tor € X. and it is known that any verter that is adjacent to xr’ € X is also

adjacent to c.

4. there exists a subgraph Y C N(b) C XUY U {c} such thatVy € Y. y dominates
r € X except for a.
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3. a and ¢ are adjacent.
A handle X U {b} of an H-graph is shown in Figure 3.3.

£

C

allies .

X

Figure 3.3: An H-graph. The trap is indicated by a rectangular box.

Theorem 3.6 Let G be an H-graph and let H be a handle in G. If the robber is

forced to move onto H. a win for the cop will result.

Proof. Let G be an H-graph and let H be a handle in G as shown in Figure 3.3.
Consider what occurs if the robber is forced to move onto H. Suppose the robber
moves onto vertex h. If the cop is on c. then the cop wins on his next move. Suppose
the cop moves onto ¢. The robber can pass and stay on b. move onto X. or move onto
Y". If the robber passes. the cop wins on his next move since there is an edge between
vertices b and c. If the robber moves onto Y. the cop also wins because ¢ dominates
N{h] (except for some of X). If the robber moves onto X. the cop will move to a and
lav the trap there. This will prevent the robber from being able to exit the handle
through a. The cop then moves back onto c. Between these moves. the robber may
have chosen to move back onto b or Y. or to remain in X. and it is the robber’s move.
After this move. the robber will be on a vertex in {c} U {b} UY U X. If he is on c.

the cop has won. If he is on b or y € Y. the cop wins on the next move. Suppose the



robber is on r € X. The cop moves onto y € Y. Since y dominates r. the cop wins

on the next move. o

From this analysis. we conclude that the robber will not move onto the handle
unless he is forced to do so. Hence it is not useful for the cop to play there unless the
robber is forced to play there. in which case the cop has been shown to win. Therefore.
we must determine if the cop can force the robber to move onto the handle. To do
thiz. we remove this handle from the graph and play on the resulting subgraph. The
next theorem tells us thar this subgraph will be (1.1)-win if the original graph is

(1.1)-win.

Theorem 3.7 Let H be a subgraph of an H-graph G and let H be a handle. Let
G'=G\H. Then G" is (1.1)-urn if G s (1.1)-win.

Proof. Suppose the H-graph G is (1.1)-win. Let H be a handle of G. The graph
G’ = G\ H is a retract of G with the mapping f defined as follows: f(X) = f(b) =c¢
and Ye € V(G'). f(v) = . By Theorem 3.2. G is (1.1)-win. g

Theorem 3.8 Let G be an H-graph. [f there exists a handle H then G\ H is an
H-graph.

Proof. Let G be a graph and let // be a handle of G. Suppose G\ H is not an
H-graph. Then there exists an isometric cycle of length > 5 which has a shortcut
through . X. There are four cases to consider.

(1) The shortcut includes b and at least one vertex from the subgraph X. sav r. Also.
rand b are immediately preceded by a vertex from Y U {a} and immediately followed
by a vertex from Y U {c}.

Suppose the shortcut includes the path y, = b y» where y, and y» are vertices from
Y. The path y; ¢ y» could be used instead. If the shortcut includes the path a « b
y1. then the path a ¢ y; could be used instead. If the shortcut includes the path y,
b c. the path y; ¢ could be used instead. Finally. if the shortcut includes the path a

£ b c. the path a ¢ could be used instead.



Figure 3.4: Case 1.

(2) The shortcut includes at least one vertex from X but not 4. As with the first case.

¢ can be used in the shortcut. The vertices from X are replaced by ¢ in the path.

L
AN

Figure 3.5: Case 2

{3) The shorteut includes d but no vertices from X. Again. the vertex b can be

replaced by ¢ in the shortcut.

/F\
w
Figure 3.6: Case 3.

Hence all shortcuts through 6. X can be rerouted through c. This is a contradic-

tion. Therefore. G\ H is an H-graph. g



The previous two theorems tell us that if G is an H-graph with a handle # and G
is (1.1)-win. then G\ H is an H-graph and G \ H is (1.1)-win. Hence the successive
removal of handles and corners from a (1.1)-win H-graph G will result in a single
vertex.

[t was hoped that if such a removal of handles and corners from a (1.1)-win H-
graph G resulted in a single vertex. then it could be concluded that G is (1.1)-win.
However. this is not the case because a different trap may be needed for everv handle

in . This is shown in the next example.

Example: Consider the H-graph G shown in Figure 3.7.

TI@ Cl
C

-

R1

R2

Figure 3.7: A (1.2)-win graph G. The vertex labels indicate the sequence of moves
by the cop (C'). robber (R) and trap (7).

Suppose the trap is on 7T;. the robber is on R;. and the cop moves onto C. Since
Ry U {h} is a handle of G\ {R..b2}. the cop can win on the subgraph G\ {Rs. b}
with a single trap by Theorem 3.6. However. a second handle R>U{b,} is also present

in G. Suppose the robber drops down to R,. There are cyvcles present on which the



robber can move and evade the cop. Therefore. the cop must retrieve the trap if he
is to capture the robber on the handle R> U {b2}. The cop moves to T} and retrieves
the trap. Suppose the robber moves onto R3. The cop moves to R, and drops the
trap. The robber is then able to move to R; and escape from the handle. Hence one
cop and a single trap cannot ensure the capture of a robber on an H-graph G from

which handles can be successively removed.

[t has been shown that if the successive removal of handles and corners from an
H-graph G results in a single vertex . it is not necessarily true that G is (1.1)-win.
However. if & handles are removed. a single cop plaving on G can win with at most

k traps. one for each of the handles.

Theorem 3.9 Let G be an H-graph. Suppose there s an ordering S =
{S1.S5.....8,} such that for each i < n. S, is a handle or a corner in the subgraph
induced by the vertices in the set {S,.Si1..... Sa}. If|{S: : S, is a handle}| = k.

then one cop playing on G requires at most k traps to win.

Proof. Let G be an H-graph. [t has been shown in Theorem 3.8 that if H is a
handle of G. then G \ H is also an H-graph. It has been shown in Theorem 3.6 that
if the robber is forced to move onto the handle H. the cop can win if he has a trap
at his disposal. Therefore once the cop leaves a trap on each of the handles of G. the
outcome of the game can be determined by considering the induced subgraph that
results from removing these handles. [t was shown in Theorem 1.2 that a similar
result holds for corners. Inductively. if A handles can be removed fromn G. as well as a
finite numnber of corners. and the result is a single vertex. then the cop can guarantee

a win using at most A traps. one for each handle. g

Now suppose graphs G with isometric cvcles of length at least five are considered.
The definition of a handle must be expanded to include a subgraph Z as shown in
Figure 3.8. This subgraph Z is a copwin graph with the property that there is some

copwin ordering {z;.2s.... .z,} such that Nx(z;) € Nx(z;) for j < i.
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Figure 3.3: A handle X U {b} under the expanded definition. The trap is indicated
by a rectangular box.

Handles X U {b} defined in this way. together with the subgraphs ¥ and Z. are
copwin graphs. The idea of handles is generalized in the remainder of this chapter.
In place of handles. we consider a copwin graph A. The adjacent vertices a and ¢ in

the handle definition are outside of A".

Definition 3.3 Let i be a copuin graph. and let {c|.cy.... .c,} be a copwin ordering

of K. The verter c, will be referred to as the start vertex of this ordering.

The vertex ¢, is called a start vertex because this is the vertex ou which the cop
begins his winning strategy as described in Section 1.1.5.

Let A be a copwin graph. and let C = {(¢;.ca.... .cp) : (c1.Ca. ... .¢,) IS a copwin
ordering of A'}. Let A C C. Define 4,(A) = {r : £ = ¢, in some copwin ordering in
A} fori=1.2.... .n

Definition 3.4 Let A be a copwin subgraph of a graph G. and let ¢ and a be adjacent
vertices of G outside K. Let A be the set of copwin orderings of K which end with a
start vertex in N(c). Then (K.c.a) is said to be covered if

(i) forre A, and y € A;_;. Ng(y) C Ng(a).

(i) Ng(Ap Ao 4,) € N(a) and
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where K = G\ K.

[t is said thar the robber is forced onto K if the robber is on a vertex v € N(c)

and moves into A" when the robber moves onto c.

Theorem 3.10 Let (N.c.a) be covered. If the robber is forced to move into K then

a win for the cop results.

Proof. Suppose (A.c.a) is covered. and suppose the robber is forced to move into
KA. If the robber moves onto r € K N N (c). he will be caught on the cop’s next move
because the cop is on vertex c. Hence. suppose the robber moves into A"\ N (c).

The cop moves to a and drops the trap. Now the robber cannot move outside A
because each vertex r within distance two of ¢ has Ni(r) € N(a). This is because
(. c.a) is covered (part(ii)).

The cop returns to ¢. The robber is on some vertex r. He is unable to move
ourside A" at this time because d(r.c) £ 4 and Ny (r) € N(c¢) by the definition of
covered (part (iii)).

The cop moves to a start vertex ¢,. [t is noted that ¢, € A,(.A). The robber
cannot move to a vertex = outside A'. This is because the robber is on some vertex r
such that r € 4,(A). ¢ < n. By the definition of covered (part (i)). N (r) € Ng(cq)-
So the robber moves to a vertex in A",

Recursively. the cop uses a copwin ordering to choose a vertex ¢; € A4;(.A). The
robber is on a vertex r € A;(.A). Now by Theorem 1.8. the copwin ordering does not
allow the robber to use any of the vertices c,.,.... .c, previously used by the cop.
Hence & < j. By the definition of covered (part(i)). Nz(r) € Ng(c,). Hence the
robber must move within A. Also by Theorem 1.8. the robber canunot move to any
of ¢;.cpn1.... Ly

Hence after a finite number of moves. the robber must move onto a or be appre-

hended by the cop. Therefore if (K. c.a) is covered and the robber is forced to move

into A’. a win for the cop results. g



Suppose an alternate definition of the robber being forced into A is used: that is.
the robber is forced to remain in K if the robber is in A" when the cop moves onto c.

The previous theorem holds under this new definition. This is stated as a corollary.

Corollary 3.3 Let (K.c.a) be covered. and suppose the robber is forced into K in
the sense that the robber is in K when the cop moves onto c. Then a win for the cop

results.

As was the case with handles. if the successive removal of & covered. copwin graphs
K . as well as a finite number of corners. from a graph G results in a single vertex.

then a single cop plaving on G can capture the robber using at most & traps.



Chapter 4
Probability Searching Problems

In this chapter. we present several problems formulated in terms of searchers. and
sleeping babies and lost dogs. These problems are extensions of the searching game
with the exception that it is known there is someone to find. Also. the baby or dog
has finite speed. Both the baby or dog and the searchers require one unit of time
to move between adjacent vertices. Since the baby or dog is unaware of the efforts
of the searchers to find him. he makes no effort to evade the searchers. It is for this
reason that these problems are not presented in terms of cops and robbers.

Alternately. we could formulate these problems in terms of a rescue at sea. A
rescue boat becomes the searcher. and a missing person takes the place of the lost
baby or dog. This naturally would have us consider 2-dimensional grids. However.
here we restrict ourselves to paths.

We lock at these problems from the perspective of determining a strategy and a
place to begin the search that will minimize the expected time required. There is a
natural progression of problems. We begin in Section 4.1 by considering a search of
a path of length n for a baby who has wandered off and is sleeping somewhere along
the path. We assume that it is equally likelyv that the baby will be found on each
of the vertices. It is shown in Corollary 4.1 that the time expected for a search is
minimized if the search begins at one of the end vertices of the path.

In Section 4.2. the baby is replaced by a dog in the formulation of the problem.

(V1]
-]



This is because a more active participant is required. We assume that the dog has been
lost and free to wander along the path for some time. This alters the probabilities
of the dog being found at each of the vertices. We also assume that the dog falls
asleep just before the search begins. This prevents the dog from coming up behind
the searcher and moving onto a vertex that has already been searched. Even though
the underlying probability distribution has changed. it is shown in Corollary 1.2 that
the expected time for a search is still minimized by starting at an end vertex.

Suppose we remove the restriction that the dog falls asleep before the search
begins. and therefore. the dog is able to move up behind the searcher. Clearly. the
expected time will be minimized if the search begins on an end vertex as this will
prevent vertices from having to be searched a second time.

[n Section 4.3. an alternare way to prevent the dog fromm moving up behind the
=carcher is introduced. We allow the searcher to use a “trap’. If the dog and the trap
occupy the same vertex. the dog is detained and the search is over. Once the trap is
laid. the search must proceed on an adjacent vertex.

Two strategies are presented. The first strategy considered has the searcher place
the rrap and proceed in the direction of the nearest leaf. In Conjecture 4.1. we propose
that the expected timne to complete a search is minimized when the trap is placed on
one of rthe leaves. Now if the trap is placed on one of the leaves. this is equivalent to
beginning the search on a leaf without using the trap. In this case. the trap is of no
benefit.

The alternate strategy has the searcher place the trap and proceed in the direction
of the farthest leaf. We propose in Conjecture 4.2 that the expected time for a search
ix minimized using this strategy when the trap is placed on a vertex adjacent to one
of the leaves.

These two strategies are compared. and Conjecture 1.3 proposes that the expected
tinme to complete a search is minimized when the alternate strategy is used and the
trap 1s placed on a vertex adjacent to one of the leaves.

In the final section. we change the graph on which the search takes place from a
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path with n vertices to a cvcle with n vertices. As before. the searcher has a single
trap to aid in the search. [t is proven in Theorem 4.7 that the time expected for a

search does not depend on the vertex on which the trap is placed.

4.1 Sleeping Baby Problem

Consider a path P, with n vertices: that is. V(P,) = {1.2..... n} and E(P,) =
{(i.i+1):¢=1.2.....n—1}. Suppose that a baby has wandered off and is now
sleeping on some vertex along the path. We wish to minimize the longest time and
the expected time required for a search to locate the baby.

We begin by presenting the strategyv that will be used to search for the babyv. It
will be shown that this strategy is the most efficient method of searching in the sense
that the number of edges traversed during a search using this strategy is less than

the number required using an alternate strategy.

Strategy. Suppose the search originates at vertex i. ¢ € {1.2.....n}. The search
proceeds in the direction in which the distance to an endpoint is shortest. Once
thi= endpoint has been reached. the search continues in the opposite direction. The

vertices are searched in the order they appear.

Proof. To see that this strategy is the most efficient. consider the alternate strategy.
Suppose the search originates at vertex /. i € {1.2.... .n}. Suppose the searcher
visits n; vertices in one direction. then reverses direction and searches n, vertices in
the other direction. ny > n,. Further suppose that the search continues in this way.
The searcher visits n; vertices in one direction. then reverses direction and searches
n,- vertices in the other direction. n;.y > n;. Let the nj; vertices searched during
the time between two changes of direction by the searcher be a path p;. The path p,
has endpoints v; and v;.;. We note that vy = i. This is shown in Figure 4.1.
Consider the paths p,_,. p;. and p;.,. The vertices in the path p;_; are searched
three times during this portion of the search. The efficiency of the search is improved

by removing the path p;_; and the portion of the path p; between vertices ¢; and
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Figure 4.1: Searching strategy-.

¢, -1 tas indicared by dashed lines in Figure 4.1). By induction. after this process of
removing inefficient portions of the search is complete. we have a searching strategyv
in which each edge of the path £, is covered at most twice. All that remains to be
shown is that it is more efficient to search in the direction of the nearer of the two
leaves. This is clear since this method of searching minimizes the number of edges

that will be covered twice. o

Let’s first consider the longest time required for a scarch. We note that the values
along the path are svmmetric: that is. the length of the longest path for vertex ¢ is
the same as that for vertex n — ¢ + 1. The values for the longest paths tor each of
the vertices are shown in Figure 4.2. Clearly. the longest time is minimized when the
search begins at either the first or the last vertex and n — 1 unirts of time are required.

Let’s now consider the minimum expected time. We assuine that the probability
of the baby being located at vertex i is the same for all i. namely 1/n. Because of

svmmetry. we need only find the expected times for values of /i such that 1 < i< 2
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n-1 n n+l n+2 ... n+2 n+l n-1
® 2 ' 2 —e— —e- = *
n vertices

Figure 4.2: Longest times for a search of a path of length n.

for

Theorem 4.1 The expected time required to find a baby sleeping somewhere along a
path of length n if the search originates at vertexi. 1 < i< 5 forn evenand1< i<
% for n odd. and continues in the direction of the nearest leaf is ”"_n;“ + "_%3

Proof. Suppose the search begins at vertex i. The expected value of the time needed
for a search is given by ,-:-(0) + %(1) + e+ %(z‘ —-1)+ %(’21‘ - 1)+ %(21’) -+ %(‘21’ + 1)+
R %(n + ¢ — 2). Clearly the time is 0 if the baby is sleeping at vertex i. 1 if the
baby is sleeping at vertex ¢ — 1. and similarly / — 1 if the baby is sleeping at vertex 1.
Consider now what happens if the baby is situated at vertex ¢ + 1. The time required
for the search is the time to search the vertices between 7 and 1. return to ¢ and then
search i/ + 1. The time required is 2; — 1 units. As the other vertices to the right of /
are considered. this procedure is repeated adding the necessary units of time that are
required since the baby is located further to the right. Finally. if the baby is sleeping
at vertex n. ¢ — 1 units of time are needed to search between vertices ¢ and 1. and
then n — 1 units of time are needed to reach vertex n for a total of n + ¢ — 2. The
expression given above simplifies to 2(3° _1_] + Z;__:!_l_j ) which simplifies to the

expression given in the statement of the theorem. g

n—1

Corollary 4.1 The shortest ezpected time required to find the sleeping baby is 3

and occurs when the search begins on either of the two leaves.



4.2 Lost Dog Problem

Consider a path P, with n vertices. Suppose we wish to find a dog that is lost
somewhere along this path. We wish to determine the time expected to complete this
search noting that the dog has been free to wander along the path. We also assume
that the dog has fallen asleep just before the search begins.

We must determine the probabilities that the dog will be found at each of the
vertices. We first consider the transitional probabilities. If the dog is located at one
ot the two end vertices. the probability that it stays there is 1/2 and the probability
that it moves to the neighboring vertex is 1/2. If the dog is located at any of the
other vertices. the probability that it stavs there is 1/3 while the probability that it
moves to either of the neighboring vertices is 1/3 for each neighbor. All other events
have probability 0. Hence the matrix of transitional probabilities is svimetric and

appears as shown below.

a a a; (X Upn—3 dpn-2 Qp-) anp
o 12 12 o o ... o 0 0 0 ]
(t /3 1/3  1/3 0 0 0 0 0
ay 0 1/3 1/3 1/3 0 0 0
1y 0 0 1/3 1/3 1/3 0
Ay _y 0 1/3 1/3 1/3
an, i 0 0 0 0 1/2 1/2 |

Now limiting distributions are used to determine the probabilities that the dog

will be found ar each of the vertices along the path given that the dog has been lost

and free to move about for some time. The probabilities are given by the following
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and
o _ 3
ar, = az = —an_l—Sn_z.
This is shown in Figure 4.3.
2 3 3 3 3 3 3 2
3n-2 3pn-2 3n-2 3n-2 "7 3n-2 3n-2 3n-2 3n-2
(S > —o *— - ——e— ° °

n vertices

Figure 4.3: Probabilities of finding the lost dog on each of the n vertices.

Now that the distribution of probabilities has been determined. the expected time

can be calculated.

Theorem 4.2 Suppose a dog has been lost and free to roam along a path of length n
for some time. Further suppose that if the dog comes to one of the two end vertices.
it retains its position with probability 1/2 and moves to the only neighboring vertex
with probability 1/2. Similarly. if the dog is located on any of the other n — 2 vertices.
it will retain its position or move to either of the two neighboring vertices each with
probability 1/3. Finally suppose that the dog falls asleep just before the search begins.
The expected time to find the dog if the search originates at verteri. 1 <i < 5 forn
cven and 1 < i < 221 for n odd. and continues in the direction of the nearest leaf is

2

(Bi(n—i+ 1)+ 23n—11)+3)/(3n —2).

Proof. Suppose the search begins at vertex /. The expected time needed for a search

is given by —==(i — 1) + == 23;21 J+ 3—,,333 Z"+i_3 J+ ")_._,(n. + ¢ — 2). Clearly the

3n-2 3n-2 J=2i-1 3n

probability 3"—"_—2 comes into play only if the dog is located on either the first or the last

vertex in the path. The times required for these searches are i — 1 and n + ¢ — 2 units



of time respectively. All other searches are associated with the probability == 3. The
sum that includes the values from 1 up to i — 2 accounts for the vertices to the left
of vertex i. except for the first vertex which has already been considered. Similarly.
the sum that includes the values from 2¢ — 1 to n + i — 3 accounts for the vertices to
the right of vertex ¢ with the exception of the nth vertex. This expression simplifies
10 (2R + 4 —6+330 7 " j+3 Z]—n—l J) which is equivalent to that given in the

statement of the theorem. O

Corollary 4.2 The shortest expected time needed for such a search is 5% and occurs

when the search begins at either of the two leaves.

This is the same conclusion as was drawn in Corollary 4.1 even though the un-
derlying probability distributions are different. Suppose an alternate probability dis-
tribution is considered. An interesting question is if the time is minimized when the

=carch begins on a leaf and if this minimum expected time is i‘_%l

4.3 Lost Dog Problem with Traps

Consider a path P, with n vertices. Again we wish to find a dog that has been lost
and free to wander along this path for some time. As before we will assume that at
any time. it is equally probable that the the dog will remain where it is or move to
a neighboring vertex. For the two leaves. this implies that the dog will move with
probability 1/2 and remain where it is with probabilitv 1/2. For any of the other
vertices. the dog will move to the left or right each with probability 1/3. and will
remain where it is with probability 1/3. Hence before the search begins. we assume
that the probabilities that the dog is on each of the vertices are given by the limiting
distribution found previously and shown in Figure 4.3.

However. we are no longer assuming that the dog falls asleep before the search
begins. Hence. the dog is able to move onto vertices that have already been searched.
Suppose the search begins at some vertex other than one of the leaves. Immediately

afrer the searcher leaves that vertex. the dog can move up behind the searcher. This
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is true for all of the vertices visited by the searcher until he reaches one of the leaves.
These previously searched vertices have to be searched again. Clearly the searcher
can minimize the time expected for a search by beginning at one of the end vertices.
This will prevent the dog from moving up behind the searcher. and will eliminate the
need to search some vertices more than once.

Another way to prevent the searcher from having to search some vertices more
than once is to introduce traps. We allow the searcher to have one trap. Once the
trap is placed on a particular vertex. the search continues on the neighboring vertex
that ix closest to a leaf. We assume. without loss of generality. that the trap is placed

on vertex ( where 1 < i < 2 if niseven and 1 < i < 2! if n is odd. Hence the

search begins on vertex { — 1. Finally. if the dog is caught in the trap. the searcher
is immediately aware that the dog has been located and the search is over as the
scarcher has ouly to go and pick up the dog.

The first step is to calculare the probabilities that the dog is located at each of
the novertices. These probabilities are updated as the search proceeds.

Let A be the event that the dog is found on vertex A. 1 < & < n. Let B be the
event that the dog is not found on vertex j. 1 < j < n — 1. where j is the vertex

scarched immediately before vertex &. Baves™ Rule tells us
, P(4)
P(AlB) = P(B|A)———.
(AIB) = P(BIA) 5
We notice that P(B].4) = 1: that is. we can sav with certainty that the dog will not

be found on vertex j if it is known thart the dog is found on vertex k. Hence.

P(4)
P(A|B) = ——.
(A1B) B(B)
We know P(4,) = 3n"‘___, where A, is the event that the dog is found on vertex i.

2<i<n-1. 50

5
P{A)=1- = .
() 3n—2 3n—2

Also.

P4 ={ 7




Heuce.
— 2= 2<i<n-1
P(A;,|4,) = nyd
o= =2
3In~-2
3 3 2<i<n-1
- n=:
” .
- . )
3n—-3 L =

The other conditional probabilities are calculated similarly.

The first vertices to be searched are those from i — 1 to 1 inclusive. As the search
proceeds down this part of the path. we know that once a vertex has been searched.
the probability that the dog will be found at that vertex decreases to 0. This is
because the trap prevents the dog from coming up behind the searcher. Hence. the
probabilities increase of finding the dog at any of the unsearched vertices. Using
Baves” Rule for conditional probabilities. we obtain the following probabilities where

Ag is the event thar the dog is found on vertex k. 1 < Ak <i - 1.

3 S
—_ T a5 - 1 S <i-— 2
P(-'lz—_][-"ix——)#[) = Jn-';i]—_ /
—2 =i
Sn—ai=1 T

Now suppose the vertices ¢/ — 1 through 1 have been searched and the dog has not
been found and has not been caught in the trap. The searcher knows that the dog must
be located on one of the vertices from i + 1 to r inclusive. All other probabilities are
now (. As was the case when the vertices to the left of the trap were being searched.
once a vertex in this part of the path has been searched. the probability of the dog
being found on that vertex decreases to 0. Again using Baves” Rule. the continuously

updated probabilities for this part of the path are shown below. Theyv are

- 3
P '—114'— :1 - _—
(Aisi]y) I —3i—1
and
P(-"t-:—j+ll-4z+1) — 3n—.ix:3]—-l . .
» J=n-—-i-1

3n-3i-3; -1



3 ; N
mgoT clSJSn—i-2

1 j=n—-i-1
These probabilities are shown in Figure 4.4 where the trap is represented by a rect-

angular box.

I 2 3 i-1 i i+l ... n-=2 n-1 n

*r—o————0— -——eo —0

2 3 3 ... 3 3 3 I 3 I
3n-3i+1  3n-3i+4  3n-3i+7 3n-5  3n-2 3n-3i-1 8 5

continuously updated
probabilities

Figure 4.4: Continuously updated probabilities of finding the lost dog on each of the n
vertices assuming that the trap is placed on vertex 7 and the search continues toward
the Hrst vertex.

These probabilities are the probabilities of finding the dog on each of the vertices.
They are not the probabilities of finding the dog after certain amounts of time have
passed. This is because the probabilities that the dog wanders into the trap have not
vet been considered.

Suppose j units of time have elapsed where 1 < j < 2/ — 2. At this time. the dog
ix able to wander into the trap from vertex ¢ + 1 because no vertices bevond vertex i
have ver been searched. The probability of this event is the probability that the dog
is located on vertex { + 1 and moves to the left onto vertex /. namely %En—_ﬁ—]_—_, where

A=3if i #n—1and k£ = 2 otherwise. Hence the probability of the dog wandering

1

into the trap at tume ) 1s 3,3

Suppose j units of time have elapsed where j > 2i — 1. The search has reached
vertex ¢ + 1. and the probability of the dog wandering into the trap has become 0.
This is because all vertices from which the dog could move into the trap have been

scarched.



69

Now the probability p; that the dog is found at time j given that the dog has not
previously been fgund is the sum of the probability that the dog is located on the
vertex being searched at this time and the probability that the dog moves onto vertex
¢{. It should be noted that the the probability of the dog being found on the vertex
occupied by the searcher at time j where i < j < 2/ — 2 is 0 since this vertex has
already been searched. Also. the probability of the dog moving onto vertex / during
the time vertex k is being searched is 0 if & > 2¢ — 1. The probabilities p; for all

values of j are

r e J=0
sy 1SJ<is2
iy S U<2i-2
Ty 22— 1<j<n+i-3
‘ 1 J=n+i=2

Finallv. to determine the probability that the dog is found at time J. the probabil-
ity that the dog has not been found up to this time must be included. Let [, denote
the probability that the dog will be located at time j. The probability that the dog
is located at this time given that it has not been found previously is denoted p;. and
the probability that the dog has not been found prior to this time is denoted a,. \We
have I, = p,a,. It will be shown that the recursive relationship [,., = p;.1a,(1 — p,)

also holds.

Lemma 4.1 Let [, be the probability that the dog is found at time j and a, be the
probability that the dog has not been found prior to time j. Given that the dog has

not already been found. let p; be the probability that the dog is found at time j. Then
l-1 = py=1a,(1 — pj).

Proof. Consider the probability /;., that the dog is found at time j + 1. It is known

that I,_; = p;.1aj+1. Let’s consider the probability a;.,. This is the probability that



the dog has not been found prior to time j + 1. Alternatively. this can be thought
of as the probability that the dog was not found prior to time j and was not found
during that time. The probability that the dog was not found prior to time j is a;.
The probability that the dog was not found during time j is 1 — p,. Hence by the
multiplicative rule. the probability that the dog has not been found prior to time j+1

can be written a;(1 — p;): that is. the relationship {,.; = p;-1a;(1 — p;) holds.

These probabilities [, are used to calculate the expected time required for a search
using the strategy described in this section. This is the subject of the next theorem

which follows directly from the definition of expectation.

Theoremn 4.3 Suppose a dog has been lost and free to wander along a path of length
n. Further suppose that a searcher has a single trap to aid in the search. The exrpected
time to find the dog given that the trap is laid on vertex i. 2 < i < 5 if n is even and

2<i < 1_:—1 if n is odd. and the search proceeds in the direction of the nearest leaf is

n-+1—2

> ip,(1=py_i) (1= pyoa) -+ (1= po)
1=0

uhere
( 3n3—-2 J=0
o 1S Si-2
PJ=J ?”—“;‘—"—1 jzl:—l
Inai1 i<j<2-2
m 20-1<j<n+:-3
{ l J=n+i-2

Proof. Suppose that the trap is placed on vertex i/ where 2 < : < 2 if n is even and

2 </ < 2zl if n is odd. Further suppose that the search proceeds in the direction of

D

the first vertex. The expected time required for such a search is found by multiplying

a particular time j by the probability that the dog is found at that time. and summing



over all possible values of j to obtain

where

and

( 3
3n-2
. S
3n-3;-2
3
3n—-3i=1

= <
by 1
3n-31-1
3

1

\

3n+3:1-3)-4

2i-1<j<n+i—3

J=n+i—2.

Now the factor «, is expanded inductively to obtain (1 —p,_,)(1 =p;_»}--- (1 —po).

-2 . R e . . .
Hence the sun Z;’zé J1, simplifies to the expression given in the statement of the

theorem. o

[t is desirable for the searcher to know the vertex on which the trap should be

placed to minimize the time expected to complete a search for the missing dog. Table

1.1 gives the expected times to search a path P,. n € {4.5....18} for cach vertex i

ou which the trap can be placed. The values given in the table were found using the

following code in Maple. The values for n and / have to be entered by the user.

> n:=

’
> i:=

p(0):= 3/(3*n-2);

\%

> for j from 1 by 1 to i-2 do p(j):= 4/(3*n-3*j-2) od;

\

p(i-1):= 3/(3*n-3*i+1);



> for j from i by 1 to 2*i-2 do p(j):

= 1/(3*n-3*i-1) od;
> for j from 2*i-1 by 1 to n+i-3 do p(j):= 3/(3*n+3%i-3%j-4) od;

> p(n+i-2):=1;
> g := sum(’ j*p(j)*=(product(1-p(k), k=0..j-1))’, ’j’=1..n+i-2);
> evalf(g);
i
n 2 3 4 5 6 7 8 9
4 i 1.5480
5 (| 2.1911 | 1.9418
6 |l 2.7805 | 2.6785
Tl 3.3416 | 3.3502 | 3.1036
3 || 3.8860 | 3.9786 | 3.8314
9 || 4.4197 | 4.5778 | 1.5138 | 4.2676
10 || 4.9462 | 5.1565 | 5.1618 | 4.9907
11 || 5.4676 | 5.7205 | 5.7837 | 5.6789 | 5.4326
12 |} 5.9851 | 6.2735 | 6.3857 | 6.3387 I 6.1528
13 || 6.4999 | 6.8181 | 6.9721 | 6.9756 | 6.8446 | 6.5982
14 || 7.0124 | 7.3562 | 7.5462 | 7.5940 | 7.5123 | 7.3164
15 || 7.5232 | 7.3890 | 8.1105 | 8.1972 | 8.1598 | 8.0106 | 7.7640
16 || 8.0325 | 3.4176 | 3.6667 | 8.7879 | 8.7903 | 3.6840 | 8.4303
17 || 8.5407 | 8.9428 { 9.2162 | 9.3682 | 9.4064 | 9.3393 | 9.1768 | §.9301
13 9.0480]9.4650 9.7602 | 9.9398 | 10.0103 { 9.9791 | 9.8545 | 9.6458

=l
o

Table 4.1: Expected times for a search of P, for each possible value of ;. the vertex

on which the trap is placed.

We conclude this section by considering the case not included in the previous

analvsis. Suppose the trap is placed on the first vertex rather than the ith vertex.

The probabilities that the dog is located on each of the n vertices are shown in Figure

1.5,

In this case. it is impossible for the dog to wander into the trap. Hence the

probabilities p, are as shown in Figure 4.5. The probability [, of finding the dog at

a particular time j is found using the recursive relationship [; = pja; where a; =

a,-1(1 = p;_1). These probabilities [; are used to determine the expected time.
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Figure 4.5: Continuously updated probabilities of finding the lost dog on cach of the
n vertices when the trap is placed on the first vertex.

Theorem 4.4 Suppose a dog has been lost and free to wander along a path of length
n. Further suppose that a searcher has a single trap to aid in the search and that the

n—1

trap is laid on the first verter. The expected time to find the dog is "5 .

Proof. Suppose that the trap is placed on the first vertex and the search begins on
the second vertex. The expected time is found by multiplyving a particular time j
by the probability that the dog is found at that time. and summing over all possible

values of j to obtain Z:& Jl; where [, = a,p,. a, = a,_(1 — p;_,} and

2 -
3n-2 =0
D; = ST—%FT 1§_]Sn—2
1 .J=n—1.

Now the factor a, is expanded inductively to obtain (1—p;_;)(1—p;_»)---(1—p;)(1—
o). and so this sum simplifies to

n—-1

D ipi(1=pio1)(1 = pyoa) -+ (1= pi)(1 = po).

Now consider the first n — 2 terms in this sum. Each such term can be expanded

to obtain



()= )l = ) (1= (1 - )
J:371—3j—1 3n—-3;+2 3n—3j+5 3n—4 3n-2

which can be simplied to obtain

3 3n—35 -1 33n—3j+‘2) (371—7)(371—-1)
3n=-3-1"3n—-3;+2""3n-3+5

I 3n—4""3n-2

or equivalently

3J
3n -2
Hence.
n-—-2 . 3 n-2
Zﬂ-’ = 2 2
7=0 3n —2 3=0
which can be simplied to obtain
3n? —9n+6
2(3n -2)

Similarly. the last term in the summ (j = n — 1) can be expanded to obtain

3 3 3 3 2
(n — 1)(1—5)(1‘§)"'(1_ ;3n,_7)(1—3n—-1)(1— 3n—2

)-

This expression can be simplied to

2.5 3n—10_,3n—-7 3n—+4
(n=DEFE) - GG =)
or equivalently
2(n—1)

3n—-2"



Hence.
n-1 1 __ 3n2-9n+6 , 2An-=1)
;=07 T TEnoy Y Ea—2
— 3n?-35n+2
H3n-2)
(3n=-2)(n-1)
(3n-2)
n—1

3=
This is the expression given in the statement of the theorem. g

[t appears that when using the strategy described in this section. the expected
time for a search is minimized when the trap is placed on the first vertex for n # 5.
This is stated as a conjecture. and is tested for some large values of n. The results

are shown in Table 4.2.

Conjecture 4.1 Suppose a dog has been lost and free to wander along a path of
length n. Further suppose that a searcher has a single trap to aid in the search. and
that the search proceeds in the direction of the nearest leaf. The expected time to find
the dog given that the trap is laid on verteri. 1 < i< 5 ifn isevenand1 <i < "—_7—1

o nois odd. 1s mintmized when i =1 for n # 3.

[t is known that Conjecture 4.1 is true for values of n < 250.

n
100 150 | 200 | 250
245000 [ 49.5000 745000 [ 99.5000 [ 124.5000
50.1460 | 75.1529 | 100.1564 | 125.1584
11l 28.3049 | 57.4708 | 86.6382 | 115.8060 | 144.9739

Ut
=
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Table 4.2: Comparison of expected times for i = 1. 2. and [2].

Cousider the strategy presented here when the trap is placed on the first vertex.
It is equivalent to the search beginning on the first vertex when no trap is available.

Hence if n # 5. it is not to the searcher’s benefit to use a trap.
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4.4 Lost Dog Problem with Traps - The Alternate
Strategy

In this section. an alternate strategy that can be used by a searcher with a single trap
i= introduced. Rather than placing the trap on some vertex ¢ and then proceeding to
search in the direction of the nearest of the two leaves. the searcher places the trap
on the second vertex and proceeds to search in the direction of the farthest leaf. This
is because the probability that the dog is on the first vertex is small in comparison
to the probability that it is on some vertex to the right of the trap. and if the dog
i= located on the first vertex. the probability is one half that the dog will wander
into the trap rather than remain on the first vertex. Hence. the probability that the
searcher will have to retrace his steps near the end of the search and search the first
vertex is small. The expected tine for a search using this strategy will be compared
with the time expected using the strategies presented in the previous section.

The probabilities that the dog is located on each of the n vertices are shown in

Figure 4.6. They are calculated using Baves™ Rule as in Section 4.3.

1 2 3 eee -1 i i+l n-2 n-1 n
. E] . e . R . R .
I 3 3 3 3 3 3 3 1

3n-2 3n-3 3n-3i+7 3n-3i+4  3n-3i+1 10 8 2

-~

continuously updated
probabilities

Figure 4.6: Continuously updated probabilities of finding the lost dog on each of the
n vertices if the trap is placed on the second vertex and the alternate strategyv is being
used.

Now consider the probability p; that the dog is found at a particular time j given

that the dog had not been found prior to that time. This probability is found by



~]
~I

adding the probability that the dog is found on the vertex being searched at that
time to the probability that the dog wanders into the trap. Consider the probability

that the dog wanders into the trap. Now at time j. the probability that the dog is

e

In-33-2

right is 1/2. Hence the probability of the dog moving into the trap is

and the probability that the dog moves to the

1
3n-3;-2"

located on the first vertex is

[t should be noted that during the times from 1 to n — 2 inclusive. given that the
dog is still missing. the probability of the dog being found includes contributions from
both the probability that the dog is on the vertex being searched at this time and
the probability that the dog wanders into the trap. During the times from n — 1 to
2n — 4. the probability that the dog is located on the vertex being searched is 0 since
the vertices being searched during these times have already been searched. Hence the
probability p, depends solely on the probability that the dog wanders into the trap.
At time 2n — 3. given that the dog has not been found. the probability of the dog
being on the first vertex is 1. These probabilities p, are

r

s )=
T_;]T_, .ISJSn—-S
Pj = 9 —: j=n-—2
3 n—1<j<2n-—1
{ 1 .J=12n-3.

Hence the probability /; of finding the dog at a particular time j is found using
the recursive relationship [, = p,a; where a; = a;_;(1 — p,_;). These probabilities /,

are used to determine the expected time.

Theorem 4.5 Suppose a dog has been lost and free to wander along a path of length
n. Further suppose that a searcher has a single trap to aid in the search. The expected
teme to find the dog given that the trap is laid on the second verter and the search
proceeds in the direction of the nth vertex is

2n-3

Z ij(l _pj-l)(l “Pj—'z) «+- (1= p1)(1 — po)
j=0



where
( 3;i2 J=
1 .
g2 lSJEn—=3
Py =9 3 J=n=2
3 nm-1<;<2n—4
o, -
{ 1 .J=2n-3.

Proof. Suppose that the trap is placed on the second vertex and the search continues
on the third. The expected time is found by multiplying a particular time j by the

probability that the dog is found at that time. and summing over all possible values

2n-3
j=0

expanded inductively as before to obtain (1 —p;_){1 —p;~2)---(1 ~ p1)(1 — po). and

of j to obtain Jlj where [, = a;p; and a, = a;_1(1 — pj_;). The factor a; is

so this sumn simplies to the one given in the statement of the theorem.

Maple was used to compute the expected times for a search of the path P, for
various values of n using the strategy presented in this section. These values are given

in Table 4.3. The Maple code used to obtain these values is included.

> n:= ;
> p(0):=3/(3n-2);

> for j from 1 by 1 to n-3 do p(j):= 4/(3*n-3%j-2) od;

> p(n-2) := 3/4;

> for j from n-1 by 1 to 2*n-4 do p(j):=1/2 od;

> p(2*n-3):= 1;

> g = sum(’ j*p(j)*(product(1-p(k), k=0..j-1))’, ’j’=1..2*n-3);

> evalf(g);

We conclude this section by considering a more general form of the strategy pre-
sented here. Suppose that instead of placing the trap on the second vertex and

proceeding in the direction of the nth vertex. the searcher places the trap on the ith



| n | Expected Time |
4 1.1313
5 1.5213
6 1.9272
T 2.3411
8 2.7594
9 3.1807
10 3.6037
11 4.0280
12 4.4532
13 4.8791
14 5.3054
15 5.7321
16 6.1591
17 6.5863
18 7.0137
19 7.4413
20 7.8690
21 8.2968
22 8.7216
23 9.1526
24 9.5806
23 10.0086

Table 4.3: Expected times for a search using the alternate strategy.

if n is even

(1))

vertex and proceeds in the direction of the nth vertex. where 3 </ <
and 3 <7/ < "—;—1 if n is odd.

Given that the dog has not been found previously. the probabilities that the dog
is located on ecach of the n vertices are shown in Figure 4.7. Theyv are calculated using
Baves' Rule as in Section -1.3.

The probability p, that the dog is found at a particular time j given that the dog
has not been found prior to that time is found by adding the probability that the dog
is on the vertex being searched at that time to that probability that the dog wanders
into the trap. The probability that the dog wanders in the trap at time j is calculated

as before. If 1 < j < n—i. the probability of the dog moving into the trap is ﬁ
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| 2 3 T | i i+1 .. n-2 n-1 n
[ L 4 — b —Q——E——O— . ————————@
3 3 3 3 3 3 3 2

i 5 8 3i4  3n-2 3n-5 3i+d 3+l 32

continuously updated
probabilities

Figure 4.7: Continuously updated probabilities of finding the lost dog on each of the
n vertices if the trap is placed on vertex i and the alternate strategy is being used.

If n—i+ 1< j < 2n — 2i this probability is 1. Otherwise. the probability is 0

since the vertices adjacent to the trap have been searched. The probabilities p; are

( iin3—2 '-]=0
-ﬁl‘-’ A< )j<n—-1-1
b, = 4 e J=n—u
, =

n—1r+1<57<2n-2

—_— < _.' he -) —_ '_-
e o 2n-21+1< ;< 2n—-:1-2

1 J=2n—1—1.

Hence the probability /; of finding the dog at a particular time j is found using
the recursive relationship {; = p;a; where a; = a,_,(1 — p,_,). These probabilities [,

are used to determine the expected time.

Theorem 4.6 Suppose a dog has been lost and free to wander along a path of length
n. Further suppose that a searcher has a single trap to aid in the search. The expected
fime to find the dog given that the trap is laid on verteri. 3 < i< 2 ifn is even and

3<i< ".—jl of n is odd. and the search proceeds in the direction of the nth vertex is

2n—i—1

D Jps (1= pio)(1—pjca) -+ (1= p1)(1 = po)

7=0
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where
4 3 R
3n-2 '-]:O
s l1<jsSn-—i-1
3 - .
_ 31-2 -] =n
p]_i 1 . . P
33 n—i+1<j3<2n-2
L 1 J=2n—-¢—-1.

n
3

Proof. Suppose that the trap is placed on vertex i. 3 < i < 5 if n is even and

3 <:< 2L if n is odd. and the search continues on vertex i + 1. The expected time

is found by multiplying a particular time j by the probability that the dog is found

at that time. and summing over all possible values of j to obtain Ziia"l Jjl;, where
[, = a,p, and a; = a;_1(1 — pj_1). The factor a, is expanded inductively as before to
obtain (1 — p,_1)(1 — p;=2) --- (1 = p1){1 — po). and so this sum simplies to the one

given in the statement of the theorem.

Maple was used to compute the expected times for a search of the path P, for
various values of n and 7 using the strategy presented above. These values are given

in Table -1.4. The Maple code is included.

> n:= ;
> 1:= ;
> p(0):= 3/(3*n-2);

> for j from 1 by 1 to n-i-1 do p(j):= 4/(3*n-3*j-2) od;

> p(n-i):= 3/(3*i-2);

> for j from n-i+1 by 1 to 2*n-2=*i do p(j):= 1/(3*i-4) od;

> for j from 2*n-2*i+1 by 1 to 2*n-i-2 do p{(j):= 3/(6*n-3*i-3%j-1) od;
> p(2%*n-i-1):=1;

> g := sum(’j*p(j)*(product(1-p(k), k=0..j-1))’, ’j’=1..2%*n-i-1);

> evalf(g);
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n 3 17 1 ] 5 ] 6 [ 7 ] 8 [ 9 | 10
6 | 2.3213
7 2.7018
8 || 3.0870 | 3.5036
9 34774 | 3.8936
10 |} 3.8728 | 4.2804 | 4.6799
1| 4.2727 { 4.6672 | 5.0793
12 || 4.6762 | 5.0556 | 5.4719 | 5.8530
13 41 5.0830 | 5.4161 ! 5.8613 | 6.2600
I4 || 5.4926 | 5.8392 | 6.2196 | 6.6587 | 7.0243
15 || 5.9044 | 6.2347 | 6.6379 | 7.0524 | 7.4373
16 || 6.3183 | 6.6328 | 7.0271 | 7.4431 | 7.8415 | 8.1944
17 |} 6.7339 | 7.0332 | 7.4177 | 7.8325 | 8.2397 | 8.6123
18 || 7.1509 | 7.4357 | 7.8098 | 8.2213 | 8.6338 | 9.0213 | 9.3677
19 || 7.5692 | 7.8403 | 8.2035 | 8.6103 | 9.0255 | 9.4237 | 9.7857
20 || 7.9886 | 8.2467 | 8.5990 | 8.9999 | 9.4156 | 9.8214 | 10.1987 | 10.5326

Table 4.4: Expected times for a search when the trap is laid on vertex ¢ and the
search proceeds on vertex ¢ + 1.

[t appears that when using the strategy described in this section. the expected
time for a search is minimized when the trap is laid on the second vertex. This is
stated as a conjecture. Table 4.5 compares the expected times when / = 2. 3. and

| 2] for some large values of n.

n
i 50 | 100 150 | 200 | 250
2 [ 20.7176 | 42.1442 [ 63.5722 | 85.0005 | 106.4290
3 || 20.7520 | 42.1576 | 63.5800 | 85.0058 | 106.4329
12} )| 28.0447 | 57.2165 | 86.3859 | 115.5547 | 144.7232

Table 4.5: Comparison of expected times using the alternate strategy.

Conjecture 4.2 Suppose a dog has been lost and free to wander along a path of

length n. Further suppose that a searcher has a single trap to aid in the search. The
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if nis

~

cepected time to find the dog given that the trap is laid on verteri.2 <i < :

cven and 2 < i < 251 if n is odd. and the search proceeds on verter i + 1 is minimized

when i = 2.

It is known that Conjecture 4.2 is true for values of n < 250.

4.5 Lost Dog Problem with Traps: Most Efficient
Strategy

The previous sections have presented two strategies for searching for a lost dog on a
path P, of length n when the dog has been lost and free to wander for some time.
and a trap is available to aid in the search. Conjectures have been made about the
vertex on which the trap should be placed to minimize the expected time for a search
using each of these strategies.

n+1

If the trap is laid on vertex /. 1 < i < S ifnisevenand 1 < i < 2~ ifnis

odd. and the search proceeds toward the first vertex. it has been conjectured that the
expected time is minimized when i = 1. If the trap is laid on vertex /. 2 </ < S if n
ix even and 1 < i < 2L if n is odd. and the search proceeds toward the nth vertex.

it has been conjectured that the expected time is minimized when ¢ = 2.

[n this section. these two strategies are compared for large values of n to determine
the strategy which minimizes the time expected to complete a search for the missing

dog. The results are shown in Table 1.6.

n
50 | 100 T 150 [ 200 [ 250 500
24.5000 | 49.5000 | 74.5000 | 99.5000 | 124.5000 | 249.5000
20.7176 | 42.1442 | 63.5722 | 85.0005 | 106.4290 | 213.5716

~,

1\ —

Table 4.6: Comparison of the expected times when using the two most efficient strate-

gies,
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[t appears that it is more efficient to place the trap on the second vertex and

proceed in the direction of the nth vertex. This is stated as a conjecture.

Conjecture 4.3 Suppose a dog has been lost and free to wander along a path of
length n. Further suppose that a searcher has a single trap to aid in the search. The
exrpected time for the search is minimized if the searcher places the trap on the second

verter and then proceeds to search in the direction of the nth verter.

This conjecture is known to be true for values of n < 500.

4.6 Lost Dog Problem on a Cycle

Cousider a cyvele €, with n vertices. Suppose a dog has been lost and free to wander
on (', for some time. We assume that the probabilities of the dog moving to the left
or right or stayving still are equal. Suppose that the searcher has one trap to aid in
the search and the trap is laid on vertex i. Now the search must begin on one of
the vertices adjacent to vertex i. Without loss of generality. assume that the search
begins on vertex { + 1. As before. the probabilities are continuously updated as the
search continues.

The first step is to determine the probabilities that the dog is on each of the
vertices before the search starts. Clearly. these probabilities are all equal since the
dog is equally likelv to move to the left or right or to stay still. Hence. for each of
the vertices there is a 1/n chance that the dog will be found there.

Now consider what happens once the trap is laid. If the dog is located on the ith
vertex. it will be found when the searcher goes to that vertex to lay the trap. If the
dog is not found there. the searcher uses that information to update the probabilities.
The probability that the dog is located on the ith vertex becomes 0 and the remaining
probabilities become 1/(n—1). This is intuitive and can be easily verified using Bayes’
Rule for conditional probabilities.

Similarly. as the search continues the probabilities that the dog is located on any of

the previously searched vertices become 0. and the probabilities that the dog is located



on any of the other vertices increase. These continuously updated probabilities are

represented by the formulae which follow where A4, is the event that the dog is found

on vertex J. j € {1.2.... .n}.

P(:lj) — n-+t—j

1

t—J

These probabilities are shown in Figure 4.8.

1
i-3

1
i-2

1
i+1
' n-3
1
2 €
L n-2
i+3

Figure 1.8: Continuously updated probabilities of finding the lost dog on each of the
n vertices of the cyvcle given that the dog has not been found prior to the time these

vertices are searched.

It should be noted here that these continuously updated probabilities are not the
probabilities that the dog will be found while a search of these vertices is proceeding.
This is because the probability that the dog wanders into the trap has not been
included.

Suppose j units of time have passed. The probability that the dog wanders into
the trap is n—ij the probability that the dog is on vertex / — 1. multiplied by 1/3. the
probability that the dog moves onto vertex i. Hence the probability of this event is

S
3n=—yi”
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Now p, is the probability that the dog is found after j units of time given that it

has not been found previously. These probabilities p; are

Let {, be the probability that the dog is found after j units of time. As shown
previously. /; = p;a; where a; = a;_(1 — p,_;). These are the probabilities used to

determine the expected time required for such a search.

Theorem 4.7 Suppose a dog has been lost and free to wander along a cycle of length
n. and that the dog is equally likely to move to the right or left or to retain its position.
Further suppose that the searcher has a single trap. that the search continues on a
verter adjacent to the one on which the trap is placed. and that the search ends if the
doy 15 found by the searcher or becomes caught by the trap. The erpected time required

for a search to find the dog does not depend on the location of the trap and is given

by
n—1
> Jp (L= p o)L= pyoa) -+ (1= pi)(1 = po)
2=0

where

1 . -

T . 1Z<j<n-2
3(n—
PJ—{ (n—ji

l .Jj=n-—1.

Proof. Assume that the trap is placed on vertex ¢ and the search continues on
vertex / + 1. The expected time is found by multiplyving a particular time j by the
probability that the dog is found at that time. and summing over all values of j to
obtain Z;’;i Jl, where [, = a,p; and ¢, = a;_(1 — p;~1). The factor a; is expanded
as before to obtain (1 —p; -1 )(1 —pj_s) -+ - (1 — p1)(1 = po). and so this sum simplifies
to the expression given in the statement of the theorem. The given expression clearly

does not depend on i. the vertex on which the trap was placed. g
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